2020高考数学必胜秘诀(四)三角函数

合集下载

2023年高考数学解题技巧及规范答题:三角函数大题

2023年高考数学解题技巧及规范答题:三角函数大题

202 年高考数学解题技巧及规范答题三角函数大题【规律方法】1、正弦定理、余弦定理:正弦定理、余弦定理的作用是在已知三角形部分基本量的情况下求解其余基本量,基本思想是方程思想.正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.正弦定理、余弦定理解三角形问题是高考高频考点,其解题方法主要有: (1)化边为角:通过正弦定理和余弦定理,化边为角,如:,等,利用三角变换得出三角形内角之间的关系进行判断.此时要注意一些常见的三角等式所体现的内角关系,如:,或等.(2)化角为边:利用正弦定理、余弦定理化角为边,如,等,通过代数恒等变换,求出三条边之间的关系进行判断.注意:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.2、三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式;(2)构造;(3)和角公式逆用,得(其中φ为辅助角);(4)利用研究三角函数的性质;2sin a R A =2222cos a b c ab C +-=sin sin A B A B =⇔=sin 2sin 2A B A B =⇔=2A B π+=sin 2a A R =222cos 2b c a A bc+-=())f x x x =+())f x x ϕ=+())f x x ϕ=+3(5)反思回顾,查看关键点、易错点和答题规范.【核心素养】以三角形为载体,以正弦定理、余弦定理为工具,以三角恒等变换为手段考查解三角形问题是高考一类热点题型,考查的核心素养主要有“逻辑推理”、“数学运算”、“数据分析”.【典例】【2020年全国II 卷】中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求周长的最大值.【分析】(1)利用正弦定理角化边,配凑出的形式,进而求得;(2)利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.【详解】(1)由正弦定理可得:,,,. (2)由余弦定理得:,即.ABC ABC cos A A ()29AC AB AC AB +-⋅=AC AB +222BC AC AB AC AB --=⋅2221cos 22AC AB BC A AC AB +-∴==-⋅()0,A π∈ 23A π∴=222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=()29AC AB AC AB +-⋅=第二步,用定理、公式、性质:利用正弦定理、余弦定理、二倍角公式、辅助角公式等进行三角形中边角(当且仅当时取等号),,解得:(当且仅当时取等号),周长,周长的最大值为【解题方法与步骤】1、解三角形问题的技巧:(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. ①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍;②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.2、三角恒等变换要遵循的“三看”原则:一看“角”:通过看角之间的差别与联系,把角进行合理拆分,从而正确使用公式; 二看“函数名称”:看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;三看“结构特征”:分析结构特征,找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”等.3、解三角形与三角函数综合问题一般步骤:第一步,转化:正确分析题意,提炼相关等式,利用等式的边角关系合理将问题转化为三角函数的问题; 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭AC AB =()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭AC AB +≤AC AB =ABC ∴ 3L AC AB BC =++≤+ABC ∴ 3+的的关系的互化;第三步,得结论:利用三角函数诱导公式、三角形内角和定理等知识求函数解析式、角、三角函数值,或讨论三角函数的基本性质等.【好题演练】1.(2021·河南中原高三模拟)在中,,,所对的角分别为,,,已知. (1)求;(2)若,为的中点;且,求的面积.【分析】(1)根据题意,由正弦定理得出,再由两角和的正弦公式化简得,由于,从而可求得,最后根据同角三角函数的平方关系,即可求出;(2)法1:在中由余弦定理得出,再分别在和中,由余弦定理得出和,再由,整理ABC a b c A B C 3cos 3a b A c +=sin B 3a =D AC BD =ABC sin 3sin cos3sin A B A C +=sin 3sin cos A A B =sin 0A >1cos 3B =sin B ABC 221936c b c+-=ABD △BCD △2cos ADB ∠=2cos CDB ∠=cos ADB cos DB 0∠+∠=C化简的出边,最后根据三角形的面积公式,即可求出结果. 法2:由平面向量的加法运算法则得出,两边平方并利用平面向量的数量积运算化简得,从而可求出边,最后根据三角形的面积公式,即可求出结果.【详解】(1)因为,由正弦定理得, 因为, 所以,因为,所以,所以,因为,所以(2)法1:在中,由余弦定理得,即, 在中,由余弦定理得, 在中,由余弦定理得因为,c 1sin2ABC S ac B =△12BD BA BC →→→⎛⎫=+ ⎪⎝⎭()213294c c =++c 1sin 2ABC S ac B =△3cos 3a b A c +=sin 3sin cos 3sin A B A C +=()sin sin sin cos cos sin C A B A B A B =+=+sin 3sin cos A A B =()0,A π∈sin 0A >1cos 3B =()0,B π∈sin B ===ABC 222cos 2a c b B ac +-=221936c b c+-=ABD △2cos ADB ∠=BCD △2cos CDB ∠=πADB CDB ∠+∠=220=即,所以, 整理得,解得:或(舍去), 所以. 法2:因为为的中点,所以,两边平方得,即,即,解得或(舍), 所以. 2.记中内角,,的对边分别为,,.已知. (1)求;(2)点,位于直线异侧,,.求的最大值.【分析】(1,利用正弦定理化边为角结合利用两角和的正弦公式展开整理可求得的值,即可得角; (2)结合(1化角为边可得,即,在中由余弦定理求,利用三角恒等式变换以及三角函数的性质可得最大值.2262b c =+()222296219366c c c b c c+-++-==2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△D AC 12BD BA BC →→→⎛⎫=+ ⎪⎝⎭222124B BD B BA C BC A →→→→→⎛⎫=+⋅+ ⎪⎝⎭()213294c c =++2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△ABC A B C a b c a =3cos sin B b A =+A A D BC BD BC ⊥1BD =AD cos sin B b A =+sin sin()C A B =+tan A A cos sin sin C A B B A =+cos sin B a B =+sin c B B =ABD △2AD(1)求 A ;【详解】(1,.. 因为,,所以,,,又因为, 可得:,所以; (2)由(1,, 即,由余弦定理得,所以当且仅当时,取得最大值,所以.3.在中,内角的对边分别为,且满足. 3cos sin B b A =+a =cos sin B b A =+cos sin sin C A B B A =+πA B C ++=,,(0,π)A B C ∈sin sin()sin cos cos sin C A B A B A B =+=+cos s cos sin s i in n A B A B A B B A +=+sin sin sin A B B A =sin 0B ≠sin A A =tan A =0πA <<π3A =cos sin sin C AB B A =+cos sin B a B =+cos sin c a B B B =+=+2222cos AD c BD c BD ABD =+-⋅∠()()()2sin 12sin sin B B B B B =+--222sin 3cos 212sin 2B B B B B =+++++42B =+π4B =2AD )241+=+AD 1+ABC 、、A B C ,,a b c 2sin cos b A B ()2sin c b B =-(2)若l 的取值范围.【分析】(1)由正弦定理得,化简得, 利用的范围可得答案;(2)由正弦定理得,利用的范围和三角函数的性质可得答案.【详解】(1)由正弦定理得, 因为,所以, 所以,即,解得,因为,所以.(2)由正弦定理得, 所以,所以,因为,所以, a =()2sin sin cos 2sin sin sin B A B CB B =-1cos2A =A 4sin ,4sin bB cC ==()4sin sin l B C =++B ()2sin sin cos 2sin sin sin BA B C B B=-0B π<<sin 0B ≠2sincos 2sin sin A BC B =-2sin cos 2sin cos 2sin cos sin A B A B B A B =+-1cos 2A =0A π<<3A π=4sin sin sin a b cAB C===4sin ,4sin b B c C ==()24sin sin sin sin 3l B C B B π⎡⎤⎛⎫=+++-+ ⎪⎢⎥⎝⎭⎣⎦314sin cos 22B B B B ⎛⎫⎫=+++ ⎪⎪ ⎪⎪⎝⎭⎭6B π⎛⎫=++ ⎪⎝⎭20,3B π⎛⎫∈ ⎪⎝⎭5,666B πππ⎛⎫+∈ ⎪⎝⎭所以, 所以.4.(2021·天津高考)在,角所对的边分别为,已知. (I )求a 的值;(II )求的值;(III )求的值.【分析】(I )由正弦定理可得(II )由余弦定理即可计算;(III )利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I )因为,由正弦定理可得,;(II )由余弦定理可得; (III ),, ,, 所以. 1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦(l ∈ABC ,,A B C ,,a bc sin:sin :sin 2A B C =b =cos C sin 26C π⎛⎫- ⎪⎝⎭::2a b c =2C sin :sin :sin 2A B C =::2:1:ab c=b =2a c ∴==2223cos 24a b c C ab +-===3cos 4C =sin C ∴==3sin 22sin cos 24C C C ∴===291cos 22cos 121168C C =-=⨯-=sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182=⨯=5.(2021·南京市中华中学)在中,分别为内角的对边,且满足. (1)求的大小;(2)从①,②,③这三个条件中任选两个,补充在下面的问题中,并解决问题.问题:已知___________,___________,若存在,求的面积,若不存在,请说明理由.注:如果选择多个条件解答,按第一个解答计分.【分析】(1)由正弦定理进行边角互化,再结合辅助角公式化简运算,可求出角的范围.(2)若选择条件①②,由余弦定理可计算的值,面积公式计算面积;若选择条件②③,正弦定理计算边,两角和的正弦计算,可求面积;若选择条件①③,由大边对大角可知三角形不存在. 【详解】(1)因为,由正弦定理可得因为即因为所以因为即ABC ,,a b c ,,A B C b a =B 2a c =2b =4A π=ABC ABC ABC a c 、a sin C b a =sin sin B A =sin 0A ≠cos 1B B -=1sin()62B π-=0B π<<5666B πππ-<-<66B ππ-==3B π第 11 页 共 11 页(2)若选择条件①②,由余弦定理可得,解得, 故所以若选择条件②③由正弦定理可得,可得所以若选择条件①③这样的三角形不存在,理由如下: 在三角形中,, 所以, 所以,所以又因为所以与矛盾,所以这样的三角形不存在.2222cos b a c ac B=+-222442c c c +-=c =a =11sin sin 223ABC S ac B π=== sin sin a b A B =sin sin b A a B ==11sin 2sin 2234ABC S ab C ππ⎛⎫==⨯+= ⎪⎝⎭ ABC 43A B ππ==,53412C ππππ=--=A C <a c <2a c=a c >a c <。

三角函数诀窍

三角函数诀窍

三角函数诀窍三角函数是高中数学中的重要内容,也是后续学习数学和物理领域中的基础。

它们在解决几何问题、分析问题以及工程应用中都有着广泛的应用。

掌握好三角函数的性质和技巧,对于提高数学水平和解决实际问题都非常有帮助。

下面我将介绍一些三角函数的诀窍,希望能对大家的学习有所帮助。

诀窍一:记住常用角度的三角函数值。

我们在学习三角函数的时候,经常会遇到一些特殊的角度。

例如,30°、45°、60°等,这些角度的三角函数值是非常常用的。

要牢记这些特殊角度的正弦、余弦和正切的值,不仅可以避免频繁计算,还可以方便地应用到各种问题中。

诀窍二:运用“合并”和“拆分”的技巧。

合并是指将多个三角函数的和差进行合并,转化为一个三角函数。

例如,sin(A + B) = sinAcosB + cosAsinB。

拆分则是将一个三角函数分解成两个三角函数的和差。

通过合并和拆分的技巧,我们可以简化计算,转化复杂的题目为简单的计算。

诀窍三:掌握半角公式和倍角公式。

半角公式和倍角公式是三角函数运算中常用的重要公式。

半角公式有sin(A/2)、cos(A/2)和tan(A/2)的表达式,通过这些公式,我们可以将一个三角函数的半角值表示为角度A的三角函数的表达式。

倍角公式则是将一个三角函数的倍角值表示为角度A的三角函数的表达式,如sin2A、cos2A和tan2A。

对于复杂的三角函数运算,半角公式和倍角公式可以大大简化计算过程。

诀窍四:利用图形直观理解三角函数的性质。

三角函数与单位圆的关系是高中三角函数的重点内容。

通过绘制单位圆和三角函数图像,我们可以直观地理解三角函数的周期性、周期、奇偶性和单调性等性质。

通过观察图形,我们可以更好地理解三角函数的性质,从而更灵活地运用到问题中。

诀窍五:多做题、多总结。

三角函数的学习需要大量的练习和巩固。

多做题可以加深对知识点的理解和掌握,同时也可以提高解题的速度和准确性。

在做题的过程中,及时总结解题的方法和技巧,形成自己的解题思路和方法,从而可以更好地解决类似的问题。

三角函数口诀

三角函数口诀

三角函数口诀1三角函数在各象限的符号:一全正,二正弦,三正切,四余弦。

2三角函数诱导公式口诀:公式1—5:函数名不变,符号看象限。

公式1—6及推广:奇变偶不变,符号看象限。

3两角和与差的三角函数公式两角和与差的余弦公式: 同名积 符号反两角和与差的正弦公式: 异名积 符号同两角和与差的正切公式:符号上同 下不同奇变偶不变符号看象限在学习了任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、同角三角函数的关系式与诱导公式后,很多老师为了让学生便于记忆和灵活使用诱导公式,都会给出十字口诀“奇变偶不变,符号看象限”.这个十字口诀既是对所有诱导公式的一个高度概括,又是灵活运用诱导公式求值和化简的技巧.诱导公式:公式一: απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k .(其中Z ∈k ). 公式二: ααπ-sin sin(=+);ααπ-cos cos(=+);ααπtan tan(=+). 公式三: sin()-sin αα-=;cos()cos αα-= ;tan()tan αα-=-.公式四: ααπsin sin(=-);ααπ-cos cos(=-);ααπtan tan(-=-)公式五: sin(2sin παα-=-);cos(2cos παα-=);tan(2tan παα-=-)公式六: sin(2π-α) = cos α; cos(2π -α) = sin α. 公式七: sin(2π+α) = cos α;cos(2π+α) =- sin α. 公式八: sin(32π-α)=- cos α; cos(32π -α) = -sin α. 公式九: sin(32π+α) = -cos α;cos(32π+α) = sin α. 以上九组公式可以推广归结为:要求角2k πα⋅±的三角函数值,只需要直接求角α的三角函数值的问题.这个转化的过程及结果就是十字口诀“奇变偶不变,符号看象限”.例1 求cos 2130°、sin (-2130°)、127cos6π、127sin()6π-. (1)化角为2k πα⋅±或090k α⋅±的形式并判断k 的奇偶及角所在的象限:在角度制下处理方法是:∵ 2390213018033027060∴ 2130°=23×90°+60°,可以看出90°的系数为正奇数,逆时针方向旋转23个90°到y 负半轴,再旋转60°到第四象限,因此2130°是第四象限角;-2130°=-23×90°-60°,可以看出90°的系数为负奇数,顺时针方向旋转23个90°到y 正半轴,再旋转60°到第一象限,因此-2130°是第一象限角;在弧度制下处理方法是:12712712712(42)42662323226ππππππ=⨯⨯=⨯=+⨯=⨯+,可以看出2π的系数为正偶数,逆时针旋转42个2π到x 负半轴,再旋转6π到第三象限,因此1276π是第三象限角;12742626πππ-=-⨯-,可以看出2π的系数为负偶数,顺时针旋转42个2π到x 负半轴,再旋转6π到第二象限,因此1276π-是第二象限角. (2)根据上面的判断,运用十字口诀“奇变偶不变,符号看象限”求值:cos 2130°=sin 60sin (-2130°)=cos 60°=12; 127cos 6π=cos 6π-= 127sin()6π-=1sin 62π=. 由“奇变偶不变,符号看象限”一步法化简比直接采用诱导公式化简要简捷得多,但在使用“奇变偶不变,符号看象限”时要对其真正的含义有透彻的理解,即诱导公式的左边为k ·900+α(k ∈Z )的正弦(切)或余弦(切)函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角也可能小于锐角还有可能是任意角),然后分析k ·900+α(k ∈Z )为第几象限角,再判断公式左边这个三角函数在此象限是正还是负,也就是公式右边的符号.。

2020版高考数学(理)新增分大一轮人教通用版讲义:第四章 三角函数、解三角形 4.6 含解析

2020版高考数学(理)新增分大一轮人教通用版讲义:第四章 三角函数、解三角形 4.6 含解析

§4.6 正弦定理和余弦定理最新考纲考情考向分析掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容(1)a sin A =b sin B =c sin C=2R(2)a2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(3)a =2R sin A ,b =2R sin B ,c =2R sin C ; (4)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(5)a ∶b ∶c =sin A ∶sin B ∶sin C ;(6)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A(7)cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.在△ABC 中,已知a ,b 和A 时,解的情况A 为锐角 A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数 一解两解一解一解3.三角形常用面积公式(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).概念方法微思考1.在△ABC 中,∠A >∠B 是否可推出sin A >sin B ? 提示 在△ABC 中,由∠A >∠B 可推出sin A >sin B .2.如图,在△ABC 中,有如下结论:b cos C +c cos B =a .试类比写出另外两个式子. 提示 a cos B +b cos A =c ; a cos C +c cos A =b .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × ) (3)在△ABC 中,asin A =a +b -c sin A +sin B -sin C.( √ )(4)在三角形中,已知两边和一角就能求三角形的面积.( √ ) 题组二 教材改编2.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为 . 答案 等腰三角形或直角三角形解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形.3.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积为 . 答案 2 3解析 ∵23sin 60°=4sin B ,∴sin B =1,∴B =90°,∴AB =2,∴S △ABC =12×2×23=2 3.题组三 易错自纠4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c <b cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形答案 A解析 由已知及正弦定理得sin C <sin B cos A , ∴sin(A +B )<sin B cos A ,∴sin A cos B +cos A sin B <sin B cos A , 又sin A >0,∴cos B <0,∴B 为钝角, 故△ABC 为钝角三角形.5.(2018·大连质检)在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案 C解析 由正弦定理得b sin B =c sin C ,∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.6.(2018·包头模拟)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则C = . 答案2π3解析 由3sin A =5sin B 及正弦定理,得3a =5b .又因为b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c22ab=⎝⎛⎭⎫53b 2+b 2-⎝⎛⎭⎫73b 22×53b ×b =-12.因为C ∈(0,π),所以C =2π3.题型一 利用正弦、余弦定理解三角形例1 (2018·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解 (1)在△ABC 中,由正弦定理a sin A =b sin B,可得 b sin A =a sin B .又由b sin A =a cos ⎝⎛⎭⎫B -π6,得a sin B =a cos ⎝⎛⎭⎫B -π6, 即sin B =cos ⎝⎛⎭⎫B -π6,所以tan B = 3. 又因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝⎛⎭⎫B -π6,可得sin A =217. 因为a <c ,所以cos A =277.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.思维升华 (1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素;(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.跟踪训练1 (1)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( ) A.3π4 B.π3 C.π4 D.π6 答案 C解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , ∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ), ∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C.(2)如图所示,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为 .答案66解析 设AB =a ,∵AB =AD ,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC 中,BD sin C =BCsin ∠BDC ,∴sin C =BD ·sin ∠BDC BC =66.题型二 和三角形面积有关的问题例2 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24,得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.跟踪训练2 (1)(2018·沈阳质检)若AB =2,AC =2BC ,则S △ABC 的最大值为( ) A .2 2 B.32 C.23D .3 2 答案 A解析 设BC =x ,则AC =2x .根据三角形的面积公式, 得S △ABC =12·AB ·BC sin B =x 1-cos 2B .①根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x .②将②代入①,得 S △ABC =x1-⎝⎛⎭⎫4-x 24x 2=128-(x 2-12)216.由三角形的三边关系,得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是 . 答案332解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.题型三 正弦定理、余弦定理的应用命题点1 判断三角形的形状例3 (1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰三角形或直角三角形答案 C解析 方法一 由余弦定理可得a =2b ·a 2+b 2-c 22ab ,因此a 2=a 2+b 2-c 2,得b 2=c 2,于是b =c ,从而△ABC 为等腰三角形.方法二 由正弦定理可得sin A =2sin B cos C , 因此sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C , 于是sin(B -C )=0,因此B -C =0,即B =C , 故△ABC 为等腰三角形.(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 B解析 由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.引申探究1.本例(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状. 解 ∵2sin A cos B =sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos A sin B , ∴sin(A -B )=0.又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.2.本例(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状. 解 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B , 故△ABC 为等边三角形. 命题点2 求解几何计算问题例4 如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.解 (1)因为AD ∶AB =2∶3,所以可设AD =2k , AB =3k .又BD =7,∠DAB =π3,所以由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,所以AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)因为AB ⊥BC ,所以cos ∠DBC =sin ∠ABD =217, 所以sin ∠DBC =277,所以BD sin ∠BCD =CDsin ∠DBC,所以CD =7×27732=433.思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.跟踪训练3 (1)在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形答案 B解析 ∵cos 2B 2=1+cos B 2,cos 2B 2=a +c2c ,∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a ,∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2, ∴△ABC 为直角三角形.(2)(2018·铁岭统考)在△ABC 中,B =30°,AC =25,D 是AB 边上的一点,CD =2,若∠ACD 为锐角,△ACD 的面积为4,则BC = . 答案 4解析 依题意得S △ACD =12CD ·AC ·sin ∠ACD =25·sin ∠ACD =4,sin ∠ACD =25.又∠ACD 是锐角,因此cos ∠ACD =1-sin 2 ∠ACD =15.在△ACD 中,AD =CD 2+AC 2-2CD ·AC ·cos ∠ACD =4,AD sin ∠ACD =CDsin A ,sin A =CD ·sin ∠ACD AD =15 .在△ABC 中,AC sin B =BC sin A ,BC =AC ·sin Asin B=4.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( ) A .1 B .2 C .4 D .6 答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°, 即c 2-3c -4=0,解得c =4或c =-1(舍去).2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =23,C =30°,则B 等于( ) A .30° B .60° C .30°或60° D .60°或120°答案 D解析 ∵c =2,b =23,C =30°,∴由正弦定理可得 sin B =b sin C c =23×122=32,由b >c ,可得30°<B <180°,∴B =60°或B =120°.3.(2018·丹东模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为( ) A.12 B.14 C .1 D .2 答案 A解析 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知三个向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B 2,p =⎝⎛⎭⎫c ,cos C2共线,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 A解析 ∵向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B2共线, ∴a cos B 2=b cos A2.由正弦定理得sin A cos B 2=sin B cos A2.∴2sin A 2cos A 2 cos B 2=2sin B 2cos B 2cos A2.则sin A 2=sin B 2.∵0<A 2<π2,0<B 2<π2,∴A 2=B2,即A =B .同理可得B =C .∴△ABC 的形状为等边三角形.故选A.5.(2018·本溪质检)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( ) A .4π B .8π C .9π D .36π 答案 C解析 c =b cos A +a cos B =2,由cos C =223,得sin C =13,再由正弦定理可得2R =csin C =6,R =3,所以△ABC 的外接圆面积为πR 2=9π,故选C.6.(2018·乌海模拟)在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos Ac =2cos C ,则c 等于( )A .27B .4C .2 3D .3 3 答案 C解析 ∵a cos B +b cos Ac =2cos C ,由正弦定理,得sin A cos B +cos A sin B =2sin C cos C , ∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π3,∵S △ABC =23=12ab sin C =34ab ,∴ab =8,又a +b =6,解得⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =4,b =2,c 2=a 2+b 2-2ab cos C =4+16-8=12, ∴c =23,故选C.7.(2018·通辽模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为 . 答案 π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,又0<B <π,∴B =π3或2π3. 8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b = .答案 1解析 因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即332=b 12, 解得b =1.9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为 .答案3+1解析 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-⎝⎛⎭⎫π6+π4=7π12, ∴sin A =sin ⎝⎛⎭⎫π4+π3=sin π4cos π3+cos π4sin π3 =6+24. 则S △ABC =12bc sin A =12×2×22×6+24=3+1.10.(2018·锦州质检)若E ,F 是等腰直角三角形ABC 斜边AB 上的三等分点,则tan ∠ECF = . 答案 34解析 如图,设AB =6,则AE =EF =FB =2.因为△ABC 为等腰直角三角形, 所以AC =BC =3 2.在△ACE 中,A =π4,AE =2,AC =32,由余弦定理可得CE =10. 同理,在△BCF 中可得CF =10. 在△CEF 中,由余弦定理得 cos ∠ECF =10+10-42×10×10=45,sin ∠ECF =1-cos 2∠ECF =35,所以tan ∠ECF =34.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎫2A -π6的值. 解 (1)在△ABC 中,由b sin B =csin C 及sin B =6sin C ,可得b =6c , 又由a -c =66b ,得a =2c ,所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64, 可得sin A =104. 于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6 =cos 2A cos π6+sin 2A sin π6=⎝⎛⎭⎫-14×32+154×12 =15-38. 12.(2018·北京)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437.由正弦定理得sin A =a sin B b =32.由题设知π2<∠B <π,所以0<∠A <π2,所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.13.在△ABC 中,a 2+b 2+c 2=23ab sin C ,则△ABC 的形状是( ) A .不等腰的直角三角形 B .等腰直角三角形C .钝角三角形D .正三角形 答案 D解析 易知a 2+b 2+c 2=a 2+b 2+a 2+b 2-2ab cos C =23ab sin C ,即a 2+b 2=2ab sin ⎝⎛⎭⎫C +π6,由于a 2+b 2≥2ab ,当且仅当a =b 时取等号,所以2ab sin ⎝⎛⎭⎫C +π6≥2ab ,sin ⎝⎛⎭⎫C +π6≥1,故只能a =b 且C +π6=π2,所以△ABC 为正三角形.14.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,a =3,则△ABC 的周长的最大值为( ) A .2 3 B .6 C. 3 D .9 答案 D解析 ∵a 2=b 2+c 2-bc ,∴bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵A ∈(0,π),∴A =π3.∵a=3,∴由正弦定理得a sin A =b sin B =c sin C =332=23,∴b =2 3 sin B ,c =2 3 sin C ,则a +b +c=3+23sin B +2 3 sin C =3+23sin B +23sin ⎝⎛⎭⎫2π3-B =3+33sin B +3cos B =3+6sin ⎝⎛⎭⎫B +π6,∵B ∈⎝⎛⎭⎫0,2π3,∴当B =π3时周长取得最大值9.15.在△ABC 中,C =60°,且a sin A =2,则△ABC 面积S 的最大值为 .答案334解析 由C =60°及c sin C =a sin A=2,可得c = 3. 由余弦定理得3=b 2+a 2-ab ≥ab (当且仅当a =b 时取等号), ∴S =12ab sin C ≤12×3×32=334,∴△ABC 的面积S 的最大值为334.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a 2-(b -c )2=(2-3)bc ,且sin B =1+cos C ,BC 边上的中线AM 的长为7. (1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc ,得a 2-b 2-c 2=-3bc ,即b 2+c 2-a 2=3bc , ∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6.又sin B =1+cos C,0<sin B <1, ∴cos C <0,即C 为钝角, ∴B 为锐角,且B +C =5π6,则sin ⎝⎛⎭⎫5π6-C =1+cos C ,化简得cos ⎝⎛⎭⎫C +π3=-1, 解得C =2π3,∴B =π6.(2)由(1)知,a =b ,sin C =32,cos C =-12, 在△ACM 中,由余弦定理得 AM 2=b 2+⎝⎛⎭⎫a 22-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.。

2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)

2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)

专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。

2020版高考数学复习第四章三角函数解三角形第3节两角和与差的正弦余弦和正切公式课件理新人教A版

2020版高考数学复习第四章三角函数解三角形第3节两角和与差的正弦余弦和正切公式课件理新人教A版
3.函数 f(α)=asin α+bcos α(a, b 为常数), 可以化为 f(α)= a +b 或 f(α)= a +b
2 2 2 2
sin(α+φ)其中tan
b φ=a
· cos(α-φ)其中tan
a φ=b.
[微点提醒] 1.tan α±tan β=tan(α±β)(1∓tan αtan β).
2.二倍角的正弦、余弦、正切公式
2sin αcos α sin 2α=_____________. 1-2sin2α cos2α-sin2α =_____________ 2cos2α-1 =_____________. cos 2α=_____________
2tan α 2 1 - tan α tan 2α=________________ .
多维探究
cos 10° - 3cos(-100° ) 【例 2-1】 (1)计算: =________. 1-sin 10°
解析
cos 10° - 3cos(-100° ) cos 10° + 3cos 80° cos 10° + 3sin 10° = = = 2· sin 40° 1-sin 10° 1-cos 80°
1 A. 2 3 B. 2 1 C.- 2 3 D.- 2
)
解析 由三角函数定义,sin α=cos 47°,cos α=sin 47°, 则sin(α-13°)=sin αcos 13°-cos αsin 13°
=cos 47°cos 13°-sin 47°sin 13° 1 =cos(47° +13° )=cos 60° = . 2 答案 A
解析 (1)cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α.

2020年高考数学专题复习三角函数的图象与性质

2020年高考数学专题复习三角函数的图象与性质

三角函数的图象与性质1.正弦、余弦、正切函数的图象与性质2.周期函数的定义对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期;函数y=A sin(ωx +φ)和y =A cos(ωx +φ)的周期均为T =2π|ω|;函数y =A tan(ωx +φ)的周期为T =π|ω|. 3.对称与周期正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻的两个对称中心之间的距离是半个周期.判断正误(正确的打“√”,错误的打“×”) (1)y =cos x 在第一、二象限内是减函数.( ) (2)若y =k sin x +1,x ∈R ,则y 的最大值是k +1.( )(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( ) (4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ).( )(5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)×函数y =tan 3x 的定义域为( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+3k π,k ∈Z B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π6+k π,k ∈ZC .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π6+k π,k ∈ZD .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π6+k π3,k ∈Z解析:选D.由3x ≠π2+k π(k ∈Z ),得x ≠π6+k π3,k ∈Z .故选D.(2019·温州市十校联合体期初)下列函数中,最小正周期为π的是( ) A .y =cos 4x B .y =sin 2x C .y =sin x 2D .y =cos x4解析:选B.A.y =cos 4x 的周期T =2π4=π2,本选项错误;B.y =sin 2x 的周期T =2π2=π,本选项正确;C.y =sin x 2的周期为T =2π12=4π,本选项错误;D.y =cos x4的周期为T=2π14=8π,本选项错误,则最小正周期为π的函数为y =sin 2x. (2019·金华十校联考)函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为________,此时x =________.解析:函数y =3-2cos ⎝ ⎛⎭⎪⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z) 函数f (x )=2sin ⎝⎛⎭⎪⎫x +π4,x ∈[0,π]的减区间为________.解析:当2k π+π2≤x +π4≤2k π+3π2,k ∈Z ,即2k π+π4≤x ≤2k π+5π4,k ∈Z 时,函数f (x )是减函数.又x ∈[0,π],所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π4,π.答案:⎣⎢⎡⎦⎥⎤π4,π三角函数的定义域和值域(1)(2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(2)函数y =lg(2sin x -1)+1-2cos x 的定义域是________.【解析】 (1)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1.(2)要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0, 即⎩⎪⎨⎪⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z .即函数的定义域为⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6,k ∈Z .【答案】 (1)1 (2)⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6,k ∈Z(1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域;③(换元法)把sin x 或cos x 看作一个整体,转换成二次函数求值域;④(换元法)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A .⎣⎢⎡⎦⎥⎤-32,32B .⎣⎢⎡⎦⎥⎤-32,3C .⎣⎢⎡⎦⎥⎤-332,332D .⎣⎢⎡⎦⎥⎤-332,3 解析:选B.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈[-32,3],即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.2.(2019·温州市十校联合体期初)已知函数f (x )=2cos x ·(sin x -cos x ),x ∈R ,则f ⎝ ⎛⎭⎪⎫π4=________,f (x )的最大值是________. 解析:f (x )=2cos x (sin x -cos x ) =2cos x sin x -2cos 2x =sin 2x -1-cos 2x=2sin ⎝⎛⎭⎪⎫2x -π4-1. 当x =π4时,f ⎝ ⎛⎭⎪⎫π4=2sin ⎝⎛⎭⎪⎫2×π4-π4-1=0.由正弦函数的图象和性质可得,sin ⎝ ⎛⎭⎪⎫2x -π4的最大值为1.所以f (x )的最大值为2-1. 答案:02-1三角函数的单调性(高频考点)三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度为中档题.主要命题角度有:(1)求已知三角函数的单调区间; (2)已知三角函数的单调区间求参数; (3)利用三角函数的单调性比较大小;(4)利用三角函数的单调性求值域(或最值).(见本节例1(1)及跟踪训练T1)角度一 求已知三角函数的单调区间(2017·高考浙江卷)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ). (1)求f ⎝⎛⎭⎪⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间.【解】 (1)由sin 2π3=32,cos 2π3=-12,f ⎝ ⎛⎭⎪⎫2π3=⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫-122-23×32×⎝ ⎛⎭⎪⎫-12,得f ⎝ ⎛⎭⎪⎫2π3=2.(2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x 得f (x )=-cos 2x -3sin 2x =-2sin ⎝⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期是π.由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z , 所以,f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).角度二 已知三角函数的单调区间求参数函数f (x )=sin(x +φ)在区间⎝ ⎛⎭⎪⎫π3,2π3上单调递增,则常数φ的值可能是( )A .0B .π2C .πD .3π2【解析】 法一:结合选项,当φ分别取选项中的值时,A :f (x )=sin x ;B :f (x )=cos x ;C :f (x )=-sin x ;D :f (x )=-cos x .验证得D 选项正确.法二:⎝⎛⎭⎪⎫π3,2π3⊆f (x )的递增区间,⎝ ⎛⎭⎪⎫π3,2π3⊆⎝ ⎛⎭⎪⎫-π2-φ+2k π,π2-φ+2k π,⇒-5π6+2k π≤φ≤-π6+2k π(k ∈Z ),k =0,选项中无值符合;k =1,7π6≤φ≤11π6,φ=3π2符合; k =2,19π6≤φ≤23π6,选项中无值符合.可知φ的可取值逐渐增大,故只有D 选项符合题意.【答案】 D角度三 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝ ⎛⎭⎪⎫π7=2sin 1021π,b =f ⎝ ⎛⎭⎪⎫π6=2sin π2=2,c =f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sin π3, 因为y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上递增,所以c <a <b .【答案】 B(1)求三角函数单调区间的两种方法①代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.②图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.(2)利用单调性确定ω的范围的方法对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.(3)利用单调性比较大小的方法首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.1.(2019·浙江宁波质检)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是( )A .⎝ ⎛⎭⎪⎫-∞,-92∪[6,+∞)B .⎝ ⎛⎦⎥⎤-∞,-92∪⎣⎢⎡⎭⎪⎫32,+∞C .(-∞,-2]∪[6,+∞)D .(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞解析:选D.当ω>0时,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,由题意知π4ω≤-π2,所以ω≤-2.综上可知,ω的取值范围是(]-∞,-2∪⎣⎢⎡⎭⎪⎫32,+∞.2.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为 ( )A .-1B .-22C .22D .0解析:选B.由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin(2x -π4)在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.3.函数y =sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________. 解析:(同增异减法)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )三角函数的奇偶性、周期性及对称性(1)设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关(2)已知ω>0,f (x )=1+tan ωx 1-tan ωx ,f ⎝ ⎛⎭⎪⎫x +π3的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,则ω的最小值为( )A .12 B .1 C .32D .2(3)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 【解析】 (1)由于f (x )=sin 2x +b sin x +c =1-cos 2x 2+b sin x +c .当b =0时,f (x )的最小正周期为π;当b ≠0时,f (x )的最小正周期为2π.c 的变化会引起f (x )图象的上下平移,不会影响其最小正周期.故选B.(2)因为f (x )=1+tan ωx 1-tan ωx =tan ⎝⎛⎭⎪⎫ωx +π4, 所以f ⎝ ⎛⎭⎪⎫x +π3=tan ⎝⎛⎭⎪⎫ωx +ωπ3+π4, 因为f ⎝ ⎛⎭⎪⎫x +π3的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π3,0对称, 所以tan ⎝ ⎛⎭⎪⎫ωx +π4+tan ⎝ ⎛ω2π3-ωx +ωπ3+⎭⎪⎫π4=0, 即tan ⎝ ⎛⎭⎪⎫ωx +π4=tan ⎝⎛⎭⎪⎫ωx -ωπ-π4,所以π4=-ωπ-π4+k π,(k ∈Z ),ω=-12+k ,(k ∈Z ),因为ω>0,所以当k =1时,ω取最小值为12,故选A.(3)f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin(ωx +φ+π4),因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增. 【答案】 (1)B (2)A (3)D三角函数的奇偶性、对称性和周期问题的解题思路(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.[提醒] 对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.1.(2019·舟山市普陀三中高三期中)设函数f (x )=sin(2x +φ)+cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2为偶函数,则φ=( )A .π2B .π3C .π4D .π6解析:选C.f (x )=sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +φ+π4, 因为函数f (x )为偶函数,所以f (-x )-f (x )=2sin ⎝ ⎛⎭⎪⎫-2x +φ+π4-2sin ⎝ ⎛⎭⎪⎫2x +φ+π4=0,即sin ⎝ ⎛⎭⎪⎫-2x +φ+π4=sin ⎝⎛⎭⎪⎫2x +φ+π4,所以-2x +φ+π4=2x +φ+π4+2k π,或-2x +φ+π4+2x +φ+π4=π+k π,即x =-k π2,k ∈Z (舍)或φ=π4+k π2,k ∈Z . 因为|φ|<π2,所以φ=π4.2.(2019·浙江省名校协作体高三联考)已知函数f (x )=sin 2x ·(1-2sin 2x )+1,则f (x )的最小正周期T =________,f (T )=________.解析:由题意得,f (x )=sin 2x cos 2x +1=12sin 4x +1,所以最小正周期T =2π4=π2,f (T )=f ⎝ ⎛⎭⎪⎫π2=1.答案:π213.已知函数f (x )=sin x 的图象与直线kx -y -k π=0(k >0)恰有三个公共点,这三个点的横坐标从小到大分别为x 1,x 2,x 3,则tan (x 2-x 3)x 1-x 3=________.解析:如图所示,易知x 2=π,x 1+x 3=2x 2=2π,则k =sin x 3-0x 3-x 2=sin x 312(x 3-x 1),又直线与y =sin x 相切于点A (x 3,sin x 3), 则k =cos x 3, 则sin x 312(x 3-x 1)=cos x 3⇒tan (x 2-x 3)x 1-x 3=tan x 3x 3-x 1=12,故答案为12.答案:12奇偶性对于y =A sin(ωx +φ)(A ≠0),若为奇函数,则φ=k π(k ∈Z );若为偶函数,则φ=π2+k π(k ∈Z ).对于y =A cos(ωx +φ)(A ≠0),若为奇函数,则φ=π2+k π(k ∈Z );若为偶函数,则φ=k π(k ∈Z ).对于y =A tan(ωx +φ)(A ≠0),若为奇函数,则φ=k π2(k∈Z ).函数图象的对称中心、对称轴(1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)的函数图象的对称轴或对称中心时,都是先把“ωx +φ”看作一个整体,然后根据y =sin x 和y =cos x 图象的对称轴或对称中心进行求解. (2)在判断对称轴或对称中心时,用以下结论可快速解题:设y =f (x )=A sin(ωx +φ),g (x )=A cos(ωx +φ),x =x 0是对称轴方程⇔f (x 0)=±A ,g (x 0)=±A ;(x 0,0)是对称中心⇔f (x 0)=0,g (x 0)=0.易错防范(1)闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时的情况,避免出现增减区间的混淆.[基础达标]1.最小正周期为π且图象关于直线x =π3对称的函数是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π3 解析:选B.由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎪⎫2×π3+π3=sin π=0,所以选项A 不正确.对于D ,sin ⎝ ⎛⎭⎪⎫2×π3-π3=sin π3=32,所以D 不正确,对于B ,sin ⎝ ⎛⎭⎪⎫2×π3-π6=sin π2=1,所以选项B 正确,故选B.2.(2019·合肥市第一次教学质量检测)函数y =sin(ωx +π6)在x =2处取得最大值,则正数ω的最小值为( )A .π2B .π3C .π4D .π6解析:选D.由题意得,2ω+π6=π2+2k π(k ∈Z ),解得ω=π6+k π(k ∈Z ),因为ω>0,所以当k =0时,ωmin =π6,故选D.3.(2019·浙江省名校协作体高三联考)下列四个函数:y =sin|x |,y =cos|x |,y =|tanx |,y =-ln|sin x |,以π为周期,在⎝⎛⎭⎪⎫0,π2上单调递减且为偶函数的是( )A .y =sin|x |B .y =cos|x |C .y =|tan x |D .y =-ln|sin x |解析:选D.A.y =sin|x |在⎝ ⎛⎭⎪⎫0,π2上单调递增,故A 错误;B.y =cos|x |=cos x 周期为T =2π,故B 错误;C.y =|tan x |在⎝ ⎛⎭⎪⎫0,π2上单调递增,故C 错误;D.f (x +π)=-ln|sin(x +π)|=-ln|sin x |,周期为π,当x ∈⎝ ⎛⎭⎪⎫0,π2时,y =-ln(sin x )是在⎝⎛⎭⎪⎫0,π2上单调递减的偶函数,故D 正确,故选D.4.(2017·高考全国卷Ⅲ)设函数f (x )=cos(x +π3),则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在(π2,π)单调递减解析:选D.根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos ⎝ ⎛⎭⎪⎫x +π3=-1,所以B 正确;f (x +π)=cos ⎝ ⎛⎭⎪⎫x +π+π3=cos ⎝⎛⎭⎪⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3在⎝ ⎛⎭⎪⎫π2,23π上单调递减,在⎝ ⎛⎭⎪⎫23π,π上单调递增,故D 不正确.所以选D.5.若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,则ω的取值范围是( )A .⎝ ⎛⎦⎥⎤0,112∪⎣⎢⎡⎦⎥⎤14,23B .⎝ ⎛⎦⎥⎤0,16∪⎣⎢⎡⎦⎥⎤13,23C .⎣⎢⎡⎦⎥⎤14,23 D .⎣⎢⎡⎦⎥⎤13,23 解析:选B.易知函数y =sin x 的单调区间为 [k π+π2,k π+3π2],k ∈Z ,由k π+π2≤ωx +π6≤k π+3π2,k ∈Z ,得k π+π3ω≤x ≤k π+4π3ω,k ∈Z ,因为函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在区间(π,2π)内没有最值,所以f (x )在区间(π,2π)内单调,所以(π,2π)⊆⎣⎢⎢⎡⎦⎥⎥⎤k π+π3ω,k π+4π3ω,k ∈Z , 所以⎩⎪⎨⎪⎧k π+π3ω≤π,k π+4π3ω≥2π,k ∈Z ,解得k +13≤ω≤k 2+23,k ∈Z ,由k +13≤k 2+23,得k ≤23,当k =0时,得13≤ω≤23;当k =-1时,得-23≤ω≤16.又ω>0,所以0<ω≤16.综上,得ω的取值范围是⎝ ⎛⎦⎥⎤0,16∪⎣⎢⎡⎦⎥⎤13,23.故选B. 6.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( )A .⎣⎢⎡⎦⎥⎤π12,7π12B .⎣⎢⎡⎦⎥⎤-5π12,π12C .⎣⎢⎡⎦⎥⎤-π3,2π3D .⎣⎢⎡⎦⎥⎤-π6,5π6解析:选A.由题意,得f ′(x )=2cos ⎝ ⎛⎭⎪⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝ ⎛⎭⎪⎫2x +π12+2cos ⎝ ⎛⎭⎪⎫2x +π12=22sin ⎝ ⎛⎭⎪⎫2x +π12+π4=22sin ⎝ ⎛⎭⎪⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),得k π+π12≤x ≤k π+7π12(k ∈Z ),所以y =2f (x )+f ′(x )的一个单调递减区间为⎣⎢⎡⎦⎥⎤π12,7π12,故选A.7.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π,k ∈Z .所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z8.函数y =(4-3sin x )(4-3cos x )的最小值为________. 解析:y =16-12(sin x +cos x )+9sin x cos x , 令t =sin x +cos x ,则t ∈[-2,2],且sin x cos x =t 2-12,所以y =16-12t+9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72.答案:729.(2019·温州市高中模考)已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎢⎡⎦⎥⎤-1,32,则b -a 的最大值和最小值之差等于________.解析:如图,当x ∈[a 1,b ]时,值域为⎣⎢⎡⎦⎥⎤-1,32且b -a 最大;当x ∈[a 2,b ]时,值域为⎣⎢⎡⎦⎥⎤-1,32,且b -a 最小,所以最大值与最小值之差为(b -a 1)-(b -a 2)=a 2-a 1=-π2-⎝ ⎛⎭⎪⎫-4π3=5π6.答案:5π610.(2019·杭州学军中学质检)已知f (x )=sin 2x -3cos 2x ,若对任意实数x ∈⎝⎛⎦⎥⎤0,π4,都有|f (x )|<m ,则实数m 的取值范围是________. 解析:因为f (x )=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎝ ⎛⎦⎥⎤0,π4,所以⎝⎛⎭⎪⎫2x -π3∈⎝ ⎛⎦⎥⎤-π3,π6,所以2sin ⎝⎛⎭⎪⎫2x -π3∈(-3,1],所以|f (x )|=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫2x -π3<3,所以m ≥ 3.答案:[3,+∞)11.(2019·杭州市名校协作体高三下学期考试)已知0≤φ<π,函数f (x )=32cos(2x +φ)+sin 2x .(1)若φ=π6,求f (x )的单调递增区间;(2)若f (x )的最大值是32,求φ的值.解:(1)由题意f (x )=14cos 2x -34sin 2x +12=12cos ⎝⎛⎭⎪⎫2x +π3+12,由2k π-π≤2x +π3≤2k π,得k π-2π3≤x ≤k π-π6.所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-2π3,k π-π6,k ∈Z .(2)由题意f (x )=⎝ ⎛⎭⎪⎫32cos φ-12cos 2x -32sin φsin 2x +12,由于函数f (x )的最大值为32,即⎝ ⎛⎭⎪⎫32cos φ-122+⎝ ⎛⎭⎪⎫32sin φ2=1,从而cos φ=0,又0≤φ<π,故φ=π2.12.(2019·台州市高三期末评估)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的最小正周期为π,且x =π12为f (x )图象的一条对称轴.(1)求ω和φ的值;(2)设函数g (x )=f (x )+f ⎝⎛⎭⎪⎫x -π6,求g (x )的单调递减区间.解:(1)因为f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的最小正周期为π,由T =2πω=π,所以ω=2,由2x +φ=k π+π2,k ∈Z ,所以f (x )的图象的对称轴为x =k π2+π4-φ2,k ∈Z . 由π12=k π2+π4-φ2,得φ=k π+π3. 又|φ|≤π2,则φ=π3.(2)函数g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x -π6=sin ⎝ ⎛⎭⎪⎫2x +π3+sin 2x =12sin 2x +32cos 2x +sin 2x=3sin ⎝⎛⎭⎪⎫2x +π6.所以g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z .[能力提升]1.(2019·湖州市高三期末考试)若α,β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,则必有( )A .α2<β2B .α2>β2C .α<βD .α>β解析:选B.α,β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,即αsin α>βsin β,再根据y =x sin x 为偶函数,且在⎣⎢⎡⎦⎥⎤0,π2上单调递增,可得|α|>|β|,即α2>β2,故选B.2.若f (x )=cos 2x +a cos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D.f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at+1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D. 3.(2019·浙江“七彩阳光”联盟高三联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的图象过点⎝ ⎛⎭⎪⎫0,32,若f (x )≤f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,则ω的值为________;当ω最小时,函数g (x )=f ⎝⎛⎭⎪⎫x -π3-22在区间[0,22]的零点个数为________.解析:由题意得φ=π3,且当x =π6时,函数f (x )取到最大值,故π6ω+π3=π2+2kπ,k ∈Z ,解得ω=1+12k ,k ∈N ,又因为ω>0,所以ω的最小值为1,因此,g (x )=f ⎝⎛⎭⎪⎫x -π3-22=sin x -22的零点个数是8个. 答案:1+12k (k ∈N ) 84.(2019·金华市东阳二中高三调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6-2cos 2ω2x +1(ω>0),直线y =3与函数f (x )图象相邻两交点的距离为π.(1)求ω的值;(2)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若点⎝ ⎛⎭⎪⎫B2,0是函数y =f (x )图象的一个对称中心,且b =3,求△ABC 面积的最大值.解:(1)函数f (x )=sin ⎝⎛⎭⎪⎫ωx -π6-2cos 2ω2x +1=sin ωx cos π6-cos ωx sin π6-2·1+cos ωx2+1=32sin ωx -32cos ωx =3sin ⎝⎛⎭⎪⎫ωx -π3.因为f (x )的最大值为3,所以f (x )的最小正周期为π, 所以ω=2.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,因为3sin ⎝⎛⎭⎪⎫B -π3=0⇒B =π3,因为cos B =a 2+c 2-b 22ac =a 2+c 2-92ac =12,所以ac =a 2+c 2-9≥2ac -9,ac ≤9, 故S △ABC =12ac sin B =34ac ≤934.故△ABC 面积的最大值为934.5.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解:(1)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. 所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,所以-2a sin ⎝⎛⎭⎪⎫2x +π6∈[-2a ,a ].所以f (x )∈[b ,3a +b ],又因为-5≤f (x )≤1, 所以b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,所以4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,所以sin ⎝⎛⎭⎪⎫2x +π6>12,所以2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k∈Z ,所以g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又因为当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .所以g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。

高考数学三角函数公式口诀

高考数学三角函数公式口诀

高考数学三角函数公式口诀高考数学所运用的公式多且难记,为了帮助同学们在学习上浪费不必要的时间,小编在这里为同学们整理出三角函数的公式和口诀,方便同学们更加容易去理解与牢记公式。

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

2020高考数学复习 第四章 三角函数4-3试题 精品

2020高考数学复习 第四章 三角函数4-3试题 精品

第四章 第三讲时间:60分钟 满分:100分一、选择题(8×5=40分)1.(2020·福建,1)函数f (x )=sin x c os x 的最小值是( )A .-1B .-12 C.12D .1答案:B解析:∵f (x )=sin x cos x =12sin2x ,∴f (x )min =-12.2.下列各项中,值为32的是( )A .2sin15°cos15°B .cos 215°-sin 215°C .2sin 215°-1 D .sin 215°+cos 215°答案:B解析:2sin15°cos15°=sin30°=12,排除选项A.2sin 215°-1=-cos30°=-32,否定C. sin 215°+cos 215°=1,否定D.cos 215°-sin 215°=cos30°=32.故选B. 3.已知tan(α+β)=25,tan(β-π4)=14,则tan(α+π4)等于( )A.2318B.322C.1322D.318 答案:B解析:tan(α+π4)=tan[(α+β)-(β-π4)]=tan(α+β)-tan(β-π4)1+tan(α+β)·tan (β-π4)=25-141+25×14=322,故选B. 4.(2020·山东烟台)已知tan α、tan β是方程x 2+33x +4=0的两个根,且α、β∈(-π2,π2),则α+β等于( )A . 2π3B .-2π3C .π3或2π3 D. π3或-2π3答案:B解析:由题意可知:tan α+tan β=-33, tan α·tan β=4,∴tan(α+β)=tan α+tan β1-tan α·tan β= 3.又∵α、β∈(-π2,π2),∴α+β∈(-π,π).又∵tan α+tan β=-33,tan α·tan β=4,∴α、β同为负角,∴α+β=-2π3.5.(2020·河北唐山)已知2θ是第一象限的角,且sin 4θ+cos 4θ=59,那么t an θ=( )A.。

高中数学高考20第四章 三角函数、解三角形 4 3 三角函数的图象与性质

高中数学高考20第四章 三角函数、解三角形  4 3 三角函数的图象与性质

又 x∈0,π2,∴函数的单调递增区间为0,π6.
命题点2 根据单调性求参数
例 4 已知 ω>0,函数 f(x)=sinωx+π4在π2,π上单调递减,则 ω 的取值范围 是 12,45 .
引申探究
本例中,若已知 ω>0,函数 f(x)=cosωx+π4在π2,π上单调递增,则 ω 的取值 范围是 32,47 .
2 题型分类 深度剖析
PART TWO
自主演练
题型一 三角函数的定义域
1.函数 f(x)=-2tan2x+π6的定义域是
A.xx≠π6
B.xx≠-1π2
C.xx≠kπ+π6k∈Z
√D.xx≠k2π+π6k∈Z
解析 由正切函数的定义域,得 2x+π6≠kπ+π2,k∈Z, 即 x≠k2π+π6(k∈Z),
(3)函数
y=12sin
x+
3 2 cos
xx∈0,2π的单调递增区间是
0,π6
.
解析
∵y=12sin
x+
3 2 cos
x=sinx+π3,
由 2kπ-π2≤x+π3≤2kπ+π2(k∈Z),
解得 2kπ-56π≤x≤2kπ+π6(k∈Z).
∴函数的单调递增区间为2kπ-56π,2kπ+π6(k∈Z),
解析 函数 y=cos x 的单调递增区间为[-π+2kπ,2kπ],k∈Z,
则ωω2ππ++4π4π≤≥2-kππ,+2kπ,
k∈Z, 解得 4k-52≤ω≤2k-14,k∈Z,
又由 4k-52-2k-14≤0,k∈Z 且 2k-14>0,k∈Z,
师生共研
题型三 三角函数的周期性与对称性
例2 (1)若函数f(x)=2tan kx+π3 的最小正周期T满足1<T<2,则自然数k的 值为 2或3 .

2020版高考数学复习第四章三角函数解三角形第6节正弦定理和余弦定理习题理含解析新人教A版

2020版高考数学复习第四章三角函数解三角形第6节正弦定理和余弦定理习题理含解析新人教A版

第6节 正弦定理和余弦定理最新考纲 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.知 识 梳 理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式a sin A =b sin B =csin C=2Ra 2=b 2+c 2-2bc cos__A ;b 2=c 2+a 2-2ca cos__B ;c 2=a 2+b 2-2ab cos__C常见 变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin__C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin __B ∶sin __C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数 一解两解一解一解无解[微点提醒]1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;(3)sinA +B2=cos C 2;(4)cos A +B 2=sin C 2. 2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B .基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)×2.(必修5P10A4改编)在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6B.π3C.2π3D.5π6解析 在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos∠BAC =b 2+c 2-a 22bc=9+25-4930=-12,由A ∈(0,π),得A =2π3,即∠BAC =2π3.答案 C3.(必修5P10B2改编)在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B=π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形4.(2018·沈阳质检)已知△ABC 中,A =π6,B =π4,a =1,则b 等于( )A.2B.1C. 3D. 2解析 由正弦定理a sin A =b sin B ,得1sin π6=bsinπ4,∴112=b22,∴b = 2. 答案 D5.(2018·全国Ⅱ卷)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A.4 2B.30C.29D.2 5解析 由题意得cos C =2cos 2C2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2. 答案 A6.(2019·荆州一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =22,cos A =34,sin B =2sin C ,则△ABC 的面积是________. 解析 由sin B =2sin C ,cos A =34,A 为△ABC 一内角可得b =2c ,sin A =1-cos 2A =74, ∴由a 2=b 2+c 2-2bc cos A ,可得8=4c 2+c 2-3c 2, 解得c =2(舍负),则b =4.∴S △ABC =12bc sin A =12×2×4×74=7.答案7考点一 利用正、余弦定理解三角形【例1】 (1)(2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)(2019·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6B.π3C.5π6D.2π3(3)(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( ) A.π2B.π3C.π4D.π6解析 (1)由正弦定理,得sin B =b sin Cc=6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc .所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C , 且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4.答案 (1)75° (2)B (3)C规律方法 1.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【训练1】 (1)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3(2)(2019·郑州二模)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若2cos 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( ) A.13B.7C.37D.6(3)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个B.2个C.0个D.无法确定解析 (1)由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝ ⎛⎭⎪⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝⎛⎭⎪⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理a sin A =csin C,得2sin3π4=2sin C , 则sin C =12,又C ∈(0,π),得C =π6.(2)由2cos 2A +B2-cos 2C =1,可得2cos2A +B2-1-cos 2C =0,则有cos 2C +cos C =0,即2cos 2C +cos C -1=0, 解得cos C =12或cos C =-1(舍),由4sin B =3sin A ,得4b =3a ,① 又a -b =1,②联立①,②得a =4,b =3,所以c 2=a 2+b 2-2ab cos C =16+9-12=13,则c =13. (3)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个. 答案 (1)B (2)A (3)B 考点二 判断三角形的形状【例2】 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( ) A.钝角三角形 B.直角三角形 C.锐角三角形D.等边三角形(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形D.不确定解析 (1)由c b <cos A ,得sin C sin B<cos A ,又B ∈(0,π),所以sin B >0, 所以sin C <sin B cos A , 即sin(A +B )<sin B cos A , 所以sin A cos B <0,因为在三角形中sin A >0,所以cos B <0, 即B 为钝角,所以△ABC 为钝角三角形.(2)由正弦定理得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2,∴△ABC 为直角三角形. 答案 (1)A (2)B规律方法 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.【训练2】 若将本例(2)中条件变为“c -a cos B =(2a -b )cos A ”,判断△ABC 的形状. 解 ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , ∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , ∴cos A (sin B -sin A )=0, ∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去),∴△ABC 为等腰或直角三角形.考点三 和三角形面积、周长有关的问题多维探究角度1 与三角形面积有关的问题【例3-1】 (2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π, 所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3.即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin∠BAC =23,所以△ABD 的面积为 3.角度2 与三角形周长有关的问题【例3-2】 (2018·大理模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________.解析 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝ ⎛⎭⎪⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12. 答案 12规律方法 1.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.2.与面积周长有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【训练3】 (2019·潍坊一模)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(a +2c )cosB +b cos A =0.(1)求B ;(2)若b =3,△ABC 的周长为3+23,求△ABC 的面积. 解 (1)由已知及正弦定理得(sin A +2sin C )cos B +sin B cos A =0, (sin A cos B +sin B cos A )+2sin C cos B =0, sin(A +B )+2sin C cos B =0,又sin(A +B )=sin C ,且C ∈(0,π),sin C ≠0, ∴cos B =-12,∵0<B <π,∴B =23π.(2)由余弦定理,得9=a 2+c 2-2ac cos B . ∴a 2+c 2+ac =9,则(a +c )2-ac =9. ∵a +b +c =3+23,b =3,∴a +c =23, ∴ac =3,∴S △ABC =12ac sin B =12×3×32=334.[思维升华]1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.2.在已知关系式中,既含有边又含有角,通常的解题思路是:先将角都化成边或边都化成角,再结合正弦定理、余弦定理即可求解.3.在△ABC 中,若a 2+b 2<c 2,由cos C =a 2+b 2-c 22ab<0,可知角C 为钝角,则△ABC 为钝角三角形. [易错防范]1.在利用正弦定理解有关已知三角形的两边和其中一边的对角解三角形时,有时出现一解、两解,所以要进行分类讨论.另外三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象.2.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.基础巩固题组 (建议用时:40分钟)一、选择题1.(2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2B. 3C.2D.3解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去.答案 D2.在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形解析 因为cos 2B 2=a +c 2c, 所以2cos 2B 2-1=a +c c -1,所以cos B =a c , 所以a 2+c 2-b 22ac =a c,所以c 2=a 2+b 2.所以△ABC 为直角三角形. 答案 B3.(2019·石家庄一模)在△ABC 中,AB =2,C =π6,则AC +3BC 的最大值为( )A.7B.27C.37D.47解析 在△ABC 中,AB =2,C =π6,则AB sin C =BC sin A =ACsin B=4, 则AC +3BC =4sin B +43sin A =4sin ⎝⎛⎭⎪⎫5π6-A +43sin A =2cos A +63sin A=47sin(A +θ),(其中tan θ=39). 所以AC +3BC 的最大值为47. 答案 D4.(2019·开封模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A =π3,3sin 2Ccos C=2sinA sinB ,且b =6,则c =( )A.2B.3C.4D.6解析 在△ABC 中,A =π3,b =6,∴a 2=b 2+c 2-2bc cos A ,即a 2=36+c 2-6c ,① 又3sin 2C cos C =2sin A sin B ,∴3c 2cos C =2ab , 即cos C =3c 22ab =a 2+b 2-c 22ab,∴a 2+36=4c 2,②由①②解得c =4或c =-6(不合题意,舍去).因此c =4. 答案 C5.(2018·全国Ⅰ卷改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为( ) A.33B.233C.36D.433解析 由b sin C +c sin B =4a sin B sin C 及正弦定理, 得2sin B sin C =4sin A sin B sin C , 易知sin B sin C ≠0,∴sin A =12.又b 2+c 2-a 2=8,∴cos A =b 2+c 2-a 22bc =4bc,则cos A >0.∴cos A =32,即4bc =32,则bc =833. ∴△ABC 的面积S =12bc sin A =12×833×12=233.答案 B 二、填空题6.(2018·浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.解析 由a sin A =b sin B ,得sin B =b a sin A =217,又a 2=b 2+c 2-2bc cos A ,∴c 2-2c -3=0,解得c =3(c =-1舍去). 答案2173 7.(2019·合肥模拟)我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为________.解析 根据正弦定理及a 2sin C =4sin A ,可得ac =4, 由(a +c )2=12+b 2,可得a 2+c 2-b 2=4, 所以S △ABC =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222=14×(16-4)= 3. 答案38.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S △ABC =574,则b 的值为________. 解析 由sin A sin B =5c 2b ⇒a b =5c 2b ⇒a =52c ,①由S △ABC =12ac sin B =574且sin B =74得12ac =5,②联立①,②得a =5,且c =2.由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.答案14三、解答题9.(2018·北京卷)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ; (2)求AC 边上的高.解 (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437. 由正弦定理得sin A =a sin Bb =32. 由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314, 所以AC 边上的高为a sin C =7×3314=332.10.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2-ab -2b 2=0. (1)若B =π6,求A ,C ;(2)若C =2π3,c =14,求S △ABC .解 (1)由已知B =π6,a 2-ab -2b 2=0结合正弦定理化简整理得2sin 2A -sin A -1=0,于是sin A =1或sin A =-12(舍).因为0<A <π,所以A =π2,又A +B +C =π, 所以C =π-π2-π6=π3.(2)由题意及余弦定理可知a 2+b 2+ab =196,①由a 2-ab -2b 2=0得(a +b )(a -2b )=0, 因为a +b >0,所以a -2b =0,即a =2b ,② 联立①②解得b =27,a =47. 所以S △ABC =12ab sin C =14 3.能力提升题组 (建议用时:20分钟)11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +a cos B =2,则△ABC 的外接圆面积为( )A.4πB.8πC.9πD.36π解析 由题意及正弦定理得2R sin B cos A +2R sin A cos B =2R sin(A +B )=2(R 为△ABC 的外接圆半径).即2R sin C =2.又cos C =223及C ∈(0,π),知sin C =13.∴2R =2sin C=6,R =3. 故△ABC 外接圆面积S =πR 2=9π. 答案 C12.(2019·武汉模拟)在△ABC 中,C =2π3,AB =3,则△ABC 的周长为( )A.6sin ⎝ ⎛⎭⎪⎫A +π3+3B.6sin ⎝ ⎛⎭⎪⎫A +π6+3C.23sin ⎝⎛⎭⎪⎫A +π3+3 D.23sin ⎝⎛⎭⎪⎫A +π6+3 解析 设△ABC 的外接圆半径为R ,则2R =3sin2π3=23,于是BC =2R sin A = 23sin A ,AC =2R sin B =23sin ⎝ ⎛⎭⎪⎫π3-A . 于是△ABC 的周长为23⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=23sin ⎝⎛⎭⎪⎫A +π3+3.答案 C13.(2019·长春一模)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________.解析 因为⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C , 所以12b cos A -sin C cos A =sin A cos C ,所以12b cos A =sin(A +C ),所以12b cos A =sin B ,所以cos A 2=sin B b ,又sin B b =sin A a,a =23,所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3,由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12,当且仅当b =c =23时取等号, 从而△ABC 面积的最大值为12×12×32=3 3.答案 3 314.(2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解 (1)在△ABC 中,由正弦定理a sin A =bsin B ,得b sin A =a sin B ,又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6, 即sin B =cos ⎝⎛⎭⎪⎫B -π6, 可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b =7.由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.。

高考数学一轮复习 第四章 三角函数与解三角形 4

高考数学一轮复习 第四章  三角函数与解三角形 4

高考数学一轮复习 第四章 三角函数与解三角形4.5 三角函数的图象与性质考试要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝⎛⎭⎫-π2,π2上的性质.知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x | x ≠k π ⎭⎬⎫+π2 值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性奇函数偶函数奇函数递增区间⎣⎡ 2k π-π2,⎦⎤2k π+π2[2k π-π,2k π]⎝⎛ k π-π2,⎭⎫k π+π2递减区间⎣⎡ 2k π+π2,⎦⎤2k π+3π2[2k π,2k π+π]对称中心 (k π,0) ⎝⎛⎭⎫k π+π2,0⎝⎛⎭⎫k π2,0对称轴方程 x =k π+π2x =k π常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ).(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)正切函数y =tan x 在定义域内是增函数.( × ) (2)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (3)y =sin|x |是偶函数.( √ )(4)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( √ ) 教材改编题1.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( )A .T =π,A =1B .T =2π,A =1C .T =π,A =2D .T =2π,A =2 答案 A2.函数f (x )=-2tan ⎝⎛⎭⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π+π6k ∈Z D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π2+π6k ∈Z答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z .3.函数y =3cos ⎝⎛⎭⎫2x -π3的单调递减区间是________. 答案 ⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z 解析 因为y =3cos ⎝⎛⎭⎫2x -π3, 令2k π≤2x -π3≤2k π+π,k ∈Z ,求得k π+π6≤x ≤k π+2π3,k ∈Z ,可得函数的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数y =1tan x -1的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z 解析 要使函数有意义, 则⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z .故函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z .(2)函数y =sin x -cos x +sin x cos x 的值域为________.答案 ⎣⎢⎡⎦⎥⎤-1+222,1解析 设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t 22, 且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2]. 当t =1时,y max =1; 当t =-2时,y min =-1+222. ∴函数的值域为⎣⎢⎡⎦⎥⎤-1+222,1.教师备选1.函数y =sin x -cos x 的定义域为________.答案 ⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象, 如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 2.函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 答案 1解析 由题意可得 f (x )=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1. ∵x ∈⎣⎡⎦⎤0,π2, ∴cos x ∈[0,1]. ∴当cos x =32,即x =π6时,f (x )取最大值为1. 思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数的图象来求解. (2)三角函数值域的不同求法①把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域. ②把sin x 或cos x 看作一个整体,转换成二次函数求值域. ③利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练1 (1)(2021·北京)函数f (x )=cos x -cos 2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98D .偶函数,最大值为98答案 D 解析 由题意,f (-x )=cos (-x )-cos (-2x ) =cos x -cos 2x =f (x ), 所以该函数为偶函数,又f (x )=cos x -cos 2x =-2cos 2x +cos x +1=-2⎝⎛⎭⎫cos x -142+98, 所以当cos x =14时,f (x )取最大值98.(2)函数y =lg(sin 2x )+9-x 2的定义域为________. 答案 ⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 解析 ∵函数y =lg(sin 2x )+9-x 2,∴应满足⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0, 解得⎩⎪⎨⎪⎧k π<x <π2+k π,-3≤x ≤3,其中k ∈Z ,∴-3≤x <-π2或0<x <π2,∴函数的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2.题型二 三角函数的周期性、奇偶性、对称性例2 (1)(2019·全国Ⅱ)下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2上单调递增的是( ) A .f (x )=|cos 2x | B .f (x )=|sin 2x |答案 A解析 A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎝⎛⎭⎫π4,π2时,2x ∈⎝⎛⎭⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎝⎛⎭⎫π4,π2时,2x ∈⎝⎛⎭⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.(2)函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ+1,φ∈(0,π),且f (x )为偶函数,则φ=________,f (x )图象的对称中心为________. 答案5π6 ⎝⎛⎭⎫π4+k π2,1,k ∈Z 解析 若f (x )=3sin ⎝⎛⎭⎫2x -π3+φ+1为偶函数,则-π3+φ=k π+π2,k ∈Z , 即φ=5π6+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=5π6.∴f (x )=3sin ⎝⎛⎭⎫2x +π2+1=3cos 2x +1, 由2x =π2+k π,k ∈Z 得x =π4+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎫π4+k π2,1,k ∈Z . 教师备选1.下列函数中,是周期函数的为( ) A .y =sin|x |B .y =cos|x |答案 B解析 ∵cos|x |=cos x ,∴y =cos|x |是周期函数.其余函数均不是周期函数. 2.函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π),若f (x )为奇函数,则φ=________. 答案 π3解析 若f (x )=3sin ⎝⎛⎭⎫2x -π3+φ为奇函数, 则-π3+φ=k π,k ∈Z ,即φ=π3+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=π3.思维升华 (1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.跟踪训练2 (1)(2021·全国乙卷)函数f (x )=sin x 3+cos x3最小正周期和最大值分别是( )A .3π和 2B .3π和2C .6π和 2D .6π和2答案 C解析 因为函数f (x )=sin x 3+cos x3=2⎝⎛⎭⎫22sin x 3+22cos x 3=2⎝⎛⎭⎫sin x 3cos π4+cos x 3sin π4 =2sin ⎝⎛⎭⎫x 3+π4,所以函数f (x )的最小正周期T =2π13=6π,最大值为 2.(2)已知f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数,且当x =3时,f (x )取得最小值-3,当ω取得最小正数时,f (1)+f (2)+f (3)+…+f (2 022)的值为( ) A.32 B .-6-3 3 C .1 D .-1答案 B解析 ∵f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数, ∴φ=π2+k π,k ∈Z ,则φ=π2,则f (x )=-A sin ωx .当x =3时,f (x )取得最小值-3, 故A =3,sin 3ω=1, ∴3ω=π2+2k π,k ∈Z .∴ω的最小正数为π6,∴f (x )=-3sin π6x ,∴f (x )的周期为12,∴f (1)+f (2)+f (3)+…+f (12)=0, ∴f (1)+f (2)+f (3)+…+f (2 022) =168×0+f (1)+f (2)+…+f (6) =-6-3 3.(3)(2022·郑州模拟)设函数f (x )=2sin ⎝⎛⎭⎫2x -π3+34,则下列叙述正确的是( ) A .f (x )的最小正周期为2π B .f (x )的图象关于直线x =π12对称 C .f (x )在⎣⎡⎦⎤π2,π上的最小值为-54 D .f (x )的图象关于点⎝⎛⎭⎫2π3,0对称 答案 C解析 对于A ,f (x )的最小正周期为2π2=π,故A 错误;对于B ,∵sin ⎝⎛⎭⎫2×π12-π3=-12≠±1, 故B 错误;对于C ,当x ∈⎣⎡⎦⎤π2,π时,2x -π3∈⎣⎡⎦⎤2π3,5π3, ∴sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-1,32, ∴2sin ⎝⎛⎭⎫2x -π3+34∈⎣⎡⎦⎤-54,3+34, ∴f (x )在⎣⎡⎦⎤π2,π上的最小值为-54,故C 正确; 对于D ,∵f ⎝⎛⎭⎫2π3=2sin ⎝⎛⎭⎫2×2π3-π3+34=34, ∴f (x )的图象关于点⎝⎛⎭⎫2π3,34对称,故D 错误. 题型三 三角函数的单调性 命题点1 求三角函数的单调区间例3 函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调递减区间为________.答案 ⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 解析 f (x )=sin ⎝⎛⎭⎫-2x +π3 =sin ⎣⎡⎦⎤-⎝⎛⎭⎫2x -π3 =-sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). 延伸探究 f (x )=sin ⎝⎛⎭⎫-2x +π3在[0,π]上的单调递减区间为________. 答案 ⎣⎡⎦⎤0,5π12和⎣⎡⎦⎤11π12,π 解析 令A =⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z , B =[0,π],∴A ∩B =⎣⎡⎦⎤0,5π12∪⎣⎡⎦⎤11π12,π, ∴f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,5π12和⎣⎡⎦⎤11π12,π. 命题点2 根据单调性求参数例4 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.答案 32解析 ∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2, 即0≤x ≤π2ω时,y =sin ωx 单调递增; 当π2≤ωx ≤3π2, 即π2ω≤x ≤3π2ω时,y =sin ωx 单调递减. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减,知π2ω=π3, ∴ω=32. (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 ⎣⎡⎦⎤12,54解析 由π2<x <π,ω>0, 得ωπ2+π4<ωx +π4<ωπ+π4, 因为y =sin x 的单调递减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎨⎧ ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z . 又由4k +12-⎝⎛⎭⎫2k +54≤0,k ∈Z , 且2k +54>0,k ∈Z , 解得k =0,所以ω∈⎣⎡⎦⎤12,54.教师备选(2022·定远县育才学校月考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7 D .1答案 B解析 因为x =-π4为f (x )的零点, x =π4为y =f (x )图象的对称轴, 所以2n +14·T =π2(n ∈N ), 即2n +14·2πω=π2(n ∈N ), 所以ω=2n +1(n ∈N ),即ω为正奇数.因为f (x )在⎝⎛⎭⎫π18,5π36上单调,则5π36-π18=π12≤T 2, 即T =2πω≥π6, 解得ω≤12.当ω=11时,-11π4+φ=k π,k ∈Z , 因为|φ|≤π2, 所以φ=-π4,此时f (x )=sin ⎝⎛⎭⎫11x -π4. 当x ∈⎝⎛⎭⎫π18,5π36时,11x -π4∈⎝⎛⎭⎫13π36,46π36, 所以f (x )在⎝⎛⎭⎫π18,5π36上不单调,不满足题意;当ω=9时,-9π4+φ=k π,k ∈Z , 因为|φ|≤π2, 所以φ=π4, 此时f (x )=sin ⎝⎛⎭⎫9x +π4. 当x ∈⎝⎛⎭⎫π18,5π36时,9x +π4∈⎝⎛⎭⎫3π4,3π2, 此时f (x )在⎝⎛⎭⎫π18,5π36上单调递减,符合题意.故ω的最大值为9.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3 (1)(2021·新高考全国Ⅰ)下列区间中,函数f (x )=7sin ⎝⎛⎭⎫x -π6的单调递增区间是( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π2,π C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π答案 A解析 令-π2+2k π≤x -π6≤π2+2k π,k ∈Z ,得-π3+2k π≤x ≤2π3+2k π,k ∈Z .取k =0,则-π3≤x ≤2π3.因为⎝⎛⎭⎫0,π2⎣⎡⎦⎤-π3,2π3,所以区间⎝⎛⎭⎫0,π2是函数f (x )的单调递增区间. (2)(2022·开封模拟)已知函数y =sin ⎝⎛⎭⎫ωx +π3 (ω>0)在区间⎝⎛⎭⎫-π6,π3上单调递增,则ω的取值范围是( ) A.⎝⎛⎦⎤0,12 B.⎣⎡⎦⎤12,1 C.⎝⎛⎦⎤13,23D.⎣⎡⎦⎤23,2答案 A解析 当-π6<x <π3时, -πω6+π3<ωx +π3<πω3+π3, 当x =0时,ωx +π3=π3. 因为函数y =sin ⎝⎛⎭⎫ωx +π3(ω>0)在区间⎝⎛⎭⎫-π6,π3上单调递增, 所以⎩⎨⎧ -πω6+π3≥-π2,πω3+π3≤π2,解得ω≤12, 因为ω>0,所以ω的取值范围是⎝⎛⎦⎤0,12. 课时精练1.y =|cos x |的一个单调递增区间是( )A.⎣⎡⎦⎤-π2,π2 B .[0,π]C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π 答案 D 解析 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.函数f (x )=2sin π2x -1的定义域为( ) A.⎣⎡⎦⎤π3+4k π,5π3+4k π(k ∈Z ) B.⎣⎡⎦⎤13+4k ,53+4k (k ∈Z ) C.⎣⎡⎦⎤π6+4k π,5π6+4k π(k ∈Z ) D.⎣⎡⎦⎤16+4k ,56+4k (k ∈Z ) 答案 B解析 由题意,得2sin π2x -1≥0, π2x ∈⎣⎡⎦⎤π6+2k π,5π6+2k π(k ∈Z ), 则x ∈⎣⎡⎦⎤13+4k ,53+4k (k ∈Z ). 3.函数f (x )=sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x -π12是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的非奇非偶函数答案 D解析 由题意可得f (x )=sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x -π12 =sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x +5π12-π2 =sin 2⎝⎛⎭⎫x +5π12, ∴f (x )=12-12cos ⎝⎛⎭⎫2x +5π6, 故f (x )的最小正周期T =2π2=π,由函数奇偶性的定义易知,f (x )为非奇非偶函数. 4.函数f (x )=sin x +x cos x +x 2在[-π,π]的图象大致为( )答案 D解析 由f (-x )=sin -x +-x cos -x +-x2 =-sin x -x cos x +x 2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A ; 又f ⎝⎛⎭⎫π2=1+π2⎝⎛⎭⎫π22=4+2ππ2>1, f (π)=π-1+π2>0,排除B ,C. 5.关于函数f (x )=sin 2x -cos 2x ,下列命题中为假命题的是( )A .函数y =f (x )的周期为πB .直线x =π4是y =f (x )图象的一条对称轴 C .点⎝⎛⎭⎫π8,0是y =f (x )图象的一个对称中心D .y =f (x )的最大值为 2答案 B解析 因为f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π4, 所以f (x )的最大值为2,故D 为真命题;因为ω=2,故T =2π2=π,故A 为真命题; 当x =π4时,2x -π4=π4,终边不在y 轴上,故直线x =π4不是y =f (x )图象的一条对称轴, 故B 为假命题;当x =π8时,2x -π4=0,终边落在x 轴上, 故点⎝⎛⎭⎫π8,0是y =f (x )图象的一个对称中心,故C 为真命题.6.(2022·广州市培正中学月考)关于函数f (x )=sin|x |+|sin x |,下列叙述正确的是( )A .f (x )是奇函数B .f (x )在区间⎝⎛⎭⎫π2,π上单调递增C .f (x )的最大值为2D .f (x )在[-π,π]上有4个零点答案 C解析 f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),f (x )是偶函数,A 错误;当x ∈⎝⎛⎭⎫π2,π时,f (x )=sin x +sin x =2sin x ,单调递减,B 错误;f (x )=sin|x |+|sin x |≤1+1=2,且f ⎝⎛⎭⎫π2=2,C 正确;在[-π,π]上,当-π<x <0时,f (x )=sin(-x )+(-sin x )=-2sin x >0,当0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错误.7.写出一个周期为π的偶函数f (x )=________.(答案不唯一) 答案 cos 2x8.(2022·上外浦东附中检测)若在⎣⎡⎦⎤0,π2内有两个不同的实数值满足等式cos 2x +3sin 2x =k +1,则实数k 的取值范围是________.答案 0≤k <1解析 函数f (x )=cos 2x +3sin 2x=2sin ⎝⎛⎭⎫2x +π6, 当x ∈⎣⎡⎦⎤0,π6时, f (x )=2sin ⎝⎛⎭⎫2x +π6单调递增; 当x ∈⎣⎡⎦⎤π6,π2时,f (x )=2sin ⎝⎛⎭⎫2x +π6单调递减, f (0)=2sin π6=1, f ⎝⎛⎭⎫π6=2sin π2=2, f ⎝⎛⎭⎫π2=2sin 7π6=-1,所以在⎣⎡⎦⎤0,π2内有两个不同的实数值满足等式cos 2x +3sin 2x =k +1, 则1≤k +1<2,所以0≤k <1.9.已知函数f (x )=4sin ωx sin ⎝⎛⎭⎫ωx +π3-1(ω>0)的最小正周期为π. (1)求ω及f (x )的单调递增区间;(2)求f (x )图象的对称中心.解 (1)f (x )=4sin ωx ⎝⎛⎭⎫12sin ωx +32cos ωx -1 =2sin 2ωx +23sin ωx cos ωx -1 =1-cos 2ωx +3sin 2ωx -1 =3sin 2ωx -cos 2ωx=2sin ⎝⎛⎭⎫2ωx -π6. ∵最小正周期为π,∴2π2ω=π, ∴ω=1,∴f (x )=2sin ⎝⎛⎭⎫2x -π6, 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z , 解得-π6+k π≤x ≤π3+k π,k ∈Z , ∴f (x )的单调递增区间为⎣⎡⎦⎤-π6+k π,π3+k π (k ∈Z ).(2)令2x -π6=k π,k ∈Z , 解得x =π12+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎫π12+k π2,0,k ∈Z .10.(2021·浙江)设函数f (x )=sin x +cos x (x ∈R ).(1)求函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22的最小正周期; (2)求函数y =f (x )f ⎝⎛⎭⎫x -π4在⎣⎡⎦⎤0,π2上的最大值. 解 (1)因为f (x )=sin x +cos x ,所以f ⎝⎛⎭⎫x +π2=sin ⎝⎛⎭⎫x +π2+cos ⎝⎛⎭⎫x +π2 =cos x -sin x ,所以y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22=(cos x -sin x )2 =1-sin 2x .所以函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22的最小正周期T =2π2=π. (2)f ⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫x -π4+cos ⎝⎛⎭⎫x -π4 =2sin x ,所以y =f (x )f ⎝⎛⎭⎫x -π4 =2sin x (sin x +cos x ) =2(sin x cos x +sin 2x ) =2⎝⎛⎭⎫12sin 2x -12cos 2x +12 =sin ⎝⎛⎭⎫2x -π4+22. 当x ∈⎣⎡⎦⎤0,π2时,2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以当2x -π4=π2,即x =3π8时, 函数y =f (x )f ⎝⎛⎭⎫x -π4在⎣⎡⎦⎤0,π2上取得最大值,且y max =1+22.11.(2022·苏州模拟)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3,则下列结论不正确的是( ) A .x =-π6是函数f (x )的一个零点 B .函数f (x )在区间⎣⎡⎦⎤-5π12,π12上单调递增 C .函数f (x )的图象关于直线x =π12对称 D .函数f ⎝⎛⎭⎫x -π3是偶函数 答案 D解析 对于A 选项,因为f ⎝⎛⎭⎫-π6=sin 0=0, 故x =-π6是函数f (x )的一个零点,A 对; 对于B 选项,当-5π12≤x ≤π12时, -π2≤2x +π3≤π2, 所以函数f (x )在区间⎣⎡⎦⎤-5π12,π12上单调递增,B 对; 对于C 选项,因为对称轴满足2x +π3=π2+k π,k ∈Z , 解得x =π12+k π2,k ∈Z ,当k =0时,x =π12,C 对; 对于D 选项,令g (x )=f ⎝⎛⎭⎫x -π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π3 =sin ⎝⎛⎭⎫2x -π3, 则g ⎝⎛⎭⎫π6=0,g ⎝⎛⎭⎫-π6=sin ⎝⎛⎭⎫-2π3≠0, 故函数f ⎝⎛⎭⎫x -π3不是偶函数,D 错. 12.(2022·厦门模拟)已知函数f (x )=cos 2⎝⎛⎭⎫x -π6-cos 2x ,则下列结论正确的是( ) A .f (x )的最大值为3-12B .f (x )的图象关于点⎝⎛⎭⎫7π6,0对称C .f (x )的图象的对称轴方程为x =5π12+k π2(k ∈Z ) D .f (x )在[0,2π]上有2个零点答案 C解析 f (x )=1+cos ⎝⎛⎭⎫2x -π32-cos 2x =12+12⎝⎛⎭⎫12cos 2x +32sin 2x -cos 2x =34sin 2x -34cos 2x +12=32sin ⎝⎛⎭⎫2x -π3+12, 则f (x )的最大值为1+32,A 错误; 易知f (x )图象的对称中心的纵坐标为12, B 错误;令2x -π3=π2+k π(k ∈Z ), 得x =5π12+k π2(k ∈Z ), 此即f (x )图象的对称轴方程,C 正确;由f (x )=32sin ⎝⎛⎭⎫2x -π3+12=0, 得sin ⎝⎛⎭⎫2x -π3=-33, 当x ∈[0,2π]时,2x -π3∈⎣⎡⎦⎤-π3,11π3, 作出函数y =sin x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π3,11π3的图象,如图所示.所以方程sin ⎝⎛⎭⎫2x -π3=-33在[0,2π]上有4个不同的实根, 即f (x )在[0,2π]上有4个零点,D 错误.13.(2022·绵阳中学实验学校模拟)已知sin x +cos y =14,则sin x -sin 2y 的最大值为______. 答案 916解析 ∵sin x +cos y =14,sin x ∈[-1,1], ∴sin x =14-cos y ∈[-1,1], ∴cos y ∈⎣⎡⎦⎤-34,54, 即cos y ∈⎣⎡⎦⎤-34,1, ∵sin x -sin 2y =14-cos y -(1-cos 2y ) =cos 2y -cos y -34=⎝⎛⎭⎫cos y -122-1, 又cos y ∈⎣⎡⎦⎤-34,1,利用二次函数的性质知,当cos y =-34时, (sin x -sin 2y )max =⎝⎛⎭⎫-34-122-1=916. 14.(2022·苏州八校联盟检测)已知f (x )=sin x +cos x ,若y =f (x +θ)是偶函数,则cos θ=________.答案 ±22解析 因为f (x )=2sin ⎝⎛⎭⎫x +π4, 所以f (x +θ)=2sin ⎝⎛⎭⎫x +θ+π4, 又因为y =f (x +θ)是偶函数,所以θ+π4=π2+k π,k ∈Z , 即θ=π4+k π,k ∈Z , 所以cos θ=cos ⎝⎛⎭⎫π4+k π=±22.15.(2022·江西九江一中模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),若方程f (x )=0在[0,2π]上有且仅有6个根,则实数ω的值可能为( )A .2B .3C .4D .5答案 B解析 令f (x )=sin ⎝⎛⎭⎫ωx +π3=0, 则ωx +π3=k π,k ∈Z , 所以x =-π3ω+k πω,k ∈Z , 所以当x ≥0时,函数f (x )的第一个零点为x 1=-π3ω+πω=2π3ω,第六个零点为x 6=-π3ω+6πω=17π3ω,第七个零点为x 7=-π3ω+7πω=20π3ω, 因为方程f (x )=0在[0,2π]上有且仅有6个根等价于函数y =f (x )在[0,2π]上有且仅有6个零点,所以17π3ω≤2π<20π3ω, 所以176≤ω<103. 16.已知f (x )=sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4-12. (1)求f (x )的单调递增区间;(2)若函数y =|f (x )|-m 在区间⎣⎡⎦⎤-5π24,3π8上恰有两个零点x 1,x 2. ①求m 的取值范围;②求sin(x 1+x 2)的值.解 (1)f (x )=sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4-12=1-cos ⎝⎛⎭⎫2x +π42+22sin ⎝⎛⎭⎫2x +π2-12 =12-24cos 2x +24sin 2x +22cos 2x -12=24sin 2x +24cos 2x =12sin ⎝⎛⎭⎫2x +π4, 结合正弦函数的图象与性质, 可得当-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 即-3π8+k π≤x ≤π8+k π(k ∈Z )时,函数单调递增, ∴函数y =f (x )的单调递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ). (2)①令t =2x +π4,当x ∈⎣⎡⎦⎤-5π24,3π8时,t ∈⎣⎡⎦⎤-π6,π,12sin t ∈⎣⎡⎦⎤-14,12, ∴y =⎪⎪⎪⎪12sin t ∈⎣⎡⎦⎤0,12(如图).∴要使y =|f (x )|-m 在区间⎣⎡⎦⎤-5π24,3π8上恰有两个零点,m 的取值范围为14<m <12或m =0. ②设t 1,t 2是函数y =⎪⎪⎪⎪12sin t -m 的两个零点⎝⎛⎭⎫即t 1=2x 1+π4,t 2=2x 2+π4, 由正弦函数图象性质可知t 1+t 2=π,即2x 1+π4+2x 2+π4=π. ∴x 1+x 2=π4,∴sin(x 1+x 2)=22.。

2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数解三角形》任意角弧度制及任意角的三角函数

2024年高考数学总复习第四章《三角函数、解三角形》§4.1任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=πrad,1°=π180rad ,1rad(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠k π+π2,k ∈Z }+-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律.提示一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx(x ≠0).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P 的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α>1.(√)题组二教材改编2.角-225°=弧度,这个角在第象限.答案-5π4二3.若角α的终边经过点-22,sin α=,cos α=.答案22-224.一条弦的长等于半径,这条弦所对的圆心角大小为弧度.答案π3题组三易错自纠5|k π+π4≤α≤k π+π2,k ∈Z(阴影部分)是()答案C解析当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.6.已知点Pθ的终边上,且θ∈[0,2π),则θ的值为()A.5π6B.2π3C.11π6D.5π3答案C解析因为点P所以根据三角函数的定义可知tan θ=-1232=-33,又θθ=11π6.7.在0到2π范围内,与角-4π3终边相同的角是.答案2π3解析与角-4π3终边相同的角是2k πk ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3.8.(2018·济宁模拟)函数y =2cos x -1的定义域为.答案2k π-π3,2k π+π3(k ∈Z )解析∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈2k π-π3,2k π+π3(k ∈Z ).题型一角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是()A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案C解析与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M |x =k2·180°+45°,k ∈ZN |x =k4·180°+45°,k ∈Z()A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅答案B解析由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.(2018·宁夏质检)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.答案-53π,-23π,π3,43π解析如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为-53,-23π,π3,43π4.若角α是第二象限角,则α2是第象限角.答案一或三解析∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.(2)确定kα,αkk ∈N *)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk的终边所在位置.题型二弧度制及其应用例1已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10cm ,求扇形的面积.解由已知得α=π3,R =10cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积.解l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2).2.若例题条件改为:“若扇形周长为20cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解由已知得,l +2R =20,则l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5cm 时,S 取得最大值25cm 2,此时l =10cm ,α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1(1)(2018·湖北七校联考)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为()A.π6B.π3C .3D.3答案D解析如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r ,∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为.答案518解析设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,由扇形面积等于圆面积的527,可得12α2r 3πr 2=527,解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三三角函数的概念命题点1三角函数定义的应用例2(1)(2018·青岛模拟)已知角α的终边与单位圆的交点为-12,sin α·tan α等于()A .-33B .±33C .-32D .±32答案C解析由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且|cosθ2|=-cos θ2,则θ2是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由θ是第三象限角知,θ2为第二或第四象限角,∵|cos θ2|=-cos θ2,∴cos θ2<0,综上可知,θ2为第二象限角.命题点2三角函数线例3(1)满足cos α≤-12的角的集合是.答案|2k π+23π≤α≤2k π+43π,k ∈Z 解析作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为|2k π+23π≤α≤2k π+43π,k ∈Z(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是.答案sin α<cos α<tan α解析如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.跟踪训练2(1)(2018·济南模拟)已知角α的终边经过点(m ,-2m ),其中m ≠0,则sin α+cosα等于()A .-55B .±55C .-35D .±35答案B解析∵角α的终边经过点(m ,-2m ),其中m ≠0,∴m >0时,sin α=-2m 5m =-25cos α=m 5m =15,∴sin α+cos α=-55;m <0时,sin α=-2m -5m =25,cos α=m -5m =-15,∴sin α+cos α=55;∴sin α+cos α=±55,故选B.(2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是()答案C解析当x ∈π2,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当xOB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈πsin x >cosx ;当x ∈5π4,sin x ≤cos x ,故选C.1.下列说法中正确的是()A .第一象限角一定不是负角B .不相等的角,它们的终边必不相同C .钝角一定是第二象限角D .终边与始边均相同的两个角一定相等答案C解析因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是()A .1B .4C .1或4D .2或4答案C解析设扇形的半径为r ,弧长为l ,+l =6,=2,=1,4=2,2.从而α=l r =41=4或α=l r =22=1.3.(2018·石家庄调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于()A .-3B .3C.163D .±3答案B 解析sin θ=m16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为()-12,-32,--12,--32,答案A解析点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在()A .第一象限B .第二象限C .第三象限D .第四象限答案C解析∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0.7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为()A .-12B .-32C.12D.32答案C解析由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12,又cos α=-45<0,所以-8m <0,即m >0,所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A .1B .2C .3D .4答案A解析举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sinπ6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.答案2解析设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n =.答案2解析由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 2π3,cos α的最小正值为.答案11π6解析由题意知,点r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.12.函数y =sin x -32的定义域为.答案2k π+π3,2k π+23π,k ∈Z 解析利用三角函数线(如图),由sin x ≥32,可知2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为.答案α|2k π+π4<α<2k π+56π,k ∈Z 解析∵在[0,2π)内,终边落在阴影部分角的集合为π4,56π∴α|2k π+π4<α<2k π+56π,k ∈Z14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点12,m,且sin α·cos β<0,则cos α·sin β=.答案±34解析由角β12,m cos β=12sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点12,m 12+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是平方米.(结果保留整数,3≈1.73)答案5解析如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×33×32+=943+98≈5(平方米).16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad/s 的角速度按顺时针方向在单位圆上运动.(1)求经过1s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间.解(1)经过1s 后,质点A 运动1rad ,质点B 运动2rad ,此时∠BOA 的弧度为π3+3.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π,解得t =5π9,即经过5π9s后质点A ,B 在单位圆上第一次相遇.。

三角函数记忆法

三角函数记忆法

三角函数是数学中的重要概念,而其公式和口诀也是学习中的难点。

以下是一些记忆三角函数的方法:
1.口诀记忆:通过编写简洁明快的口诀来记忆复杂的公式。

例如,“奇变偶
不变,符号看象限”用来记忆三角函数的诱导公式。

2.图像记忆:将函数图像和公式相结合,通过图像的直观性来记忆公式。


如,对于正弦函数和余弦函数,可以通过观察图像来记忆其周期性、最值等性质。

3.推导记忆:通过不断地进行公式推导,将公式串联起来记忆。

这种方法尤
其适用于同角三角函数的基本关系式和两角和与差的三角函数公式。

4.归纳总结:将学过的三角函数知识进行归纳总结,形成知识体系。

例如,
总结三角函数的定义、图像、性质、应用等,以便于整体把握和记忆。

5.实际应用:通过解决实际问题来加深对三角函数的理解和记忆。

例如,利
用三角函数解决几何问题、物理问题等。

总之,记忆三角函数的方法多种多样,可以根据自己的情况选择适合自己的方法。

同时,多做练习题也是加深理解和记忆的好方法。

2020高考数学考前3个月知识方法专题训练第一部分知识方法篇专题4三角函数与平面向量第16练三角函数的化简与

2020高考数学考前3个月知识方法专题训练第一部分知识方法篇专题4三角函数与平面向量第16练三角函数的化简与

2019年【2019最新】精选高考数学考前3个月知识方法专题训练第一部分知识方法篇专题4三角函数与平面向量第16练三角函数的化简与求值文[题型分析·高考展望] 三角函数的化简与求值在高考中频繁出现,重点考查运算求解能力.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,属于比较简单的题目,这就要求在解决此类题目时不能丢分,由于三角函数部分公式比较多,要熟练记忆、掌握并能灵活运用.体验高考1.(2015·课标全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°等于( ) A .- B.32C .- D.12 答案 D解析 sin 20°cos 10°-cos 160°sin 10° =sin 20°cos 10°+cos 20°sin 10° =sin 30°=.2.(2015·重庆)若tan α=2tan ,则等于( ) A .1 B .2 C .3 D .4 答案 C 解析=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝⎛⎭⎪⎫α-π52019年==sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5===3.3.(2016·四川)cos2-sin2=________. 答案22解析 由题可知,cos2-sin2=cos =.4.(2016·课标全国甲)若cos =,则sin 2α等于( ) A. B.15C .-D .-725 答案 D解析 因为sin 2α=cos =2cos2-1, 又因为cos =,所以sin 2α=2×-1=-, 故选D.5.(2016·课标全国丙)若tan α=,则cos2α+2sin 2α等于( ) A. B.4825 C .1 D.1625 答案 A解析 tan α=, 则cos2α+2sin 2α=cos2α+4sin αcos αcos2α+sin2α==.高考必会题型题型一 利用同角三角函数基本关系式化简与求值 基本公式:sin2α+cos2α=1;tan α=.基本方法:(1)弦切互化;(2)“1”的代换,即1=sin2α+cos2α;(3)在进行开方运算时,注意判断符号. 例1 已知tan α=2,求: (1)的值;(2)3sin2α+3sin αcosα-2cos2α的值. 解 (1)方法一 ∵tan α=2, ∴cosα≠0,∴=4sin αcos α-2cos αcos α5sin αcos α+3cos αcos α===.方法二 由tan α=2,得sin α=2cos α,代入得 =4×2cos α-2cos α5×2cos α+3cos α ==.(2)3sin2α+3sin αcosα-2cos2α =3sin2α+3sin αcos α-2cos2αsin2α+cos2α=3tan2α+3tan α-2tan2α+1==.点评 本题(1)(2)两小题的共同点:都是正弦、余弦的齐次多项式.对于这样的多项式一定可以化成切函数,分式可以分子分母同除“cosα”的最高次幂,整式可以看成分母为“1”,然后用sin2α+cos2α代换“1”,变成分式后再化简. 变式训练1 已知sin(3π+α)=2sin ,求下列各式的值:(1);(2)sin2α+sin 2α.解 由已知得sin α=2cos α. (1)原式==-. (2)原式=sin2α+2sin αcos αsin2α+cos2α==.题型二 利用诱导公式化简与求值1.六组诱导公式分两大类,一类是同名变换,即“函数名不变,符号看象限”;一类是异名变换,即“函数名称变,符号看象限”.2.诱导公式化简的基本原则:负化正,大化小,化到锐角为最好! 例2 (1)设f(α)=,则f =________. (2)化简:+sin π-αcos ⎝ ⎛⎭⎪⎫π2+αsin π+α=________.答案 (1) (2)0 解析 (1)∵f(α)=-2sin α-cos α+cos α1+sin2α+sin α-cos2α===, ∴f=1tan -23π6=1tan ⎝⎛⎭⎪⎫-4π+π6==. (2)原式=+sin α-sin α-sin α=-sin α+sin α=0.点评 熟练运用诱导公式和基本关系式,并确定相应三角函数值的符号是解题的关键.另外,切化弦是常用的规律技巧.变式训练2 (1)(2016·课标全国乙)已知θ是第四象限角,且sin =,则tan =________.(2)已知cos =a(|a|≤1),则cos +sin =________. 答案 (1)- (2)0解析 (1)将θ-转化为(θ+)-.由题意知sin(θ+)=,θ是第四象限角, 所以cos(θ+)>0, 所以cos(θ+)==. tan(θ-)=tan(θ+-) =-tan[-(θ+)]=-=-cos θ+π4sin θ+π4=-=-.(2)cos =cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos =-a. sin =sin =cos =a , ∴cos+sin =0.题型三 利用其他公式、代换等化简求值两角和与差的三角函数的规律有三个方面:(1)变角,目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名,通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”“升幂与降幂”等.(3)变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”“逆用变用公式”“通分与约分”“分解与组合”“配方与平方”等. 例3 化简:(1)sin 50°(1+tan 10°); (2).解 (1)sin 50°(1+tan 10°) =sin 50°(1+tan 60°tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos60°-10°cos 60°cos 10° =2sin 50°cos 50°cos 10°===1.(2)原式=2cos2x cos2x -1+122tan ⎝ ⎛⎭⎪⎫π4-x cos2⎝ ⎛⎭⎪⎫π4-x=-4cos2xsin2x +14cos ⎝ ⎛⎭⎪⎫π4-x sin ⎝ ⎛⎭⎪⎫π4-x=1-sin22x2sin ⎝ ⎛⎭⎪⎫π2-2x==cos 2x.点评 (1)二倍角公式是三角变换的主要公式,应熟记、巧用,会变形应用. (2)重视三角函数的“三变”:“三变”是指“变角、变名、变式”.变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的公式恒等变形.变式训练3 (1)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan +tan +tan tan 的值为________. (2)的值是( ) A. B.32 C. D.2(3)若α∈,且3cos 2α=sin ,则sin 2α的值为( )2019年A. B .-118 C. D .-1718答案 (1) (2)C (3)D解析 (1)因为三个内角A ,B ,C 成等差数列, 且A +B +C =π,所以A +C =,=,tan =, 所以tan +tan +tan tan C2 =tan +tan tan C2 =+tan tan C2 =. (2)原式=2cos 30°-20°-sin 20°sin 70°=2cos 30°·cos 20°+sin 30°·sin 20°-sin 20°sin 70°==.(3)cos 2α=sin =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α =2sincos ⎝ ⎛⎭⎪⎫π4-α代入原式,得6sincos =sin , ∵α∈,sin(-α)≠0, ∴cos=,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=2cos2-1=-.高考题型精练1.(2015·陕西)“sin α=cosα”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 ∵sin α=cosα⇒cos 2α=cos2α-sin2α=0; cos 2α=0⇔cosα=±sin α⇒/ sin α=cosα,故选A. 2.(2016·课标全国丙)若tan θ=-,则cos 2θ等于( ) A .- B .- C. D.45 答案 D解析 tan θ=-,则cos 2θ=cos2θ-sin2θ ===.3.若tan =,且-<α<0,则等于( ) A .- B. C .- D.255 答案 A解析 由tan ==,得tan α=-. 又-<α<0,所以sin α=-. 故=2sin αsin α+cos α22sin α+cos α =2sin α=-.4.已知f(x)=sin2,若a =f(lg 5),b =f(lg),则( ) A .a +b =0 B .a -b =0 C .a +b =1 D .a -b =1 答案 C解析 a =f(lg 5)=sin2(lg 5+) ==,b =f(lg)=sin2(lg +)=1-cos ⎝⎛⎭⎪⎫2lg 15+π22=,则可得a+b=1.5.已知sin+sin α=,则sin的值是( )A.- B. C. D.-45答案D解析sin+sin α=435⇒sin cosα+cossinα+sin α=435⇒sin α+cosα=⇒sin α+cosα=,故sin=sin αcos+cosαsin7π6=-=-.6.若(4tan α+1)(1-4tan β)=17,则tan(α-β)等于( )A. B. C.4 D.12答案C解析由已知得4tan α-16tan αtan β+1-4tan β=17,∴tan α-tan β=4(1+tan αtan β),∴tan(α-β)==4.7.(2015·江苏)已知tan α=-2,tan(α+β)=,则tan β的值为________.答案3解析∵tan α=-2,∴tan(α+β)===,解得tan β=3.8.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=________.答案-255解析f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取到最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sin φ=-.9.已知α∈,且2sin2α-sin α·cosα-3cos2α=0,则=________.答案268解析∵α∈,且2sin2α-sin α·cosα-3cos2α=0,∴(2sin α-3cos α)(sin α+cosα)=0,∴2sin α=3cos α,又sin2α+cos2α=1,∴cosα=,sin α=,∴sin⎝⎛⎭⎪⎫α+π4sin 2α+cos 2α+1==.10.(2015·四川)已知sin α+2cos α=0,则2sin αcosα-cos2α的值是________.答案-1解析∵sin α+2cos α=0,∴sin α=-2cos α,∴tan α=-2.又∵2sin αcosα-cos2α==,∴原式==-1.11.(2015·广东)已知tan α=2.(1)求tan的值;(2)求的值.解(1)tan=tan α+tanπ41-tan αtan π4===-3.2019年(2)sin 2αsin2α+sin αcos α-cos 2α-1=2sin αcos αsin2α+sin αcos α-2cos2α-1-1 =2sin αcos αsin2α+sin αcos α-2cos2α===1.12.已知函数f(x)=cos2x +sin xcosx ,x∈R.(1)求f 的值; (2)若sin α=,且α∈,求f.解 (1)f =cos2+sin cos π6=2+×=.(2)因为f(x)=cos2x +sin xcosx=+sin 2x=+(sin 2x +cos 2x)=+sin ,所以f ⎝ ⎛⎭⎪⎫α2+π24 =+sin ⎝ ⎛⎭⎪⎫α+π12+π4 =+sin ⎝ ⎛⎭⎪⎫α+π3 =+.又因为sin α=,且α∈,所以cosα=-,所以f =+22⎝ ⎛⎭⎪⎫12×35-32×45 =.。

2020年高考数学专题讲解:正弦型函数的图像与三角函数的应用

2020年高考数学专题讲解:正弦型函数的图像与三角函数的应用

2020年高考数学专题讲解:正弦型函数的图像与三角函数的应用(一)、高考目标考纲解读1.了解函数y=A sin(ωx+φ)的物理意义,能画出y=A sin(ωx+φ)的图像,了解参数A、ω、φ对函数图像变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.考向预测1.“五点法”作图的有关知识是高考的热点.2.图像的变换规律:平移和伸缩变换常在客观题中考查.3.结合三角恒等变换,考查y=A sin(ωx+φ)的性质及简单应用是解答题中三角函数考查的热点.(二)、课前自主预习知识梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点.如下表所示.2.函数y=A sin(ωx+φ)(x∈R,其中A>0,ω>0)的图像可以看作由下面的方法得到的:先把正弦曲线上所有的点 (当φ>0时)或(当φ<0时)平行移动|φ|个单位长度,再把所得各点的横坐标 (当ω>1时)或(当0<ω<1时)到原来的倍(纵坐标不变),再把所得各点的纵坐标 (当A>1时)或 (当0<A<1时)到原来的A倍(横坐标不变)而得到的.3.当函数y=A sin(ωx+φ)(A>0,ω>0,x∈(0,+∞))表示一个振动时,A叫做,T =2πω叫做,f =1T叫做频率,ωx +φ叫做,φ叫做.4.三角函数模型的应用(1)根据图像建立解析式或根据解析式作出图像. (2)将实际问题抽象为与三角函数有关的简单函数模型.(3)利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.(三)、基础自测1.(重庆理)已知函数y =sin(ωx +φ)(ω>0,|φ|<π2)的部分图像如图所示,则( )A .ω=1,φ=π6B .ω=1,φ=-π6C .ω=2,φ=π6D .ω=2,φ=-π6[答案] D[解析] 由图可知T 4=712π-π3=π4,T =π,即2πω=π,∴ω=2,又因为图像向左平移了π2-π3=π6,∴φ=-π6.(或利用2π3+φ=π2解也可)2.将函数y =sin2x 的图像向左平移π4个单位,再向上平移1个单位,所得图像的函数解析式是( )A .y =cos2xB .y =2cos 2x C .y =1+sin ⎝ ⎛⎭⎪⎫2x +π4D .y=2sin 2x [答案] B[解析] 本小题主要考查了三角函数图像的平移,同时考查了学生应用诱导公式化简三角函数式的能力.3.函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤-π2,π的简图是( )[答案] A[解析] 当x =0时,y =sin ⎝⎛⎭⎫-π3=-32,排除B 、D.而x =π6时,y =0,排除C ,故选A.4.(江苏宿迁)一个物体相对于某一固定位置的位移y (cm)和时间t (s)之间的一组对应值如下表所示:则可近似地描述该物体的位移y 和时间t 之间关系的一个三角函数为________. [答案] y =-4cos2.5πx[解析] 设y =A cos(ωx +φ),则A =4,T =0.8,∴ω=2.5π,代入最高点(0.4,4),得φ=π,所以y =-4cos2.5πx .5.函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|<π2)的部分图像如图所示,则f (x )的解析式为____________.[答案] f (x )=2sin π4x[解析] 由图知:T =8,∴2πω=8,∴ω=π4,A =2. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ,令x =2,∴2=2sin ⎝ ⎛⎭⎪⎫π2+φ.∴sin ⎝ ⎛⎭⎪⎫π2+φ=1.∵|φ|<π2,∴φ=0,∴f (x )=2sin π4x .6.设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin2x ),x ∈R.(1)若f (x )=1-3且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x ;(2)若函数y =2sin2x 的图像按向量c =(m ,n )⎝ ⎛⎭⎪⎫|m |<π2平移后得到函数y =f (x )的图像,求实数m 、n 的值.[解析] f (x )=a ·b =2cos 2x +3sin2x =cos2x +3sin2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π6+1.(1)由2sin ⎝ ⎛⎭⎪⎫2x +π6+1=1-3,得sin ⎝⎛⎭⎪⎫2x +π6=-32,k ∈Z∴2x +π6=2k π-π3或2x +π6=2k π-2π3,k ∈Z.即x =k π-π4或x =k π-5π12.∵x ∈⎣⎢⎡⎦⎥⎤-π3,π3,∴x =-π4.(2)y =2sin2x 图像按(m ,n )平移得到y =2sin ⎝⎛⎭⎪⎫2x +π6+1的图像,∴m =-π12,n =1.(四)、典型例题1.命题方向:函数y =A sin(ωx +φ)的图像[例1] 作出函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3,x ∈R 的简图,说明它与y =sin x 图像之间的关系.[分析] 利用五点作图法作出函数图像,然后判断图像间的关系.[解析] 按“五点法”,令2x +π3分别取0,π2,π,32π,2π时,x 相应取-π6,π12,π3,7π12,5π6,所对应的五点是函数y =3sin ⎝⎛⎭⎫2x +π3,x ∈⎣⎢⎡⎦⎥⎤-π6,56π的图像上起关键作用的点列表:描点画图.利用函数的周期性,可以把简图向左、右扩展, 就得到y =3sin ⎝⎛⎭⎫2x +π3,x ∈R 的简图. 从图可以看出,y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图像,是用下面方法得到的.方法一:⎝⎛⎭⎫x →x +π3→2x +π33sin y x π=−−−−−−→向左平移个单位的图像 12sin+3y x π=−−−−−−−→横坐标缩短到原来的()的图像 3sin +3y x π=−−−−−−−→横坐标不变纵坐标伸长到原来的倍(2)的图像 3sin +3y x π=(2) 方法二:22()2)63x x x x ππ→→+=+(12sin y x =−−−−−−−→横坐标缩短为原来的纵坐标不变的图像 6sin 2y x π=−−−−−−→向左平移个单位纵坐标不变的图像 sin 2+=sin(2x+63y x ππ⎡⎤=−−−−−−−→⎢⎥⎦⎣横坐标不变纵坐标伸长到原来的3倍())的图像3sin 2)3y x π=+(的图像[点评] 方法一是先平移,后伸缩;方法二是先伸缩,后平移.表面上看,两种变换方法中的平移分别是π3和π6,是不同的,但由于平移时平移的对象已有变化,所以得到的结果是一致的. 跟踪练习1已知函数y =3sin x 2+cos x2(x ∈R).(1)用“五点法”画出它的图像; (2)求它的振幅、周期及初相;(3)说明该函数的图像可由y =sin x 的图像经过怎样的变换而得到?[解析] (1)y =2sin(x 2+π6),令X =x 2+π6,列表如下:描点连线得图像如图(2)振幅A =2,周期T =4π,初相为π6.(3)将y =sin x 图像上各点向左平移π6个单位,得到y =sin(x +π6)的图像,再把y =sin(x +π6)的图像上各点的横坐标伸长到原来的2倍(纵坐标不变)得到y =sin(x 2+π6)的图像.最后把y =sin(x 2+π6)的图像上各点的纵坐标伸长到原来的2倍,即得函数y =2sin(x2+π6)的图像. [点评] 用“五点法”作图应抓住四条:①化为y =A sin(ωx +φ)(A >0,ω>0)或y =A cos(wx +φ)(A >0,ω>0)的形式;②求出周期T =2πw;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图像时,应列出该区间内的特殊点. 2.命题方向:求三角函数 y =A sin(ωx +φ) 的解析式 [例2] 下图为y =A sin(ωx +φ)的图像的一段,求其解析式.[分析] 首先确定A .若以N 为五点法作图中的第一零点,由于此时曲线是先下降后上升(类似于y =-sin x 的图像),所以A <0;若以M 点为第一个零点,由于此时曲线是先上升后下降(类似于y =sin x 的图像),所以A >0.而ω=2πT,φ可由相位来确.[解析] 解法1:以N 为第一个零点,则A =-3,T =2⎝⎛⎭⎪⎫5π6-π3=π,∴ω=2,此时解析式为y =-3sin(2x +φ),∵点N ⎝ ⎛⎭⎪⎫-π6,0在图像上,∴-π6×2+φ=0⇒φ=π3,∴所求解析式为y =-3sin ⎝⎛⎭⎪⎫2x +π3.解法2:以点M ⎝ ⎛⎭⎪⎫π3,0为第一个零点,则A =3,ω=2πT=2,解析式为y =3sin(2x +φ),将点M ⎝ ⎛⎭⎪⎫π3,0代入得:2×π3+φ=0⇒φ=-2π3,∴所求解析式为y =3sin ⎝ ⎛⎭⎪⎫2x -2π3.跟踪练习2函数y =A sin(ωx +φ)(ω>0,|φ|<π2,x ∈R)的部分图像如图所示,则函数表达式为________.[答案] y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4[解析] 由图像可以看出,A =4,T2=6+2,∴T =16.则ω=2π16=π8.将点(-2,0)代入y =4sin ⎝ ⎛⎭⎪⎫π8x +φ中得sin ⎝ ⎛⎭⎪⎫-π4+φ=0. ∴-π4+φ=π,φ=5π4∴y =4sin ⎝ ⎛⎭⎪⎫π8x +5π4.又∵|φ|<π2. ∴函数表达式y =4sin ⎝ ⎛⎭⎪⎫π+π8x +π4=-4sin ⎝ ⎛⎭⎪⎫π8x +π4.[点评] 三角函数图像中,图像上与x 轴相邻两个交点之间的距离为半个周期,相邻两对称轴之间的距离为半个周期.3.命题方向:三角函数y =A sin(ωx +φ)的综合应用[例4] (山东理)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图像过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图像,求函数g (x )在[0,π4]上的最大值和最小值.[分析] 本题考查三角函数的诱导公式及二倍角等基本公式的灵活应用、图像变换以及三角函数的最值问题、分析问题与解决问题的能力.可直接利用公式化简求值.[解析] (1)因为已知函数图像过点⎝ ⎛⎭⎪⎫π6,12,所以有 12=12sin ⎝ ⎛⎭⎪⎫2×π6sin φ+cos 2π6cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),即有1=32sin φ+32cos φ-cos φ(0<φ<π), 所以sin ⎝ ⎛⎭⎪⎫φ+π6=1,所以φ+π6=π2,解得φ=π3.(2)由(1)知φ=π3,所以f (x )=12sin2x sin π3+cos 2x cos π3-12sin ⎝ ⎛⎭⎪⎫π2+π3(0<φ<π)=34sin2x +12cos 2x -14=34sin2x +12×1+cos2x 2-14=12sin ⎝⎛⎭⎪⎫2x +π6,所以g (x )=12sin ⎝ ⎛⎭⎪⎫4x +π6,因为x ∈⎣⎢⎡⎦⎥⎤0,π4,所以4x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,所以当4x +π6=π2时,g (x )取最大值12;当4x +π6=7π6时,g (x )取最小值-14.[点评] 高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查往往渗透在研究三角函数性质中,需要利用这些公式,先把函数解析式化为y =A sin(ωx +φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.跟踪练习3(营口一模)已知函数f (x )=A sin(ωx +φ),x ∈R ,⎝ ⎛⎭⎪⎫其中A >0,ω>0,0<φ<π2的图像与x 轴的交点中,相邻两个交点之间的距离为π2,且图像上一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2.(1)求f (x )的解析式; (2)当x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的值域.[解析] 本小题主要考查三角函数的图像和性质等基础知识及基本运算能力.(1)由最低点为M ⎝⎛⎭⎪⎫2π3,-2得A =2.由x 轴上相邻两个交点之间的距离为π2得T 2=π2,即T =π,∴ω=2πT =2ππ=2.由点M ⎝ ⎛⎭⎪⎫2π3,-2在图像上得2sin ⎝ ⎛⎭⎪⎫2×2π3+φ=-2,即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1,故4π3+φ=2k π-π2,k ∈Z ,∴φ=2k π-11π6. 又φ∈⎝ ⎛⎭⎪⎫0,π2,∴φ=π6,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.(2)∵x ∈⎣⎢⎡⎦⎥⎤π12,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π3,7π6,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].(五)、思想方法点拨1.函数y =A sin(ωx +φ)的图像(1)用“五点法”作函数y =A sin(ωx +φ)的图像应注意的问题.用“五点法”作y =A sin(ωx +φ)的图像关键是点的选取,一般令ωx +φ=0,π2,π,3π2,2π,即可得到所画图像的关键点坐标.其中的横坐标成等差数列,公差为T4.(2)图像变换. ①平移变换(ⅰ)沿x 轴平移,按“左加右减”法则; (ⅱ)沿y 轴平移,按“上加下减”法则. 注:平移变换时,系数不为1,应先提取,再判断. ②伸缩变换(ⅰ)沿x 轴伸缩时,横坐标x 伸长(0<ω<1)或缩短(ω>1)为原来的1ω倍(纵坐标y 不变);(ⅱ)沿y 轴伸缩时,纵坐标y 伸长(A >1)或缩短(0<A <1)为原来的A 倍(横坐标x 不变). 2.确定y =A sin(ωx +φ)的解析式的步骤 (1)首先确定振幅和周期,从而得到A 与ω;(2)确定φ值时,往往以寻找“五点法”中的第一零点⎝ ⎛⎭⎪⎫-φω,0作为突破口.要注意从图像的升降情况找准第一个零点的位置,同时要利用好最值点.具体如下:“第一点”(即图像上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图像的“峰点”)为ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图像的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.3.函数y =A sin(ωx +φ)的图像的对称问题(1)函数y =A sin(ωx +φ)的图像关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z)成轴对称图形,也就是说过波峰或波谷处且与x 轴垂直的直线为其对称轴.(2)函数y =A sin(ωx +φκ)的图像关于点(xj,0)(其中ωxj +φ=k π,k ∈Z)成中心对称图形,也就是说函数图像与x 轴的交点(平衡位置点)是其对称中心. 4.三角函数模型的应用及解题步骤(1)根据图像建立解析式或根据解析式作出图像. (2)将实际问题抽象为与三角函数有关的简单函数模型.(3)利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.(六)课后强化练习一、选择题1.(四川理)将函数y =sin x 的图像上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫2x -π5C .y =sin ⎝⎛⎭⎫12x -π10D .y =sin ⎝⎛⎭⎫12x -π20[答案] C2.(天津文)下图是函数y =A sin(ωx +φ)(x ∈R )在区间⎣⎡⎦⎤-π6,5π6上的图像,为了得到这个函数的图像,只要将y =sin x (x ∈R )的图像上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变[答案] A[解析] 本题考查了三角函数的性质及图像的平移.由题知函数f (x )的最小正周期T =56π-⎝⎛⎭⎫-π6=π,A =1,∴ω=2πT =2ππ=2,故将y =sin x 的图像先向左平移π3个单位长度后,再把所得图像上各点的横坐标缩短到原来的12倍,纵坐标不变,故选A.3.(湖北文)函数y =cos ⎝⎛⎭⎫2x +π6-2的图像F 按向量a 平移到F ′,F ′的解析式y =f (x ),当y =f (x )为奇函数时,则向量a 可以等于( )A.⎝⎛⎭⎫π6,-2B.⎝⎛⎭⎫π6,2C.⎝⎛⎭⎫-π6,-2 D.⎝⎛⎭⎫-π6,2 [答案] D[解析] 本题主要考查向量的平移和三角函数的图像及性质. A 中得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6-2-2=cos ⎝⎛⎭⎫2x -π6-4, ∴不是奇函数,故排除A ;B 中得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6-2+2=cos ⎝⎛⎭⎫2x -π6,∴不是奇函数,故排除B ; C 中得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6-2-2=cos ⎝⎛⎭⎫2x +π2-4,∴不是奇函数,故排除C ;D 中得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6-2+2=-sin2x , ∴是奇函数,所以选D.4.(枣庄二模)如图,在某点给单摆一个作用力后它开始来回摆动,离开平衡位置O 的距离s (厘米)和时间t (秒的函数关系为s =6sin ⎝⎛⎭⎫2πt +π6,单摆摆动时,从最右边到最左边的距离为( ) A .6 3 B .33 C .3 D .6[答案] A[解析] ∵s =6sin ⎝⎛⎭⎫2πt +π6,∴T =2πω=1,从最左边到平衡位置O 需要的时间为T 4=14秒,由6sin ⎝⎛⎭⎫2π×14+π6=33,得从最右边到最左边的距离为6 3. 5.(广州五校联考)若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图像向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图像重合,则ω的最小值为( ) A.16B.14C.13D.12[答案] D[解析] 本题考查正切函数的图像的平移变换.将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图像向右平移π6个单位长度,得到的函数为 y =tan ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π6+π4=tan ⎝⎛⎭⎫ωx -ωπ6+π4, 由题意,得-ωπ6+π4=π6,∴ω=12.6.已知函数f (x )=sin ωx 的图像的一部分如图(1),则图(2)的函数图像所对应的解析式可以为( )A .y =f ⎝⎛⎭⎫2x -12B .y =f (2x -1)C .y =f ⎝⎛⎭⎫x2-1D .y =f ⎝⎛⎭⎫x 2-12 [答案] B[解析] 由图得,图(2)是将图(1)中的图像先向右平移1个单位,再将所有点的横坐标缩短到原来的12倍得到,即y =f (x )→y =f (x -1)→y =f (2x -1).7.(四川)设f (x )=sin(ωx +φ),其中ω>0,则f (x )是偶函数的充要条件是( ) A .f (0)=1B .f (0)=0C .f ′(0)=1D .f ′(0)=0[答案] D[解析] 函数f (x )是偶函数,则φ=k π+π2 k ∈Z ,f (0)=±1,故排除A 、B.又f ′(x )=ωcos(ωx +φ),φ=π2+k π,k ∈Z ,f ′(0)=0,选D.也可走特殊化思路,取ω=1,φ=±π2验证.8.四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数y =sin2x ,y =sin(x +π6),y =sin(x -π3)的图像如下.结果发现恰有一位同学作出的图像有错误,那么有错误的图像是( )[答案] C[解析] 本题考查了三角函数的图像及性质,可采用排除法或取一个特殊点来观察,如当y =sin2x 的图象取最高点时,y =sin(x +π6)或y =sin(x -π3)对应的点一定不是最值点或零点,而C 不适合,故选C.二、填空题9.如图所示为函数y =A sin(ωx +φ)的图像上的一段,则这个函数的解析式为________.[答案] y =2sin ⎝⎛⎭⎫3x 2-3π4[解析] A =2,T 2=5π6-π6=2π3,T =4π3,∵2πω=43π,∴ω=32,∴y =2sin ⎝⎛⎭⎫32x +φ. ∵当x =56π时,y =2,∴2=2sin ⎝⎛⎭⎫32×56π+φ, 即sin ⎝⎛⎭⎫φ+54π=1,∴φ+54π=π2,φ=-3π4, ∴y =2sin ⎝⎛⎭⎫32x -3π4.10.函数y =3sin ⎝⎛⎭⎫x 2-π6的对称中心是________. [答案] ⎝⎛⎭⎫π3+2k π,0,k ∈Z[解析] 由x 2-π6=k π,k ∈Z 得x 2=π6+k π.∴x =π3+2k π,k ∈Z .∴对称中心是⎝⎛⎭⎫π3+2k π,0. 11.已知f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|≤π2)是定义域为R 的奇函数,且当x =2时,f (x )取得最大值2,则f (1)+f (2)+f (3)+…+f (100)=________.[答案] 2±2 2[解析] 由题意知:φ=0,A =2,∴f (x )=2sin ωx又当x =2时,f (x )取得最大值2, ∴2ω=π2+2k π,∴ω=π4+k π,k ∈Z .当k 为偶数时,令k =2n ,则f (x )=2sin ⎝⎛⎭⎫π4+2n πx , ∵n ∈Z ,x ∈Z ,∴f (x )=2sin π4x .由函数周期性可得:f (1)+f (2)+…+f (100)=f (1)+f (2)+f (3)+f (4)=2+2 2 同理,当k 为奇数时可得:f (1)+f (2)+…f (100)=f (1)+f (2)+f (3)+f (4)=2-2 2. 三、解答题12.求函数y =2sin ⎝⎛⎭⎫π4-x 的单调区间.[分析] 思路1:由y =sin x 的单调区间来求本题的单调区间.思路2:将y =2sin ⎝⎛⎭⎫π4-x 看作复合函数来求其单调性.[解析] 解法1:y =2sin ⎝⎛⎭⎫π4-x 化成y =-2sin ⎝⎛⎭⎫x -π4. ∵y =sin u (u ∈R )的递增、递减区间分别为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ),⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z ),∴函数y =-2sin ⎝⎛⎭⎫x -π4的递增、递减区间分别由下面的不等式确定. 2k π+π2≤x -π4≤2k π+3π2(k ∈Z ),2k π-π2≤x -π4≤2k π+π2(k ∈Z ),解上两式得2k π+3π4≤x ≤2k π+7π4(k ∈Z ),2k π-π4≤x ≤2k π+3π4(k ∈Z ).∴函数y =2sin ⎝⎛⎭⎫π4-x 的单调递减区间、单调递增区间分别为⎣⎡⎦⎤2k π-π4,2k π+3π4(k ∈Z ), ⎣⎡⎦⎤2k π+3π4,2k π+7π4(k ∈Z ). 解法2:y =2sin ⎝⎛⎭⎫π4-x 可看作是由y =2sin u 与u =π4-x 复合而成的. 又∵u =π4-x 为减函数,∴由2k π-π2≤u ≤2k π+π2(k ∈Z ),即2k π-π2≤π4-x ≤2k π+π2(k ∈Z )得-2k π-π4≤x ≤-2k π+3π4(k ∈Z ),即⎣⎡⎦⎤-2k π-π4,-2k π+3π4(k ∈Z )为y =2sin ⎝⎛⎭⎫π4-x 的递减区间. 由2k π+π2≤u ≤2k π+3π2(k ∈Z ),即2k π+π2≤π4-x ≤2k π+3π2(k ∈Z )得-2k π-5π4≤x ≤-2k π-π4(k ∈Z ),即⎣⎡⎦⎤-2k π-5π4,-2k π-π4(k ∈Z )为y =2sin ⎝⎛⎭⎫π4-x 的递增区间. 综上可知:y =2sin ⎝⎛⎭⎫π4-x 的递增区间为⎣⎡⎦⎤-2k π-5π4,-2k π-π4(k ∈Z ); 递减区间为⎣⎡⎦⎤-2k π-π4,-2k π+3π4(k ∈Z ). [点评] (1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx +φ(ω>0)”视为一个“整体”;②A >0(A <0)时,所列不等式的方向与y =sin x (x ∈R ),y =cos x (x ∈R )的单调区间对应的不等式方向相同(反).(2)对于y =A tan(ωx +φ)(A 、ω、φ为常数),其周期T =π|ω|,单调区间利用ωx +φ∈⎝⎛⎭⎫k π-π2,k π+π2,解出x 的取值范围,即为其单调区间.对于复合函数y =f (v ),v =φ(x ),其单调性判定方法是:若y =f (v )和v =φ(x )同为增(减)函数时,y =f (φ(x ))为增函数;若y =f (v )和v =φ(x )一增一减时,y =f (φ(x ))为减函数.13.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间;(3)证明直线5x -2y +c =0与函数y =f (x )的图像不相切. [解析] (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,又-π<φ<0,则-54<k <-14,∴k =-1,则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4,令-π2+2k π≤2x -3π4≤π2+2k π,可解得:π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . (3)证明:∵f (x )=sin ⎝⎛⎭⎫2x -3π4,∴f ′(x )=2cos ⎝⎛⎭⎫2x -3π4,∴-2≤f ′(x )≤2.则f ′(x )≠52,x ∈R .∴直线5x -2y +c 与函数y =f (x )的图像不相切.14.已知向量m =(sin ωx +cos ωx ,3cos ωx ),n =(cos ωx -sin ωx,2sin ωx ),其中ω>0,函数f (x )=m ·n ,若f (x )相邻两对称轴间的距离为π2.(1)求ω的值,并求f (x )的最大值及相应x 的集合;(2)在△ABC 中,a 、b 、c 分别是A 、B 、C 所对的边,△ABC 的面积S =53,b =4,f (A )=1,求边a 的长.[解析] (1)f (x )=cos 2ωx -sin 2ωx +23sin ωx cos ωx =cos2ωx +3sin2ωx =2sin ⎝⎛⎭⎫2ωx +π6, 由题意可得T =π,∴ω=1, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 当sin ⎝⎛⎭⎫2x +π6=1时,f (x )有最大值2, ∴2x +π6=2k π+π2,∴x =k π+π6 (k ∈Z ),∴x 的集合为{x |x =π6+k π,k ∈Z }.(2)f (A )=2sin ⎝⎛⎭⎫2A +π6=1 ∴sin ⎝⎛⎭⎫2A +π6=12 0<A <π,∴2A +π6=5π6, ∴A =π3,S =12bc sin π3=53,∴c =5,由余弦定理得:a 2=16+25-2×4×5cos π3=21,∴a =21.15.如图为一个观览车示意图,该观览车半径为4.8m ,圆上最低点与地面距离为0.8m,60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离为h .(1)求h 与θ间关系的函数解析式;(2)设从OA 开始转动,经过t 秒到达OB ,求h 与t 间关系的函数解析式; (3)填写下列表格:[分析][解析] (1)由题意可作图如图.过点O 作地面平行线ON ,过点B 作ON 的垂线BM 交ON 于M 点.当θ>π2时,∠BOM=θ-π2.h =|OA |+0.8+|BM |=5.6+4.8sin ⎝⎛⎭⎫θ-π2. 当0≤θ≤π2时,上述关系式也适合.(2)点A 在⊙O 上逆时针运动的角速度是π30,∴t 秒转过的弧度数为π30t .∴h =4.8sin ⎝⎛⎭⎫π30t -π2+5.6,t ∈[0,+∞). (3)。

2023年高考数学试题分类解析【第四章 三角函数】附答案解析

2023年高考数学试题分类解析【第四章 三角函数】附答案解析

2023年高考数学试题分类解析【第四章三角函数】第一节三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023北京卷13)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=;β=.【分析】根据正切函数单调性以及任意角的定义分析求解.【解析】因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02αβ<<<,则00tan tan αβ<,取1020122π,2π,,k k k k ααββ=+=+∈Z ,则()()100200tan tan 2πtan ,tan tan 2πtan k k αααβββ=+==+=,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k αβαβαβ-=+-+=-+-,因为()1200π2π2π,02k k αβ-≥-<-<,则()()12003π2π02k k αβαβ-=-+->>,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k αβ====,即9ππ,43αβ==满足题意.故答案为:9ππ;43.第二节三角恒等变换1.(2023新高考I 卷6)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【解析】()222241025x y x x y +--=⇒-+=,所以圆心为()2,0B ,记()0,2A -,设切点为,M N ,如图所示.因为AB =BM =,故AM =cos cos2AM MAB AB α=∠==,sin 2α=,sin 2sincos 2224ααα==⨯.故选B.2.(2023新高考I 卷8)已知()1sin 3αβ-=,1cos sin 6αβ=,则()cos 22αβ+=()A.79B.19C.19-D.79-【解析】()1sin sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,所以1sin cos 2αβ=,所以()112sin sin cos cos sin 263αβαβαβ+=+=+=,()()()2221cos 22cos 212sin 1239αβαβαβ⎛⎫+=+=-+=-⨯= ⎪⎝⎭.故选B.3.(2023新高考II 卷7)已知α为锐角,1cos 4α+=,则sin 2α=()A.38- B.18-+ C.34- D.14-+【解析】21cos 12sin 24αα+=-=,所以2231sin 284α⎛⎫--== ⎪ ⎪⎝⎭,则1sin24α-=或1sin 24α=.因为α为锐角,所以sin02α>,1sin24α=舍去,得1sin 24α=.故选D.第三节三角函数的图像与性质1.(2023新高考II 卷16)已知函数()()sin f x x ωϕ=+,如图所示,A ,B 是直线12y =与曲线()y f x =的两个交点,若π=6AB ,则()πf =_______.【解析】sin y x =的图象与直线12y =两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36ω⋅=,解得4ω=,所以()()sin 4f x x ϕ=+.再将2π,03⎛⎫⎪⎝⎭代入()()sin 4f x x ϕ=+得ϕ的一个值为2π3-,即()2πsin 43f x x ⎛⎫=- ⎪⎝⎭.所以()2ππsin 4π32f ⎛⎫=-=- ⎪⎝⎭.2.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1B.2C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.3.(2023全国乙卷理科6,文科10)已知函数()()sin f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条对称轴,则512f π⎛⎫-= ⎪⎝⎭()A. B.12-C.12【解析】2222362T T ωωππππ=-=⇒=π=⇒=,所以()()sin 2.f x x ϕ=+又222,32k k ϕππ⋅+=+π∈Z ,则52,6k k ϕπ=-+π∈Z .所以5555sin 22sin .1212632f k π⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=⋅--+π=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列{}n a 的公差为23π,集合{}*cos n S a n =∈N ,若{},S a b =,则ab =()A.1- B.12-C.0D.12【解析】解法一(利用三角函数图像与性质)因为公差为23π,所以只考虑123,,a a a ,即一个周期内的情形即可.依题意,{}{}cos ,n S a a b ==,即S 中只有2个元素,则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a =时,且2123a a π-=,所以图像上点的位置必为如图1所示,12,A A 关于x =π对称,且1223A A π=,则1233a ππ=π-=,2433a ππ=π+=,32a =π.所以11122ab ⎛⎫=-⨯=- ⎪⎝⎭.②当13cos cos a a =时,3143a a π-=,所以图像上点的位置必为如图2所示,13,A A 关于x =π对称,且1343A A π=,则133a 2ππ=π-=,3533a 2ππ=π+=,2a =π.所以()11122ab =⨯-=-.综上所述,12ab =-.故选B.解法二(代数法)()()11113n a a n d a n 2π=+-=+-,21cos cos 3a a 2π⎛⎫=+ ⎪⎝⎭,31cos cos 3a a 4π⎛⎫=+ ⎪⎝⎭,由于{}{}*cos ,n S a n a b =∈=N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos sin 322a a a a a 2π⎛⎫==+=-- ⎪⎝⎭,即1133cos 22a a =-,解得11cos 2a =或11cos 2a =-.若11cos 2a =,则1sin 2a =-,3111113cos cos cos sin 132244a a a a 4π⎛⎫=+=-+=--=- ⎪⎝⎭,若11cos 2a =-,则1sin 2a =,3111113cos cos cos sin 132244a a a a 4π⎛⎫=+=-+=+= ⎪⎝⎭,故131cos cos 2a a ab ==-.②若131111cos cos cos cos sin 322a a a a a 4π⎛⎫==+=-+ ⎪⎝⎭,得113cos 22a a =,解得11cos 2a =或11cos 2a =-.当11cos 2a =时,1sin a =,2111113cos cos cos sin 132244a a a a 2π⎛⎫=+=--=--=- ⎪⎝⎭,当11cos 2a =-时,1sin a =213cos 144a =+=,故121cos cos 2a a ab ==-.③若23cos cos a a =,与①类似有121cos cos 2a a ab ==-.综上,故选B.5.(2023北京卷17)已知函数()sin cos cos sin ,0,2f x x x ωϕωϕωϕπ=+><.(1)若()02f =,求ϕ的值;(2)若()f x 在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且213f π⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:3f π⎛⎫= ⎪⎝⎭;条件②:13f π⎛⎫-=- ⎪⎝⎭;条件③:()f x 在,23ππ⎡⎤--⎢⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【分析】(1)把0x =代入()f x 的解析式求出sin ϕ,再由π||2ϕ<即可求出ϕ的值;(2)若选条件①不合题意;若选条件②,先把()f x 的解析式化简,根据() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上的单调性及函数的最值可求出T ,从而求出ω的值;把ω的值代入()f x 的解析式,由π13f ⎛⎫-=- ⎪⎝⎭和π||2ϕ<即可求出ϕ的值;若选条件③:由() f x 的单调性可知() f x 在π3x =-处取得最小值1-,则与条件②所给的条件一样,解法与条件②相同.【解析】(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()(0)sin 0cos cos 0sin sin 2f ωϕωϕϕ=⋅+⋅==-,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><,所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+,又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,32k k ϕ-+=-+∈Z ,所以π2π,6k k ϕ=-+∈Z ,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减,所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.第四节解三角形1.(2023全国甲卷理科16)在ABC △中,2AB =,60BAC ∠=︒,BC =D 为BC 上一点,AD 平分BAC ∠,则AD =.【解析】如图所示,记,,,AB c AC b BC a ===由余弦定理可得22222cos606b b +-⨯⨯⨯︒=,解得1b =(负值舍去).由ABC ABD ACD S S S =+△△△可得,1112sin602sin30sin30222b AD AD b ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得1212AD b +===+.2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc .(2)若cos cos 1cos cos a B b A ba Bb A c--=,求ABC △面积.3.(2023全国乙卷理科18)在ABC △中,120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【解析】(1)利用余弦定理可得2222cos 14212cos120527BC AC AB AC AB BAC =+-⋅∠=+-⨯⨯⨯︒=+=.故BC =.又由正弦定理可知sin sin BC ACBAC ABC=∠∠.故sin 21sin14AC BAC ABC BC ⋅∠∠====.(2)由(1)可知3tan 5ABC ∠=,在Rt BAD △中,tan 255AD AB ABC =⋅∠=⨯=,故11222ABD S AB AD =⨯⨯=⨯=△,又11sin 21sin12022ABC S AB AC BAC =⨯⨯⨯∠=⨯⨯⨯︒=△,所以ADC ABC ABD S S S =-=-=△△△.5.(2023新高考I 卷17)已知在ABC △中,3A B C +=,()2sin sin A C B -=.(1)求sin A ;(2)设=5AB ,求AB 边上的高.【解析】(1)解法一因为3A B C +=,所以4A B C C ++==π,所以4C π=,2sin()sin()A C A C -=+2sin cos 2cos sin sin cos cos sin A C A C A C A C⇒-=+sin cos 3cos sin A C A C ⇒=tan 3tan 3sin 10A C A ⇒==⇒=.解法二因为3A B C +=,所以4A B C C ++==π,所以4C π=,所以4A B 3π+=,所以4B A 3π=-,故2sin()sin()4A C A 3π-=-,即2sin cos 2cos sin sin cos cos sin 4444A A A A ππ3π3π-=-,得sin 3cos A A =.又22sin cos 1A A +=,()0,A ∈π,得sin 10A =.(2)若||5AB =.如图所示,设AC 边上的高为BG ,AB 边上的高为CH ,||CH h =,由(1)可得cos 10A =,||||cos ||102AG AB A AB =⋅==,||||2BG CG ===,所以||AC =,||||2||6||5AC BG CH AB ===.6.(2023新高考II 卷17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知ABC △,D 为BC 的中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .【解析】(1)依题意,1322ADC ABC S S ==△△,1sin 242ADC S AD DC ADC =⋅⋅∠==△,解得2DC =,2BD =.如图所示,过点A 作AE BC ⊥于点E .因为60ADC ∠= ,所以12DE =,2AE =,则15222BE =+=,所以tan 5AE B BE ==.(2)设AB = c ,AC = b ,由极化恒等式得2214AB AC AD BC ⋅- =,即2114⋅--b c =b c ,化简得()22244⋅-+=-b c =b c ,即cos cos 2BAC bc BAC ⋅⋅∠=∠=-b c =b c ①,又1sin 2ABC S bc BAC =∠=△sin bc BAC ∠=②.②①得tan BAC ∠=,0πBAC <∠<得2π3BAC ∠=,代入①得4bc =,与228b c +=联立可得2b c ==.7.(2023北京卷7)在ABC △中,()()()sin sin sin sin a c A C b A B +-=-,则C ∠=()A.6π B.3π C.32π D.65π【分析】利用正弦定理的边角变换与余弦定理即可得解.【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考数学必胜秘诀(四)三角函数――概念、方法、题型、易误点及应试技巧总结四、三角函数1、 角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方 向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成 一个零角。

射线的起始位置称为始边,终止位置称为终边。

2、 象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与 X 轴的非负半轴重合,角 的终边在第几象限,就讲那个角是第几象限的角。

假如角的终边在坐标轴上,就认为那个角不属于任何象 限。

,合弧度。

〔答:25;36〔2〕 终边与 终边共线(的终边在终边所在直线上)k (k Z).〔3〕 终边与 终边关于x 轴对称 2k (k Z)〔4〕 终边与 终边关于y 轴对称 2k (k Z).〔5〕 终边与 终边关于原点对称 2k (k Z).〔6〕终边在x 轴上的角可表示为:k ,k Z; 终边在y 轴上的角可表示为:k-,k Z; 终边在坐标轴上的角可表示为:k ■ ,k Z .如 的终边与一的终边关于直线226x 对称,那么=。

〔答:2k,k Z 〕34、 与=的终边关系:由”两等分各象限、一二三四'’确定•如假设 是第二象限角,那么是第2 2_____ 象限角〔答:一、三〕5、弧长公式:I | |R ,扇形面积公式: S *IR 21 | R 2 , 1弧度(irad) 573.如扇形AOB的周长是6cm ,该扇形的中心角是 1弧度,求该扇形的面积。

〔答:2cm 2〕6、 任意角的三角函数的定义 :设 是任意一个角,P (x, y)是 的终边上的任意一点〔异于原点〕,xr r cot(y 0), sec x 0 , cscy 0。

三角函数值只与角的大小有关,而与终边上yxy点P 的位置无关。

女口〔 1〕角的终边通过点 P(5, - 12),那么sin cos 的值为 ____________ 。

〔答:—〕;13〔2〕设 是第三、四象限角,sin 2m 3,那么m 的取值范畴是〔答:〔一1, -)〕;〔3〕假4 m2设 ls^_l -cos0 ,试判定 cot(sin ) tan(cos )的符号sin | cos |7.三角函数线的特点 是:正弦线MP”站在x 轴上(起点在x 线OM”躺在x 轴上(起点是原点)”、正切线AT ”站在点A(1,0) A )".三角函数线的重要应用是比较三角函数值的大小和解如〔1〕假设0,那么sin ,cos ,tan 的大小关系83.终边相同的角的表示〔1〕 终边与 的终边一定相同, 终边相同(的终边在终边所在射线上 终边相同的角不一定相等.如与角 1825的终边相同, 2k (k Z),注意:相等的角且绝对值最小的角的度数是—那么sin—,cos rtan〔答:负〕 轴上)"、余弦 处(起点是 三角不等式。

为 _____ (答:它与原点的距离是rxtan sin cos ); 〔2〕假设 为锐角,那么,sin ,tan 的大小关系为〔答 sintan 〕;〔3丨函数y..1 2cosx lg(2sinx」3)的定义域是〔答(2 k,2k](k Z)〕3 '38.专门角的三角函数值30° 45°:60°0 ° :90°180° 270 ° 15° 75°sin11-1V 6 42 46 42 22 24 4 cos&运1 1 0-146 4246 4222244tan邑31爲/ 0/2-732+V 3cot13//2+J 32<39.同角三角函数的差不多关系式〔1〕平方关系: ・2sincos 21,1 tan 22sec ,1 cot 2csc 2〔2〕倒数关系: sin csc =1,cos sec =1,ta n cot =1,〔3〕商数关系:tansincos,cotsincos同角三角函数的差不多关系式的要紧应用是, 一个角的三角函数值, 求此角的其它三角函数值。

在运 用平方关系解题时,要依照角的范畴和三角函数的取值,尽可能地压缩角的范畴,以便进行定号;在具体求三角函数值时,一样不需用同角三角函数的差不多关系式, 而是先依照角的范畴确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。

女口〔1〕函数y Sn ——坦 J 的值的符号为 ________ 〔答:cos cot2x 2 ,那么使1 sin 2xcos2x 成立的x 的取值范畴是〔答:吩1r 3m 3 4 2m “[—,]〔3sin,cos(- 4m 5m 5 2tansin 3cos ・21 , 那么;sintan 1sincos),那么tan sin cos 〔答:〔答:sin 200 a ,那么 tan 160 等于aB 、Ta 2〔答:B 〕;〔 6〕f(cosx) cos3x ,那么f (sin 30 )的值为〔答:一1〕。

12〕;〔4〕 5〕;〔5〕3'1 a 210.三角函数诱导公式〔 象限〔看原函数,同时可把 负角变正角,再写成2k +-〕的本质是:奇变偶不变〔对k 而言,指k 取奇数或偶数〕,符号看2看成是锐角〕•诱导公式的应用是求任意角的三角函数值,其一样步骤: 〔1〕9 7的值为.3—〕;〔2〕sin(540344,那么 cos( 270 )5______ ,假设 为大于0〕;〔 2〕假设如( ) (),2( )( ),2 ( )(),2 ,—2—等〕,如〔1〕tan( ) 2 tan(— ) -,那22 25 44tan( —)的值是〔答: 3 22 丨;〔2〕0 - 2 ,且 cos( 2) 1 9sin( 2 ) 23, 求cos( )的值〔答 :490 丨;〔3〕, 为锐角,sinx,cos y cos() 3 ,那么y 与7293-,1 24,3x x( x5x 的函数关系为 〔答: y1)〕5 5 5(2)三角函数名互化 (切割化弦 ),如〔 〔1〕求值 sin50(1 ,3ta n10) 〔答:1 〕;〔2〕sin cos 1,ta n( )2,求 tan(3 1 cos 2(3)公式变形使用〔tantantantan A tan B tan A tanB 1,那么 cos(A1 +ta n 1〕 8tan 〔答: 。

如〔1〕A 、B 为锐角,且满足—丨;(2)设ABC 中,22 1 cos2 sin = -----------------2的结果是 旦,对甲、乙求得的结果的正确性你的判定是 ______________ 〔答:甲、乙都对〕2a12.三角函数的化简、运算、证明的恒等变形的差不多思路是:一角二名三结构。

即第一观看角与角之间的关系,注意角的一些常用变式, 角的变换是三角函数变换的核心! 第二看函数名称之间的关系,通 常"切化弦";第三观看代数式的结构特点。

差不多的技巧有:〔1〕巧变角〔角与专门角的变换、角与目标角的变换、角与其倍角的变换、两角与其和差角的变换 第二象限角,那么[sin (18°) cos( 360 )]2tan(180 )11、两角和与差的正弦、余弦、正切公式及倍角公式sinsin cos cos sin令 coscos cos ・ ・sinsin令tan tan tan〜 4 3。

〔答: 一;〕5100sin 22sin coscos22 ・2cossin2cos 21 1 2sin 221+cos2cos —--------- 如〔1〕2tan 22 tan 1 tan 2B 、21 cos30「〔答:c 〕;〔2〕命题P :tan(V 2充要条件B充分不必要条件C 、 sin()coscos()sin 35值是 〔答:4〕;(5) tan 1100 a ,求2 . 2cos sin - 12 120 ,命题Q : ctan 22.5" C 、2"1 tan 225tan A tan B 0 ,那么P 是Q 的既不充分也不必要条件〔答: 〔答:|〕;〔4〕C 〕;.3 -的sin 80'tan 500的值〔用a 表示〕甲求得的结果是 sin 10' a空,乙求得1 3a1・・ta nA B) 必要不充分条件那么cos2 的值为以下各式中,值为1的是 A 、sin 15;cos152 )的值〔答:B)=K的符号确定, 角的值由tan —确定)在求最值、化简时起着重要作用。

如〔1〕假设方程 asi nx JJcosx c 有实数解,那么c 的取值范畴是 _________________________ •〔答:[—2,2]〕;〔 2〕当函数3y 2cosx 3sinx 取得最大值时,tanx 的值是 ____________________________ (答: -);〔3丨假如f x sin x 2cos(x )是奇函数,那么tan = _(答3先取横坐标分不为 0, —, , ,2 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦2 2曲线在一个周期内的图象。

15、正弦函数y sin x(x R)、余弦函数y cosx(x R)的性质: 〔1〕定义域:差不多上R 。

〔2〕值域:差不多上 1,1 ,对y si nx ,当x 2kk Z 时,y 取最大值1 ;当tan A tan B .3 、、3tan Atan B , sin Acos A —3,那么此三角形是4(4)三角函数次数的降升(降幕公式:cos 21曲2三角形〔答:等边〕1 cos2c 22cos2,1 cos2 2sin )。

如(1)假设〔答: sin 〕; 2〔2〕函数 f(x) 5sinxcosx5、3 .2,sin2cos x1 cos 22"(x(5)式子结构的转化(对角、函数名、式子结构化同 R)的单调递增区间为 〔答: 5](k12)。

如〔1〕tan (cosZ)〕 sin )——ta ^〔答:sin 〕;〔2〕求证: cot csc1 sin 1 2sin1 tan—2 ;〔 3〕化简:tan —22cos 4 x 2cos 222tan$ x)sin (壬 x)1〔答:一 cos2x 〕2(6)常值变换要紧指” 1 ”的变换〔1・2sin x2cos xsec x tan 2xtan 4 sin ㊁ 川等〕,女口 tan 2 ,(7)正余弦"三兄妹一sinx cosx 、sinxcosx求 sin 2sin c2cos 3cos”知一求二 tan x cot x〔答:-〕•5”, 如 sin x cosx t ,那么 sin xcosx〔答:设(o, ),sin cos ,求tan 的值。

相关文档
最新文档