时间序列ARIMA期末论文完整版
浅谈时间序列分析——以ARIMA为例
其中p代表自回归成分的阶数,q代表移动平均成分的阶 数,记做 ARIMA(p,q),即时间序列 yt 是由它的前 p 期值及当
2.2 平稳性检验 在实际情况中我们处理时间序列的时候,时常会有随机性 的和非平稳性的存在。特别是在普遍的经济时间序列都会显示 出一定程度的趋势性,就是指时间序列数值随时间的变化表现 出增大或缩小的趋势,还有季节性和方差的不稳定性。时间序 列的非平稳特性广泛存在,它从客观角度表达出经济活动实际 情况的同时,也使我们使用数学模型估量存在于时间序列中的 规律遇到困难。所以,对时间序列进行平稳性判断,观察一个 序列是否存在某种趋势,以及各时间间隔内折线是否存在是非 常有必要的。平稳性检验在本文运用的方法是通过观察 ACF 图 和 PACF 图的各项特征值后做出判断的检验方法[3]。 2.3 AIC准则、BIC准则 AIC是为了衡量统计模型拟合是否良好,而被创造出的判 断准则,它的存在意义是为了提供一种判断模型混乱程度以及 数据拟合情况是否良好的标准。 通常情况下,AIC定义为:
AIC=2k-2ln(L) 在上述公式中,k代表了模型的参数数量,L代表了似然函 数。在实际情况中需要从一组模型选择最佳模型的时候,一般 选择其中AIC值最小的模型。 BIC贝叶斯信息准则与AIC准则相似,可以看作AIC准则的 改进版,BIC的惩罚权重比AIC的大,从样本数量出发,当出现 样本数量过多的情况时,可以有效避免由于模型精度过高而造
TECHNOLOGY AND INFORMATION
时间序列ARIMA期末论文完整版
时间序列ARIMA期末论文完整版时间序列A R I M A期末论文标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]ARIMA模型在总人口预测中的应用【摘要】人口发展与社会经济的发展是密不可分的,研究我国总人口的发展,对我国人口数进行分析和预测,有利于及时控制人口的增长调节人口平衡,利于政府及时了解发展趋势并做出反应对策使我国人口发展步入健康的轨道。
本文利用时间序列建模原理和思路,并结合软件对1962年——2014年我国年底总人口数据做分析和预测。
找到对原始数据有着较好的拟合度和较高的预测精度的模型。
利用此模型可对我国年底总人口进行合理的预测。
【关键词】ARIMA建模总人口人口预测目录一、引言 (3)研究背景 (3)研究现状 (4)二、模型建立 (5)模型识别 (5)模型的参数估计 (8)模型的诊断 (10)2.模型的预测 (12)三、模型的优缺点及推广 (13)模型的优缺点 (13)模型的推广 (13)结束语 (14)【参考文献】 (15)附录 (16)一、引言研究背景我国是世界上人口最多的国家,自1980年开始,年末中国大陆总人口就已经超过了10亿,并一直保持约占世界总人口的五分之一,亚洲人口的三分之一。
中国人口的发展同中国社会的发展一样经过了漫长而曲折的道路。
在世纪的进程中,目前我国进入了一个全新的时代,要想在21世纪——这个充满竞争与挑战的时代中变的富强、屹立于世界民族之林,实现我们的中国梦,这全取决于人。
能否顺利解决人口现状等问题,是我国乃自世界共同面临的问题,由于地球的资源是有限的,它不可能无限制的容纳人口,当人口过多,会由于经济跟不上,工作岗位欠缺,医疗等水平不足,从而导致整个社会处于一种动荡之中;然而如果人口过少,又会由于人员不足,导致各方面人力资源不足,无法正常完成各项必须社会活动,这也会极大地限制一个国家的发展,因此,对人口的研究是具有相当的意义的。
我国由于幅员广阔,民族众多,各民族发展水平不一,同时作为世界第一人口大国,我国的耕地面积却相对不足,因此我国每年都需要从国外大量进口粮食,由于过分依赖于进口这对我国的发展影响巨大,为此甚至有国外反华势力叫嚣只要断绝给中国供粮,三五年之内中国必定大乱。
【原创】sas季节性时间序列ARIMA建模报告论文
【原创】sas季节性时间序列ARIMA建模报告论⽂季节性时间序列ARIMA 建模摘要:研究随机数据序列的统计规律性,可以预测其发展,解决实际问题。
时间序列理论在处理动态数据的问题上已经很成熟,⽆论是⾦融⽅⾯的数据,还是⽣活⽣产中的数据,只要是带有时间变量的数据,时间序列在处理上都具有⽆可⽐拟的优越性。
关键词:季节性时间序列 ARMA 模型 SARMA 模型季节效应分析在现实⽣活中,很多事物都呈现出季节变动规律,如购买⽕车票的数量,每年的1⽉或者2⽉就会出现购票的最⾼峰,因为这个季节就到了春季返乡⾼峰时间,这就是季节变动规律的。
通过时序图,构造季节指数从⽽就可以⽤季节效应分析对所收集的数据进⾏季节效应分析。
季节变动:季节变动是指事物发展规律随着季节的转变发⽣周期性的波动,这种周期可以是⼀年,⼀个季度,⼀个⽉,⼀周,甚⾄是⼀天,⼀⼩时等。
季节变动是有规律性的,它的每个周期都会重复出现,具体表现为相邻周期内每个时间段的变化⽅向和趋势⼤致相同。
具有季节变动的时间序列可以很容易从时间序列的时间⾛势图上看出。
在现实⽣活中,很多事物都具有季节变动规律,如购买机票的数值,每年的1⽉或2⽉就会出现购买机票的最⾼峰,也是机票价格的最⾼峰,因为这个季节就到了春节返乡⾼峰,这是呈现季节规律的。
若在分析时间序列的过程中,对季节变化的规律现象不进⾏分析和研究,就会使预测的结果不够准确,也不能正确反映事物的正常发展趋势,从⽽也就丧失了预测其中的作⽤。
季节指数:季节指数是指经济⾏为或经济现象在某⼀特定季节(观察时域)观测值的平均值与总体平均值的⽐率,⽤来测度季节变动的⼤⼩,主要适⽤于定量数据,不适⽤与定性数据。
季节模型在经济学领域使⽤的⽐较⼴泛,很多概念都是以经济学学位背景来定义的,它也适⽤与别的领域,不仅仅只有经济领域。
季节指数概念中提到的某⼀特定季节,不⼀定就是真正意义上的四季,它可以是⼀年,⼀个季度,也可以是⼀个⽉,⼀周,⼀天等,它⼴义的指代⼀个观察周期。
时间序列分析结课论文
- - .时间序列分析结课论文全国社会消费品零售总额的时间序列分析全国社会消费品零售总额的时间序列分析摘要时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。
市场经济中,政府对市场变化的即时反应是各国经济工作的重点。
在我国,随着市场经济的日益成熟,各级政府逐渐认识到短期计划的重要性。
在要求减少对市场干预的同时,政府在经济中的作用主要体现在保证经济运行的正常轨道,由于社会消费品零售总额反映了经济运行中的一个重要环节———消费,尤其是目前我国市场上的消费需求不足现象,使我国经济发展受到外需与内需两方的困扰。
因此对于社会消费品零售总额预测中的研究一直具有积极意义。
本文就以以我国1952年至2011年我国社会消费品零售总额为研究对象,做时间序列分析。
首先,对全国60多年来社会消费品零售总额的发展变化规律,运用SAS软件进行分析其发展趋势。
再则,通过检验说明模型拟合效果的好坏,再利用模型对下一年进行预测。
最后,从国家经济、政策和社会消费品零售市场发展等方面对社会消费品零售总额变化规律及未来走势进行分析。
关键字:社会消费品零售总额SAS软件时间序列分析预测一.引言社会消费品零售总额是指各种经济类型的批发零售业、贸易业、餐饮业、制造业和其他行业对城乡居民和社会集团的消费品零售额和农民对非农民居民零售额的总和。
这个指标能够反映通过各种商品流通渠道向居民和社会集团供应生活消费品来满足他们生活需求的情况,是研究人民生活、社会消费品购买力、货币流通等问题的重要指标。
随着消费环境的逐步改善,人们的消费能力不断增强,人们消费能力的增强直接带动了社会消费品零售总额的发展,“十一五”期间,面对复杂多变的国内外形势,特别是为应对国际金融危机的冲击,国家出台了一系列扩大内需、促进消费等政策措施,消费品市场的稳定发展对我国缓冲金融危机起到了明显的积极作用,消费需求已经成为经济增长的重要组成部分。
我国铁路运货量时间序列预测时间序列论文
我国铁路运货量时间序列预测时间序列论文近年来,我国铁路运货量呈现出快速增长的趋势。
为了更好地预测未来的铁路运货量,提高运输效率和管理水平,许多学者和研究人员开始对铁路运货量进行时间序列预测研究。
时间序列分析是一种经济学和统计学中常用的方法,旨在根据过去的观测数据来预测未来的数值。
对于铁路运货量的时间序列预测,通常可以采用ARIMA模型、灰色模型、神经网络模型等方法。
ARIMA(Autoregressive Integrated Moving Average)模型是一种常用的时间序列模型,通过对时间序列的自回归部分、差分部分和滑动平均部分进行建模,旨在发现时间序列中的趋势和季节性变化。
灰色模型是一种较为简单和直观的时间序列分析方法,它能够通过对时间序列的发展趋势进行建模,并根据该趋势进行预测。
灰色模型常用的方法有GM(1,1)、GM(2,1)等,可以根据实际情况选择合适的模型进行分析。
神经网络模型是一种较为复杂和灵活的时间序列分析方法,它通过构建多层神经网络,并通过不断调整网络的权值和偏置来拟合时间序列。
神经网络模型的优点是能够对非线性关系进行建模,并能够根据实际情况选择不同的激活函数和网络结构。
在进行铁路运货量时间序列预测研究时,需要首先对数据进行预处理,包括对异常值和缺失值的处理,以及数据的平稳性检验。
在选择预测模型时,可以根据数据的特点和预测目标来选择合适的模型。
还可以结合其他因素进行影响因素分析,包括宏观经济指标、土地利用情况、交通运输政策等。
通过对这些因素进行回归分析或引入外部变量,能够更准确地预测未来的铁路运货量。
铁路运货量的时间序列预测研究对于我国的铁路运输管理和规划具有重要的意义。
通过运用不同的时间序列模型和结合其他因素进行预测,可以更好地应对未来的铁路运货量变化,提高铁路运输效率和管理水平。
时间序列分析论文-V1
时间序列分析论文-V1时间序列分析是一种能够从时间上刻画和预测数据变化趋势的方法,越来越受到许多学科的关注和应用,尤其在经济学、金融学和天气学等领域得到了广泛的应用。
本文将介绍时间序列分析的基本概念以及相关论文的研究内容和方法。
1.时间序列分析的基本概念时间序列分析是一种建立在时间轴上的数据分析方法,利用过去数据的变化趋势或周期性规律预测未来数据的变化趋势或周期性规律。
时间序列数据的主要特征是:时间是自变量,其他变量是因变量。
时间序列分析主要包括三个部分:趋势分析、季节性分析和周期性分析。
2.相关论文的研究内容和方法(1)《基于时间序列分析的气温研究》该论文主要分析了气温时间序列对于气候变化的影响。
通过对气温数据的拟合分析得到了气温的变化趋势,进一步分析了季节性和周期性对于气温的影响,并预测了未来气温的变化趋势。
该论文的方法是将时间序列分析和数据拟合结合起来,利用多项式回归对气温进行拟合,进一步分析有关因素的影响。
(2)《基于时间序列分析的经济增长预测模型研究》该论文主要研究了时间序列分析在经济增长预测中的应用。
该研究通过分析GDP的时间序列数据,利用ARIMA模型对未来经济增长进行预测。
这种模型可以利用过去的数据来预测未来的发展趋势,对于政府制定经济政策和企业的发展规划都有很大的帮助。
(3)《基于时间序列分析与神经网络的股票价格预测研究》该研究主要探讨了时间序列分析与神经网络在股票价格预测中的应用。
该研究利用时间序列对过去的股票数据进行分析,同时采用了神经网络的方法对股票价格的未来变化趋势进行预测。
该研究的方法可提高投资决策的准确性,为股票市场的短期波动提供指导。
3.总结本文介绍了时间序列分析的基本概念和相关论文的研究内容和方法,展示了时间序列分析在不同领域的应用。
随着技术的发展和数据的丰富,时间序列分析的应用将会越来越广泛,未来有望成为许多学科的重要研究方法。
基于ARIMA模型的计算机时间序列分析研究
基于ARIMA模型的计算机时间序列分析研究引言时间序列分析是一种研究观测数据随时间变化规律的方法。
在计算机科学领域,对计算机时间序列的分析研究具有重要的实际意义。
计算机时间序列数据包括计算机运行状态、网络流量、应用程序性能数据等。
通过对这些数据进行分析,可以揭示出系统异常、优化系统性能,对计算机网络等方面的研究提供有力的支持。
ARIMA(自回归滑动平均积分移动平均)模型是一种常用的时间序列分析方法,可用于预测未来的数据趋势。
ARIMA模型能够发现时间序列中的自相关性和趋势性,并提供模型参数用于预测。
本文将介绍基于ARIMA模型的计算机时间序列分析研究,包括ARIMA模型的原理、应用场景以及如何建立和评估模型。
同时,将以一个具体的案例来说明ARIMA模型在计算机时间序列分析中的应用。
ARIMA模型原理ARIMA模型由自回归(AR)、滑动平均(MA)和差分(I)三个部分构成。
下面将对每个部分进行详细介绍。
自回归(AR)自回归是指当前观测值与前一观测值之间的关系。
AR(p)模型中,p表示自回归的阶数,即使用前p个观测值来预测当前观测值。
AR模型的数学表达式为:X t=ϕ1X t−1+ϕ2X t−2+...+ϕp X t−p+εt其中,X t表示当前观测值,ϕ1,ϕ2,...,ϕp表示自回归系数,εt为误差项。
滑动平均(MA)滑动平均是指当前观测值与前一观测值之间的误差项之和的关系。
MA(q)模型中,q表示滑动平均的阶数,即使用前q个误差项来预测当前观测值。
MA 模型的数学表达式为:X t=εt−θ1εt−1−θ2εt−2−...−θqεt−q其中,θ1,θ2,...,θq为滑动平均系数。
差分(I)差分是指对观测值进行减法运算,用于消除时间序列数据的非平稳性。
差分操作可以将非平稳的时间序列转化为平稳的时间序列,以便应用ARIMA模型进行预测。
差分操作的数学表达式为:ΔX t=X t−X t−1其中,ΔX t表示差分后的观测值。
时间序列分析小论文
时间序列分析小论文基于ARIMA模型的我国全社会固定资产投资预测摘要:本文采用ARIMA模型,用Eviews6.0软件对我国1980—2012年的全社会固定资产投资额进行了深入分析,并预测了2013年我国全社会固定资产投资额。
结果表明,ARIMA(4,1,3)模型能够提供较准确的预测效果,可以用于未来的预测,并为我国固定资产投资提供可靠的依据。
关键词:ARIMA模型固定资产投资额时间序列预测一、引言改革开放以来,我国的经济发展取得了举世瞩目的成就。
投资是拉动经济增长的三驾马车之一,因此研究我国全社会固定资产投资对研究我国经济增长有着重要的现实意义。
我国的全社会固定资产投资总额持续增加:1980年仅为910.9亿元,1993年首次突破10000亿元达到13072.3亿元;到2006年则猛增至109998.2亿元。
尤其是进入21世纪以来,随着中国加入WTO,外商投资大量增加,推动了经济政策的调整与完善,也给经济与投资增长增添了活力。
此前,已经有学者做过相关研究。
2010年李惠在《ARIMA模型在我国全社会固定资产投资预测中的应用》中,通过1980-2007年我国全社会固定资产投资的相关数据,运用统计学和计量经济学原理,从时间序列的定义出发,运用ARIMA建模方法,将ARIMA模型应用于我国历年全社会固定资产投资数据的分析与预测,检验得出ARIMA(4,2,4)模型为最佳,建议政府抓住投资机遇,合理安排投资比例和投资金额,促进经济的健康发展。
2007年靳宝琳和赫英迪在《ARIMA模型在太原市全社会固定资产投资预测中的应用》一文中采用Eviews软件系统中的时间序列建模方法对太原市的固定资产投资总额资料进行了分析,建立了ARIMA模型。
结果显示ARIMA(2,1,3)模型提供了较准确的预测效果,可用于未来的预测,为太原市全社套固定资产投资的预测提供了一种方便实用的方法。
王新华在《ARIMA模型在武汉市全社会固定投姿预测中的应用》中,采用ARIMA模型,对武汉市1950—2003年的全社会固定资产投资额进行了深入分析。
时间序列分析与预测论文
欢迎共阅对1950-2009年的新疆社会消费品零售总额的时间序列分析与预测利用1950-2009年的新疆社会消费品零售总额(记为:save,单位:万元)的时间序列数据进行分析,建立时间序列ARIMA模型,并预测未来10年的社会消费品零售总额。
表1 1950-2009年的新疆社会消费品零售总额1953 431981954 522161955 613791956 714641957 855781958 924901959 1105261960 1190591961 1067801962 1054541963 100837 1964 105406 1965 112970 1966 121349 1967 129530 1968 122971 1969 131318 1970 132306 1971 137958 1972 143416 1973 1546761998 3275210 1999 3473958 2000 3744999 2001 4063487 2002 4428871 2003 4211680 2004 5636520 2005 6402000 2006 7332000 2007 8575000 2008 10415000 2009 11775300;proc print data=a; Run;程序说明:这段程序是录入1950年到2009年的新疆社会消费品零售总额的数据。
data a;set work.a;proc gplot data=a;plot cost*date;symbol v=dot i=join c=black l=1w=2;run;的序列图上观察的结果是相同的。
因此需要对变量lnin进行一阶差分操作并对差分后的序列进行平稳性识别,程序如下:identify var=lc(1) nlag=30esacf p=(0:8) q=(0:8) minic p=(0:6) q=(0:6);run;识别过程结果会给出三个可能不同的模型,分别对这三个模型进行估计,已得到拟合最好模型。
【原创】R语言通过ARIMA建模进行预测研究实例报告论文(附代码数据)
本文是我们通过时间序列和ARIMA模型预测拖拉机销售的制造案例研究示例的延续。
您可以在以下链接中找到以前的部分:第1部分:时间序列建模和预测简介第2部分:在预测之前将时间序列分解为解密模式和趋势第3部分:ARIMA预测模型简介在本部分中,我们将使用图表和图表通过ARIMA预测PowerHorse拖拉机的拖拉机销售情况。
我们将使用前一篇文章中学到的ARIMA建模概念作为我们的案例研究示例。
但在我们开始分析之前,让我们快速讨论一下预测:诺查丹玛斯的麻烦人类对未来和ARIMA的痴迷 - 由Roopam撰写人类对自己的未来痴迷- 以至于他们更多地担心自己的未来而不是享受现在。
这正是为什么恐怖分子,占卜者和算命者总是高需求的原因。
Michel de Nostredame(又名Nostradamus)是一位生活在16世纪的法国占卜者。
在他的着作Les Propheties (The Prophecies)中,他对重要事件进行了预测,直到时间结束。
诺查丹玛斯的追随者认为,他的预测对于包括世界大战和世界末日在内的重大事件都是不可挽回的准确。
例如,在他的书中的一个预言中,他后来成为他最受争议和最受欢迎的预言之一,他写了以下内容:“饥饿凶猛的野兽将越过河流战场的大部分将对抗希斯特。
当一个德国的孩子什么都没有观察时,把一个伟大的人画进一个铁笼子里。
“他的追随者声称赫斯特暗指阿道夫希特勒诺查丹玛斯拼错了希特勒的名字。
诺查丹玛斯预言的一个显着特点是,他从未将这些事件标记到任何日期或时间段。
诺查丹玛斯的批评者认为他的书中充满了神秘的专业人士(如上所述),他的追随者试图强调适合他的写作。
为了劝阻批评者,他的一个狂热的追随者(基于他的写作)预测了1999年7月世界末日的月份和年份 - 相当戏剧化,不是吗?好吧当然,1999年那个月没有发生任何惊天动地的事情,否则你就不会读这篇文章。
然而,诺查丹玛斯将继续成为讨论的话题,因为人类对预测未来充满了痴迷。
基于时间序列分析的ARIMA模型分析及预测
基于时间序列分析的ARIMA模型分析及预测基于时间序列分析的ARIMA模型分析及预测论文导读,时间序列分析是概率论与数理统计学科的一个分支。
从ARIMA模型可以得到它的时间序列预测图。
仿真实验根据某地区1997~2006年电力系统月负荷数据。
电力系统,基于时间序列分析的ARIMA模型分析及预测。
关键词,时间序列分析,ARIMA模型,STATISTICA软件,电力系统1.引言时间序列分析是概率论与数理统计学科的一个分支,它是以概率统计学作为理论基础来分析随机数据序列(或称动态数据序列),并对其建立数学模型,即对模型定阶、进行参数估计,以及进一步应用于预测、自适应控制、最佳滤波等诸多方面[1]。
发表论文,电力系统。
从数学意义上讲,由一系列随机变量构成的序列x1,x2,,xn,称为随机序列,可用{xt,t=l,2,,N}来表示,也可以定义为在多维(N维)随机空间中的一个随机向量X,而它的分量就是xt[2]。
时间序列分析是一种动态数据处理的统计方法。
该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题[3]。
自回归移动平均模型(ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出的一著名时间序列预测方法,基本思想是,将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。
本文使用ARIMA模型对电力系统月负荷数据进行分析,得出规律,从而作出预测指导将来生产,能够有效的节约能源,避免浪费具有重要意义。
2.模型分析与建模时间序列分析主要使用统计推断的方法,从己知东西中获知一些未知的东西,根据概率分布的某种特征保持不变性,推导出不同类平稳性的假定。
时间序列的主要性质有[4],(1)白噪声。
如果随机过程满足对一切(1)则称为白噪声,表示为白噪声仅由它的前两阶矩的性质来定义,它是均值为零而谱密度函数为正常数的平稳过程,白噪声是一种理想化的数学模型,它的平均功率是无限的。
应用时间序列分析期末论文
课程论文学生姓名曹天裕所在院系数理学院专业统计学学号************* 指导教师实证项目研究(课程论文)--------货币数量论的实证分析一问题的提出近几十年来,国内的房地产业发展迅速,开发的面积和规模也越来越大。
大多数国人对房地产这个话题的热情是经久不衰,房地产业内任何重大的政策和举措都对普通老百姓的生活产生深刻的影响。
2010年上半年,全国房地产开发投资19747亿元,同比增长38.1%,其中,商品住宅投资13692亿元,同比增长34.4%,占房地产开发投资的比重为69.3%。
6月当月,房地产开发完成投资5830亿元,比上月增加1845亿元,增长46.3%。
2010年上半年,全国房地产开发企业房屋施工面积30.84亿平方米,同比增长28.7%;房屋新开工面积8.05亿平方米,同比增长67.9%;房屋竣工面积2.44亿平方米,同比增长18.2%,其中,住宅竣工面积1.96亿平方米,增长15.5%。
2010年上半年,全国房地产开发企业完成土地购置面积18501万平方米,同比增长35.6%,土地购置费4221亿元,同比增长84.0%。
那么,房地产销售价格指数是否存在一定的内在规律呢,我们是否可以对其进行预测从而指导居民做出正确的选择呢?这便是本文所要探求和解决的问题。
理论综述时间序列分析就是对一组按时间顺序排列的随机变量进行统计分析,建立模型并对未来的趋势走向进行分析的统计方法。
本文运用时间序列分析软件SAS 进行分析。
数据的收集本文获取了我国1998-3-31到2009-12-31的房地产销售价格指数数据数据来源:8080productcommonmain.jsp模型的估计与调整首先,作出时序图,观察它的平稳性。
发现存在明显的长期趋势,做一阶差分。
从时序图可以认为序列基本平稳,再去观察它的自相关图。
自相关图显示序列平稳,考察差分后序列的随机性。
残差白噪声检验显示差分后序列蕴含着很强的相关信息,不能视为白噪声序列。
时间序列ARIMA期末论文
时间序列A R I M A期末论文标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]ARIMA模型在总人口预测中的应用【摘要】人口发展与社会经济的发展是密不可分的,研究我国总人口的发展,对我国人口数进行分析和预测,有利于及时控制人口的增长调节人口平衡,利于政府及时了解发展趋势并做出反应对策使我国人口发展步入健康的轨道。
本文利用时间序列建模原理和思路,并结合软件对1962年——2014年我国年底总人口数据做分析和预测。
找到对原始数据有着较好的拟合度和较高的预测精度的模型。
利用此模型可对我国年底总人口进行合理的预测。
【关键词】ARIMA建模总人口人口预测目录一、引言 (3)研究背景 (3)研究现状 (4)二、模型建立 (5)模型识别 (5)模型的参数估计 (8)模型的诊断 (10)2.模型的预测 (12)三、模型的优缺点及推广 (13)模型的优缺点 (13)模型的推广 (13)结束语 (14)【参考文献】 (15)附录 (16)一、引言研究背景我国是世界上人口最多的国家,自1980年开始,年末中国大陆总人口就已经超过了10亿,并一直保持约占世界总人口的五分之一,亚洲人口的三分之一。
中国人口的发展同中国社会的发展一样经过了漫长而曲折的道路。
在世纪的进程中,目前我国进入了一个全新的时代,要想在21世纪——这个充满竞争与挑战的时代中变的富强、屹立于世界民族之林,实现我们的中国梦,这全取决于人。
能否顺利解决人口现状等问题,是我国乃自世界共同面临的问题,由于地球的资源是有限的,它不可能无限制的容纳人口,当人口过多,会由于经济跟不上,工作岗位欠缺,医疗等水平不足,从而导致整个社会处于一种动荡之中;然而如果人口过少,又会由于人员不足,导致各方面人力资源不足,无法正常完成各项必须社会活动,这也会极大地限制一个国家的发展,因此,对人口的研究是具有相当的意义的。
我国由于幅员广阔,民族众多,各民族发展水平不一,同时作为世界第一人口大国,我国的耕地面积却相对不足,因此我国每年都需要从国外大量进口粮食,由于过分依赖于进口这对我国的发展影响巨大,为此甚至有国外反华势力叫嚣只要断绝给中国供粮,三五年之内中国必定大乱。
时间序列分析论文
摘要时间序列就是按照时间的顺序记录的一列有序数据。
对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势。
时间序列分析在日常生活中随处可见,有着非常广泛的应用领域。
本文用时间序列分析方法,对一段时间序列进行了拟合。
通过对2010年3月至2011年6月中国进出口额同比增长率序列进行观察分析,建立合适的ARIMA模型,对未来五个月的中国进出口额同比增长率序列进行预测。
然后对预测值和真实值进行比较,得出结论,所建立的模型有较好的拟合效果,从而提供了一个行情预测的有效方法。
关键词:时间序列中国进出口额同比增长率预测白噪声目录1引言 (1)2模型的判别 (2)2.1原始序列分析 (2)2.2一阶差分序列分析 (3)3中国进出口同比增长率模型的建立选择、建立及检验 (4)3.1 模型的选择 (4)3.2 模型的建立 (4)3.3 模型的检验 (6)4利用模型进行预测 (8)5模型的评价 (10)参考文献 (11)1引言进出口总额指实际进出我国国境的货物总金额。
包括对外贸易实际进出口货物,来料加工装配进出口货物,国家间、联合国及国际组织无偿援助物资和赠送品,华侨、港澳台同胞和外籍华人捐赠品,租赁期满归承租人所有的租赁货物,进料加工进出口货物,边境地方贸易及边境地区小额贸易进出口货物(边民互市贸易除外),中外合资企业、中外合作经营企业、外商独资经营企业进出口货物和公用物品,到、离岸价格在规定限额以上的进出口货样和广告品(无商业价值、无使用价值和免费提供出口的除外),从保税仓库提取在中国境内销售的进口货物,以及其他进出口货物。
进出口总额用以观察一个国家在对外贸易方面的总规模。
同比增长率,一般是指和去年同期相比较的增长率。
在此是指和上个月的同期相比较的增长率。
本文应用时间序列方法对进出口额同比增长率进行建模分析和经济预测,结果可以反映一定时期进出口额同比增长率变动趋势和程度,可以观察我国进出口额变动对我国经济的影响,为相关人员提供进出口额变动状况,研究和制定相关经济政策。
应用时间序列分析课程论文
应用时间序列分析课程论文一 时间序列模型简介总结时间序列模型可以大致分为自回归过程模型和移动平均过程模型两大类。
前者以其滞后变量为依据,推算其未来值,后者是以过去的误差项为依据,推算其未来值。
有时需两者并用,便产生自回归移动平均模型。
自回归模型(AR )Mt m t m tm x a x e -==+∑在AR 模型中,序列{}t x 的当前值由序列{}t e 的当前值和序列{}t x 的前一个长度为M 的窗口内序列值决定。
自回归过程是一个变量在时间的某一点的变化,相对于前期的变化是线性的。
一般来说相关性随着时间呈指数下降,且在比较短的周期内消失。
移动平均模型(MA )0110Nt n t n t t n t n n x b e b e b e b e ---===++⋅⋅⋅+∑这个式子说明序列{}t x 的当前值由序列{}t e 从当前值前推长度为N 的窗口内序列值决定。
在平均移动模型(MA )中,时间序列是一种未观测到的时间序列的平均移动的结果,如下:1n n n C c e e -=⨯+e 为一个独立同分布的随即变量,c 为常数,且 c ≤1。
在平均移动参数c 上的限制保证了过程是可以转换的。
表明未来事件不太可能影响现在的事件,而且此过程是稳定的;对于e 的限制,如同 AR 过程中的e ,是一个具有零均值和方差为r 的独立同分布随机变量。
已观测到的时间序列 C 是未来观测到随机时间序列平均移动的结果。
由于平均移动过程,所有过去和短期记忆的结果存在一个线性的依赖。
自回归-移动平均模型(ARMA )ARMA 由AR 和MA 两个部分组成,形式如下:1MNt m t mt t t n m n x axe b e --===++∑∑在ARMA 模型中,序列{}t x 的当前值由序列{}t e 的当前值从当前值前推长度为N 的窗口内序列值以及序列{}t x 的前一个长度为M 的窗口内序列值一起决定。
在自回归-移动平均模型中,既存在自回归项,又有平均移动项:11n n l l C a C e b e --=⨯+-⨯此模型属于混合模型,称为 ARMA( p ,q)。
时间序列预测中的ARIMA算法研究
时间序列预测中的ARIMA算法研究随着数据科学技术的不断发展,时间序列分析已经成为越来越多领域的研究重点。
在这些领域中,ARIMA算法是最常用的时间序列预测方法之一。
在本文中,我们将对ARIMA算法进行深入研究,探索它在时间序列预测中的应用。
一、 ARIMA算法简介ARIMA,即自回归移动平均模型,它是一种利用过去时间序列数值的自相关性和趋势来预测未来值的方法。
ARIMA算法是基于时间序列中的三个重要组成成分建立的,即:自回归(AR)、差分(I)和移动平均(MA)。
当需要预测未来数值时,ARIMA算法通过识别时间序列的自回归和移动平均性质来预估未来数值。
ARIMA算法可以应用于各种类型的数据,还可以用于多种实际应用,如经济学、金融学和环境科学等领域。
二、 ARIMA算法的构建ARIMA算法是由三个参数定义的,分别是p、d和q,它们分别表示AR模型中的时序数据点、差分的次数以及MA模型中的滞后误差项。
其中,p表示自回归的滞后项数,在AR模型中为一个正整数;d表示数据进行多少阶差分才是平稳的,在本文中我们将重点研究二阶差分;q表示移动平均的滞后项数,它表示误差项可以被多少项滞后错误调整。
值得注意的是,在构建一个ARIMA模型的过程中,我们需要通过一组时间序列数值来预测未来数值,以便判断所使用的ARIMA模型是否合适。
这个过程分为两个步骤:首先要进行数据分析和探索性数据分析,然后应用一定的算法才能建立ARIMA模型。
三、预测值与实际值的比较在建立ARIMA模型之后,我们需要对模型的精度进行评估。
这一过程的核心是比较预测值与实际值之间的误差大小。
更准确地说,我们可以使用均方误差以及平均绝对误差进行衡量。
通常情况下,我们需要依靠这些指标来确定ARIMA的最佳参数。
同时,我们也可以使用交叉验证方法来评估ARIMA模型的精度,这一方法将先前的数据划分为训练集和测试集。
在进行模型的训练和参数优化后,我们可以将模型应用于测试数据集中,并将其与原数据集进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列A R I M A期末论文标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]ARIMA模型在总人口预测中的应用【摘要】人口发展与社会经济的发展是密不可分的,研究我国总人口的发展,对我国人口数进行分析和预测,有利于及时控制人口的增长调节人口平衡,利于政府及时了解发展趋势并做出反应对策使我国人口发展步入健康的轨道。
本文利用时间序列建模原理和思路,并结合软件对1962年——2014年我国年底总人口数据做分析和预测。
找到对原始数据有着较好的拟合度和较高的预测精度的模型。
利用此模型可对我国年底总人口进行合理的预测。
【关键词】ARIMA建模总人口人口预测目录一、引言 (3)研究背景 (3)研究现状 (4)二、模型建立 (5)模型识别 (5)模型的参数估计 (8)模型的诊断 (10)2.模型的预测 (12)三、模型的优缺点及推广 (13)模型的优缺点 (13)模型的推广 (13)结束语 (14)【参考文献】 (15)附录 (16)一、引言研究背景我国是世界上人口最多的国家,自1980年开始,年末中国大陆总人口就已经超过了10亿,并一直保持约占世界总人口的五分之一,亚洲人口的三分之一。
中国人口的发展同中国社会的发展一样经过了漫长而曲折的道路。
在世纪的进程中,目前我国进入了一个全新的时代,要想在21世纪——这个充满竞争与挑战的时代中变的富强、屹立于世界民族之林,实现我们的中国梦,这全取决于人。
能否顺利解决人口现状等问题,是我国乃自世界共同面临的问题,由于地球的资源是有限的,它不可能无限制的容纳人口,当人口过多,会由于经济跟不上,工作岗位欠缺,医疗等水平不足,从而导致整个社会处于一种动荡之中;然而如果人口过少,又会由于人员不足,导致各方面人力资源不足,无法正常完成各项必须社会活动,这也会极大地限制一个国家的发展,因此,对人口的研究是具有相当的意义的。
我国由于幅员广阔,民族众多,各民族发展水平不一,同时作为世界第一人口大国,我国的耕地面积却相对不足,因此我国每年都需要从国外大量进口粮食,由于过分依赖于进口这对我国的发展影响巨大,为此甚至有国外反华势力叫嚣只要断绝给中国供粮,三五年之内中国必定大乱。
当然那只是敌对势力的一厢情愿与恶意诋毁,但我们自己却必须认识到在由于人口的问题而导致的一系列问题,关于人口问题我国必须重视,并根据其趋势做出反应对策。
因此,认真分析我国当前人口现状,从中发现其变化的趋势,并对未来总人口进行短期预测,及时采取必要的政治及经济措施来解决人口发展问题,对树立未来的发展目标很有必要。
总之,人口是构成社会的主体,在我国社会主义现代化建设中,人口问题始终是极为重要的问题,而人口问题的本质是发展问题。
人口发展与社会经济的发展也是密不可分的。
基于此,我们利用时间序列中的ARMA模型对我国人口进行预测,对人口的控制起到指导作用,有利于政府采取必要的政治及经济措施来进行调控。
所以,对其进行分析和测试是非常有意义的工作。
研究现状在对人口问题的研究上,国内外学者做了相当多的工作。
在国内程等利用自限模型对我国的人口增长进行了预测,认为中国在2010年-2019年人口数依次会缓慢增加,2016年突破14亿大关,且未来15年人口净增加量不会超过1亿;蒋慧基于多元统计模型对广西人口增长进行了分析,得出了人口增长的综合因子,并提出了稳定人口增长的建议;丁明等运用相空间重构神经网络模型对我国人口增长进行预测,很好的解决了非线性的问题,为我国人口增长预测提供了一种新的方法;王保等,利用Logistic模型进行人口预测,并检验了2005年—2007年的数据误差,取得了理想的效果。
在国外,利用Malthusian模型对人口进行研究,也取得了不错的成绩。
本文基于时间序列在研究时间相关问题上的优势,以1949年-2014年的年末总人口数据,利用时间序列知识建模,找到适合人口增长的过程的时间序列模型(模型识别),然后利用参数估计估计出模型的参数(参数估计),再对模型进行诊断,判断模型的好坏(模型诊断),最后利用已经建立的模型对未来的给定的时间进行预测(预测)。
二、模型识别由图一可以看出,年底总人口数随着时间增加的同时也在逐年上涨,有着明显的上升趋势。
因此可得出这列数据是不平稳的、方差也是不平稳的结论。
并且数据大致是呈线性变化的,因此可以考虑做差分变先对数据做一阶差分变换后再观察序列是否平稳,可运用R软件编程得其变换后的序列及变换后序列的自相关图和偏自相关图(具体程序见附录2):图二:一阶差分序列图及其ACF、PACF图由图二可知,对原始数据在进行一阶差分之后的时间序列图显示并不算平稳,并且一阶差分后的ACF图仍呈现出近似直线下降趋势,因此可以考虑再做一次差分运算。
通过编程可以得到(具体程序见附录3):图三:对数二阶差分序列图及其ACF、PACF图再观察其二阶差分后的时间序列图,基本上趋于平稳,而其自相关图(ACF)和偏自相关图(PACF )呈现出明显的拖尾形式,且PACF 图在滞后6阶比较显着,ACF 在滞后1,3,6阶相对较显着,由此可以认为原序列基本上可以用ARIMA(1,2,1),ARIMA(1,2,2),ARIMA(1,2,3),进行拟合。
对ARIMA(1,2,1)模型序列满足:Y t +Y t −2−2Y t −1=?(Y t −1+Y t −3−2Y t −2)+e t −∑θi e t −i 6i =1①由①式可以得到:Y t =(2+?)Y t −1+(1−2?)Y t −2−Y t −3+e t −θe t −1 ②同理可以得到 ARIMA(1,2,2)模型:Y t =(2+?)Y t −1+(1−2?)Y t −2−Y t −3+e t −∑θi e t −i 2i =1 ③ARIMA(1,2,3) 的模型为:Y t =(2+?)Y t −1+(1−2?)Y t −2−Y t −3+e t −∑θi e t −i 3i =1 ④模型的参数估计根据节,已经找到几个可能用于拟合的模型,分别为ARIMA(1,2,1),ARIMA(1,2,2),ARIMA(1,2,3),那么接下来就应该对其进行参数估计,在对模型进行参数估计时有多种方法可以选择,这里选择用最小二乘估计,通过R编程序可以得到如下结果(具体程序见于附录4):Call:arima(x = x, order = c(1, 2, 1), method = "CSS")Coefficients:ar1 ma1.sigma^2 estimated as 21752: part log likelihood =Call:arima(x = x, order = c(1, 2, 2), method = "CSS")Coefficients:ar1 ma1 ma2.sigma^2 estimated as 16939: part log likelihood =Call:arima(x = x, order = c(1, 2, 3), method = "CSS")Coefficients:ar1 ma1 ma2 ma3.sigma^2 estimated as 15191: part log likelihood =由上面的输出可以确定在②式中的系数,并且由估计值的误差项se判断该系数是否显着(通过判定在0是否在区间[−2se,+2se]内,若在则系数不显着,如不在则显着)。
从而代入②可以确定ARIMA(1,2,1)模型为:Y t=1.5206Y t−1−0.0412Y t−2−0.4794Y t−2+e t−0.515e t−1⑤类似代入③式得ARIMA(1,2,2)表达式为:Y t=1.4784Y t−1+0.0432Y t−2−0.5216Y t−2+e t+0.8442e t−1−0.3147e t−2⑥代入④式得ARIMA(1,2,3)模型的表达式:Y t=1.4797Y t−1+0.0406Y t−2−0.5203Y t−2+e t+0.7646e t−1−0.3405e t−3⑦模型的诊断在对模型完成了识别和参数估计之后,需要对模型进行诊断,诊断模型是否具有对原时间序列数据的很好的拟合效果。
主要进行拟合模型的残差分析和分析过度参数化;对模型进行过度参数分析主要看在进行差分时是否出现过度差分的状况,而对残差进行分析主要需要做以下几个方面的工作:⑴,检验残差是否是随机的,一个模型如果能很好的拟合,那么拟合后的残差基本上是随机的,残差是应该围绕在某条平行于x=0这一条直线上下波动的,并且波动的幅度不会很大,这可以用做残差序列图观察得到;⑵,检验残差是否呈正态性,一个模型如果能很好的拟合,那么其残差应该是呈正态性的,这里用残差QQ图和S-W正态性检验(原假设为:H0:数据是呈正态性的)进行;⑶,判断残差之间是否是相互独立的,一个模型如果能很好的拟合,那么其残差之间相对是比较独立的,这里主要用残差的自相关序列图和L-B检验(原假设为:H0:原数据的残差之间是不相关的)进行。
诊断ARIMA(1,2,1)模型,用R软件编程序(具体程序见于附录5)输出为:图4:ARIMA(1,2,1)模型残差的序列图、ACF图和QQ图Shapiro-Wilk normality testW = , p-value =Box-Ljung testX-squared = , df = 23, p-value =由图4中的残差序列图可以看出残差基本基本上是围绕x=0这条直线上下波动的,因此可以认为ARIMA(1,2,1)模型拟合满足残差是随机的条件;又由图4中的QQ可以看出残差基本上是集中在一条直线上的,由S-W检验的的p=<,检验也可以认为残差是非正态的;又在残差的自相关图中,只有滞后二阶是是显着的,因此可以认为残差之间基本上也是不相关的,特别由B-L检验的p=>,因此没有充分的理由拒绝原假设,应该认为残差是相互独立的。
到此就已经对模型行进行了诊断,由于残差正态性不足,说明用ARIMA(1,2,1)模型拟合原数据不是十分合适。
同理可对ARIMA(1,2,2)和ARIMA(1,2,3),进行诊断,这里图形和数据检验就不再一一呈现在论文中。
在诊断中发现模型ARIMA(1,2,2)用于拟合是满足条件的,而ARIMA(1,2,3)模型也由于残差正态性不足而不适合用于拟合合。
因此在对人口模型进行预测时采用ARIMA(1,2,1)模型。
并且在进行参数冗余分析时发现,对于该时间序列用ARIMA(1,2,2)模型拟合后,对ARIMA(p,d,q)中p,d,q任意一个变小都不能再满足条件,因此用ARIMA(1,2,2)模型是适合且简化的,因此后文选用ARIMA(1,2,2)模型进行预测。