2020年中考数学统计和概率专题卷(附答案)
专题13 统计与概率-2020年中考数学真题分专题训练(湖南专版)(教师版含解析)
2020年中考数学真题分项汇编(湖南专版)专题13 统计与概率1. (2020年湖南长沙中考)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别。
从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是 ( ) A. 第一次摸出的球是红球,第二次摸出的球一定是绿球; B. 第一次摸出的球是红球,第二次摸出的球不一定是红球;C. 第一次摸出的球是红球的概率是31; D. 两次摸出的球都是红球的概率是91。
【答案】A【解析】第一次和第二次摸出球的颜色相互独立,注意题干中说明了第一次摸完后会放回,A 选项中,第二次摸出的球可能是红球,也可能是绿球。
故A 错误,选A. 2.(2020年湖南常德中考)下列说法正确的是( )A .明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B .抛掷一枚质地均匀的硬币两次,必有一次正面朝上C .了解一批花炮的燃放质量,应采用抽样调查方式D .一组数据的众数一定只有一个【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案. 解:A 、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误; B 、抛掷一枚质地均匀的硬币两次,正面朝上的概率是21,故本选项错误; C 、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确; D 、一组数据的众数不一定只有一个,故本选项错误; 故选:C .3.(2020年湖南怀化中考)小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的( )A. 众数B. 中位数C. 方差D. 平均数【答案】B【解析】根据题意,结合该公司所有员工工资的情况,从统计量的角度分析可得答案.【详解】解:根据题意,小明到某公司应聘,了解这家公司的员工的工资情况,就要全面的了解中间员工的工资水平, 故最应该关注的数据是中位数, 故选:B .4.(2020年湖南湘潭中考)为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A. 0.25B. 0.3C. 25D. 30【答案】B【分析】先计算出八年级(3)班的全体人数,然后用选择“5G时代”的人数除以八年级(3)班的全体人数即可.【详解】由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人)选择“5G时代”的人数为:30人∴选择“5G时代”的频率是:30=0.3 100故选:B.5.(2020年湖南湘西中考)从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A. 14B.13C.12D.34【答案】A【解析】试验发生包含的基本事件可以列举出共4种,而满足条件的事件是可以构成三角形的事件,可以列举出共1种,根据概率公式得到结果.【详解】解:∵试验发生包含的基本事件为(1cm,3cm,5cm);(1cm,3cm,6cm);(1cm,5cm,6cm);(3cm,5cm,6cm),共4种;而满足条件的事件是可以构成三角形的事件为(3cm,5cm,6cm),共1种;∴以这三条线段为边可以构成三角形的概率是14,故选:A.6.(2020年湖南株洲中考)一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( )A. 14B.13C.12D.34【答案】C【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】解:根据题意可得:4个小球中,其中标有2,3是正数,故从中随机地摸取一个小球,则这个小球所标数字是正数的概率为:2142 =.故选:C.7.(2020年湖南株洲中考)数据12、15、18、17、10、19的中位数为( )A. 14B. 15C. 16D. 17【答案】C【解析】首先将这组数据按大小顺序排列,再利用中位数定义,即可求出这组数据的中位数.【详解】解:把这组数据从小到大排列为:10,12,15,17,18,19,则这组数据的中位数是15172+=16.故选:C.8.(2020年湖南张家界市中考)下列采用的调查方式中,不合适的是( )A. 了解澧水河的水质,采用抽样调查.B. 了解一批灯泡的使用寿命,采用全面调查.C. 了解张家界市中学生睡眠时间,采用抽样调查.D. 了解某班同学的数学成绩,采用全面调查.【答案】B【解析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选B.9.(2020年湖南岳阳中考)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.7【答案】B【解析】根据众数、中位数的概念求出众数和中位数即可判断.【详解】解:将这7名学生的体温按从小到大的顺序排列如下:36.3,36.3,36.5,36.5,36.5,36.7,36.8则中位数就是第4个数:36.5;出现次数最多的数是36.5,则众数为:36.5;故选:B10.(2020年湖南长沙中考)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:这次调查中的众数和中位数分别是、。
专题15 统计与概率-2020年中考数学真题分专题训练(四川专版)(学生版)
专题15 统计与概率1.(3分)(2020•攀枝花)下列事件中,为必然事件的是()A.明天要下雨B.|a|≥0C.﹣2>﹣1D.打开电视机,它正在播广告2.(4分)(2020•凉山州)已知一组数据1,0,3,﹣1,x,2,3的平均数是1,则这组数据的众数是() A.﹣1B.3C.﹣1和3D.1和33.(4分)(2020•自贡)对于一组数据3,7,5,3,2,下列说法正确的是()A.中位数是5B.众数是7C.平均数是4D.方差是34.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A.5人,7人B.5人,11人C.5人,12人D.7人,11人5.(4分)(2020•南充)八年级某学生在一次户外活动中进行射击比赛,七次射击成绩依次为(单位:环):4,5,6,6,6,7,8.则下列说法错误的是()A.该组成绩的众数是6环B.该组成绩的中位数是6环C.该组成绩的平均数是6环D.该组成绩数据的方差是106.(3分)(2020•达州)下列说法正确的是()A.为了解全国中小学生的心理健康状况,应采用普查B.确定事件一定会发生C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98D.数据6、5、8、7、2的中位数是67.(3分)(2020•乐山)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A .1100B .1000C .900D .1108.(3分)(2020•达州)2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤: ①绘制扇形统计图②收集三个部分本班学生喜欢的人数 ③计算扇形统计图中三个部分所占的百分比 其中正确的统计顺序是__________.9.(3分)(2020•乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是__________.10.(4分)(2020•甘孜州)在单词“mathematics ”中任意选择一个字母,选到字母“a ”的概率是__________. 11.(4分)(2020•攀枝花)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM 课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有__________人.12.(4分)(2020•南充)从长分别为1,2,3,4的四条线段中,任意选取三条线段,能组成三角形的概率是__________.13.(3分)(2020•泸州)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示: 课外阅读时间(小时) 0.5 11.52人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A.1.2和1.5B.1.2和4C.1.25和1.5D.1.25 和414.(4分)(2020•自贡)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):__________.①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.15.(2020•攀枝花)刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x这五个数字,.其中两张卡片上的数字是相同的,从中随机抽出一张,已知P(抽到数字4的卡片)=25(1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张.①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.16.(8分)(2020•南充)今年,全球疫情大爆发,我国派遣医疗专家组对一些国家进行医疗援助.某批次派出20人组成的专家组,分别赴A、B、C、D四个国家开展援助工作,其人员分布情况如统计图(不完整)所示:(1)计算赴B国女专家和D国男专家人数,并将条形统计图补充完整.(2)根据需要,从赴A国的专家中,随机抽取两名专家对当地医疗团队进行培训,求所抽取的两名专家恰好是一男一女的概率.17.(8分)(2020•自贡)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.(1)本次调查的学生人数是__________人,m=__________;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是__________;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是__________.18.(7分)(2020•泸州)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.19.(7分)(2020•达州)争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:94 83 90 86 94 88 96 100 89 8294 82 84 89 88 93 98 94 93 92整理上面的数据,得到频数分布表和扇形统计图:等级成绩/分频数A95≤x≤100aB90≤x<958C85≤x<905D80≤x<854根据以上信息,解答下列问题.(1)填空:a=__________,b=__________;(2)若成绩不低于90分为优秀,估计该校1200名八年级学生中,达到优秀等级的人数;(3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.20.(4分)(2020•甘孜州)某班为了解同学们一周在校参加体育锻炼的时间,随机调查了10名同学,得到如下数据:锻炼时间(小时)5678人数1432则这10名同学一周在校参加体育锻炼时间的平均数是__________小时.20.(10分)(2020•甘孜州)为了解同学们最喜欢一年四季中的哪个季节,数学社在全校随机抽取部分同学进行问卷调查,根据调查结果,得到如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了__________名同学;扇形统计图中,“春季”所对应的扇形的圆心角的度数为__________;(2)若该学校有1500名同学,请估计该校最喜欢冬季的同学的人数;(3)现从最喜欢夏季的3名同学A,B,C中,随机选两名同学去参加学校组织的“我爱夏天”演讲比赛,请用列表或画树状图的方法求恰好选到A,B去参加比赛的概率.21.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有__________人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为__________;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.22.(10分)(2020•乐山)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为__________万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为72°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.23.(7分)(2020•凉山州)某校团委在“五•四”青年节举办了一次“我的中国梦”作文大赛,分三批对全校20个班的作品进行评比.在第一批评比中,随机抽取A、B、C、D四个班的征集作品,对其数量进行统计后,绘制如图两幅不完整的统计图.(1)第一批所抽取的4个班共征集到作品__________件;在扇形统计图中表示C班的扇形的圆心角的度数为__________;(2)补全条形统计图;(3)第一批评比中,A班D班各有一件、B班C班各有两件作品获得一等奖.现要在获得一等奖的作品中随机抽取两件在全校展出,用树状图或列表法求抽取的作品来自两个不同班级的概率.。
2020年中考数学试题《概率》试题精编含答案
2020年中考数学试题《概率》试题精编含答案1.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.2.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.3.(2020•西藏)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.4.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.5.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.6.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.7.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.8.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.9.(2020•德阳)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.10.(2020•赤峰)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.11.(2020•呼伦贝尔)一个不透明的口袋中装有三个完全相同的小球,上面分别标有数字,,5.(1)从口袋中随机摸出一个小球,求摸出小球上的数字是无理数的概率(直接写出结果);(2)先从口袋中随机摸出一个小球,将小球上的数字记为x,把小球放回口袋中并搅匀,再从口袋中随机摸出一个小球,将小球上的数字记为y.请用列表法或画树状图法求出x 与y的乘积是有理数的概率.12.(2020•眉山)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.13.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).14.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.15.(2020•镇江)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.16.(2020•长春)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为A1、A2,图案为“保卫和平”的卡片记为B)17.(2020•鄂尔多斯)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4九年级(一)班女生一周复习时间频数分布表复习时间频数(学生人数)1小时32小时a3小时44小时6(1)统计表中a=,该班女生一周复习时间的中位数为小时;(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为°;(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B和D的概率.18.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).19.(2020•永州)今年6月份,永州市某中学开展“六城同创”知识竞赛活动.赛后,随机抽取了部分参赛学生的成绩,按得分划为A,B,C,D四个等级,A:90<S≤100,B:80<S≤90,C:70<S≤80,D:S≤70.并绘制了如图两幅不完整的统计图,请结合图中所给信息,解答下列问题:(1)请把条形统计图补充完整.(2)扇形统计图中m=,n=,B等级所占扇形的圆心角度数为.(3)该校准备从上述获得A等级的四名学生中选取两人参加永州市举行的“六城同创”知识竞赛,已知这四人中有两名男生(用A1,A2表示),两名女生(用B1,B2表示),请利用树状图法或列表法,求恰好抽到1名男生和1名女生的概率.20.(2020•雅安)从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在80~90分(含80分,不含90分)的学生为抽查人数的15%,且规定成绩大于或等于100分为优秀.(1)求被抽查学生人数及成绩在100~110分的学生人数m;(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.21.(2020•吉林)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.22.(2020•河北)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.23.(2020•威海)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子.以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜;若所得数值等于3,4,5,则小梅胜.(1)请利用表格分别求出小伟、小梅获胜的概率;(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用表格修改游戏规则,以确保游戏的公平性.24.(2020•东营)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好0.22较好68一般不好40请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.25.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.26.(2020•毕节市)我国新冠疫情防控取得了阶段性胜利.学生们返校学习后,某数学兴趣小组对本校同学周末参加体有运动的情况进行抽样调查,在校园内随机抽取男女生各25人,调查情况如下表:是否参加体育运动男生女生总数是2119m否46n对男女生是否参加体育运动的人数绘制了条形统计图如图(1),在这次调查中,对于参加体育运动的同学,同时对其参加的主要运动项目也进行了调查,并绘制了扇形统计图如图(2).根据以上信息解答下列问题:(1)m=,n=,a=;(2)将图(1)所示的条形统计图补全;(3)这次调查中,参加体育运动,且主要运动项目是球类的共有人;(4)在这次调查中,共有4名男生未参加体育运动,分别是甲、乙、丙、丁四位同学,现在从他们中选出两位同学参加“我运动我健康”的知识讲座,求恰好选出甲和乙去参加讲座的概率.(用列表或树状图解答)27.(2020•昆明)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?28.(2020•海南)新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长t(单位:小时)的情况,在全市范围内随机抽取了n名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是(填写“全面调查”或“抽样调查”),n=;(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“3≤t<4”范围的概率是;(3)若该市有15000名初中生,请你估计该市每日线上学习时长在“4≤t<5”范围的初中生有名.29.(2020•山西)2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.如图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G基站建设”和“人工智能”作为自己的就业方向.请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W,G,D,R,X的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为W(5G基站建设)和R(人工智能)的概率.30.(2020•广州)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.31.(2020•黄石)我市将面向全市中小学开展“经典诵读”比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.(1)请列举所有可能出现的选派结果;(2)求选派的2名学生中,恰好为1名男生1名女生的概率.32.(2020•云南)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.33.(2020•十堰)某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.34.(2020•烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E 表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.35.(2020•盐城)生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.36.(2020•潍坊)在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:t<8;B档:8≤t<9;C档:9≤t<10;D档:t≥10.根据调查情况,给出了部分数据信息:①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B档的人数;(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.37.(2020•郴州)疫情期间,我市积极开展“停课不停学”线上教学活动,并通过电视、手机APP等平台进行教学视频推送.某校随机抽取部分学生进行线上学习效果自我评价的调查(学习效果分为:A.效果很好;B.效果较好;C.效果一般;D.效果不理想),并根据调查结果绘制了如图两幅不完整的统计图:(1)此次调查中,共抽查了名学生;(2)补全条形统计图,并求出扇形统计图中∠α的度数;(3)某班4人学习小组,甲、乙2人认为效果很好,丙认为效果较好,丁认为效果一般.从学习小组中随机抽取2人,则“1人认为效果很好,1人认为效果较好”的概率是多少?(要求画树状图或列表求概率)38.(2020•宜昌)宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的A,B,C三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说。
江西省2020届中考数学单元专题练之统计与概率(含答案)
江西省2020届中考数学单元专题练之统计与概率专题一统计好题精做1.下面调查中,适合采用全面调查的是()A. 调查南昌市中学生心理健康现状B. 调查江西省春节期间的食品合格情况C. 调查你所在的班级同学的身高情况D. 调查江西卫视《金牌调解》栏目的收视率2.下列说法错误..的是()A. 给定一组数据,那么这组数据的平均数一定只有一个B. 给定一组数据,那么这组数据的中位数一定只有一个C. 给定一组数据,那么这组数据的众数一定只有一个D. 如果一组数据存在众数,那么该众数一定是这组数据中的某一个3. 为纪念中国人民抗日战争的胜利,9月3日被确定为抗日战争胜利纪念日,某校为了了解学生对“抗日战争”的知晓情况,从全校6000名学生中,随机抽取了120名学生进行调查,在这次调查中()A. 6000名学生是总体B. 所抽取的每1名学生对“抗日战争”的知晓情况是总体的一个样本C. 120名是样本容量D. 所抽取的120名学生对“抗日战争”的知晓情况是总体的一个样本4.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A. 70B. 720C. 1680D. 23705.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A. 平均数B. 中位数C. 众数D. 方差6.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表乙组12用水量统计图第6题图比较5月份两组家庭用水量的中位数,下列说法正确的是()A. 甲组比乙组大B. 甲、乙两组相同C. 乙组比甲组大D. 无法判断7.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A. 平均数B. 中位数C. 众数D. 方差8.某单位组织职工开展植树活动,植树量与人数之间的关系如图,下列说法不正确...的是()A. 参加本次植树活动共有30人B. 每人植树量的众数是4棵C. 每人植树量的中位数是5棵D. 每人植树量的平均数是5棵第8题图第9题图9. “救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A. 认为依情况而定的占27%B. 认为该扶的统计图中所对应的圆心角是234°C. 认为不该扶的占8%D. 认为该扶的占92%10. 2016年某校九年级6名数学教师年终绩效综合考评得分(满分100分)如下:100,97,94,98,97,96.下列说法中不正确的是()A. 这组数据的众数是97B. 这组数据的中位数是96C. 这组数据的平均数是97D. 这组数据的方差是10 311.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.第11题图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理...的是()A. 与2015年相比,2016年我国与东欧地区的贸易额有所增长B. 2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D. 2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多12. 一组数据的方差为9,如果将这组数据中的每个数据都扩大3倍,得到一组新数据,则这组新数据的方差是()A. 9B. 27C. 81D. 2413. 由小到大排列的一组数据x1,x2,x3,x4,x5,其中,每个数据都小于-1,则样本1,x1,-x2,x3,-x4,x5的中位数为()A. 1+x22 B.x2-x12 C.1+x52 D.x3+x4214.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A. 平均数不变,方差不变B. 平均数不变,方差变大C. 平均数不变,方差变小D. 平均数变小,方差不变15. 某商场4月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8、3.2、3.4、3.7、3.0、3.1.试估算该商场4月份的总营业额,大约是________万元.第16题图16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是________个.17.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”的人数是________人.第17题图18.数据1,3,5,12,a,其中整数a是这组数据中的中位数,则该组数据的平均数是________.19. 一组数据1,2,a的平均数为2,另一组数据-2,a,2,1,b的众数为-2,则数据-2,a,2,1,b的中位数为________.20.甲、乙、丙、丁四名射击运动员分别连续射靶10次,他们各自的平均成绩及其方差如下表所示,如果选一名成绩好且发挥稳定的运动员参赛,则应选择的运动员是21.个数据,若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和不会超过________.22. 寒假期间的某一天,小捷同学为了了解当地居民购物时使用塑料购物袋的情况,到某超市对部分购物者进行了社会实践调查,据了解该超市按塑料购物袋的承重能力提供了0.1元、0.2元、0.3元三种质量不同的塑料购物袋.下面两幅图是这次调查得到的不完善的统计图(若每人每次只使用一个塑料购物袋),请你根据图中的信息,回答下列问题:第22题图(1)这次调查的购物者总人数是________;(2)请补全条形统计图,扇形统计图中0.2元部分所对应的圆心角是________度;(3)若这天到该超市购物的人数有2000人次,则该超市需销售塑料购物袋多少个?根据调查情况,每天到该超市购物的人数差不多,请你估算一下一个月(按30 天计算)购物者购买塑料购物袋共要花费多少钱?23.为给研究制定《中考改革实施方案》提出合理化建议,教研人员对九年级学生进行了随机抽样调查,要求被抽查的学生从物理、化学、政治、历史、生物和地理这六个选考科目中,挑选出一科作为自己的首选科目,将调查数据汇总整理后,绘制出了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?(2)将折线统计图补充完整;(3)我市现有九年级学生约90000人,请你估计首选科目是物理的人数.第23题图24.为传承中华优秀传统文化,提升学生文学素养,江西省一直在中小学开展“假期读一本好书”的活动.某校八年级为了了解本年级学生活动开展的情况,从全年级学生中随机抽取了部分学生调查读书种类情况,并进行统计分析,绘制了如下不完整的统计图表:读书种类情况统计表读书种类情况条形统计图第24题图请根据以上信息解答下列问题:(1)a =________,b =________;(2)补全条形统计图;(3)若绘制“读书种类情况扇形统计图”,则“艺术类”所对应扇形的圆心角度数为________°;(4)若该校八年级共有600人,请估计全年级在本次活动中读书种类为“艺术类”的学生人数.专题二 概率 好题精做1.下列成语描述的事件为随机事件的是( )A. 水涨船高B. 守株待兔C. 水中捞月D. 缘木求鱼2.下列说法正确的是( )A. 不可能事件发生的概率为0B. 随机事件发生的概率为12C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次3. 一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是( )A. 12B. 13C. 512D. 144. 在一个不透明的袋子中装有四个小球,它们除分别标有的号码1,2,3,4不同外,其他完全相同.任意从袋子中摸出一球后不放回,再任意摸出一球,则第二次摸出球的号码比第一次摸出球的号码大的概率是( )A. 13B. 12C. 23D. 16第5题图5.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A. 18 B.16 C.14 D.126.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A. 16 B.13 C.12 D.23第7题图7.如图所示的图形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是________.8. 在一个不透明的布袋中有2个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是45,则n=________.9.同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是________.10.现有一“过关游戏”,规定:在第n关要掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于4n5,则算过关,否则不算过关.(1)过第1关是________事件(填“必然”、“不可能”或“不确定”,后同),过第4关是________事件;(2)当n=2时,计算过第二关的概率(可借助表格或树形图).11. “端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.12. (6分)(2019赣州模拟)先阅读下面某校八年级师生的对话内容,再解答问题.(温馨提示:一周只上五天课,另外考试时每半天考一科)小明:“听说下周会进行连续两天的期中考试.”刘老师:“是的,要考语文、数学、英语、物理共四科,但具体星期几不清楚.”小宇:“我估计是星期四、星期五.”(1)求小宇猜对的概率;(2)若考试已定在星期四、星期五,但各科考试顺序没定,请用恰当的方法求同一天考语文、数学的概率.13.为落实“垃圾分类”,环卫部门要求垃圾要按A、B、C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾,甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.满分冲关1. (2019原创)如图,是由甲、乙两种不同样式的小正方形瓷砖铺成的地板,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的第1题图概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A. P1>P2B. P1<P2C. P1=P2D. 以上都有可能2. 一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 303.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是________.4.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.5. (6分)有四根小木棒长度分别是1,3,5,7,若从中任意抽出三根木棒组成三角形,(1)下列说法正确的序号是________;①第一根抽出木棒长度是3的可能性是1 4②抽出的三根木棒能组成三角形是必然事件③抽出的三根木棒能组成三角形是随机事件④抽出的三根木棒能组成三角形是不可能事件(2)请你直接列举任意抽出的三根木棒的所有情况,并求出能组成三角形的概率.6. (2019吉安模拟)元旦游园活动中,小明、小亮、小红三位同学正在搬各自的椅子准备进行“抢凳子”游戏,看见王老师来了,小亮立即邀请王老师参加.游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮游戏.(1)下列事件是必然事件的是()A. 王老师被淘汰B. 小明抢坐到自己带来的椅子C. 小红抢坐到小亮带来的椅子D.有两位同学可以进入下一轮游戏(2)如果王老师没有抢坐到任何一张椅子,三位同学都抢到了椅子但都没有抢坐到自己带来的椅子(记为事件A),求出事件A的概率,请用树状图法或列表法加以说明.7.如图①,在一个不透明的袋中装有四个球,分别标有字母A、B、C、D.这些球除了所标字母外都相同.另外,有一面白色、另一面黑色,大小相同的4张正方形卡片,每张卡片两面的字母相同,分别标有A、B、C、D.最初..,摆成图②的样子,A、D是黑色,B、C是白色.第7题图操作:①从袋中任意取一个球;②将与取出球所标字母相同的卡片翻过来;③将取出的球放回袋中.两次操作后,观察卡片的颜色.(如:第一次取出球A,第二次取出球B,此时卡片的颜色变成)(1)求四张卡片变成相同颜色的概率;(2)求四张卡片变成两黑两白,并恰好形成各自颜色矩形的概率.8.如图①,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图②,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法...求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?第8题图江西省2020届中考数学单元专题练之统计与概率答案全解全析1. C2. C【解析】根据中位数、平均数的定义可知,给定一组数据,那么这组数据的中位数、平均数只有一个,故A、B叙述正确;根据众数的定义可知,一组数据的众数可能不只一个,如数据2,2,3,3,4,5的众数为2和3,故C 叙述错误;根据众数的定义,众数是一组数据中出现次数最多的数,可知一组数据中的众数一定是这组数据中的一个,故D叙述正确.3. D4. C【解析】∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100-30=70(名),∴全校持“赞成”意见的学生人数约为2400×70100=1680(名).故选C.5. D【解析】A组的平均数:x A=14(90+60+90+60)=75,中位数是:12(90+60)=75;B组的平均数:x B=14(70+80+80+70)=75,中位数是:12(70+80)=75,因此,两组数据的平均数和中位数都是75,而两组数据都有两个众数,A组是60、90,B组是70、80,都无法区别两组成绩.A组的方差为14×[(90-75)2+(60-75)2+(90-75)2+(60-75)2]=225,B组的方差为14×[(70-75)2+(80-75)2+(80-75)2+(70-75)2]=25,显然A组的方差大于B组的方差,说明B 组比A组成绩更稳定,因此,用方差区别两组成绩更合适.6. B【解析】12个数据的中位数是第6个数和第7个数的平均数,由统计表可以看出甲组中第6个数和第7个数均为5,所以中位数为5;由扇形统计图可知乙组中5月份家庭用水量为4吨、5吨、6吨、7吨的分别有12×90360=3(户)、12×360-90-90-60360=4(户)、12×90360=3(户)、12×60360=2(户),故乙组中第6个数和第7个数均为5,所以中位数也为5.7. B【解析】逐项分析如下:植树量为4棵的人数最多为10人,∴每人植树量的众数为4棵;将每人植树量从少到多排列,第15、16人植树均为5棵,∴其中位数为5棵;所有人植树量的平均数为:130×(3×4+4×10+5×8+6×6+7×2)=7115(棵).9. D 【解析】由扇形统计图可知,依情况而定的占27%,故A 正确;认为该扶的占65%,所对应的圆心角为:360°×65%=234°,故B 正确;认为不该扶的占:1-27%-65%=8%,故C 正确;认为该扶的占65%,而不是92%,故D 不正确.10. B据的方差将扩大9倍,∴新数据的方差是9×9=81.故选C.13. C 【解析】∵x 1<x 2<x 3<x 4<x 5<-1,∴题目中六个数据排序后为x 1<x 3<x 5<1<-x 4<-x 2,故中位数是按从小到大排列后第三、第四两个数的平均数,∴这组数据的中位数是1+x 52.故选C. 14. C 【解析】原平均数为:(160+165+170+163+167)÷5=165 cm ,原方差为:s 2=585,现在平均数为:(160+165+170+163+167+165)÷6=165cm ,现方差为:s 2=293,∴平均数不变,方差变小.故选C.15. 96 【解析】数据2.8、3.2、3.4、3.7、3.0、3.1的平均数为16(2.8+3.2+3.4+3.7+3.0+3.1)=3.2,3.2×30=96,所以该商场4月份的总营业额大约是96万元.16. 183 【解析】由题图可知,把数据按从小到大排列后为:180、182、183、185、186,中位数是183.17. 10 【解析】由条形统计图可知,喜爱“新闻”节目的人数为5,所占百分比为10%,∴全班学生数为:5÷10%=50(人),∵喜欢“动画”节目所占百分比为30%,∴喜欢“动画”节目的人数为:50×30%=15(人),∴喜欢“体育”节目的人数为:50-5-15-20=10(人).18. 4.8,5或5.2 【解析】∵这组数据共5个,a 是中位数,∴3≤a ≤5,∵a 是整数,∴a 的值可以是3,4,5.当a 为3时,这组数据的平均数是15(1+3+3+5+12)=4.8;当a 为4时,这组数据的平均数是15(1+3+4+5+12)=5;当a 为5时,这组数据的平均数是15(1+3+5+5+12)=5.2.综上,这组数据的平均数为4.8,5或5.2.19. 1 【解析】∵一组数据1,2,a 的平均数为2,∴1+2+a =3×2,解得a =3,∵数据-2,3,2,1,b 的众数为-2,∴b =-2,∴把数据-2,3,2,1,-2按从小到大的顺序排列为:-2,-2,1,2,3,∴中位数为1.20. 丙 【解析】∵x -甲=x -丙>x -乙>x -丁,∴从甲和丙中选择一人参加比赛,∵s 2甲>s 2丙,∴选择丙参赛.21. 29 【解析】∵5个数据的中位数是6,唯一众数是7,∴最大的三个数的和是:6+7+7=20,则两个较小的数一定是小于6的非负整数,且不相等,即两个较小的数最大为4和5,故总和一定小于等于29.22. 解:(1)120;(2)99;补全条形统计图如解图所示:第22题解图(3)该超市这天需销售塑料购物袋的个数是:2000×30+33+12120=1250(个), 估计一个月购物者购买塑料购物袋共要花费:2000×0.1×30+0.2×33+0.3×12120×30=6600(元). 23. 解:(1)被抽查的学生总人数为:162÷18%=900(人);(2)补全折线统计图如解图所示:第23题解图【解法提示】抽查的900人中,选历史作为首选科目的学生人数为:900×6%=54(人).(3)我市现有九年级学生90000人,估计首选科目是物理的学生人数为:90000×180900=18000(人).24. 解:(1)16,16%;(2)补全条形统计图如解图所示:第4题解图(3)57.6;(4)估计全年级在本次活动中读书种类为“艺术类”的学生人数是600×16%=96(人).1. B2. A3. C 【解析】∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是:2530+25+5=512. 4. B 【解析】画树状图如解图所示:第4题图共有12种等可能的结果,其中第二次摸出球的号码比第一次摸出球的号码大的结果数为6,所以第二次摸出球的号码比第一次摸出的号码大的概率是612=12.故选B.记录的两个数字都是正数的概率是416=14.6. D 【解析】用列举法可知,三人的排列共有“爸妈明”,“爸明妈”,“妈爸明”,“妈明爸”,“明爸妈”,“明妈爸”6种等可能的情况,爸爸妈妈相邻的结果有4种,∴P (爸爸妈妈相邻)=46=23.7.2 58. 8【解析】不透明的布袋中的球除颜色不同外,其余均相同,共有n+2个球,其中黄球n个,根据古典型概率公式知:P(黄球)=nn+2=45,解得n=8.9.38【解析】同时抛掷三枚质地均匀的硬币,将其结果用树状图表示如解图,由解图可知,共有8种等可能结果,其中两枚正面向上,一枚正面向下的情况有3种,则P=38.第9题解图10.解:(1)必然,不可能;【解法提示】第1次抛掷所出现的点数大于等于1,即大于45,所以过第1关是必然事件,过第4关是不可能事件.(2)当n=2时,画树状图如解图:第10题解图共有36种等可能的结果数,其中这2次抛掷所出现的点数之和大于165的结果数为33,所以过第二关的概率是3336=1112.11.解:(1)列表如下:从(1)中表格可知,共有9种等可能的结果,其中P(甲队胜)=39=13,P(乙队胜)=39=13,甲队和乙队胜的概率相同,故裁判的这种做法对甲、乙双方公平.12. 解:(1)连续两天考试则共有以下4种可能性:周一周二,周二周三,周三周四,周四周五,在周四周五两天考试的可能性只有1种,故P (小宇猜对)=14;(2)方法一:依题意可列表得:∴P (同一天考语文、数学)=26=13.方法二:依题意可画树状图如解图:第12题解图共有12种等可能的结果,其中周四考语数的有2种,周五考语数的有2种,则同一天考语数的有4种,∴P (同一天考语文、数学)=412=13.13. 解:(1)甲投放的垃圾恰好是A 类的概率是13;(2)画树状图如解图:第13题解图由树状图可知,共有18种等可能的结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,∴P (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23.满分冲关1. A 【解析】由甲图可知,共有16块方砖,其中黑色方砖有6块,∴黑色方砖在整个地板中所占的比值为616=38,∴在甲种地板上最终停留在黑色区域的概率P 1=38,共有9块方砖,其中由乙图可知,黑色方砖有3块,∴黑色方砖在整个地板中所占的比值为39=13,∴在乙种地板上最终停留在黑色区域的概率P 2=13,∵38>13,∴P 1>P 2.故选A.2. D 【解析】根据频率估计概率原则,可知9n ×100%=30%,解得n =30.3. 17 【解析】由题意知,m 的取值是-1,0,1;n 的取值是-3,-2,-1,0,1,2,3,∴(m ,n )共有21种情况;由方程有两个相等实数根,得n 2-4m =0,即n 2=4m ,∴有n =0,m =0;n =2,m =1;n =-2,m =1这三种情况,∴方程有两个相等实数根的概率为P =321=17.4. 13 【解析】画树状图如解图:第4题解图∵共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化的有2种情况,∴抽签后每个运动员的出场顺序都发生变化的概率=26=13.5. 解:(1)①③;【解法提示】第一根抽出的是3的可能性是14;抽出的三根木棒恰好能组成三角形是随机事件.故答案为①③.(2)从1、3、5、7中任意抽出三根木棒有:1、3、5;1、3、7;3、5、7;1、5、7,共4种等可能的情况,而能组成三角形的有3、5、7一种情况,所以抽出的三根木棒恰好能组成三角形的概率是14.6. 解:(1)D 【解析】A. 王老师被淘汰是随机事件;B. 小明抢坐到自己带来的椅子是随机事件;C. 小红抢坐到小亮带来的椅子是随机事件;D. 共有3张椅子,四人中只有1位老师,∴一定有2位同学能进入下一轮游戏;(2)设小明,小亮,小红三位同学带来的椅子依次排列为a 、b 、c ,画树状图如解图:第6题解图由树状图可知,所有等可能结果共有6种,其中第4种,第5种结果符合题意,∴P (A )=26=13.7. 解:(1)画树状图如解图:第7题解图或列表如下:色的情形有AD 、DA 、BC 、CB 4种,∴P (两次操作后全部卡片变成相同颜色)=416=14;(2)由(1)中的树状图可知,两次操作后,恰好形成各自颜色的矩形的情形有AC 、CA 、BD 、DB 、AB 、BA 、CD 、DC 8种,∴P (恰好形成各自颜色矩形)=816=12.8. 解:(1)∵掷一次骰子有4种等可能结果,只有掷得4时,才会落回到圈A ,∴P 1=14;(2)列表如下:(2,2),(3,1),(4,4)时,才可落回到圈A ,∴P 2=416=14,∵P 1=P 2,∴淇淇与嘉嘉落回到圈A 的可能性一样.。
2020中考数学《统计与概率》大题专练(30道)(含参考答案)
辆.
(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)
(3)在扇形统计图中,D 类二手轿车交易辆数所对应扇形的圆心角为
度.
17.(2019·山东省中考模拟)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴
趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,
13.(2018·四川省中考模拟)某班为了解学生一学期做义工的时间情况,对全班 50 名学生进行调查,按做
义工的时间 t(单位:小时),将学生分成五类:A 类( 0 t 2 ),B 类( 2 t 4 ),C 类( 4 t 6 ), D 类( 6 t 8 ), E 类( t 8 ),绘制成尚不完整的条形统计图如图 11.
(1)接受问卷调查的学生共有
人,扇形统计图中“基本了解”部分所对应扇形的圆心角为
度;
(2)请补全条形统计图;
(3)若该中学共有学生 900 人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基
本了解”程度的总人数.
8.(2018·云南省中考模拟)某养鸡场有 2500 只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质
a.甲学校学生成绩的频数分布直方图如下(数据分成 6 组:40 x 50 ,50 x 60 ,60 x 70 ,70 x 80 , 80 x 90 , 90 x 100 );
b.甲学校学生成绩在 80 x 90 这一组的是:
80
80
81
81.5
82
83
83
84
85
86
86.5
87
88
88.5
89
89
c.乙学校学生成绩的平均数、中位数、众数、优秀率(85 分及以上为优秀)如下:
2020年中考数学《统计与概率》复习题及答案解析 (7)
2020年中考数学《统计与概率》总复习题
1.为创建大数据应用示范城市,某市一机构针对市民最关注的四类生活信息进行了民意调查(被调查人每人限选一项),下面是四类生活信息关注度统计图表:
请根据图中提供的信息解答下列问题:
(1)本次参与调查的人数有1000人;
(2)关注城市医疗信息的有150人,并补全条形统计图;
(3)扇形统计图中,D部分的圆心角是144度.
【分析】(1)从两个统计图中可得到,C教育资源信息的有200人,占调查人数的20%,可求出调查总人数,
(2)求出“B城市医疗信息”的人数,即可补全条形统计图,
(3)D部分所占圆心角度数占360°的,计算结果即可.
【解答】解:(1)200÷20%=1000(人)
故答案为:1000.
(2)1000﹣250﹣200﹣400=150(人)
故答案为:150,补全条形统计图如图所示:
(3)360°×=144°,
故答案为:144.
【点评】考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是解决问题的关键,样本估计总体是统计中常用的方法.。
2020年全国中考数学试题分类(16)——统计和概率(含答案)
2020年全国中考数学试题分类(16)——统计和概率一.频数(率)分布表(共1小题)1.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.二.扇形统计图(共2小题)2.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<90 4B90≤x<110 15C110≤x<130 18D130≤x<150 12E150≤x<170 mF170≤x<190 5(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.3.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.5 2nB0.5≤t<1 20C1≤t<1.5 n+10D t≥1.5 5请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题)4.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四5.(2020•贵港)某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B(良好)等级人数所占百分比是;(2)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A(优秀)等级或B(良好)等级的学生共有多少名?6.(2020•兰州)为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;信息二:信息三:近一周家务劳动时间分布表时间/小时t≤1 1<t≤2 2<t≤3 3<t≤4 t>4人数/人 5 8 12 7 3信息四:劳动能力量化成绩与近一周家务劳动总时间统计表6 7 8 9 10成绩/分人数时间/小时t≤1 4 1 0 0 01<t≤2 0 6 1 1 02<t≤3 0 0 9 3 03<t≤4 0 1 1 3 2t>4 0 0 0 1 2根据以上信息,解决下列问题:(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为分;(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t≤3的时间段:.(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?7.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.8.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.四.折线统计图(共4小题)9.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多4510.(2020•广西)如图是A,B两市去年四季平均气温的折线统计图.观察图形,四季平均气温波动较小的城市是.(填“A”或“B”)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.12.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)五.加权平均数(共2小题)13.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元14.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.86六.中位数(共2小题)15.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.516.(2020•乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.七.众数(共6小题)17.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6C.36.5,36.3,36.3 D.36.5,36.2,36.618.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300 B.300,200,200C.600,300,200 D.300,300,30019.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数和众数分别是()A.26.5和28 B.27和28 C.1.5和3 D.2和320.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85 B.85,88 C.88,85 D.88,8821.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数 3 5 6 7 8 9人数 1 3 2 2 1 1则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,522.(2020•包头)两组数据:3,a,b,5与a,4,2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为()A.2 B.3 C.4 D.5八.极差(共1小题)23.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6 B.9 C.12.2 D.12.6九.方差(共4小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•赤峰)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差26.(2020•永州)已知一组数据1,2,8,6,8,对这组数据描述正确的是()A.众数是8 B.平均数是6 C.中位数是8 D.方差是927.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2= (2−x)2+(3−x)2+(3−x)2+(4−x)2x,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3C.样本的众数是3 D.样本的平均数是3.5一十.统计量的选择(共1小题)28.(2020•大庆)在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差一十一.随机事件(共1小题)29.(2020•呼伦贝尔)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C .13个人参加一个集会,他们中至少有两个人的出生月份是相同的D .太阳从西方升起一十二.概率公式(共4小题) 30.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1231.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4732.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2333.(2020•鄂尔多斯)下列说法正确的是( ) ①√5−12的值大于12; ②正六边形的内角和是720°,它的边长等于半径; ③从一副扑克牌中随机抽取一张,它是黑桃的概率是14;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s 2甲=1.3,s 2乙=1.1,则乙的射击成绩比甲稳定. A .①②③④ B .①②④ C .①④ D .②③ 一十三.列表法与树状图法(共13小题) 34.(2020•广西)九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是( ) A .14B .15C .16D .11235.(2020•临沂)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( ) A .112B .18C .16D .1236.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .1237.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 . 38.(2020•西宁)随着手机APP 技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP (A 微信、BQQ 、C 钉钉、D 其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:(1)参与问卷调查的总人数是;(2)补全条形统计图;(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.39.(2020•广安)2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,估计该校800名学生中“比较了解”的学生有人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.40.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.41.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.42.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.43.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.44.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.45.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.46.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.一十四.利用频率估计概率(共4小题)47.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m248.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160 160≤x<170 170≤x<180 x≥180人数60 260 550 130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.8749.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.50.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率xx(精确到0.001)………250 24.75 0.099 300 30.93 0.103 350 35.12 0.100 450 44.54 0.099 500 50.62 0.1012020年全国中考数学试题分类(16)——统计和概率参考答案与试题解析一.频数(率)分布表(共1小题) 1.【解答】解:根据频数分布表可知: 9÷15%=60,∴a =60×30%=18,b =1﹣30%﹣15%﹣5%=50%, ∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人. 故答案为:240.二.扇形统计图(共2小题) 2.【解答】解:(1)15÷25%=60(人), m =60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人, 故答案为60,6; (2)C 等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为 300×12+6+560=115(人). 故答案为:60,6. 3.【解答】解:(1)m =20÷40%=50, 2n +(n +10)=50﹣20﹣5, 解得,n =5,A 组所占的百分比为:2×5÷50×100%=20%, C 组所占的百分比为:(5+10)÷50×100%=30%, 补全的扇形统计图如右图所示; (2)∵A 组有2×5=10(人),B 组有20人,抽查的学生一共有50人, ∴所抽取的m 名学生平均每天课外阅读时间的中位数落在B 组; (3)1500×5+10+550=600(名), 答:该校有600名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题) 4.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一, 故选:A . 5.【解答】解:(1)∵被调查的人数为4÷10%=40(人), ∴B 等级人数为40﹣(18+8+4)=10(人), 则B (良好)等级人数所占百分比是1040×100%=25%,故答案为:25%;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:72°;(3)补全条形统计图如下:(4)估计评价结果为A (优秀)等级或B (良好)等级的学生共有1000×18+1040=700(人). 6.【解答】解:(1)平均成绩=4×6+8×7+11×8+8×9+4×1035=8(分),故答案为8.(2)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:合理.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:不合理.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t ≤3的时间段:合理. 故答案为合理,不合理,合理.(3)参加家务劳动的时间越长,劳动能力的成绩得分越大. 7.【解答】解:(1)20÷40%=50(名); 故答案为:50; (2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名.8.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).四.折线统计图(共4小题)9.【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C 错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.10.【解答】解:由折线图可知,A城市的年平均气温=14(15+26+23+12)=19℃,B城市的年平均气温=14(6+20+9+2)=9.25℃,所以A城市的方差为:S A2=14×[(15﹣19)2+(26﹣19)2+(23﹣19)2+(12﹣19)2]=32.5,B城市的方差为:S B2=14×[(6﹣9.25)2+(20﹣9.25)2+(9﹣9.25)2+(2﹣9.25)2]≈44.7,所以S A2<S B2,所以四季平均气温波动较小的城市是A.故答案为:A.11.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75. 12.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<.五.加权平均数(共2小题) 13.【解答】解:这天销售的四种商品的平均单价是: 50×10%+30×15%+20×55%+10×20%=22.5(元), 故选:C . 14.【解答】解:80×40%+90×25%+84×25%+70×10%=82.5(分), 即八年级2班四项综合得分(满分100)为82.5分, 故选:B .六.中位数(共2小题)15.【解答】解:这10人投中次数的平均数为5×2+7×3+8×3+9+1010=7.4,中位数为7+82=7.5,故选:D . 16.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40, 其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.七.众数(共6小题) 17.【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3; 平均数是x =17×(36.6+35.9+36.5+36.2+36.1+36.5+36.3)=36.3.故选:C . 18.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300,故选:D . 19.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B . 20.【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88, 故选:B . 21.【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5, ∵上从小到大排序后中位数为第5、6个数据的平均数,且第5、6个数据均为6, ∴这组数据的中位数为6+62=6,故选:A .。
2020年中考数学浙江省绍兴市第19题统计概率专题训练卷含答案
2020年中考数学浙江省绍兴市第19题统计概率专题训练卷1.某运动品牌对第一季度A,B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:,求一月份B款运动鞋销售了多少双?(1)一月份B款运动鞋的销售量是A款的45(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量).(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.2.2019年沈阳国际马拉松赛事设有“马拉松”(A),“半程马拉松”(B),“10公里跑”(C),“迷你马拉松”(D)四个项目,小明和小亮参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到四个项目组,被分配到每个项目组的机会是相同的.(1)小明被分配到“马拉松”(A)项目组的概率为________;(2)利用画树状图或列表法求小明和小亮被分配到同一个项目组进行志愿服务的概率.(项目名称可用字母表示)3.现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.4.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查过程如下,请补充完整收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试测试成绩(百分制)如下:甲班:65,75,75,80,60,50,75,90,85,65乙班:90,55,80,70,55,70,95,80,65,70(1)整理描述数据:按如下分数段整理、描述这两组样本数据:在表中:m=________;n=________。
(2)分析数据:①两组样本数据的平均数、中位数、众数如表所示:在表中:x=________,y=________。
②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀请估计乙班50名学生中身体素质为优秀的学生有________ 人。
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
2020中考数学《统计与概率》大题专练(30道)(含参考答案)
b.甲学校学生成绩在 80 x 90 这一组的是:
80
80
81
81.5
82
83
83
84
85
86
86.5
(1)接受问卷调查的学生共有
人,扇形统计图中“基本了解”部分所对应扇形的圆心角为
度;
(2)请补全条形统计图;
(3)若该中学共有学生 900 人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基
本了解”程度的总人数.
8.(2018·云南省中考模拟)某养鸡场有 2500 只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质
2
统计图,如图所示,请根据统计图回答下列问题:
(1)本次调查共抽取了
名学生,两幅统计图中的 m=
,n=
.
(2)已知该校共有 3600 名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校将举办读书知识竞赛,九年级 1 班要在本班 3 名优胜者(2 男 1 女)中随机选送 2 人参赛,请用
(1)这项工作中被调查的总人数是多少;
(2)补全条形统计图,并求出表示 A 组的扇形统计图的圆心角的度数; (3)如果李青想从 D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树
状图的方法求出选中甲的概率.
7.(2018·吉林省中考模拟)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解 程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请 根据统计图中所提供的信息解答下列问题:
2020年九年级数学典型中考压轴题训练:统计与概率 (含答案)
2020年九年级数学典型中考压轴题训练:统计与概率1.某学校为了增强学生体质,决定开设以下体育活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查.并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)求这次被调查的学生人数;(2)通过计算将条形统计图补充完整;(3)若该校共有学生1200人,请你估计喜欢羽毛球的学生有多少人?2.在这场疫情中,“新型冠状性病毒”拆散了许多家庭,也有不少人的生命戛然而止,令人心痛.小明为了纪念这场疫情,自己动手做了四张扑克牌,四张扑克牌的文字分别为“武”、“汉”、“加”、“油”.小明将4张扑克牌翻成反面,然后搅匀扑克牌,搅匀后从中随机抽取一张牌,记录字后然后放回去,接着抽取一张牌,记录第二张牌上的字.请用画树状图或列表的方法,求出摸到两次“武”字的概率.3.一二六中学计划举行“最爱辽宁红色景点”调查活动,现随机抽取了部分学生进行主题为“你去过的景点是?”的问卷调查,要求学生必须从“A(辽沈战役纪念馆),B(鸭绿江断桥景区),C(战犯管理所旧址),D(大连市关向应故居纪念馆)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为人;(2)在扇形统计图中,D部分所占圆心角的度数为°;(3)请直接将两个统计图补充完整;(4)若该校共有2400名学生,估计该校最想去A和B的学生共有多少人?4.为了解本校九年级同学双休日参加体育锻炼的时间,课题小组进行了问卷调查,并用调查结果绘制了如下两幅统计图(均不完整),其中A、B、C、D、E选项对应的时间(小时)分别为:0.5,1,1.5,2,2小时以上,请根据统计图解答以下问题:(1)求本次接受问卷调查的人数;(2)通过计算补全条形统计图;(3)本校有九年级同学共800人,请估计双休日参加体育锻炼时间在2小时以内(含2小时)的人数.5.在课堂上,老师将除颜色外都相同的1个黑球和若干个白球放入一个不透明的口袋并搅匀,让全班同学依次进行摸球试验,每次随机摸出一个球,记下颜色再放回搅匀,下表是试验得到的一组数据.摸球的次数n100150200500800摸到黑球的次数m263749124200摸到黑球的频率0.260.2470.2450.2480.25(1)估算口袋中白球的个数;(2)用画树状图或列表的方法计算连续两名同学都摸出白球的概率.6.“同享一片蓝天,共建美好家园”,北京某中学初三年级同学积极参与义务植树活动.小明同学为了了解本年级600个同学在2019年义务植树的数量,进行了抽样调查,随即抽取了其中30个同学,收集的数据如下(单位:棵):112423233433433534344545343456(1)对以上数据进行整理、描述和分析:①绘制如下的统计图则该统计图中种植3棵树的有个同学,种植4棵树的有个同学;②这30个同学2019年义务植树数量的中位数是,众数是;(2)中国植树节定于每年的3月12日,是中国为激发人们爱林、造林的热情,促进国土绿化,保护人类赖以生存的生态环境.经过进一步调查,小明同学发现这30个同学中有23个是在3月份去义务植树的,由此可以估计该年级所有同学中在3月份去义务植树的有个.7.为宣传6月6日世界海洋日,某校八年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:表1知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8020C80≤x<9028D90≤x<10036(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到90分以上(含90分)的学生约有人.8.4月23日是世界读书日,全称为世界图书与版权日,又称“世界图书日“,设立的目的是推动更多的人去阅读和写作,希望所有人都能尊重和感谢为人类文明做出过巨大贡献的文学、文化、科学、思想大师们,保护知识产权.习近平说:“我爱好挺多,最大的爱好是读书,读书已成为我的一种生活方式,读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”学校某兴趣小组为了了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:【收集数据】从学校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如表(单位:min):30608150401101301469010060811201407081102010081【整理数据】按如表分段整理样本数据:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x≤160人数3584【分析数据】对样本数据进行分析得到如表分析表:平均数中位数众数80m n【得出结论】(1)补全分析表中的数据:m=,n=;(2)如果该校现有学生1600人,请估计每周阅读时间超过90min的学生有多少名?(3)假设平均阅读一本课外书的时间为260分钟,请你选择一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?9.为了推动阳光体育运动的广泛开展,引导学生走向操场、走进大自然、走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买150双运动鞋,建议购买35号运动鞋多少双?10.镇政府想了解对王家村进行“精准扶贫”一年来村民的经济情况,统计员小李用简单随机抽样的方法,在全村130户家庭中随机抽取20户,调查过去一年的收入(单位:万元),从而去估计全村家庭年收入情况.已知调查得到的数据如下:1.9,1.3,1.7,1.4,1.6,1.5,2.7,2.1,1.5,0.9,2.6,2.0,2.1,1.0,1.8,2.2,2.4,3.2,1.3,2.8为了便于计算,小李在原数据的每个数上都减去1.5,得到下面第二组数:0.4,﹣0.2,0.2,﹣0.1,0.1,0,1.2,0.6,0,﹣0.6,1.1,0.5,0.6,﹣0.5,0.3,0.7,0.9,1.7,﹣0.2,1.3(1)请你用小李得到的第二组数计算这20户家庭的平均年收入,并估计全村年收入及全村家庭年收入超过1.5万元的百分比;已知某家庭过去一年的收入是1.89万元,请你用调查得到的数据的中位数推测该家庭的收入情况在全村处于什么水平?(2)已知小李算得第二组数的方差是S,小王依据第二组数的方差得出原数据的方差为(1.5+S)2,你认为小王的结果正确吗?如果不正确,直接写出你认为正确的结果.11.为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“停课不停学”的要求,各地学校也都开展了远程网络教学,某校集合为学生提供四类在线学校方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学校方式最感兴趣”的调查,并根据地产结果绘制成如下两幅不完整的统计图.(1)本次调查的人数有多少人?(2)请补全条形图;(3)请求出“在线答疑”在扇形图中的圆心角度数;(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的12.某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题(1)本次调查学生共人,a=,并将条形图补充完整;(2)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.13.为积极响应“弘扬传统文化”的号召,某学校倡导全校学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”.根据调查结果绘制成的统计图(部分)如图所示:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:一周诗词诵背数量3首4首5首6首7首8首人数101015402520请根据调查的信息分析:(1)以抽查的这部分学生为样本,求“在大赛启动之初,一周诗词诵背数量不超过5首”(2)以这部分学生经典诗词大赛启动之初和结束一个月后,一周诗词诵背数量的平均数作为决策依据,说明平均每名学生一周诗词诵背数量的增长率接近16%还是22%?14.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.15.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.表1 知识竞赛成绩分组统计表组别分数/分频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018参考答案1.【解答】解:(1)这次被调查的学生人数为20÷=200(人);(2)选择C项目的人数为200﹣(20+80+40)=60(人),补全图形如下:(3)喜欢羽毛球的学生有1200×=360(人).2.【解答】解:将武汉加油分别记为1、2、3、4,列表如下:1234 111121314221222324331323334441424344由表可知共有16种等可能结果,其中摸到两次“武”字的只有1种结果,∴摸到两次“武”字的概率为.3.【解答】解:(1)本次调查的学生人数为66÷55%=120.故答案为120;(2)在扇形统计图中,“黄果树瀑布”部分所占圆心角的度数为360°×5%=18°.故答案为18;(3)选择C的人数为:120×25%=30(人),A所占的百分比为:1﹣55%﹣25%﹣5%=15%.补全统计图如图:(4)70%×2400=1680(人).答:该校共有2400名学生,估计该校最想去A和B的学生共有1680人.4.【解答】解:(1)40÷25%=160(人)答:本次接受问卷调查的同学有160人;(2)D组人数为:160×18.75%=30(人)统计图补全如图:(3)800×=750(人),答:双休日参加体育锻炼时间在2小时以内(含2小时)的人数为750人.5.【解答】解:(1)又表格中数据可得出,摸到黑球的频率稳定在0.25,故1÷0.25﹣1=3(个),答:口袋中白球的个数为3个;(2)画树状图得:∵共有16种等可能的结果,两次都摸到白球的有9种情况,∴两次都摸到白球的概率为:.6.【解答】解:(1)①由题目中的数据可知,种植3棵树的有11个同学,种植4棵的有9个同学,补全的统计图如右图所示,故答案为:11,9;②这30个同学2019年义务植树数量的中位数是3,众数是3,故答案为:3,3;(2)600×=460(个),即该年级所有同学中在3月份去义务植树的有460个,故答案为:460.7.【解答】解:(1)36÷36%=100(个).(2)a=100×16%=16(个).(3)将竞赛成绩从小到大排列后处在第50、51位的数都落在C组,因此中位数落在C 组;(4)500×36%=180(人).答:该校九年级竞赛成绩达到90分以上(含90分)的学生约有180人.故答案为:100;16;C组;180.8.【解答】解:(1)将数据重新排列为10、20、30、40、50、60、60、70、81、81、81、81、90、100、100、110、120、130、140、146,数据81出现次数最多,所以众数为81,第10、11个数据均为81,所以中位数为=81,故答案为:81、81;(2)估计每周阅读时间超过90min的学生有1600×=560(人);(3)因为该校学生平均每周阅读时间为80min,所以=16,即估计该校学生每人一年(按52周计算)平均阅读16本课外书.9.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为:6+12+10+8+4=40(人),图①中m的值为:100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35号;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)根据题意得:150×30%=45(双),答:建议购买35号运动鞋45双.10.【解答】解:(1)第二组数据的平均数为(0.4﹣0.2+0.2﹣0.1+0.1+0+1.2+0.6+0﹣0.6+1.1+0.5+0.6﹣0.5+0.3+0.7+0.9+1.7﹣0.2+1.3)=0.4,所以这20户家庭的平均年收入=1.5+0.4=1.9(万元),130×1.9=247,估计全村年收入为247万元;全村家庭年收入超过1.5万元的百分比为×100%=65%;第二组数据排序为:﹣0.6,﹣0.5,﹣0.2,﹣0.2,﹣0.1,0,0,0.1,0.2,0.3,0.4,0.5,0.6,0.6,0.7,0.9,1.1,1.2,1.3,1.7,∴这组数据的中位数为=0.35,∴原数据的中位数为:1.5+0.35=1.85,某家庭过去一年的收入是1.89万元,则该家庭的收入情况在全村处于中上游;(2)小王的结果不正确.第一组数据的方差和第二组数据的方差一样.它们的方差=[(0.4﹣0.4)2+(﹣0.2﹣0.4)2+(0.2﹣0.4)2+…+(1.3﹣0.4)2]=0.34.11.【解答】解:(1)本次调查的人数有25÷25%=100(人);(2)在线答题的人数有:100﹣25﹣40﹣15=20(人),补图如下:(3)“在线答疑”在扇形图中的圆心角度数是360°×=72°;(4)记四种学习方式:在线阅读、在线听课、在线答疑、在线讨论,分别为A、B、C、D,则可画树状图如下:共有16种等情况数,其中小宁和小娟选择同一种学习方式的有4种,则小宁和小娟选择同一种学习方式的概率是=.12.【解答】解:(1)本次调查学生共120÷40%=300(人),a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,补全图形如下:故答案为:300,10;(2)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率==.13.【解答】解:(1)由题意得抽查的这部分学生的数量为:20÷=120(名),大赛启动之初,一周诗词诵背数量为4首的人数为120×=45(名),则P(大赛启动之初,一周诗词诵背数量不超过5首)═=;(2)大赛启动之初,一周诗词诵背数量的平均数为(15×3+45×4+20×5+16×6+13×7+11×8)=5(首),大赛启结束一个月后,一周诗词诵背数量的平均数为(10×3+10×4+15×5+40×6+25×7+20×8)=6(首),平均每名学生一周诗词诵背数量的增长率是×100%=20%,所以平均每名学生一周诗词诵背数量的增长率更接近22%.14.【解答】解:(1)根据题意画图如下:共有4种等情况,其中所选的2名医护人员性别相同的有2种,则所选的2名医护人员性别相同的概率是=;故答案为:;(2)将甲、乙两所医院的医护人员分别记为甲1、甲2、乙1、乙2(注:1表示男医护人员,2表示女医护人员),树状图如图所示:共有12种等可能的结果,满足要求的有4种.则P(2名医生来自同一所医院的概率)==.15.【解答】解:(1)本次调查一共随机抽取学生:18÷36%=50(人),故答案为50;(2)a=50﹣18﹣14﹣10=8,故答案为8;(3)本次调查一共随机抽取50名学生,中位数落在C组,故答案为C;(4)该校九年级竞赛成绩达到80分以上(含80分)的学生有500×=320(人),故答案为320.。
专题16 统计与概率-2020年中考数学真题分专题训练(江苏专版)(学生版)
专题16 统计与概率一.选择题(共9小题)1.(2020•南通)一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3B.3.5C.4D.4.5 2.(2020•无锡)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A.24,25B.24,24C.25,24D.25,25 3.(2020•苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:):s则这10只手表的平均日走时误差(单位:)s是()A.0B.0.6C.0.8D.1.1 4.(2020•南京)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2020•泰州)如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关6.(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.(2020•连云港)“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是()A.中位数B.众数C.平均数D.方差8.(2020•徐州)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是( )A.5B.10C.12D.15︒,36.2,36.5,36.2,36.3.关9.(2020•徐州)小红连续5天的体温数据如下(单位:C):36.6于这组数据,下列说法正确的是()A.中位数是36.5C︒B.众数是36.2C︒C.平均数是36.2C︒D.极差是0.3C︒二.填空题(共7小题)10.(2020•镇江)一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于.11.(2020•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.12.(2020•泰州)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是.13.(2020•扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为2cm.14.(2020•盐城)一组数据1、4、7、4 、2的平均数为.15.(2020•盐城)一只不透明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为.16.(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a .三.解答题(共24小题)17.(2020•南通)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.18.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.19.(2020•镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:15m24该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.(1)求表格中n的值;t<这个范围内的人数是(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在78多少.20.(2020•镇江)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.21.(2020•无锡)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程) 22.(2020•无锡)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)(1)表格中a ;(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?23.(2020•苏州)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”) (2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):052530请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.24.(2020•苏州)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A 的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.25.(2020•南京)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h进行调查,整理样本数据得到下面的频数分布表.93178x<x<178263263348x<x<348433x<433518518603x<x<603688根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW h的大约有多少户.26.(2020•南京)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.27.(2020•泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成如下图表:2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.28.(2020•泰州)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200300400100016002000摸到白球的频数7293130334532667摸到白球的频率0.36000.31000.32500.33400.33250.3335 (1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是.(精确到0.01),由此估出红球有个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.29.(2020•扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是,扇形统计图中表示A等级的扇形圆心角为 ;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.30.(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.31.(2020•连云港)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.测试成绩统计表等级频数(人数)频率优秀30a良好b0.45合格240.20不合格120.10合计c1根据统计图表提供的信息,解答下列问题:(1)表中a=,b=,c=;(2)补全条形统计图;(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?32.(2020•连云港)从2021年起,江苏省高考采用“312++”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2”中选化学、生物的概率.33.(2020•徐州)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A 组(体温检测)、B 组(便民代购)、C 组(环境消杀).(1)小红的爸爸被分到B 组的概率是 ;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)34.(2020•徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如图尚不完整的统计图表:市民每天的阅读时间统计表类别A B C D 阅读时间()x min030x < 3060x < 6090x < 90x 频数 450 400 m50 根据以上信息解答下列问题:(1)该调查的样本容量为 ,m = ;(2)在扇形统计图中,“B ”对应扇形的圆心角等于 ︒;(3)将每天阅读时间不低于60min 的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.35.(2020•常州)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.36.(2020•常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.37.(2020•盐城)在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为,新增确诊人数为;(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析、推断.38.(2020•盐城)生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为22⨯的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n n⨯的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.39.(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?40.(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.。
2020年中考数学专题复习测试题:统计与概率(含答案)
复习测试范围:统计与概率 限时:45分钟 满分:100分一、选择题(每小题5分,共40分)1.下列说法正确的是 ( )A .了解某市市民知晓“礼让行人”交通新规的情况,适合全面调查B .甲、乙两人跳远成绩的方差分别为s 甲2=3,s 乙2=4,说明乙的跳远成绩比甲稳定C .一组数据2,2,3,4的众数是2,中位数是2.5D .可能性是1%的事件在一次试验中一定不会发生2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为 ( ) A .12 B .310 C .15D .7103.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 ( ) A .2 B .3 C .4D .54.某班40名同学一周参加体育锻炼时间统计如下表所示:人数(人) 3 17 13 7 时间(时)78910 那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是 ( )A .17,8.5B .17,9C .8,9D .8,8.55.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是 ( ) A .23 B .29 C .13D .196.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图,依据统计图得出以下四个结论,其中正确的是()图D8-1A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万元D.前年年收入不止①②③三种农作物的收入7.甲、乙两人连续5次射击成绩如图D8-2所示,下列说法中正确的是()图D8-2A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定8.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.12B.512C.712D.13二、填空题(每小题6分,共36分)9.数据-5,3,2,-3,3的平均数是,众数是,中位数是.10.如图D8-3,转盘中6个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为 .图D8-311.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是 小时.12.如图D8-4,这是一幅长为3 m,宽为2 m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地面上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 m 2.图D8-413.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:同学第一次 第二次 第三次 第四次 第五次 甲 90 88 92 94 91 乙9091939492根据上表数据,成绩较好且比较稳定的同学是 .14.甲、乙是两个不透明的纸箱,甲中有三张分别标有数字14,12,1的卡片,乙中有三张分别标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b.若a ,b 能使关于x 的一元二次方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为 .三、解答题(共24分)15.(12分)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.04.14.14.24.24.34.34.44.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.94.94.95.05.05.1活动后被测查学生视力数据:4.04.24.34.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.84.84.94.94.94.94.95.05.05.15.1根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是.(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.图D8-5活动后被测查学生视力频数分布表分组频数4.0≤x<4.2 14.2≤x<4.4 24.4≤x<4.6 b4.6≤x<4.8 74.8≤x<5.0 125.0≤x<5.2 416.(12分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图D8-6所示的不完整的三种统计图表.对雾霾天气了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解n图D8-6请结合统计图表,回答下列问题:(1)本次参与调查的学生共有人,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.【参考答案】1.C2.A3.A4.D5.B [解析]画“树状图”如图所示.∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种, ∴一辆向右转,一辆向左转的概率为29,故选B .6.C7.B [解析]本题考查了方差的意义,x 甲=5+10+9+6+105=8,x 乙=8+9+7+9+75=8,s 甲2=(5-8)2+(10-8)2+(9-8)2+(6-8)2+(10-8)25=4.4,s 乙2=(8-8)2+(9-8)2+(7-8)2+(9-8)2+(7-8)25=0.8,∵s 甲2>s 乙2,∴乙的成绩更稳定.也可以直接根据折线统计图的波动情况,乙的波动较小,故乙的成绩更稳定,因此本题选B . 8.D [解析]本题考查了随即事件发生的概率,列表如下:aa 2+b 2 b1 2 3 41 5 10 172 5 13 20 3 10 13 25 4172025从表格可以看出,12种等可能的结果中,有4种结果符合要求,所以概率为412=13. 故选D . 9.0 3 2 10.1211.8.4 12.2.413.乙 [解析]x 甲=15×(90+88+92+94+91)=91,x 乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 14.49 [解析]画树状图如下:由图可知,共有9种等可能的结果,若使乙获胜,则b 2-4a ≤0,即b 2≤4a ,∴能使乙获胜的有4种结果, ∴乙获胜的概率为49.15.解:(1)5 4 4.65 4.8[解析]a=30-(3+4+7+8+3)=5,b=30-(1+2+7+12+4)=4. 活动前的中位数是4.6+4.72=4.65.活动后出现次数最多的数为4.8, 所以其众数为4.8. 故答案为:5,4,4.65,4.8.(2)活动后样本中视力达标的人数有16人,所以估计七年级600名学生活动后视力达标的人数有600×1630=320(人).(3)活动前中位数为4.65,活动后中位数为4.8,说明学生在做完视力保健活动后整体视力情况变好. 16.解:(1)400 35% [解析] 180÷45%=400(人),n=1-5%-15%-45%=35%. 故答案为400;35%.(2)126 [解析] 扇形统计图中D 部分扇形所对应的圆心角=360°×35%=126°, 故答案为126.(3)D 等级的人数为400×35%=140(人), 补全条形统计图如图:(4)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种, ∴P (小明去)=812=23, P (小刚去)=1-23=13. ∵23≠13,∴这个游戏规则不公平.。
2020年中考数学专题训练 统计和概率(含答案)
2020年中考数学专题训练统计与概率(含答案)一、选择题(每小题5分,共40分)1.下列说法错误的是()A.在一定的条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为()A.12B.310C.15D.7103.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12004.一组数据:1,2,1,4的方差为()A.1B.1.5C.2D.2.55.现有一组数据:1,4,3,2,4,x,若该组数据的中位数是3,则x的值为()A.1B.2C.3D.46.某企业1~6月份利润的变化情况如图D8-1所示,以下说法与图中反映的信息相符的是()图D8-1A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出的手指数之和为偶数时小李获胜,那么小李获胜的概率为()图D8-2A.1325B.1225C.425D.128.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图D8-3所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()图D8-3A.π-22B.π-24C.π-28D.π-216二、填空题(每小题5分,共30分)9.某中学为积极响应“全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是小时.时间(小时)0.511.522.5人数(人)1222105310.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为.11.已知一包糖果共有5种颜色(糖果只有颜色差别),如图D8-4是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.图D8-412.在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1,3,4,2,2,那么这组数据的众数是分.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.下表是甲、乙两名同学近五次数学测试(满分为100分)成绩的统计表:第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是.三、解答题(共30分)15.(8分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品;若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)16.(10分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.图D8-517.(12分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中,三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;(3)获得一等奖的同学中有14来自七年级,有14来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学,又有九年级同学的概率.图D8-6【参考答案】1.C2.A3.C4.B [解析]这组数据的平均数为x =2,根据方差的计算公式得:s 2=[(1-2)2+(2-2)2+(1-2)2+(4-2)2]×14=1.5,故选B .5.C [解析]除x 外,把这组数据由小到大排列为:1,2,3,4,4,因为数据1,4,3,2,4,x 的中位数是3,所以12(3+x )=3,因此x=3,故选C .6.D [解析]A .1~6月份利润的众数是120万元,故A 错误; B .1~6月份利润的中位数是125万元,故B 错误; C .1~6月份利润的平均数约是128万元,故C 错误; D .1~6月份利润的极差是40万元,故D 正确.故选D .7.A [解析]画树状图如下:共有25种等可能的结果,两人出的手指数之和为偶数的结果有13种, ∴小李获胜的概率为1325,故选A .8.A [解析]因为正方形ABCD 的面积为4,阴影部分的面积为四个半圆的面积与正方形ABCD 的面积之差,即4×12π×222-4=2π-4,所以米粒落在阴影部分的概率为2π-44=π-22. 9.1 [解析]本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.10.22 [解析]设袋中黑球的个数为x ,则摸出红球的概率为523+5+x =110,所以x=22. 11.12 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=12. 故答案为12.12.90 [解析]∵这组数据中出现次数最多的数是90,∴这组数据的众数是90分.13.13 [解析]本题考查了概率的计算.从2,3,4,6中任选两个数记作a 和b (a<b )共有6种可能:(2,3),(2,4),(2,6),(3,4),(3,6),(4,6), 点(a ,b )在直线y=2x 上的情况有2种:(2,4),(3,6), 因此概率为26=13.14.乙 [解析]x ̅甲=15×(90+88+92+94+91)=91,x ̅乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 15.解:(1)12(2)根据题意,画出树状图如下:∴共有12种等可能的结果,两次均摸出红球的结果有2种, ∴获得2份奖品的概率P=16.16.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售量不低于278(平均数)的有2人,月销售量不低于180(中位数)的有8人,月销售量不低于90(众数)的有15人,所以,如果想让一半左右的营业员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 17.解:(1)16÷40%=40, 360°×1240=108°. 故填108. (2)如图所示,(3)七年级一等奖人数:4×14=1,九年级一等奖人数:4×14=1, 八年级一等奖人数为2, 画树状图如下:或列表如下:七 八1 八2 九 七 八1,七 八2,七 九,七 八1 七,八1 八2,八1九,八1 八2 七,八2 八1,八2 九,八2 九七,九八1,九八2,九由上可知共有12种等可能的结果,其中选出的两名同学既有八年级同学又有九年级同学的结果共有4种, ∴P (既有八年级同学又有九年级同学)=412=13.。
2020年全国中考数学试题精选分类(12)——概率与统计(含解析)
2020年全国中考数学试题精选分类(12)——概率与统计一.选择题(共17小题)1.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多452.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.众数是9B.中位数是8.5C.平均数是9D.方差是73.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.635.936.536.236.136.536.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3B.35.9,36.3,36.6C.36.5,36.3,36.3D.36.5,36.2,36.64.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁5.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 6.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元7.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 9.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40%25%25%10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5B.82.5C.84D.8610.(2020•沈阳)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯11.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85B.85,88C.88,85D.88,88 12.(2020•绵阳)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.13.(2020•宁夏)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.514.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2 15.(2020•鄂尔多斯)下列说法正确的是()①的值大于;②正六边形的内角和是720°,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2=1.1,则乙的射击成绩比甲稳定.乙A.①②③④B.①②④C.①④D.②③16.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数578910人数23311则这10人投中次数的平均数和中位数分别是()A.3.9,7B.6.4,7.5C.7.4,8D.7.4,7.5 17.(2020•鄂尔多斯)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分7781■808280■则被遮盖的两个数据依次是()A.81,80B.80,2C.81,2D.80,80二.填空题(共11小题)18.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.19.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.20.(2020•大连)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A110B28C75这个公司平均每人所创年利润是万元.21.(2020•桂林)一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.22.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.23.(2020•沈阳)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).24.(2020•永州)永州市教育部门为了了解全市中小学安全教育情况,对某校进行了“防溺水”安全知识的测试.从七年级随机抽取了50名学生的测试成绩(百分制),整理样本数据,得到下表:80≤x<9070≤x<8060≤x<70x<60成绩90≤x≤100人数2515541根据抽样调查结果,估计该校七年级600名学生中,80分(含80分)以上的学生有人.25.(2020•雅安)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.26.(2020•东营)东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)131415人数474则该校女子游泳队队员的平均年龄是岁.27.(2020•十堰)某校即将举行30周年校庆,拟定了A,B,C,D四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如图两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为.28.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率(精确到0.001)………25024.750.09930030.930.10335035.120.10045044.540.09950050.620.101三.解答题(共22小题)29.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.30.(2020•济南)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:等级次数频率不合格100≤x<120a合格120≤x<140b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.31.(2020•黔南州)勤劳是中华民族的传统美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?32.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.33.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.34.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.35.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.36.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.37.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.38.(2020•鞍山)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.39.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.40.(2020•德阳)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.41.(2020•大连)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为%;(2)被调查学生的总人数为人,其中读书量为2本的学生数为人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.42.(2020•桂林)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.43.(2020•呼伦贝尔)某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)所调查的初中学生每天睡眠时间的众数是,方差是;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.44.(2020•赤峰)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.45.(2020•沈阳)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.46.(2020•眉山)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.47.(2020•大庆)为了了解某校某年级1000名学生一分钟的跳绳次数,从中随机抽取了40名学生的一分钟跳绳次数(次数为整数,且最高次数不超过150次),整理后绘制成如图的频数直方图,图中的a,b满足关系式2a=3b.后由于保存不当,部分原始数据模糊不清,但已知缺失数据都大于120.请结合所给条件,回答下列问题.(1)求问题中的总体和样本容量;(2)求a,b的值(请写出必要的计算过程);(3)如果一分钟跳绳次数在125次以上(不含125次)为跳绳成绩优秀,那么估计该校该年级学生跳绳成绩优秀的人数大约是多少人?(注:该年级共1000名学生)48.(2020•长春)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表.2014﹣2019年长春市空气质量级别天数统计表优良轻度污染中度污染重度污染严重污染空气质量级别天数年份201430215732813620154319387191582016512375815502017652116216922018123202390102019126180381650根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为天,平均数为天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是年,这一年空气质量为“优”的天数的年增长率约为(精确到1%).(空气质量为“优”的天数的增长率=×100%)(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.49.(2020•南通)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.50.(2020•云南)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G 月工资/700044002400200019001800180018001200元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.。
2020年中考数学统计和概率专题卷(附答案)
2020年中考数学统计和概率专题卷(附答案)一、单选题(共12题;共24分)1.数据1、10、6、4、7、4的中位数是().A. 9B. 6C. 5D. 42.某次射击训练中,一个小组的成绩如下表所示:已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A. 4B. 5C. 6D. 73.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论正确的是()A. 2~6月份股票的月增长率逐渐减少B. 2~6月份股票持续下跌C. 这七个月中,6月的股票跌到最低D. 这七个月中,股票有涨有跌4.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A. B. C. D.5.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A. 28个B. 32个C. 36个D. 40个6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入山进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A. B. C. D.7.下列命题中假命题是()A. 位似图形上的任意一对对应点到位似中心的距离的比等于位似比B. 正五边形的每一个内角等于108°C. 一组数据的平均数、中位数和众数都只有一个D. 方程x2-6x+9=0有两个实数根8.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A. 平均数B. 中位数C. 众数D. 方差9.下表是某公司员工月收入的资料:能够反映该公司全体员工月收入水平的统计量是( )A. 平均数和众数B. 平均数和中位数C. 中位数和众数D. 平均数和方差10.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A. B. C. D.二、填空题(共7题;共14分)11.在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是________.12.一个口袋中有5颗球,除颜色以外完全相同,其中有3颗红球2颗白球,从口袋中随机抽取2颗球,那么所抽取的2颗球颜色相同的概率是________.13.小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么________(填“小李”或“小陈”)获胜的可能性较大.14.掷一枚硬币三次,正面都朝上的概率是________.15.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是________.16.一个不透明的盒子里有若干个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数为________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学统计和概率专题卷(附答案)一、单选题(共12题;共24分)1.数据1、10、6、4、7、4的中位数是().A. 9B. 6C. 5D. 42.某次射击训练中,一个小组的成绩如下表所示:已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A. 4B. 5C. 6D. 73.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论正确的是()A. 2~6月份股票的月增长率逐渐减少B. 2~6月份股票持续下跌C. 这七个月中,6月的股票跌到最低D. 这七个月中,股票有涨有跌4.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A. B. C. D.5.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A. 28个B. 32个C. 36个D. 40个6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入山进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A. B. C. D.7.下列命题中假命题是()A. 位似图形上的任意一对对应点到位似中心的距离的比等于位似比B. 正五边形的每一个内角等于108°C. 一组数据的平均数、中位数和众数都只有一个D. 方程x2-6x+9=0有两个实数根8.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A. 平均数B. 中位数C. 众数D. 方差9.下表是某公司员工月收入的资料:能够反映该公司全体员工月收入水平的统计量是( )A. 平均数和众数B. 平均数和中位数C. 中位数和众数D. 平均数和方差10.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A. B. C. D.二、填空题(共7题;共14分)11.在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是________.12.一个口袋中有5颗球,除颜色以外完全相同,其中有3颗红球2颗白球,从口袋中随机抽取2颗球,那么所抽取的2颗球颜色相同的概率是________.13.小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么________(填“小李”或“小陈”)获胜的可能性较大.14.掷一枚硬币三次,正面都朝上的概率是________.15.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是________.16.一个不透明的盒子里有若干个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数为________ 。
17.近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图(1)中从左到右各矩形的高度之比为2 : 8 : 9 : 7 : 3 : 1,那么在下图(2)中碳排放值5≤x<7(千克/平方米·月)部分的圆心角为________度.三、作图题(共2题;共24分)18.某调查机构将今年绍兴市民最关注的热点话题分为消费.教育.环保.反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查________人,请在答题卡上补全条形统计图并标出相应数据;________(2)若绍兴市约有500万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲.乙.丙.丁四人最关注教育问题,现准备从这四中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(画树状图或列表说明).19.某校七年级10个班的300名学生即将参加学校举行的研究旅行活动,学校提出以下4个活动主题:A.赤水丹霞地貌考察;B.平塘天文知识考察;C.山关红色文化考察;D.海龙电土司文化考察,为了解学生喜欢的活动主题,学生会开展了一次调查研究,请将下面的过程补全(1)收集数据:学生会计划调查学生喜欢的活动主题情况,下面抽样调查的对象选择合理的是________.(填序号)①选择七年级3班、4班、5班学生作为调查对象②选择学校旅游摄影社团的学生作为调查对象③选择各班学号为6的倍数的学生作为调查对象(2)整理、描述数据:通过调査后,学生会同学绘制了如下两幅不完整的统计图,请把统计图补充完整某校七年级学生喜欢的活动主题条形统计图某校七年级学生喜欢的活动主题扇形统计图(3)分析数据、推断结论:请你根据上述调查结果向学校推荐本次活动的主题,你的推荐是________(填A-D的字母代号),估算全年级大约有多少名学生喜欢这个主题活动(4)若在5名学生会干部(3男2女)中,随机选取2名同学担任活动的组长和副组长,求抽出的两名同学恰好是1男1女的概率.四、综合题(共6题;共58分)20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值:a=________,b=________,c=________.(2)如果乙再射击一次,命中7环,那么乙的射击成绩的方差________.(填“变大”“变小”“不变”)(3)教练根据这10次成绩若选择甲参加比赛,教练的理由是什么?21.为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图(2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?22.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、5的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树状图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,试改动红盒子中的一个小球的编号,使游戏规则公平.23.学校选学生会正副主席,需要从甲班的2名男生1名女生(男生用A,B表示,女生用a表示)和乙班的1名男生1名女生(男生用C表示,女生用b表示)共5人中随机选出2名同学.(1)用树状图或列表法列出所有可能情形;(2)求2名同学来自不同班级的概率;(3)求2名同学恰好1男1女的概率.24.某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A 1 , A 2 , A 3区域分别对应9折8折和7折优惠,B 1 , B 2 , B 3 , B 4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为________;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.25.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),按测试成绩m (单位:分)分为A 、B 、C 、D 四个组别并绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)在被调查的男生中,成绩等级为D 的男生有________人,成绩等级为A 的男生人数占被调查男生人数的百分比为________%;(2)本次抽取样本容量为________,成绩等级为C 的男生有________人; (3)若该校九年级男生有300名,估计成绩少于9分的男生人数.答案一、单选题1. C2. B3. A4. A5. B6. B7. C8. D9. C 10. D 二、填空题11. 100 12. 13. 小李14. 15. 16. 30 17. 48°三、作图题18. (1)1400;(2)解:500× =125(万)答:估计最关注教育问题的人数约为125万人.(3)解:画树形图得:则P(抽取的两人恰好是甲和乙)= .19. (1)③(2)解:被调查的总人数为13÷26%=50(人),则D主题人数为50×20%=10(人),B主题人数为50-(10+13+10)=17(人),∴B主题对应百分比为×100%=34%,A主题对应的百分比为×100%=20%,补全统计图如下:(3)B(4)解:用A表示男生,B表示女生,画图如下:共有20种情况,恰好是1男1女的有12种,所以2名同学恰好是1男1女的概率为四、综合题20. (1)7;7.5;4.2(2)变小(3)解:因为他们的平均数相同,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.21. (1)解:∵0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:100÷20%=500,1.5小时的人数有:500﹣100﹣200﹣80=120,补全的条形统计图如下图所示,故答案为:500;(2)解:由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,故答案为:1(3)解:由题意可得,该校每天户外活动时间超过1小时的学生数为:×1800=720人,即该校每天户外活动时间超过1小时的学生有720人.22. (1)解:树状图如下由树状图可知一共有12种结果,两球的编号之和为奇数的有5种情况,∴P(甲胜)=.(2)解:∴P(甲胜)≠P(乙胜),∴这个游戏规则对甲、乙双方不公平;将红盒子中装有编号分别为1、2、3、5的四个红球,改为1、2、3、4的四个红球即可.23. (1)解:列表可得共有20种等可能的结果(2)解:因为2名同学来自不同班级的情况有12种,所以2名同学来自不同班级的概率为:= (3)解:因为2名同学恰好1男1女的情况有12种,所以2名同学恰好1男1女的概率为:= 24. (1)(2)解:树状图如下图所示,则顾客享受折上折优惠的概率是:,即顾客享受折上折优惠的概率是.25. (1)3;20(2)50;15(3)解:300× =108(人)答:估计成绩少于的男生人数有108人。