运用坐标法解决平面向量的最值问题
平面向量中的极化恒等式及有关最值(范围)问题(1)
2(a·b-a·c-b·c+1)=48+2(a+b)·c=48+2|a+b|cos θ(其中θ为 a+b
与 c 的夹角),因为|a-b|=|a+b|,所以|a-b|2=48+2|a-b|cos θ,则由
cos θ∈[-1,1],得 48-2|a-b|≤|a-b|2≤48+2|a-b|,解得 6≤|a-
1x 2
2-1x2=1.
4
4
(2)如图,由已知|OF|=1,取 FO 中点 E,连接 PE,由极化恒等式得
O→P·F→P=|PE|2-1|OF|2=|PE|2-1,
4
4
∵|PE|2max=245,∴O→P·F→P的最大值为 6.
答案 (1)1 (2)C
题型二 平面向量中的最值(范围)问题
类型 1 利用函数型
则A→P·B→P的取值范围是________;若向量A→C=λD→E+μA→P,则λ+μ的最
小值为________.
解析 (1)由题意,不妨设 b=(2,0),a=(cos θ,sin θ)(θ∈[0,2π)),
则 a+b=(2+cos θ,sin θ),a-b=(cos θ-2,sin θ).
令 y=|a+b|+|a-b|
= (2+cos θ)2+sin2θ+ (cos θ-2)2+sin2θ
= 5+4cos θ+ 5-4cos θ,
则 y2=10+2 25-16cos2θ∈[16,20].
由此可得(|a+b|+|a-b|)max= 20=2 5,
(|a+b|+|a-b|)min= 16=4,
即|a+b|+|a-b|的最小值是 4,最大值是 2 5.
4a2
4a2
θ)2=1,化简得
b2(1-cos2θ)=
平面向量的坐标运算
别业岁月悠长,有暗香盈袖。
冗长了日与夜,空掷了乐与悲。
遂撰文三两卷,遣尽浮光,以飨后学。
谨祝诸位:学业有成,前程似锦。
编者:李健,匠人,喜于斗室伏案两三卷,愁与身在红尘浪荡无涯。
写过一些铅字附庸了世态,跑过几个码头了断了青春。
如今归去来兮,只为了挥洒一方三尺讲台。
第2讲 平面向量基本定理及坐标表示一.知识梳理 1.平面向量基本定理如果12,e e 是平面内两个不共线的向量,那么对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+.其中不共线的向量12,e e 叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算 (1)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量坐标. ②设1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--;||(AB x =(2)向量的加法、减法、数乘及向量的模:设1122(,),(,)a x y b x y ==1212(,)a b x x y y +=++;1212(,)a b x x y y -=--;11(,)a x y λλλ=;21||a x y =+.3.平面向量共线的坐标表示设1122(,),(,)a x y b x y ==,其中0b ≠,则12210a b x y x y ⇔-=∥. 二.要点整合 1.辨明三个易误点(1)注意能作为基底的两个向量必须是不共线的.(2)要注意运用两个向量,a b 共线坐标表示的充要条件12210x y x y -=.(3)要注意区分点的坐标与向量的坐标的不同,尽管形式上一样,但意义完全不同,向量坐标中既有大小的信息也有方向的信息.2.有关平面向量的两类本质(1)平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. (2)向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 三.典例精析1.平面向量基本定理及其应用【例题1】(1)在梯形ABCD 中,,2,,A B C D A B C D M N=∥分别是,C D B C 的中点,若AB AM AN λμ=+,则λμ+=( )1.5A 2.5B 3.5C 4.5D (2)在ABC 中,P 是AB 上一点,且21,33CP CA CB Q =+是BC 的中点,AQ 和CP 的交点为M ,又CM tCP =,则t = . 【变式1】(1)如图,在ABC 中,P 为线段AB 上的一点,OP xOA yOB =+,且2BP PA =,则( )21.,33A x y == 12.,33B x y == 13.,44C x y == 31.,44D x y ==(2)如图,在ABC 中,13AN NC =,P 是BN 上一点,若211AP mAB AC =+,则m = .2.平面向量的坐标运算【例题2】(1)已知(2,4),(3,1),(3,4)A B C ----.设,,AB a BC b CA c ===,且3,2C M c C N b==-. (Ⅰ)求33a b c +-;(Ⅱ)求满足a mb nc =+的实数,m n ; (Ⅲ)求,M N 的坐标及向量MN 的坐标.(2)给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π.如图,点C 在以O 为圆心的AB 上运动.若(,)OC xOA yOB x y R =+∈,则x y +的最大值为 .【变式2】(1)已知O 为坐标原点,点C 是线段AB 上一点,且(1,1),(2,3)A C ,||2||BC AC =,则向量OB 的坐标是 .(2)(2014福建质检)如图,设向量(3,1),(1,3)OA OB ==,若OC =OA λOB μ+,且1λμ≥≥,则用阴影表示C 点所有可能的位置区域正确的是( )(3)已知||||2,a b a b ==⊥,若向量c 满足||2c a b --=,则||c 的取值范围是 .3.平面向量共线的坐标表示)两向量共线的充要条件的作用【例题3】(1)已知向量1(8,),(,1)2a xb x ==,其中0x >,若(2)(2)a b a b -+∥,则x 的值为( ).4A .8B .0C .2D(2)已知点(4,0),(4,4),(2,6)A B C ,则AC 与OB 的交点P 的坐标为 . (3)(2014广东佛山)设(1,2),(,1),(,0)OA OB a OC b =-=-=-,0a >,0,b O >为坐标原点,若,,A B C 三点共线,则12a b+的最小值为( ).2A .4B .6C .8D 【变式3】(1)已知向量(1,3),(2,1),(1,2)OA OB OC k k =-=-=+-,若,,A B C 三点不能构成三角形,则实数k 应满足的条件是( ).2A k =- 1.2B k =.1C k = .1D k =- (2)(2015河北唐山)设向量,a b 满足||25,(2,1)a b ==,且a 与b 的方向相反,则a 的坐标为 .(3)(2014陕西)设02πθ<<,向量(sin 2,cos ),(cos ,1)a b θθθ==,若a b ∥,则tan θ= .四.针对训练.A 组 基础训练1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且,AB a AD b ==,则BE =( )1.2A b a -1.2B b a + 1.2C a b + 1.2D a b - 2.(2015宁夏质检)如图,设O 为平行四边形ABCD 两对角线的交点,给出下列向量组:①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .其中可作为该平面内其他向量的基底的是( ).A ①② .B ①③ .C ①④ .D ③④3.已知向量3,1),(0,2)a b =-=(.若实数k 与向量c 满足2a b kc +=,则c 可以是( ).,1)A - .(3)B - .(,1)C - .(3)D - 4.已知点(1,3),(4,1)A B -,则与向量AB 同方向的单位向量是( )34.(,)55A - 43.(,)55B - 34.(,)55C - 43.(,)55D -5.(2015吉林长春)如图,设向量12,OA e OB e ==,若12,e e 不共线,且点P 在线段AB 上,||:||2AP PB =,则OP =( )1212.33A e e -1221.33B e e + 1212.33C e e + 1221.33D e e -6.已知ABC 中,点D 在BC 边上,且2,s CD DB CD r AB AC ==+,则r s +的值是( ) 2.3A 4.3B .3C - .0D 7.若三点(1,5),(,2),(2,1)A B a C ----共线,则实数a 的取值范围是 .8.在ABC 中,点P 在BC 上,且2BP PC =,点Q 是AC 中点,若(4,3)PA =,(1,5)PQ =,则BC = .9.(2015江西九江){|(1,1)(1,2)}P a a m m R ==-+∈,{|(1,2)Q b b ==-(2,3),}n n R +∈是两个向量集合,则PQ 等于 .10.ABC 中,内角,,A B C 所对的边分别为,,a b c ,若(,)p a c b =+,(,)q b a c a =--,且p q ∥,则角C = . 11.已知(1,0),(2,1)a b ==.(Ⅰ)当k 为何值时,ka b -与2a b +共线;(Ⅱ)若23,AB a b BC a mb =+=+且,,A B C 三点共线,求m 的值.12.(2015山东莱芜)如图,已知ABC 中,点C 是以A 为中点的点B 的对称点,D 将OB分为2:1两部分的一个内分点,DC 和OA 交于点E ,设OA a =,OB b =. (Ⅰ)用a 和b 表示向量,OC DC ; (Ⅱ)若OE OA λ=,求实数λ的值..B 组 能力提升1.在平面直角坐标系中,点(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针方向旋转34π后得到向量OQ ,则Q 点的坐标是( ).(2)A - .(2)B - .(,2)C -- .(,2)D - 2.已知直线x y a +=与圆224x y +=交于,A B 两点,且||OA OB +=||OA OB -,其中O 为坐标原点,则实数a 的值为( ).2A .2B - .2C 或2- D3.如图,在四边形,,,A B C D 中,1AB BC CD ===,且90B ∠=,BCD ∠=135,记向量,AB a AC b ==,则AD =( )2(1)2b -+2.(1)2B b ++ 2.(1)2C b +-2(1)2b +-4.(2014湖南)在平面直角坐标系中,O 为原点,(1,0),(3,0)A B C -,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( ).[4,6]A .191]B .[7]C .71]D 5.在平面直角坐标系中,O 为坐标原点,已知两点(3,1),(1,3)A B -,若点C 满足(,)OC OA OB R αβαβ=+∈且1αβ+=,则点C 的轨迹方程为 .6.设向量1122(,),(,)a x y b x y ==,定义一种向量积1122(,)a b a b a b ⊗=,已知向量1(2,),(,0)23m b π==,点(,)P x y 在sin y x =图像上运动.Q 是函数()y f x =图像上的点,且满足OQ m OP n =⊗+(其中O 为坐标原点),则函数()y f x =的值域是 .7.如图,,,A B C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外一点D ,若OC mOA nOB =+,则m n +的取值范围是 .8.如图,设,Ox Oy 为平面内相交成60角的两条数轴,12,e e 分别是x 轴、y 轴正方向同方向的单位向量,若12OP xe ye =+,则把有序实数对(,)x y 叫做向量OP 在坐标系xOy 中的坐标.若OP 的坐标为(1,1). (Ⅰ)求||OP ;(Ⅱ)过点P 作直线l 分别与x 轴、y 轴正方向交于点,A B ,试确定,A B 的位置,使AOB 面积最小,并求出最小值.。
平面向量的坐标运算(说课稿)
平面向量的坐标运算(说课稿)北师大附中荣红莉一、【教材的地位和作用】本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础;向量用坐标表示后,对立体几何教材的改革也有着深远的意义,可使空间结构系统地代数化,把空间形式的研究从“定性”推到“定量”的深度。
引入坐标运算之后使学生形成了完整的知识体系(向量的几何表示和向量的坐标表示),为用“数”的运算解决“形”的问题搭起了桥梁。
二、【学习目标】根据教学大纲的要求以及学生的实际知识水平,以期达到以下的目的:1.知识方面:理解平面向量的坐标表示的意义;能熟练地运用坐标形式进行运算。
2.能力方面:数形结合的思想和转化的思想三、【教学重点和难点】理解平面向量坐标化的意义是教学的难点;平面向量的坐标运算则是重点。
我主要是采用启发引导式,并辅助适量的题组练习来帮助学生突破难点,强化重点。
四、【教法和学法】本节课尝试一种全新的教学模式,以建构主义理论为指导,教师在本节课中起的根本作用就是“为学生的学习创造一种良好的学习环境”,结合本节课是新授课的特点,我主要从以下几个方面做准备:(1)提供新知识产生的铺垫知识(2)模拟新知识产生过程中的细节和状态,启发引导学生主动建构(3)创设新知识思维发展的前景(4)通过“学习论坛时间”组织学生的合作学习、讨论学习、交流学习(5)通过“老师信箱时间”指导解答学生的疑难问题(6)通过“深化拓展区”培养学生的创新意识和发现能力。
整个过程学生始终处于交互式的学习环境中,让学生用自己的活动对已有的数学知识建构起自己的理解;让学生有了亲身参与的可能并且这种主动参与就为学生的主动性、积极性的发挥创造了很好的条件,真正实现了“学生是学习的主体”这一理念。
五、【学习过程】1.提供新知识产生的理论基础课堂教学论认为:要使教学过程最优化,首先要把已学的材料与学生已有的信息联系起来,使学生在学习新的材料时有适当的知识冗余。
微重点 平面向量的最值与范围问题
微重点 平面向量的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.考点一 求参数的最值(范围)例1 (1)(2022·沈阳质检)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG →=λCB →+μCD →(λ,μ∈R ),则λ+μ的取值范围是________. 答案 [1,4]解析 根据题意,不妨设正六边形ABCDEF 的边长为23,以O 为原点建立平面直角坐标系,如图所示,则F (-23,0),D (3,3),C (23,0),B (3,-3), 设点G 的坐标为(m ,n ),则CG →=(m -23,n ), CB →=(-3,-3),CD →=(-3,3), 由CG →=λCB →+μCD →可得,m -23=-3λ-3μ,即λ+μ=-33m +2, 数形结合可知m ∈[-23,3], 则-33m +2∈[1,4],即λ+μ的取值范围为[1,4]. (2)设非零向量a ,b 的夹角为θ,若|a |=2|b |,且不等式|2a +b |≥|a +λb |对任意θ恒成立,则实数λ的取值范围为( ) A .[-1,3] B .[-1,5] C .[-7,3] D .[5,7]答案 A解析 ∵非零向量a ,b 的夹角为θ,若|a |=2|b |, a ·b =|a ||b |cos θ=2|b |2cos θ,不等式|2a +b |≥|a +λb |对任意θ恒成立, ∴(2a +b )2≥(a +λb )2,∴4a 2+4a ·b +b 2≥a 2+2λa ·b +λ2b 2, 整理可得(13-λ2)+(8-4λ)cos θ≥0恒成立, ∵cos θ∈[-1,1],∴⎩⎪⎨⎪⎧13-λ2+8-4λ≥0,13-λ2-8+4λ≥0, ∴⎩⎪⎨⎪⎧-7≤λ≤3,-1≤λ≤5,∴-1≤λ≤3. 规律方法 利用共线向量定理及推论 (1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.跟踪演练1 (2022·滨州模拟)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤13,12 C .[0,1] D .[1,2]答案 C解析 由题意,设AN →=tAM →(0≤t ≤1),如图.当t =0时,AN →=0, 所以λAB →+μAC →=0,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN →=λAB →+μAC →(λ,μ∈R ), 所以tAM →=λAB →+μAC →, 即AM →=λt AB →+μt AC →,因为M ,B ,C 三点共线,所以λt +μt =1,即λ+μ=t ∈(0,1].综上,λ+μ的取值范围是[0,1].考点二 求向量模、夹角的最值(范围)例2 (1)已知e 为单位向量,向量a 满足:(a -e )·(a -5e )=0,则|a +e |的最大值为( ) A .4 B .5 C .6 D .7 答案 C解析 可设e =(1,0),a =(x ,y ), 则(a -e )·(a -5e )=(x -1,y )·(x -5,y ) =x 2-6x +5+y 2=0, 即(x -3)2+y 2=4, 则1≤x ≤5,-2≤y ≤2, |a +e |=(x +1)2+y 2=8x -4, 当x =5时,8x -4取得最大值为6, 即|a +e |的最大值为6.(2)在平行四边形ABCD 中,AB →|AB →|+2AD →|AD →|=λAC→|AC →|,λ∈[2,2],则cos ∠BAD 的取值范围是________. 答案 ⎣⎡⎦⎤-34,-14 解析 因为AB →|AB →|+2AD →|AD →|=λAC→|AC →|,且AB →+AD →=AC →,所以|AB →|∶|AD →|∶|AC →|=1∶2∶λ, 不妨设|AB →|=1,则|AD →|=2,|AC →|=λ, 在等式AB →|AB →|+2AD →|AD →|=λAC→|AC →|两边同时平方可得5+4cos ∠BAD =λ2,则cos ∠BAD =λ2-54,因为λ∈[2,2],所以cos ∠BAD =λ2-54∈⎣⎡⎦⎤-34,-14.易错提醒 找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π]; 若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线,同理若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.跟踪演练2 (2022·马鞍山模拟)已知向量a ,b 满足|a -3b |=|a +3b |,|a +b |=4,若向量c =λa +μb (λ+μ=1,λ,μ∈R ),且a ·c =b ·c ,则|c |的最大值为( ) A .1 B .2 C .3 D .4 答案 B解析 由|a -3b |=|a +3b |得a ·b =0, 所以a ⊥b .如图,设OA →=a ,OB →=b ,|OA →|=m ,|OB →|=n , 由a ⊥b 可知OA ⊥OB , 所以|AB →|=|b -a |=|a +b |=4,即m 2+n 2=16,所以2mn ≤16,则mn ≤8,当且仅当m =n 时取得等号.设OC →=c , 由c =λa +μb (λ+μ=1), 可知A ,B ,C 三点共线,由a ·c =b ·c 可知(a -b )·c =0,所以OC ⊥AB , 由等面积法可得, 12|OA →|·|OB →|=12|AB →|·|OC →|, 得|OC →|=|OA →|·|OB →||AB →|=mn 4≤2,所以|c |的最大值为2.考点三 求数量积的最值(范围)例3 (1)(2022·福州质检)已知平面向量a ,b ,c 均为单位向量,且|a -b |=1,则(a -b )·(b -c )的最大值为( ) A.14 B.12 C .1 D.32答案 B解析 ∵|a -b |2=a 2-2a ·b +b 2 =2-2a ·b =1, ∴a ·b =12,∴(a -b )·(b -c )=a ·b -a ·c -b 2+b ·c =12-1-(a -b )·c =-12-|a -b |·|c |cos 〈a -b ,c 〉=-12-cos 〈a -b ,c 〉,∵cos 〈a -b ,c 〉∈[-1,1], ∴(a -b )·(b -c )∈⎣⎡⎦⎤-32,12, 即(a -b )·(b -c )的最大值为12.(2)(2022·广州模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点P 在BC 边上(包括端点),则AD →·AP →的取值范围是________. 答案 [-2,2]解析 如图所示,以C 为原点,BC →为x 轴正方向,过点C 垂直向上的方向为y 轴,建立平面直角坐标系.因为菱形ABCD 的边长为2,∠ABC =60°, 则B (-2,0),C (0,0),D (1,3),A (-1,3). 因为点P 在BC 边上(包括端点), 所以设P (t ,0),其中t ∈[-2,0]. 所以AD →=(2,0),AP →=(t +1,-3), 所以AD →·AP →=2t +2∈[-2,2].规律方法 向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.跟踪演练3 已知AB 是半圆O 的直径,AB =2,等腰△OCD 的顶点C ,D 在半圆弧AB ︵上运动,且∠COD =120°,点P 是半圆弧AB ︵上的动点,则PC →·PD →的取值范围为( ) A.⎣⎡⎦⎤-34,34 B.⎣⎡⎦⎤-34,1 C.⎣⎡⎦⎤-12,1 D.⎣⎡⎦⎤-12,12 答案 C解析 以点O 为原点,AB 为x 轴,垂直于AB 的直线为y 轴,建立平面直角坐标系,如图所示,不妨取C (1,0),则D ⎝⎛⎭⎫-12,32,设P (cos α,sin α)(α∈[0,π]), PC →·PD →=(1-cos α,-sin α)·⎝⎛⎭⎫-12-cos α,32-sin α =12-32sin α-12cos α=12-sin ⎝⎛⎭⎫α+π6. 因为α∈[0,π],所以α+π6∈⎣⎡⎦⎤π6,7π6, 所以sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1, 所以12-sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1,即PC →·PD →的取值范围为⎣⎡⎦⎤-12,1. 专题强化练1.(2022·山东省实验中学诊断)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( )A .4B .6C .8D .9 答案 C解析 由题意得,AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),∵A ,B ,C 三点共线,∴AB →=λAC →且λ∈R ,则⎩⎪⎨⎪⎧a -1=-λ(b +1),2λ=1,可得2a +b =1, ∴1a +2b =⎝⎛⎭⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab=8, 当且仅当b =2a =12时,等号成立.∴1a +2b的最小值为8. 2.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值为( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使OA →+OB →=OD →, 则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB → =1-(OA →+OB →)·OC →=1-OD →·OC → =1-2cos 〈OD →,OC →〉,当cos 〈OD →,OC →〉=-1时,(OC →-OA →)·(OC →-OB →)取得最大值为1+ 2.3.(2022·杭州模拟)平面向量a ,b 满足|a |=1,⎪⎪⎪⎪b -32a =1,记〈a ,b 〉=θ,则sin θ的最大值为( )A.23B.53C.12D.32 答案 A解析 因为|a |=1,⎪⎪⎪⎪b -32a =1, 所以⎪⎪⎪⎪b -32a 2=|b |2-3a ·b +94|a |2=1, |b |2-3|a |·|b |cos θ+94-1=0,即|b |2-3|b |cos θ+54=0,所以cos θ=|b |2+543|b |=|b |3+512|b |≥2536=53, 当且仅当|b |=52时,等号成立, 因为〈a ,b 〉=θ,θ∈[0,π], 所以sin θ=1-cos 2θ≤1-59=23, 即sin θ的最大值为23.4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =2,P 是线段AB 上的动点,则|PC →+4PD →|的最小值为( )A .35B .6C .25D .4答案 B解析 如图,以点B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴,建立平面直角坐标系,设AB =a ,BP =x (0≤x ≤a ),因为AD =1,BC =2,所以P (0,x ),C (2,0),D (1,a ), 所以PC →=(2,-x ),PD →=(1,a -x ), 4PD →=(4,4a -4x ),所以PC →+4PD →=(6,4a -5x ),所以|PC →+4PD →|=36+(4a -5x )2≥6,所以当4a -5x =0,即x =45a 时,|PC →+4PD →|的最小值为6.5.(多选)已知向量a ,b ,单位向量e ,若a ·e =1,b ·e =2,a ·b =3,则|a +b |的可能取值为( ) A .3 B.10 C.13 D .6答案 CD解析 设e =(1,0),a =(x 1,y 1),b =(x 2,y 2), 由a ·e =1得x 1=1, 由b ·e =2得x 2=2,由a ·b =x 1x 2+y 1y 2=3,可得y 1y 2=1, 则|a +b |=(a +b )2=(x 1+x 2)2+(y 1+y 2)2=11+y 21+y 22≥11+2y 1y 2=13,当且仅当y 1=y 2=1时取等号.6.(多选)(2022·武汉模拟)正方形ABCD 的边长为2,E 是BC 的中点,如图,点P 是以AB 为直径的半圆上任意一点,AP →=λAD →+μAE →(λ,μ∈R ),则( )A .λ的最大值为12B .μ的最大值为1 C.AP →·AD →的最大值为2 D.AP →·AE →的最大值为5+2 答案 BCD解析 如图,以AB 的中点O 为原点建立平面直角坐标系,则A (-1,0),D (-1,2),E (1,1), 连接OP ,设∠BOP =α(α∈[0,π]), 则P (cos α,sin α), AP →=(cos α+1,sin α), AD →=(0,2),AE →=(2,1), 由AP →=λAD →+μAE →,得2μ=cos α+1且2λ+μ=sin α,α∈[0,π], 所以λ=14(2sin α-cos α-1)=54sin(α-θ)-14≤5-14,故A 错误; 当α=0时,μmax =1,故B 正确; AP →·AD →=2sin α≤2,故C 正确; AP →·AE →=sin α+2cos α+2=5sin(α+φ)+2≤5+2,故D 正确.7.(2022·广东六校联考)已知菱形ABCD 的边长为2,∠BAD =60°,E 是边CD 的中点,连接AE 并延长至点F ,使得AE =2EF ,若H 为线段BC 上的动点,则FH →·AH →的取值范围为______________. 答案 ⎣⎡⎦⎤-17764,-32 解析 方法一 连接AC ,BD 交于点O ,以点O 为坐标原点,以BD 所在直线为x 轴,AC 所在直线为y 轴,建立如图所示的平面直角坐标系,则A (0,3),B (-1,0),C (0,-3),D (1,0),E ⎝⎛⎭⎫12,-32. 设F (x 0,y 0),因为AE →=2EF →,所以⎝⎛⎭⎫12,-332=2⎝⎛⎭⎫x 0-12,y 0+32 =()2x 0-1,2y 0+3, 所以2x 0-1=12,2y 0+3=-332, 所以x 0=34,y 0=-534, 所以F ⎝⎛⎭⎫34,-534. 易知直线BC 的方程为y =-3x -3,设H (x ,-3x -3)(-1≤x ≤0),则AH →=(x ,-3x -23),FH →=⎝⎛⎭⎫x -34,-3x +34, 所以FH →·AH →=⎝⎛⎭⎫x -34x +⎝⎛⎭⎫3x -34(3x +23)=4x 2+92x -32, 因为-1≤x ≤0,所以FH →·AH →∈⎣⎡⎦⎤-17764,-32.方法二 设BH →=tBC →(0≤t ≤1),则AH →=AB →+BH →=AB →+tBC →=AB →+tAD →. 连接AC (图略),因为E 为CD 的中点, 所以AE →=12(AC →+AD →)=12(AB →+2AD →), AF →=AE →+EF →=32AE →=34(AB →+2AD →), 所以FH →·AH →=(AH →-AF →)·AH →=AH →2-AF →·AH →=(AB →+tAD →)2-34(AB →+2AD →)·(AB →+tAD →)=4+4t 2+4t -34(4+2t +4+8t ) =4+4t 2+4t -6-15t 2=4t 2-72t -2. 设y =4t 2-72t -2,0≤t ≤1,根据二次函数的图象与性质可知,函数y =4t 2-72t -2,0≤t ≤1的最小值在t =716处取得,为-17764,最大值在t =1处取得,为-32, 所以FH →·AH →的取值范围是⎣⎡⎦⎤-17764,-32. 8.已知向量a ,b 满足|a |=1,|b |=3,则|2a +b |+|2a -b |的最小值是________,最大值是________.答案 6 213解析 ∵|2a +b |+|2a -b |≥|2a +b +2a -b |=4|a |=4,且|2a +b |+|2a -b |≥|2a +b -2a +b |=2|b |=6,∴|2a +b |+|2a -b |≥6,当且仅当2a +b 与2a -b 反向时取等号.此时|2a +b |+|2a -b |的最小值为6.∵|2a +b |+|2a -b |2≤|2a +b |2+|2a -b |22 =|2a |2+|b |2=13, ∴|2a +b |+|2a -b |≤213,当且仅当|2a +b |=|2a -b |时取等号, ∴|2a +b |+|2a -b |的最大值为213.。
巧借坐标运算,妙解向量问题
2024年1月上半月㊀学习指导㊀㊀㊀㊀巧借坐标运算,妙解向量问题◉广东省深圳市红山中学㊀陈㊀晨㊀㊀摘要:利用坐标运算法解决平面向量问题是比较常见的一种技巧,也是解决平面向量中重点与难点问题的一大 法宝 .结合实例剖析,通过平面直角坐标系的构建与对应坐标的表示,合理数学运算,减少逻辑推理,实现平面向量解题的程序化运算处理,指导数学教学与解题研究.关键词:平面向量;坐标;运算;数量积㊀㊀平面向量自身同时兼备 数 的基本属性与 形 的结构特征,是衔接代数与几何的一个纽带,更是数形结合的典范之一.而利用坐标运算法来处理平面向量的一些相关问题,将相应的平面几何的 形 的问题加以符号化处理㊁坐标化表示,转化为 数 的问题,进行数量化应用与数学运算处理,使得推理应用问题转化为数学运算问题,可以更加深入地解决一些复杂的综合性㊁创新性等平面向量应用问题.1参数值的问题在平面向量中,涉及向量线性关系的系数㊁线段的比例关系等相关参数值的求解,以及对应参数的代数关系式的求解问题,经常可以借助平面直角坐标系的构建,利用坐标运算法来进行数学运算与逻辑推理等.图1例1㊀ 2023届广东省六校联盟(广东省实验中学㊁广州二中㊁中山纪念中学等)高三上学期第三次联考数学试卷 如图1,在平面四边形A B C D 中,øB A D =5π6,øB A C =π6,A B =3,A D =2,A C =4,A C ң=λA B ң+μA D ң,则λ+μ=(㊀㊀).A.2㊀㊀㊀B .23㊀㊀㊀C .4㊀㊀㊀D.6分析:根据平面几何图形,合理构建平面直角坐标系,将平面图形中的线段长度与角度关系转化为对应的点的坐标,利用坐标运算来确定相应的向量,结合向量的坐标运算构建对应参数的关系式,进而确定图2所求关系式的值.解析:如图2所示,以点A 为坐标原点,A B 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (3,0),D (-3,1),C (23,2),于是A C ң=(23,2),A B ң=(3,0),A D ң=(-3,1).由A C ң=λA B ң+μA D ң,可得3λ-3μ=23,μ=2,{解得λ=4,μ=2.{因此λ+μ=6.故选择答案:D .点评:解决此类问题的方法比较多,可以通过 数 的思维来应用,也可以通过 形 的特征来分析.而利用坐标运算法解决平面向量中对应参数值的求解问题时,关键是将直观形象的平面几何图形放置于对应的平面直角坐标系中,借助相应的坐标表示,化逻辑推理为数学运算,借助坐标运算来分析与求解.2向量模的问题在平面向量中,涉及向量的模或模的取值范围(或最值)的求解问题,经常可以借助平面直角坐标系的构建,合理引入向量的坐标,进而利用坐标运算法来进行数学运算与逻辑推理等.例2㊀已知平面向量a ,b ,c 满足|c |=1,且满足a c =2,b c =1,则|a +b |的最小值为.分析:根据题设条件,通过合理构建对应的平面直角坐标系,并引入向量a ,b 的坐标,结合向量的数量积公式确定相关参数的值,利用向量模的公式构建对应的关系式以及利用函数的基本性质来确定相应的最值问题.解析:依题建立相应的平面直角坐标系,不失一般性,不妨设c =(1,0),a =(x ,y ),b =(m ,n ),其中x ,y ,m ,n ɪR .结合条件a c =2,b c =1,利用向量数量积的坐标公式,可得a c =x =2,b c =m =1.因为a +b =(x +m ,y +n ),所以|a +b |2=(x +m )2+(y +n )2=9+(y +n )2ȡ9,当且仅当y +n =0时,等号成立.所以|a +b |ȡ3,即|a +b |的最小值为3.故填答案:3.点评:借助适当的平面直角坐标系的构建并引入向量的坐标,为和向量的模合理构建对应的函数关系式,进而结合参数之间的关系与表示,利用函数的基54学习指导2024年1月上半月㊀㊀㊀本性质来分析与转化.通过代数思维中的坐标运算来处理此类向量模的相关问题,借助纯粹的代数运算即可达到目的,目标明确.3数量积的问题在平面向量中,涉及平面向量的数量积以及数量积的线性关系式等的求解㊁取值范围(或最值)的确定问题,经常可以借助平面直角坐标系的构建,利用坐标运算法来进行数学运算与逻辑推理等.例3㊀ 2023届山东省潍坊市高考模拟考试数学试卷(2023年潍坊东营一模) 单位圆O :x 2+y 2=1上有两定点A (1,0),B (0,1)及两动点C ,D ,且O Cң O D ң=12,则C A ң C B ң+D A ң D B ң的最大值是(㊀㊀).A.2+6B .2+23C .6-2D.23-2分析:根据平面向量自身 数 的基本属性,通过数学运算,借助坐标法来转化与应用,巧妙引入点或夹角等参数,通过点的坐标㊁向量的坐标及其对应的运算㊁数量积公式等,综合三角函数等其他知识来应用.解析:根据O C ң O D ң=12,可得|O C ң||O D ң|c o søC O D =c o søC O D =12,则øC O D =π3.不失一般性,设点C (c o s θ,s i n θ),θɪ[0,2π),则点D 的坐标为(c o s (θ+π3),s i n (θ+π3)).于是C A ң C B ң+D A ң D B ң=(1-c o s θ,-s i n θ)(-c o s θ,1-s i n θ)+(1-c o s (θ+π3),-s i n (θ+π3))(-c o s (θ+π3),1-s i n (θ+π3))=2-co s θ-s i n θ-c o s (θ+π3)-s i n (θ+π3)=2+(32-32)s i n θ-(32+32)c o s θ=2-6s i n (θ+φ)ɤ2+6,此时t a n φ=2+3,当且仅当s i n (θ+φ)=-1时,等号成立,即C A ң C B ң+D A ң D B ң的最大值是2+6.故选择答案:A .点评:通过题目条件合理引入对应的点或夹角等参数,进而利用平面向量数量积的坐标公式,将已知条件转化为涉及参数的代数关系式,结合函数的图象与性质㊁三角函数的有界性或不等式的基本性质等来确定对应关系式的最值问题.此类问题利用代数思维往往更加方便,利用相应的数学运算即可得到最终结论.4创新应用问题创新意识与创新应用是新时代的一个主旋律.在平面向量中,涉及平面向量问题的创新应用也是一大主阵地,挖掘创新本质,合理构建平面直角坐标系,坐标运算法有时也是解决向量创新应用问题的一个不错的选择.例4㊀(2022届浙江省杭州市高三年级下学期4月教学质量检测数学试卷)对于二元函数f (x ,y ),m i n x {m a x y{f (x ,y )}}表示f (x ,y )先关于y 求最大值,再关于x 求最小值.已知平面内非零向量a ,b ,c ,满足:a ʅb ,a c |a |=2b c |b |.记f (m ,n )=|m c -b ||m c -n a |(m ,n ɪR ,且m ʂ0,n ʂ0),则m i n m{m a x n{f (m ,n )}}=.分析:根据题目条件,巧妙建立相应的平面直角坐标系,引入对应向量的坐标参数,利用向量投影的几何意义并结合题设条件确定相关向量c 的坐标关系,进而利用平面向量的坐标运算㊁向量模的公式等构建对应的函数解析式,结合创新定义并利用函数的基本性质加以分步处理,分层解决.解析:依题建立相应的平面直角坐标系x O y ,结合a ʅb ,不失一般性,可设平面向量a =(a ,0),b =(0,b ),a ,b ɪR .结合关系式a c |a |=2b c|b |,借助向量投影的几何意义,可知c 在a 方向上的投影恰为c 在b 方向上投影的两倍,故可设c =(2t ,t ),t ɪR ,于是f (m ,n )=|m c -b ||m c -n a |=|m (2t ,t )-(0,b )||m (2t ,t )-n (a ,0)|=5m 2t 2-2m t b +b 25m 2t 2-4m n t a +n 2a 2=5m 2t 2-2m t b +b2m 2t 2+(2m t -n a )2.因此可得,当2m t =n a 时,m a x n{f (m ,n )}=5m 2t 2-2m t b +b2m 2t2=(bm t-1)2+4,进而可得,当bm t=1,即m t =b 时,m i n m {m a x n {f (m ,n )}}=4=2.所以m i n m{m a x n{f (m ,n )}}=2,当且仅当n a =2m t =2b 时,等号成立.故填答案:2.点评:通过建系,利用坐标运算法,合理把握创新应用问题的实质,是处理此类平面向量中创新问题比较常用的一种通技通法.借助坐标运算法来解决平面向量的综合应用问题,通过点㊁向量等的坐标化处理,由 形 转化为 数 ,利用代数思维来解决平面向量中的 数 或 形 的相关问题,避免变幻莫测的直观图形和繁杂的逻辑推理等,实现平面几何问题的代数化,由变化多端的平面向量应用问题转化为对应坐标的代数运算问题,方向性强,思维单一,技巧易懂,方法灵活,值得借鉴与推广.Z64。
最全归纳平面向量中的范围与最值问题 (十大题型)(学生版)
最全归纳平面向量中的范围与最值问题目录题型一:三角不等式题型二:定义法题型三:基底法题型四:几何意义法题型五:坐标法题型六:极化恒等式题型七:矩形大法题型八:等和线题型九:平行四边形大法题型十:向量对角线定理方法技巧总结技巧一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步:根据题意建立适当的直角坐标系并写出相应点的坐标第二步:将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解(3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论(4)几何意义法第一步:先确定向量所表达的点的轨迹第二步:根据直线与曲线位置关系列式第三步:解得结果技巧二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②①②两式相加得:AC 2+DB 2=2a 2+b 2=2AB 2+AD 2 (2)极化恒等式:上面两式相减,得:14a +b 2-a -b 2----极化恒等式①平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)技巧三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2.【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2技巧四.等和线(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然.(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB(λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;技巧五.平行四边形大法1.中线长定理2AO 2=AB 2+AD 2-12DB 22.P 为空间中任意一点,由中线长定理得:2PO 2=PA 2+PC 2-12AC 22PO 2=PD 2+PB 2-12DB 2两式相减:PA 2+PC 2-PD 2+PB 2=AC2-BD 22=2AB ⋅AD技巧六.向量对角线定理AC ⋅BD =(AD 2+BC 2)-(AB 2+CD2)2必考题型归纳题型一:三角不等式1(2023·全国·高三专题练习)已知向量a ,b ,c 满足|a |=2,|b |=1,|c -a -b |=1,若对任意c ,(c -a )2+(c-b )2≤11恒成立,则a ⋅b 的取值范围是.2(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:|a|=1,b ⋅a =-1,若对满足条件的任意向量b ,|c -b |≥|c -a |恒成立,则cos c +a ,a 的最小值是.3已知向量a ,b ,c 满足a =b =c =2,a ⋅b =0,若关于t 的方程ta +b2-c=12有解,记向量a ,c 的夹角为θ,则sin θ的取值范围是.1.已知e 1 ,e 2 ,e 3 是平面向量,且e 1 ,e 2 是互相垂直的单位向量,若对任意λ∈R 均有e 3 +λe 1的最小值为e 3 -e 2 ,则e 1 +3e 2 -e 3 +e 3-e 2 的最小值为.2.已知平面向量e 1 ,e 2 满足2e 2 -e 1 =2,设a =e 1 +4e 2 ,b =e 1 +e 2 ,若1≤a ⋅b ≤2,则|a|的取值范围为.3.(2023·浙江金华·统考一模)已知平面向量a ,b ,c 满足a ⋅b =74,|a -b|=3,(a -c )(b -c )=-2,则c的取值范围是.1已知向量a ,b 的夹角为π3,且a ⋅b =3,向量c 满足c =λa +1-λ b 0<λ<1 ,且a ⋅c =b ⋅c ,记x =c ⋅aa ,y =c ⋅b b,则x 2+y 2-xy 的最大值为.2(2023·四川成都·高二校联考期中)已知向量a ,b ,c 满足a =1,b=2,a ⋅b=-1,向量c -a 与向量c -b 的夹角为π4,则c 的最大值为.3(2023·浙江绍兴·高二校考学业考试)已知向量a ,b 满足a =1,b=3,且a ⊥b ,若向量c 满足c -a -b =2a -b ,则c的最大值是.1.已知向量a ,b 满足a =1,b =3,且a ⋅b =-32,若向量a -c 与b -c 的夹角为30°,则|c |的最大值是. 2.已知向量a ,b ,满足a =2b =3c =6,若以向量a ,b 为基底,将向量c 表示成c =λa+μb (λ,μ为实数),都有λ+μ ≤1,则a ⋅b的最小值为 3.已知向量a 、b 满足:a -b=4,a =2b .设a -b 与a +b 的夹角为θ,则sin θ的最大值为.1.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分在边BC ,CD 上,BE =λBC ,DF=μDC .若λ+μ=23,则AE ⋅AF 的最小值为.2.(2023·天津·高三校联考阶段练习)已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC ,CD 上,BE =λBC ,DF =μDC ,若2λ+μ=52,则AE ⋅AF 的最小值.3.如图,菱形ABCD 的边长为4,∠BAD =30°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.4.菱形ABCD 的边长为4,∠BAD =30°,若N 为菱形内任意一点(含边界),则AB ⋅AN的最大值为.5.如图,菱形ABCD 的边长为4,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.6.平面四边形ABCD 是边长为2的菱形,且∠A =120°,点N 是DC 边上的点,且DN =3NC,点M 是四边形ABCD 内或边界上的一个动点,则AM ⋅AN的最大值为.7.(2023·全国·高三专题练习)已知向量a ,b 满足a +b =3,a ⋅b =0.若c =λa+1-λ b ,且c ⋅a =c ⋅b,则c 的最大值为.8.已知平面向量a ,b ,c 满足a =2,b =1,a ⋅b =-1,且a -c 与b -c 的夹角为π4,则c 的最大值为.9.已知平面向量a 、b 、c 满足a=4,b =3,c =2,b ⋅c =3,则a -b 2a -c 2-a -b⋅a -c 2最大值为.10.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC,则λ2+μ2的最小值为.题型四:几何意义法1(2023·全国·模拟预测)已知a ,b ,c 是平面向量,满足a -b =a +b ,a =2b =2,c +a -b=5,则向量c 在向量a上的投影的数量的最小值是.2(2023·上海浦东新·上海市建平中学校考三模)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π4,c -a与c -b 的夹角为3π4,a -b=2,c -b =1,则b ⋅c 的取值范围是.3(2023·全国·高三专题练习)已知平面向量a ,b 夹角为π3,且平面向量c 满足c -a =c -b =1,c -a ⋅c -b =-12,记m 为f t =ta +1-t b (t ∈R )的最小值,则m 的最大值是. 1.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足a ⋅b =-3,a -b=4,c -a 与c -b 的夹角为π3,则c -a -b 的最大值为. 2.(2023·四川内江·高二四川省内江市第六中学校考开学考试)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π3,c -a 与c -b的夹角为2π3,a -b =23,c -b =2,则b ⋅c 的取值范围是.3.已知非零平面向量a ,b ,c 满足a -b =2,且(c -a )⋅(c -b )=0,若a 与b 的夹角为θ,且θ∈π6,π3,则|c |的最大值是.4.(2023·全国·高三专题练习)平面向量a ,b ,c 满足:a ,b 的夹角为π3,|a -b|=|b -c |=|a -c |=23,则b ⋅c的最大值为. 5.(2023·广东阳江·高二统考期中)已知非零平面向量a ,b ,c 满足a -b =4,且a -c⋅b -c =-1,若a 与b 的夹角为θ,且θ∈π3,π2,则c 的模取值范围是. 6.(2023·浙江·高三专题练习)已知平面向量a ,b ,c ,若a =b =a -b =1,且2a -c+2b +c =23,则a -c的取值范围是.7.(2023·安徽阜阳·高三安徽省临泉第一中学校考期末)已知向量a ,b 满足a =b =1,且a ⋅b=0,若向量c 满足c +a +b=1,则c 的最大值为.8.(2023·浙江·模拟预测)已知向量a ,b ,c 满足a -b +c=2b =2,b -a 与a 的夹角为3π4,则c 的最大值为.9.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:a -b =5,向量a与向量b 的夹角为π3,a -c=23,向量a -c 与向量b -c 的夹角为2π3,则a 2+c 2的最大值为.题型五:坐标法1(2023·全国·高三专题练习)已知向量a ,b 满足2a +b=3,b =1,则a +2a +b 的最大值为.2(2023·江苏常州·高三统考期中)已知平面向量a ,b ,c 满足|a |=2,|b |=4,a ,b 的夹角为π3,且(a -c )⋅(b -c )=2,则|c |的最大值是.3设平面向量a ,b ,c 满足a =b =2,a 与b 的夹角为2π3,a -c ⋅b -c =0则c 的最大值为.1.(2023·安徽滁州·校考三模)已知平面向量a ,b ,c 满足|a|=1,|b |=3,a ⋅b =0,c -a 与c -b 的夹角是π6,则c ⋅b -a 的最大值为.2.(2023·河北·统考模拟预测)如图,在边长为2的正方形ABCD 中.以C 为圆心,1为半径的圆分别交CD ,BC 于点E ,F .当点P 在劣弧EF 上运动时,BP ⋅DP的最小值为.3.(2023·山东·山东省实验中学校考一模)若平面向量a ,b ,c 满足a =1,b ⋅c =0,a ⋅b =1,a⋅c=-1,则b +c 的最小值为.4.(2023·四川眉山·仁寿一中校考一模)如图,在平面四边形ABCD 中,∠CDA =∠CBA =90°,∠BAD =120°,AB =AD =1,若点E 为CD 边上的动点,则AE ⋅BE的最小值为.5.(2023·安徽滁州·校考模拟预测)已知a=1,b +a +b -a =4,则b -14a 的最小值是.6.(2023·浙江·模拟预测)已知向量a ,b 满足a=3,且b -λa 的最小值为1(λ为实数),记a,b =α,a ,a -b=β,则b ⋅b -a cos α+β最大值为.7.在矩形ABCD 中,AB =4,AD =3,M ,N 分别是AB ,AD 上的动点,且满足2AM +AN =1,设AC =xAM +yAN ,则2x +3y 的最小值为()A.48B.49C.50D.51题型六:极化恒等式1(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⋅PN的取值范围是.2(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,AD =4,AB =83,BC =12,则BE ⋅BF的取值范围为. 3(2023·陕西榆林·三模)四边形ABCD 为菱形,∠BAC =30°,AB =6,P 是菱形ABCD 所在平面的任意一点,则PA ⋅PC的最小值为. 1.(2023·福建莆田·模拟预测)已知P 是边长为4的正三角形ABC 所在平面内一点,且AP=λAB +(2-2λ)AC (λ∈R ),则PA ⋅PC 的最小值为()A.16B.12C.5D.42.(2023·重庆八中模拟预测)△ABC 中,AB =3,BC =4,AC =5,PQ 为△ABC 内切圆的一条直径,M 为△ABC 边上的动点,则MP ⋅MQ的取值范围为()A.0,4B.1,4C.0,9D.1,9题型七:矩形大法1已知圆C 1:x 2+y 2=9与C 2:x 2+y 2=36,定点P (2,0),A 、B 分别在圆C 1和圆C 2上,满足PA ⊥PB ,则线段AB 的取值范围是.2在平面内,已知AB 1 ⊥AB 2 ,OB 1 =OB 2 =1,AP =AB 1 +AB 2 ,若|OP |<12,则|OA |的取值范围是()A.0,52B.52,72C.52,2D.72,23(2023·全国·高三专题练习)已知圆Q :x 2+y 2=16,点P 1,2 ,M 、N 为圆O 上两个不同的点,且PM⋅PN =0若PQ =PM +PN ,则PQ的最小值为.1.设向量a ,b ,c满足|a |=|b |=1,a ⋅b =12,(a -c )⋅(b -c )=0,则|c |的最小值是()A.3+12B.3-12C.3D.1题型八:等和线1如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC,则2x +2y 的最大值为()A.83B.2C.43D.12在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的取值范围是()A.0,13B.13,12C.[0,1]D.[1,2]3(2023·全国·高三专题练习)如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .当x =-12时,y 的取值范围是()A.0,+∞ B.12,32C.12,+∞ D.-12,321.(2023·全国·高三专题练习)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB,则3x +y 的取值范围是.2.(2023·江西上饶·统考三模)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一个动点.若OC=xOA +yOB ,则2x +y 的取值范围是.3.(2023·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.4.(2023·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB,则x +4y 的取值范围是.5.(2023·全国·高三专题练习)如图,OM ⎳AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OP =xOA +yOB,则实数对x ,y 可以是()A.-14,34B.-15,75C.14,-12D.-23,236.如图,B 是AC 的中点,BE =2OB ,P 是平行四边形BCDE 内(含边界)的一点,且OP=xOA +yOBx ,y ∈R ,则下列结论正确的个数为()①当x =0时,y ∈2,3②当P 是线段CE 的中点时,x =-12,y =52③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段④x -y 的最大值为-1A.1B.2C.3D.47.(2023·全国·高三专题练习)在△ABC 中,AB =AC=AB ⋅AC=2,点Q 在线段BC (含端点)上运动,点P 是以Q 为圆心,1为半径的圆及内部一动点,若AP =λAB +μAC,则λ+μ的最大值为()A.1B.33C.3+33D.328.在△ABC 中,AD 为BC 上的中线,G 为AD 的中点,M ,N 分别为线段AB ,AC 上的动点(不包括端点A ,B ,C ),且M ,N ,G 三点共线,若AM =λAB ,AN =μAC,则λ+4μ的最小值为()A.32 B.52C.2D.949.(2023·全国·高三专题练习)在ΔABC 中,AC =2,AB =2,∠BAC =120°,AE =λAB ,AF=μAC ,M 为线段EF 的中点,若AM=1,则λ+μ的最大值为()A.73B.273C.2D.21310.在扇形OAB 中,∠AOB =60o ,OA =1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]11.(2023·全国·高三专题练习)如图,在扇形OAB 中,∠AOB =600,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若u =x +λy (λ>0)存在最大值,则λ的取值范围为()A.(1,3)B.13,3C.12,1D.12,2题型九:平行四边形大法1如图,圆O 是半径为1的圆,OA =12,设B ,C 为圆上的任意2个点,则AC ⋅BC 的取值范围是.2如图,C ,D 在半径为1的⊙O 上,线段AB 是⊙O 的直径,则AC ⋅BD的取值范围是.3(2023·浙江·模拟预测)已知e 为单位向量,平面向量a ,b 满足|a +e |=|b -e |=1,a ⋅b的取值范围是.1.(2023·江西宜春·校联考模拟预测)半径为1的两圆M 和圆O 外切于点P ,点C 是圆M 上一点,点B 是圆O 上一点,则PC ⋅PB的取值范围为.2.(2023·福建·高三福建师大附中校考阶段练习)设圆M ,圆N 的半径分别为1,2,且两圆外切于点P ,点A ,B 分别是圆M ,圆N 上的两动点,则PA ⋅PB的取值范围是()A.-8,12B.-16,34C.-8,1D.-16,1题型十:向量对角线定理1已知平行四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,若记a =OA⋅OB ,b =OB ⋅OC ,c =OC ⋅OD ,则()A.a <b <cB .a <c <bC .c <a <bD .b <a <c2如图,在圆O 中,若弦AB =3,弦AC =5,则AO ⋅BC的值是()A.-8B .-1C .1D .83如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥BC 若,AB =a ,AD =b ,则AC ⋅BD 等于()A.b 2-a 2B.a 2-b 2C.a 2+b 2D.a 2⋅b 2。
平面向量问题的解题策略
龙源期刊网 平面向量问题的解题策略作者:刘亚利来源:《理科考试研究·高中》2013年第07期平面向量为中学数学注入了新的活力,向量知识、向量观点在数学中有着广泛的应用,同时它具有代数和几何形式的“双重身份”,是数形结合的一个重要工具,是中学数学中的重点内容之一。
一、向量法我们学习了平面向量加法、减法、实数与向量的乘积、平面向量的数量积等运算和平面向量的基本定理。
向量法就是利用向量的各种运算处理数学问题。
在许多复杂的向量问题中,各种运算综合在一起,有时会比较繁杂,处理不好时会比较凌乱。
但是我们根据平面向量的基本定理,如果首先确定一组基向量,然后将我们运算过程中的各个向量都用基向量表示,利用基向量进行运算,这样使我们较清晰、简单地解决这些数学问题成为可能。
例1 (2011年湖南理14)在边长为1的正三角形ABC中,点评利用平面向量的基本定理,平面内的任一向量都可以用基向量表示,在知道两基底的夹角和大小的前提下,问题均能迎刃而解。
二、坐标法我们知道,在平面直角坐标系内,任何一个平面向量都可以用一个有序实数对唯一表示。
因此平面向量和解析几何都涉及坐标表示和坐标运算,坐标法可以将二者有机结合起来,向量的坐标表示与解析几何中的点的坐标恰好融为一体,使向量与坐标运算有机地结合起来,增加了处理问题的灵活性。
利用向量的坐标处理一些向量问题,基本思想是将向量问题坐标化、数量化,从而将推理转化为代数运算。
点评对于比较复杂的向量问题,如果相对容易能建立平面直角坐标系,将各个向量用坐标表示出来,那么通过代数运算,可能能迅速解决问题。
三、几何法以向量为载体,综合考查学生平面向量的加法、减法、实数与向量的乘积的几何意义以及平面向量的数量积的几何意义。
方法灵活,直观快捷,同时要求思维能力高,充分利用平行四边形、三角形和圆等几何模型。
第11讲 平面向量中的最值范围问题(教师版)
第11讲 平面向量中的最值范围问题题型一 利用平面向量基本定理确定参数的值、取值范围问题平面向量基本定理是向量坐标的理论基础,通过建立平面直角坐标系,将点用坐标表示,利用坐标相等列方程,寻找变量的等量关系,进而表示目标函数,转化为函数的最值问题. 【例1】已知1,60,OA OB AOB OC OA OB λμ==∠=︒=+,其中实数,λμ满足12λμ≤+≤,0,0λμ≥≥,则点C 所形成的平面区域的面积为( )A B C .D 【答案】B 【解析】 由题:1,60,OA OB AOB OC OA OB λμ==∠=︒=+,作2,2OP OA OQ OB ==,OC 与线段AB 交于D ,设OCxOD =,如图:OC OA OB λμ=+,0,0λμ≥≥,所以点C 在图形QOP ∠内部区域,根据平面向量共线定理有,1ODmOA nOB m n =++=,,1OC xOD xmOA xnOB m n ==++=,OC OA OB λμ=+,所以,xm u xn λ==,12λμ≤+≤,即12xm xn ≤+≤,即12x ≤≤,OC xOD =,所以点C 所在区域为梯形APQB 区域,其面积1122sin 6011sin 6022APQB OPQ OAB S S S ︒︒∆∆=-=⨯⨯⨯-⨯⨯⨯=,故选:B 【玩转跟踪】1.已知RtABC ,3AB =,4BC =,5CA =,P 为ABC △外接圆上的一动点,且AP xAB y AC =+,则x y+的最大值是( )A .54B .43C .D .53【答案】B 【解析】解:以AC 的中点为原点,以AC 为x 轴,建立如图所示的平面直角坐标系,则ABC △外接圆的方程为2225()2xy +=,设P 的坐标为55cos ,sin 22θθ⎛⎫⎪⎝⎭,过点B 作BD 垂直x 轴,∵4sin 5A =,3AB = ∴12sin 5BD AB A ==,39cos 355AD AB A =⋅=⨯=,∴5972510OD AO AD =-=-=,∴712,105B ⎛⎫-⎪⎝⎭,∵5,02A ⎛⎫- ⎪⎝⎭,5,02C ⎛⎫⎪⎝⎭∴912,55AB ⎛⎫= ⎪⎝⎭,()5,0AC =,555cos ,sin 222AP θθ⎛⎫=+ ⎪⎝⎭∵AP xAB y AC =+∴555912cos ,sin ,22255x θθ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭ ()9125,05,55y x y x ⎛⎫+=+ ⎪⎝⎭∴559cos 5225x y θ+=+,512sin 25x θ=,∴131cos sin 282y θθ=-+,25sin 24x θ=, ∴()12151cos sin sin 23262x y θθθϕ+=++=++,其中3sin 5ϕ=,4cos 5ϕ=,当()sin 1θϕ+=时,x y +有最大值,最大值为514623+=,故选:B .2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .2CD .2【答案】A【解析】,如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r=,即圆C 的方程是()22425x y -+=, ()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x zy =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,点C 是半径为1的扇形圆弧AB 上一点,0OA OB ⋅=,1OA OB ==,若OC OA OB x y =+,则2x y+的最小值是( )A.B .1 C .2D【答案】B 【解析】 由题:OC OA OB x y =+,点C 是半径为1的扇形圆弧AB 上一点,则0,0x y >>,则()22OC xOA yOB=+,即()()2222OC xOA yOBxyOA OB =++⋅,0OA OB ⋅=,1OA OB ==化简得:221xy +=,令cos ,sin ,[0,]2x y θθθπ==∈,2sin 2cos ),sin [0,]2x y θθθϕϕϕϕπ+=+=+==∈因为[0,]2πθ∈,[0,]2πϕ∈,2πϕθϕϕ≤+≤+,sin()θϕ+先增大后减小,所以sin()θϕ+的最小值为sin ,sin()2πϕϕ+较小值,sin()cos 2πϕϕ+==即sin()θϕ+,所以2)x y θϕ+=+的最小值为1.故选:B题型二 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,把数量cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算.【例2】【2018年天津理科08】如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则的最小值为( )A .B .C .D .3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=AB cos60°,BN=AB sin60°,∴DN=1,∴BM,∴CM=MB tan30°,∴DC=DM+MC,∴A(1,0),B(,),C(0,),设E(0,m),∴(﹣1,m),(,m),0≤m,∴m2m=(m)2(m)2,当m时,取得最小值为.故选:A.【玩转跟踪】1.【2017年新课标2理科12】已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•()的最小值是()A.﹣2 B.C.D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P (x ,y ),则(﹣x ,y ),(﹣1﹣x ,﹣y ),(1﹣x ,﹣y ),则•()=2x 2﹣2y +2y 2=2[x 2+(y )2]∴当x =0,y 时,取得最小值2×(),故选:B .2.已知腰长为2的等腰直角ΔABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值为( )A .24-B .24+C .48-D .48+【答案】C【解析】以,CA CB 为,x y 轴建立平面直角坐标系,则(0,0),(2,0),(0,2),(1,1)C A B M ,设(,)P x y ,则(2,),(,2)PA x y PB x y =--=--,(,),(1,1)PC x y PM x y =--=--,(2)(2)PA PB x x y y ⋅=----2222x x y y =-+-,PC PM ⋅=22(1)(1)x x y y x x y y ----=-+-,∵2PC =,∴224x y +=,设2cos ,2sin xy θθ==,则2cos 2sin )4x y πθθθ+=+=+,∴x y -≤+≤()()4PA PB PC PM ⋅+⋅⋅2(4224)(4)2(4)x y x y x y =--+--=+-,∴x y +=()()4PA PB PC PM ⋅+⋅⋅取得最小值24)48=-故选:C 。
专题2.3 平面向量中范围、最值等综合问题 高考数学选填题压轴题突破讲义(解析版)
一.方法综述平面向量中的最值与范围问题是一种典型的能力考查题,能有效地考查学生的思维品质和学习潜能,能综合考察学生分析问题和解决问题的能力,体现了高考在知识点交汇处命题的思想,是高考的热点,也是难点,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数(二次函数、三角函数)的最值或应用基本不等式,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合,应用图形的几何性质.二.解题策略类型一与向量的模有关的最值问题【例1】【安徽省黄山市2019届高三一模】如图,在中,,,为上一点,且满足,若的面积为,则的最小值为()A.B.C.D.【答案】B【解析】设,,则三角形的面积为,解得,由,且C,P,D三点共线,可知,即,故.以所在直线为轴,以点为坐标原点,过点作的垂线为轴,建立如图所示的坐标系,则,,,,则,,,则(当且仅当即时取“=”).故的最小值为.【指点迷津】三点共线的一个向量性质:已知O、A、B、C是平面内的四点,则A、B、C三点共线的充要条件是存在一对实数、,使,且.【举一反三】1、【宁夏六盘山高级中学2019届高三下学期二模】如图,矩形中边的长为,边的长为,矩形位于第一象限,且顶点分别位于轴、轴的正半轴上(含原点)滑动,则的最大值为()A.B.C.D.【答案】B【解析】如图,设,则因为所以则所以的最大值为所以选B2、【浙江省湖州三校2019年高考模拟】已知向量,的夹角为,且,则的最小值为()A.B.C.5 D.【答案】B【解析】由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.3、【四川省成都外国语学校2019届高三3月月考】在平面直角坐标系中,,若,则的最小值是()A.B.C.D.【答案】C【解析】由于,即,即,所以在以原点为圆心,半径为的圆上.得到三点共线.画出图像如下图所示,由图可知,的最小值等于圆心到直线的距离减去半径,直线的方程为,圆心到直线的距离为,故的最小值是,故选C.类型二与向量夹角有关的范围问题【例2】【四川省成都市实验外国语学校2019届高三10月月考】已知向量与的夹角为,,,,,在时取得最小值若,则夹角的取值范围是______.【答案】【解析】,,,在时取得最小值解可得:则夹角的取值范围本题正确结果:【指点迷津】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解. 【举一反三】1、非零向量b a ,满足b a2=22b a,2|||| b a,则b a 与的夹角的最小值是 .【答案】3【解析】由题意得2212a b a b r r r r ,24a b r r ,整理得22422a b a b a b r r r r r r ,即1a b r11cos ,22a b a b a b a b r rr r r r r r ,,3a b r r ,夹角的最小值为3 .2、【上海市2019年1月春季高考】在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为____________【答案】【解析】 由题意:,设,,因为,则与结合,又与结合,消去,可得:所以本题正确结果:类型三 与向量投影有关的最值问题【例3】【辽宁省沈阳市郊联体2019届高三一模】若平面向量,满足||=|3|=2,则在方向上的投影的最大值为( ) A .B .C .D .【答案】A 【解析】 因为,所以,在方向上的投影为,其中为,的夹角.又,故.设,则有非负解,故, 故,故,故选A .【指点迷津】向量的数量积有两个应用:(1)计算长度或模长,通过用;(2)计算角,.特别地,两个非零向量垂直的充要条件是.另外,的几何意义就是向量在向量的投影与模的乘积,向量在向量的投影为.【举一反三】1、已知ABC 的外接圆的圆心为O ,半径为2,且0OA AB AC u u u v u u u v u u u v v ,则向量CA u u u v 在向量CB u u u v方向上的投影为( ) A. 3 B. 3 C. -3 D. 3 【答案】B本题选择B 选项.2、设1,2OA OB u uu v u u u v , 0OA OB u u u v u u u v , OP OA OB u u u v u u u v u u u v ,且1 ,则OA u u u v 在OP uuu v 上的投影的取值范围( ) A. 25-,15B.25,15C. 5,15D. 5-,15【答案】D当λ0 时, 0,x当222215λ8λ4482λ0521x λλλλ,故当λ1 时,1x 取得最小值为1,即1101x x, 当λ0 时, 222215844825215x,即15x 505x综上所述 5( ,1x故答案选D 类型四 与平面向量数量积有关的最值问题 【例4】【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .【指点迷津】平面向量数量积的求法有:①定义法;②坐标法;③转化法;其中坐标法是同学们最容易忽视的解题方法,要倍加注视,若有垂直或者容易出现垂直的背景可建立平面直角坐标系,利用坐标法求解.【举一反三】1、已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE DC u u u r u u u r的最大值为( )A. 1B. 12C. 3D. 2【答案】A2、【辽宁省鞍山市第一中学2019届高三一模】中,,,,且,则的最小值等于 A .B .C .D .【答案】C 【解析】 由题意知,向量,且,可得点D 在边BC 上,,所以,则,即,所以时以C 为直角的直角三角形.如图建立平面直角坐标系,设,则, 则,,当时,则最小,最小值为.故选:C .3、已知圆的半径为2,是圆上任意两点,且,是圆的一条直径,若点满足(),则的最小值为( )A. -1B. -2C. -3D. -4 【答案】C类型五 平面向量系数的取值范围问题【例5】在矩形ABCD 中, 12AB AD ,,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD u u u v u u u v u u u v,则 的最大值为( )A. 3B. 22C. 5D. 2【答案】A∴圆的方程为(x ﹣1)2+(y ﹣2)2=45, 设点P 25cosθ+1, 25), ∵AP AB AD u u u v u u u v u u u v,25, 25sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ), ∴55cosθ+1=λ, 55sinθ+2=2μ, ∴255(θ+φ)+2,其中tanφ=2, ∵﹣1≤sin (θ+φ)≤1, ∴1≤λ+μ≤3,故λ+μ的最大值为3, 故选:A【指点迷津】(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题;(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题; (3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 【举一反三】1、【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】已知正方形ABCD 的边长为1,动点P 满足,若,则的最大值为A .B .C .D .【答案】C 【解析】解:以A 为原点建立如图所示的直角坐标系:则,,,,设, ,则由得,化简得:,又,,,,表示圆上的点到原点的距离得平方,其最大值等于圆心到原点的距离加半径的平方,即,故选:C .2.已知1,3,0OA OB OA OB u u u v u u u v u u u v u u u v ,点C 在AOB 内,且OC u u u v 与OA u u u v 的夹角为030,设,OC mOA nOB m n R u u u v u u u v u u u v ,则mn的值为( )A. 2B. 52C. 3D. 4【答案】C 【解析】如图所示,建立直角坐标系.由已知1,3,OA OB u u u v u u u v,,则10033OA OB OC mOA nOB m n u u u r u u u r u u u r u u u r u u u r(,),(,),(,), 33303n tan m, 3mn. 故选B3.【上海市金山区2019届高三二模】正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,动点P 满足,若,其中m 、n R ,则的最大值是________【答案】 【解析】建立如图所示的直角坐标系,则A (﹣1,﹣1),B (1,﹣1),D (﹣1,1),P (,),所以(1,sinθ+1),(2,0),(0,2),又,所以,则,其几何意义为过点E (﹣3,﹣2)与点P (sinθ,cosθ)的直线的斜率,设直线方程为y +2k (x +3),点P 的轨迹方程为x 2+y 2=1,由直线与圆的位置关系有:,解得:,即的最大值是1,故答案为:1类型六 平面向量与三角形四心的结合【例6】已知ABC 的三边垂直平分线交于点O , ,,a b c 分别为内角,,A B C 的对边,且 222c b b ,则AO BC u u u v u u u v的取值范围是__________.【答案】2,23【指点迷津】平面向量中有关范围最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【举一反三】1、如图,为的外心,为钝角,是边的中点,则的值为()A. 4B.C.D.【答案】B2.已知点O 是锐角三角形ABC 的外心,若OC mOA nOB u u u v u u u v u u u v(m , n R ),则( )A. 2m nB. 21m nC. 1m nD. 10m n 【答案】C【解析】∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1,又OC mOA nOB u u u v u u u v u u u v ,∴|OC u u u v |=| mOA nOB u u u v u u u v |,可得2OC u u u v =22m OA u u u v +22n OB u u u v +2mn OA u u u v ⋅OB uuu v ,而OA u u u v ⋅OB uuu v =|OA u u u v|⋅|OB uuu v |cos ∠A 0B <|OA u u u v |⋅|OB uuu v|=1.∴1=2m +2n +2mn OA u u u v ⋅OB uuu v<22m n +2mn ,∴m n <−1或m n >1,如果m n >1则O 在三角形外部,三角形不是锐角三角形, ∴m n <−1, 故选:C.3、在ABC 中, 3AB , 5AC ,若O 为ABC 外接圆的圆心(即满足OA OB OC ),则·AO BC u u u v u u u v的值为__________. 【答案】8【解析】设BC 的中点为D ,连结OD ,AD ,则OD BC u u u v u u u v,则:222212121538.2AO BC AD DO BC AD BCAB AC AC AB AC ABu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v u u u v u u u v u u uv u u u v三.强化训练1.【宁夏平罗中学2019届高三上期中】已知数列是正项等差数列,在中,,若,则的最大值为()A.1 B.C. D.【答案】C【解析】解:∵,故三点共线,又∵,∴,数列是正项等差数列,故∴,解得:,故选:C.2.【山东省聊城市第一中学2019届高三上期中】已知M是△ABC内的一点,且,,若△MBC,△MCA和△MAB的面积分别为1,,,则的最小值是()A.2 B.8 C.6 D.3【答案】D【解析】∵,,∴,化为.∴.∴.则,而=5+4=9,当且仅当,即时取等号,故的最小值是9,故选:D.3.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知是边长为的正三角形,且,,设函数,当函数的最大值为-2时,()A.B.C.D.【答案】D【解析】,因为是边长为的正三角形,且,所以又因,代入得所以当时,取得最大,最大值为所以,解得,舍去负根.故选D项.4.【辽宁省鞍山市第一中学2019届高三一模】已知平面向量,,满足,若,则的最小值为A.B.C.D.0【答案】B【解析】因为平面向量,,满足,,,,设,,,,所以的最小值为.故选:B.5.已知直线分别于半径为1的圆O相切于点若点在圆O的内部(不包括边界),则实数的取值范围是( )A. B. C. D.【答案】B6.【河南省南阳市第一中学2019届高三第十四次考试】已知是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C.D.【答案】C【解析】解:以所在直线建立平面直角坐标系,设,,,因为所以,即,故,令(为参数),所以,因为,所以,,故选C.7.【四川省成都市外国语学校2019届高三一诊】如图所示,在中,,点在线段上,设,,,则的最小值为()A.B.C.D.【答案】D【解析】解:.∵,,三点共线,∴.即.由图可知.∴.令,得,令得或(舍).当时,,当时,.∴当时, 取得最小值故选:D.8.【安徽省宣城市 2019 届高三第二次调研】在直角三角形中,边 的中线 上,则的最大值为( ).,,A.B.C.D.【答案】B 【解析】 解:以 A 为坐标原点,以 AB,AC 方向分别为 x 轴,y 轴正方向建立平面直角坐标系, 则 B(2,0),C(0,4),中点 D(1,2)设,所以,,在 斜时,最大值为 .故选:B. 二、填空题 9.在△ABC 中,角 A,B,C 所对的边分别为 a,b,c.若对任意 λ∈R,不等式则 的最大值为_____. 【答案】2【解析】由,两边平方得,,则则,又,则,即,由 ,从而,即,从而问题可得解.恒成立, ,,2110.【2019 年 3 月 2019 届高三第一次全国大联考】已知 的内角 所对的边分别为 ,向量,,且,若 ,则 面积的最大值为________.【答案】 【解析】由 ,得,整理得.由余弦定理得,因为,所以.又所以,,当且仅当 时等号成立,所以,即.故答案为: . 11.【四川省广元市 2019 届高三第二次高考适应】在等腰梯形 ABCD 中,已知,,,,动点 E 和 F 分别在线段 BC 和 DC 上,且,【答案】【解析】解:等腰梯形 ABCD 中,已知,,,,,,,,,则的最小值为______.,22, ,则当且仅当即 时有最小值故答案为:12.【上海市七宝中学 2019 届高三下学期开学】若边长为 6 的等边三角形 ABC,M 是其外接圆上任一点,则的最大值为______.【答案】【解析】解:是等边三角形, 三角形的外接圆半径为 ,以外接圆圆心 为原点建立平面直角坐标系,设,.设,则,..23的最大值是.故答案为.13.【天津市第一中学 2019 届高三下学期第四次月考】在线段 以点 为中点,则的最大值为________【答案】0 【解析】中,已知 为直角,,若长为 的即 14.【安徽省黄山市 2019 届高三第二次检测】已知 是锐角,则 的取值范围为________.【答案】 【解析】 设 是 中点,根据垂径定理可知,依题意的最大值为 0. 的外接圆圆心, 是最大角,若,即,利用正弦定理化简得.由于,所以,即.由于 是锐角三角形的最大角,故,故.15.【北京市大兴区 2019 届高三 4 月一模】已知点,,点 在双曲线的取值范围是_________.的右支上,则24【答案】【解析】设点 P(x,y),(x>1),所以,因为,当 y>0 时,y=,所以,由于函数在[1,+∞)上都是增函数,所以函数在[1,+∞)上是增函数,所以当 y>0 时函数 f(x)的最小值=f(1)=1.即 f(x)≥1.当 y≤0 时,y=,所以,由于函数 所以函数在[1,+∞)上都是增函数, 在[1,+∞)上是减函数,所以当 y≤0 时函数 k(x)>0.综上所述,的取值范围是.16.【上海市青浦区 2019 届高三二模】已知 为的外心,,大值为________【答案】【解析】设的外接圆半径为 1,以外接圆圆心为原点建立坐标系,因为,所以,不妨设,,,则,,,因为,所以,,则 的最25解得,因为 在圆上,所以 即, ,所以,所以,解得或,因为 只能在优弧 上,所以,故26。
高中数学2.3.2平面向量的正交分解及坐标表示)教案新必修4
2.3 平面向量的基本定理及其坐标表示2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示整体设计教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.三维目标1.通过探究活动,能推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量正交分解,会用坐标表示向量.重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.课时安排1课时教学过程导入新课思路 1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e 1、e 2是同一平面内的两个不共线的向量,a 是这一平面内的任一向量,那么a 与e 1、e 2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题图1①给定平面内任意两个不共线的非零向量e 1、e 2,请你作出向量3e 1+2e 2、e 1-2e 2.平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?②如图1,设e 1、e 2是同一平面内两个不共线的向量,a 是这一平面内的任一向量,我们通过作图研究a 与e 1、e 2之间的关系.活动:如图1,在平面内任取一点O,作OA =e 1,OB =e 2,OC =a .过点C 作平行于直线OB 的直线,与直线OA;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2.由于ON OM OC +=,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.当e 1、e 2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.定理说明:(1)我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a =λ1e 1+λ2e 2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? ②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a和b(如图2),作OA=a,OB=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.显然,当θ=0°时,a与b同向;当θ=180°时,a与b反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=xi+y j ①这样,平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y) ②其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a与有序实数对(x,y)一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11B A 是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x=x 2-x 1,y=y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a 的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y).②是一一对应的.应用示例思路1例1 如图4,ABCD,AB =a ,AD =b ,H 、M 是AD 、DC 之中点,F 使BF=31BC,以a ,b 为基底分解向量HF AM 和.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有+=+=AD DM AD AM a b AB AD DC 212121+=+=AB 21=b +21a . AD AD AB AD BC AH BF AB AH AF HF 21312131-+=-+-+=-= =a 61-b . 点评:以a 、b 为基底分解向量AM 与HF ,实为用a 与b 表示向量AM 与HF . 变式训练图5已知向量e 1、e 2(如图5),求作向量-2.5e 1+3e 2作法:(1)如图,任取一点O,作OA =-2.5e 1,OB =3e 2.(2)作OACB. 故OC OC 就是求作的向量.图6例2 如图6,分别用基底i、j 表示向量a 、b 、c 、d ,并求出它们的坐标.活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j 的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =1AA +2AA =x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.变式训练i ,j 是两个不共线的向量,已知AB =3i +2j ,CB =i +λj ,CD =-2i +j ,若A 、B 、D 三点共线,试求实数λ的值.解:∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j ,又∵A、B 、D 三点共线, ∴向量AB 与BD 共线.因此存在实数υ,使得AB =υBD ,即3i +2j =υ[-3i +(1-λ)j ]=-3υi +υ(1-λ)j .∵i 与j 是两个不共线的向量,故⎩⎨⎧=-=-,2)1(,33λv v∴⎩⎨⎧=-=.3,1λv ∴当A 、B 、D 三点共线时,λ=3.例3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③ 活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1 如图7,M 是△A BC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN .活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎪⎩⎪⎨⎧==.,2211b a b a 解:∵,,NM BN BM NM AN AM +=+= ∴由CM BM AM 32++=0,得=++++CM NM BN NM AN 3)(2)(0. ∴CM BN NM AN 323+++=0.又∵A、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,NM CM BN AN μλ== ∴=+++NM BN NM BN μλ3230.∴(λ+2)BN +(3+3μ)NM =0. 由于BN 和NM 不共线,∴⎩⎨⎧=+=+,033,02μλ∴⎩⎨⎧-=-=12μλ ∴.MN NM CM =-=∴CM MN CM CN 2=+==2a .点评:这里选取NM BN ,作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决.变式训练设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知⎩⎨⎧-=+=-.154,523λλλλ 解之,得λ=1,μ=-1.图8例2 如图8,△A BC 中,AD 为△A BC 边上的中线且AE=2EC,求GEBG GD AG 及的值. 活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值. 解:设μλ==GEBG GD AG , ∵BD =DC ,即AD -AB =AC -AD , ∴AD =21(AB +AC ). 又∵AG =λGD =λ(AD -AG ), ∴AG =λλ+1AD =)1(2λλ+AB +)1(2λλ+AC . ① 又∵BG =μGE ,即AG -AB =μ(AE -AG ),∴(1+μ)AG =AB +μAG AE ,=AE AB μμμ+++111 又AE =32AC ,∴AG =AB μ+11+)1(32μμ+AC . ② 比较①②,∵AB 、AC 不共线, ∴⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ解之,得⎪⎩⎪⎨⎧==23,4μλ∴.23,4==GE BG GD AG 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过△O AB 的重心G 的直线与边OA 、OB 分别交于P 、Q,设OP =h OA ,OB k OQ =,试证:311=+kh 解:设OA =a ,OB =b ,OG 交AB 于D,则OD =21(OB OA +)=21(a +b )(图略). ∴OG =32OD =31(a +b ),OQ OG QG -==31(a +b )-k b =31a +331k -b , OQ OP QP -==h a -k b .∵P、G 、Q 三点共线,∴QP QG λ=. ∴31a +331k -b =λh a -λk b .∴⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ 两式相除,得.3311hk h k k h k =+⇒-=-, ∴kh 11+=3. 知能训练1.已知G 为△A BC 的重心,设AB =a ,AC =b ,试用a 、b 表示向量AG .2.已知向量a =(x+3,x 2-3x-4)与AB 相等,其中A(1,2),B(3,2),求x.图9解答:1.如图9,AG =32AD , 而=+=+=BC AB BD AB AD 21a +21(b -a )=21a +21b , ∴3232==AD AG (21a +21b )=31a +31b . 点评:利用向量加法、减法及数乘的几何意义. 2.∵A(1,2),B(3,2),∴AB =(2,0). ∵a=AB ,∴(x+3,x 2-3x-4)=(2,0). ∴⎩⎨⎧=--=+043,232x x x 解得⎩⎨⎧=-=-=.41,1x x x 或 ∴x=-1.点评:先将向量AB 用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决. 课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.作业课本习题2.3 A 组1.设计感想1.本节课内容是为了研究向量方便而引入的一个新定理——平面向量基本定理.教科书首先通过“思考”:让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e 1+λ2e 2的向量表示.2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给与引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.。
2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(知识点讲解)解析版
专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。
平面向量中极化恒等式、等和(高)线定理及最值(范围)问题--备战2022年高考数学一轮复习配套试题
平面向量中极化恒等式、等和(高)线定理及最值(范围)问题)知识梳理1.极化恒等式:a ·b =14[(a +b )2-(a -b )2].(1)几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.(2)平行四边形PMQN ,O 是对角线交点.则: ①PM →·PN→=14[|PQ |2-|NM |2](平行四边形模式); ②PM →·PN→=|PO |2-14|NM |2(三角形模式). 2.等和(高)线定理(1)由三点共线结论推导等和(高)线定理:如图,由三点共线结论可知,若OP →=λOA→+μOB →(λ,μ∈R ),则λ+μ=1,由△OAB 与△OA ′B ′相似,必存在一个常数k ,k ∈R ,使得OP ′→=kOP →,则OP ′→=kOP →=kλOA →+kμOB →,又OP ′→=xOA →+yOB →(x ,y ∈R ),∴x +y =kλ+kμ=k ;反之也成立.(2)平面内一组基底OA→,OB →及任一向量OP ′→,OP ′→=λOA →+μOB →(λ,μ∈R ),若点P ′在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值);反之也成立,我们把直线AB 以及与直线AB 平行的直线成为等和(高)线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1); ③当直线AB 在O 点和等和线之间时,k ∈(1,+∞); ④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;⑥定值k 的变化与等和线到O 点的距离成正比. 3.平面向量中的最值(范围)问题(1)向量投影、数量积、向量的模、夹角的最值(或范围). (2)向量表达式中字母参数的最值(或范围).题型一 极化恒等式的应用【例1】 (1)已知AB 是圆O 的直径,AB 长为2,C 是圆O 上异于A ,B 的一点,P 是圆O 所在平面上任意一点,则(P A →+PB →)·PC →的最小值为( )A .-14B .-13C .-12 D .-1(2)(2020·天津卷)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB→=-32,则实数λ的值为__________;若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN→的最小值为__________.答案 (1)C (2)16 132解析 (1)P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →,取OC 中点D ,由极化恒等式得,PO →·PC →=|PD |2-14|OC |2=|PD |2-14,又|PD |2min=0,∴(P A →+PB →)·PC →的最小值为-12.(2)法一 依题意得AD ∥BC ,∠BAD =120°,由AD →·AB →=|AD →|·|AB →|·cos ∠BAD =-32|AD →|=-32,得|AD →|=1,因此λ=|AD →||BC→|=16.取MN 的中点E ,连接DE ,则DM →+DN →=2DE →,DM →·DN →=14[(DM →+DN →)2-(DM →-DN →)2]=DE →2-14NM →2=DE →2-14.注意到线段MN 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离,即AB ·sin B =332,因此DE →2-14的最小值为⎝ ⎛⎭⎪⎫3322-14=132,即DM →·DN →的最小值为132.法二 因为AD →=λBC →, 所以AD ∥BC ,则∠BAD =120°, 所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32, 解得|AD→|=1.因为AD→,BC →同向,且BC =6, 所以AD→=16BC →,即λ=16. 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系. 如图,设M (a ,0),不妨设点N 在点M 右侧, 则N (a +1,0),且-32≤a ≤72.又D ⎝ ⎛⎭⎪⎫1,332,所以DM →=⎝ ⎛⎭⎪⎫a -1,-332, DN→=⎝ ⎛⎭⎪⎫a ,-332, 所以DM →·DN →=a 2-a +274=⎝ ⎛⎭⎪⎫a -122+132.所以当a =12时,DM →·DN→取得最小值132.感悟升华 (1)极化恒等式多用于向量的数量积; (2)注意在三角形、平行四边形中的应用.【训练1】 (1)(2021·杭州二中模拟)在△ABC 中,M 是BC 的中点,AM =3 ,BC =10,则AB →·AC→=________.(2)已知正三角形ABC 内接于半径为2的圆O ,点P 是圆O 上的一个动点,则P A →·PB→的取值范围是________. 答案 (1)-16 (2)[-2,6]解析 (1)因为M 是BC 的中点,由极化恒等式得AB →·AC→=|AM |2-14|BC |2=9-14×100=-16.(2)取AB 的中点D ,连接CD ,因为三角形ABC 为正三角形,所以O 为三角形ABC 的重心,O 在CD 上,且OC =2OD =2,所以CD =3,AB =2 3. 又由极化恒等式得P A →·PB→=PD 2-14AB 2=PD 2-3, 因为P 在圆O 上,所以当P 在点C 处时,PD max =3, 当P 在CO 的延长线与圆O 的交点处时,PD min =1, 所以P A →·PB →∈[-2,6]. 题型二 等和线定理的应用【例2】 (1)如图,平面内有三个向量OA →,OB →,OC →,其中〈OA →,OB →〉=120°,〈OA →,OC →〉=30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=mOA →+nOB →,则m +n =________.(2)在扇形OAB 中,∠AOB =60°,C 为AB ︵上的一个动点,若OC →=xOA →+yOB →,则3x +y 的取值范围是________. 答案 (1)6 (2)[1,3]解析 (1)法一 连接AB ,交OC 于点D ,则 ∠DOA =∠OAD =30°,∠BOD =90°, |OD →|=|OB →|tan 30°=33,|OD →|=|DA →|=33,|DB →|=233,由平面向量基本定理得OD→=23OA →+13OB →,|OC →|=23=6|OD →|,∴OC →=6⎝ ⎛⎭⎪⎫23OA →+13OB →=4OA→+2OB →,m +n =6.法二 根据等高线定理可得|OC ||OD |=k =m +n ,k =|OC→||OD →|=2333=6,∴m +n =6.(2)取D 使得OD →=13OA →,OC →=xOA →+yOB →=3xOD →+yOB →,作一系列与BD 平行的直线与圆弧相交,当点C 与点B 重合时,3x +y 取得最小值1,当点C 与点A 重合时,3x +y 取得最大值3,故3x +y 的取值范围是[1,3]. 感悟升华 (1)“等和线”的解题步骤 ①确定值为1的等和线;②过动点作该线平行线,结合动点的可行域,分析在何点处取得最值; ③利用长度比或该点的位置,求得最值或范围.(2)“等和线”多用于向量线性表示式中有关系数的最值、范围问题. (3)此类问题也可建系,用坐标法解决.【训练2】 如图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且AD =1,点P 是△BCD (含边界)的动点,设OP →=λOC →+μOD →,则λ+μ的最大值为________.答案 32解析 当点P 位于B 点时,过点B 作GH ∥DC ,交OC ,OD 的延长线于G ,H ,则OP →=xOG →+yOH →,且x +y =1, ∵△GCB ∽△COD ,∴GC CO =CB OD =12,∴OP →=OB →=xOG →+yOH →=32xOC →+32yOD →=λOC →+μOD →,所以λ=32x ,μ=32y ⇒λ+μ=32x +32y =32.故答案为32. 题型三 平面向量中的最值(范围)问题 角度1 函数型【例3-1】 (1)(一题多解)(2020·浙江卷)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤ 2.设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是__________. (2)(2021·宁波十校联考)设向量a =(x 1,y 1),b =(x 2,y 2),记a *b =x 1x 2-y 1y 2,若圆C :x 2+y 2-2x +4y =0上的任意三个点A 1,A 2,A 3,且A 1A 2⊥A 2A 3,则|OA 1→*OA 2→+OA 2→*OA 3→|(O 为坐标原点)的最大值是________. 答案 (1)2829 (2)16解析 (1)法一 设e 1=(1,0),e 2=(x ,y ), 则a =(x +1,y ),b =(x +3,y ). 由2e 1-e 2=(2-x ,-y ),故|2e 1-e 2|=(2-x )2+y 2≤2,得(x -2)2+y 2≤2. 又有x 2+y 2=1,得(x -2)2+1-x 2≤2, 化简,得4x ≥3,即x ≥34,因此34≤x ≤1. cos 2θ=⎝ ⎛⎭⎪⎫a ·b |a |·|b |2 =⎝ ⎛⎭⎪⎫(x +1)(x +3)+y 2(x +1)2+y 2(x +3)2+y 22=⎝ ⎛⎭⎪⎫4x +42x +26x +102=4(x +1)2(x +1)(3x +5)=4(x +1)3x +5=43(3x +5)-833x +5=43-833x +5,当x =34时,cos 2θ有最小值,为4⎝ ⎛⎭⎪⎫34+13×34+5=2829.法二 单位向量e 1,e 2满足|2e 1-e 2|≤2, 所以|2e 1-e 2|2=5-4e 1·e 2≤2,即e 1·e 2≥34. 因为a =e 1+e 2,b =3e 1+e 2,a ,b 的夹角为θ,所以cos 2θ=(a ·b )2|a |2|b |2=[(e 1+e 2)·(3e 1+e 2)]2|e 1+e 2|2·|3e 1+e 2|2=(4+4e 1·e 2)2(2+2e ·e 2)(10+6e 1·e 2)=4+4e 1·e 25+3e 1·e 2.不妨设t =e 1·e 2,则t ≥34,cos 2θ=4+4t 5+3t ,又y =4+4t 5+3t 在⎣⎢⎡⎭⎪⎫34,+∞上单调递增.所以cos 2θ≥4+35+94=2829. 所以cos 2θ的最小值为2829. 法三 由题意,不妨设e 1=(1,0),e 2=(cos x ,sin x ).因为|2e 1-e 2|≤2,所以(2-cos x )2+sin 2x ≤2,得5-4cos x ≤2,即cos x ≥34. 易知a =(1+cos x ,sin x ),b =(3+cos x ,sin x ),所以a ·b =(1+cos x )(3+cos x )+sin 2x =4+4cos x ,|a |2=(1+cos x )2+sin 2x =2+2cos x ,|b |2=(3+cos x )2+sin 2x =10+6cos x ,所以cos 2θ=(a ·b )2|a |2|b |2=(4+4cos x )2(2+2cos x )(10+6cos x )=4+4cos x5+3cos x.不妨设m =cos x ,则m ≥34,cos 2θ=4+4m 5+3m ,又y =4+4m 5+3m 在⎣⎢⎡⎭⎪⎫34,+∞上单调递增,所以cos 2θ≥4+35+94=2829,所以cos 2θ的最小值为2829. (2)由O ,A 1,A 2,A 3四点共圆,且A 1A 2⊥A 2A 3,可知A 1A 3为圆C 的直径,故OA 1→+OA 3→=2OC →.由圆C 的标准方程设OA 2→=(1+5cos θ,-2+5sin θ),又点C (1,-2),则|OA 1→*OA 2→+OA 2→*OA 3→|=|(OA 1→+OA 3→)*OA 2→|=2|OC →*OA 2→|=2|(1+5cos θ)+2(-2+5sin θ)|=2|5sin(θ+φ)-3|≤16,其中tan φ=12,当且仅当θ=2k π-π2-φ,k ∈Z 时等号成立,所以所求最大值为16.感悟升华 此类问题可归结为函数、三角函数求最值、值域问题. 【训练3-1】 (1)如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在AB ︵上,则PM →·PB →的最小值为________.(2)(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________. 答案 (1)4-25 (2)4 2 5 解析(1)如图,以O 为坐标原点,OA→为x 轴的正半轴,OB →为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎢⎡⎦⎥⎤0,π2,所以PM →·PB→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ-4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255,所以PM →·PB→的最小值为4-2 5.(2)由题意,不妨设b =(2,0),a =(cos θ,sin θ)(θ∈[0,2π)), 则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ). 令y =|a +b |+|a -b |=(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ=5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20]. 由此可得(|a +b |+|a -b |)max =20=25, (|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5. 角度2 解不等式型【例3-2】 (1)(2021·金丽衢十二校二联)设t ∈R ,已知平面向量a ,b 满足|a |=2|b |=2,且a ·b =1,向量c =x a +(t -x )b ,若存在两个不同的实数x ∈[0,t ],使得c 2-2a ·c +3=0,则实数t ( ) A .有最大值为2,最小值为32 B .无最大值,最小值为32 C .有最大值为2,无最小值 D .无最大值,最小值为0(2)已知不共线向量OA →,OB →夹角为α,|OA →|=1,|OB →|=2,OP →=(1-t )OA →,OQ →=tOB →(0≤t ≤1),|PQ →|在t =t 0处取最小值,当0<t 0<15时,则α的取值范围为( ) A.⎝ ⎛⎭⎪⎫0,π3 B.⎝ ⎛⎭⎪⎫π3,π2 C.⎝ ⎛⎭⎪⎫π2,2π3 D.⎝ ⎛⎭⎪⎫2π3,π 答案 (1)B (2)C解析 (1)设向量a ,b 的夹角为θ,∵a ·b =|a ||b |cos θ=2cos θ=1,∴cos θ=12.∵θ∈[0,π],∴θ=π3.由题意得c ·a =[x a +(t -x )b ]·a =x a 2+(t -x )b ·a =4x +t -x =3x +t ,c 2=[x a +(t -x )b ]2=x 2a 2+2x (t -x )a ·b +(t -x )2·b 2=4x 2+2xt -2x 2+t 2-2xt +x 2=3x 2+t 2.存在两个不同的实数x ∈[0,t ],使得c 2-2a ·c +3=0,即存在两个不同的实数x ∈[0,t ],使得3x 2-6x +t 2-2t +3=0,即f (x )=3x 2-6x +t 2-2t+3在[0,t ]内有两个不同的零点,则⎩⎪⎨⎪⎧f (0)≥0,f (t )≥0,Δ>0,0<--66<t ,即⎩⎨⎧t 2-2t +3≥0,4t 2-8t +3≥0,0<t <2,t >1,解得t ∈⎣⎢⎡⎭⎪⎫32,2,则实数t 的最小值为32,无最大值,故选B. (2)由题意,不共线向量OA→,OB →夹角为α,|OA →|=1,|OB →|=2,OP →=(1-t )OA →,OQ →=tOB →(0≤t ≤1),得PQ →=OQ →-OP →=tOB →-(1-t )OA →,所以|PQ →|2=[tOB →-(1-t )OA →]2=(5+4cos α)t 2-2(1+2cos α)t +1,由二次函数的图象和性质知,当t =t 0=1+2cos α5+4cos α时,|PQ→|取最小值,即0<1+2cos α5+4cos α<15,解得-12<cos α<0,因为α∈[0,π],所以α∈⎝ ⎛⎭⎪⎫π2,2π3,故选C.感悟升华 此类问题最后化为解不等式(组)问题解决.【训练3-2】 (1)(2021·丽水测试)已知|c |=2,向量b 满足2|b -c |=b ·c .当b ,c 的夹角最大时,|b |=________.(2)(2021·金华十校调研)已知平面向量a ,b ,c 满足|a |≤1,|b |≤1,|2c -(a +b )|≤|a -b |,则|c |的最大值为________. 答案 (1)22 (2) 2解析 (1)设〈b ,c 〉=θ,则由2|b -c |=b ·c 得4(b -c )2=(b ·c )2,即4|b |2sin 2θ-16|b |cos θ+16=0,则4cos θ=|b |sin 2θ+4|b |≥2|b |sin 2θ·4|b |=4sin θ,当且仅当|b |sin 2θ=4|b |,即|b |=2sin θ时,等号成立,∵4cos θ≥4sin θ,则tan θ=sin θcos θ≤1,所以θ≤π4,当θ=π4时,|b |=2 2.(2)因为|2c -(a +b )|≤|a -b |,所以|2c |-|a +b |≤|a -b |,即|2c |≤|a +b |+|a -b |,将a ,b 的起点移到同一点,以a ,b 为邻边构造平行四边形,则a +b ,a -b 为平行四边形的两条对角线.在平行四边形ABCD 中,|AC |2=|AB |2+|AD |2+2|AB |·|AD |cos ∠BAD ,|BD |2=|AB |2+|AD |2-2|AB |·|AD |cos ∠BAD ,则|AC |2+|BD |2=2|AB |2+2|AD |2,易得当|AB |,|AD |最大且|AC |=|BD |时,|AC |+|BD |取得最大值,所以当|a |=1,|b |=1且|a +b |=|a -b |时,|a +b |+|a -b |取得最大值22,则|2c |≤|a +b |+|a -b |≤22,即|c |≤2,所以|c |的最大值为 2.角度3 重要不等式型【例3-3】 (1)(一题多解)(2021·义乌市联考)已知平面向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为α,|a |=1,|b |+|c |=2,则cos α的取值范围是________. (2)(2016·浙江卷)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________. 答案 (1)[-1,1] (2)12解析 (1)法一 由题意可知-c =a +b ,则|b |-|a |≤|c |≤|b |+|a |,所以|b |-1≤2-|b |≤|b |+1,则12≤|b |≤32.不妨设|b |=t ,t ∈⎣⎢⎡⎦⎥⎤12,32,则|c |=2-t .又由-c =a +b 两边平方得1+t 2+2t cos α=(2-t )2=4-4t +t 2,则cos α=3-4t 2t ∈[-1,1]. 法二 如图所示,椭圆方程为x 2+4y 23=1.当向量a ,b ,c 共线时,α取最大值或最小值,即cos α=1或-1,所以cos α∈[-1,1]. (2)由已知可得6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e |, 由于上式对任意单位向量e 都成立. ∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b . 即6≥5+2a ·b ,∴a ·b ≤12. 感悟升华 常用不等式(1)基本不等式:a +b ≥2ab (a >0,b >0); (2)三角不等式:||a |-|b ||≤|a ±b |≤|a |+|b |; (3)数量积不等式:|a ·b |≤|a ||b |.【训练3-3】 (1)(2021·浙江新高考仿真三)设平面向量a ,b 满足1≤|a |≤2,2≤|b |≤3,则|a +b |+|a -b |的取值范围是________.(2)(一题多解)(2021·浙江五校联考)已知a |=3,|b |=|c |=4,若c ⊥a ,则|a -b -c |的最大值为________. 答案 (1)[6,213] (2)9解析 (1)|a +b |2+|a -b |2=2(|a |2+|b |2)①,由基本不等式,得|a +b |2+|a -b |2≥(|a +b |+|a -b |)22②.又|a |∈[1,2],|b |∈[2,3],由①②得(|a +b |+|a -b |)2≤4(|a |2+|b |2)≤52,即|a +b |+|a -b |≤213.又由三角不等式有|a +b |+|a -b |≥|(a +b )±(a -b )|,即|a +b |+|a -b |≥2|a |,|a +b |+|a -b |≥2|b |,故|a +b |+|a -b |≥6,综上,有6≤|a +b |+|a -b |≤213.(2)法一 |a -b -c |=a 2+b 2+c 2-2a ·b +2b ·c =41+2b ·(c -a ).∵c ⊥a ,∴|c -a |=5,则b ·(c -a )≤|b ||c -a |=20,所以|a -b -c |≤41+40=9.法二 由|a |=3,|b |=|c |=4知,a 在以O 为圆心,3为半径的圆上运动,b ,c 均在以O 为圆心,4为半径的圆上运动,如图,又a ⊥c ,则|a -b -c |=|(a -c )-b |=|CA→-OB →|≤|CA →|+|OB →|=5+4=9. 角度4 轨迹型【例3-4】 (2021·名校仿真训练四)直线ax +by +c =0与圆O :x 2+y 2=4相交于两点M ,N .若c 2=a 2+b 2,P 为圆O 上任意一点,则PM →·PN →的取值范围是________. 答案 [-2,6] 解析 如图,取MN 的中点A ,连接OA ,则OA ⊥MN ,∵c 2=a 2+b 2,∴O 点到直线MN 的距离OA =|c |a 2+b2=1,圆O 的半径r =2,∴Rt △AON 中,设∠AON =θ,得cos θ=OA ON =12,得θ=π3,cos ∠MON =cos 2θ=cos 2π3=-12,由此可得OM →·ON →=|OM →|·|ON →|cos ∠MON =2×2×⎝ ⎛⎭⎪⎫-12=-2,则PM →·PN →=(OM →-OP →)·(ON→-OP →)=OM →·ON →+OP →2-OP →·(OM →+ON →)=-2+4-2OP →·OA →=2-2|OP →|·|OA →|·cos ∠AOP =2-4cos ∠AOP ,当OP→,OA →同向时,取得最小值2-4=-2,当OP →,OA →反向时,取得最大值2+4=6,则PM →·PN→的取值范围是[-2,6].感悟升华 利用向量及其运算的几何意义,结合轨迹图形求解,并注意分析临界状态.【训练3-4】 (2021·湖州期末质检)正方形ABCD 的边长为2,E ,M 分别为BC ,AB 的中点,点P 是以C 为圆心,CE 为半径的圆上的动点,点N 在正方形ABCD 的边上运动,则PM →·PN →的最小值是________. 答案 1- 5 解析 由题意得PM →·PN →=(PC →+CM →)·(PC →+CN →)=1+PC →·CM →+(PC →+CM →)·CN →=1+PC →·CM →+PM →·CN →.由图易得向量PM →,CN →的夹角恒为锐角,则PM →·CN →≥0,则当点N 与点C 重合,点P 为CM 与圆C 的交点时,PC →·CM →取得最小值-5,PM →·CN →取得最小值0,此时PM →·PN →取得最小值1- 5. 角度5 投影与函数分析型【例3-5】 (1)如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若A ,B ,C ,D 四点均位于图中的“晶格点”处,且A ,B 的位置如图所示,则AB →·CD→的最大值为________.(2)(2019·浙江卷)已知正方形ABCD 的边长为1,当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最小值是________,最大值是________. 答案 (1)24 (2)0 2 5解析 (1)先建立平面直角坐标系如图,因为正六边形的边长均为1,所以B (0,0),A ⎝ ⎛⎭⎪⎫32,92,当CD→在AB →方向上的投影最大时,AB →·CD →最大,此时取C (0,5),D (-3,0),即(AB →·CD →)max =⎝ ⎛⎭⎪⎫-32,-92·(-3,-5)=32+452=24. (2)如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则AB→=(1,0),AD →=(0,1). 设a =λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →=λ1AB →+λ2AD →-λ3AB →-λ4AD →+λ5(AB →+AD →)+λ6(AD →-AB →) =(λ1-λ3+λ5-λ6)AB →+(λ2-λ4+λ5+λ6)AD → =(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6).故|a|=(λ1-λ3+λ5-λ6)2+(λ2-λ4+λ5+λ6)2. ∵λi (i =1,2,3,4,5,6)取遍±1,∴当λ1-λ3+λ5-λ6=0,λ2-λ4+λ5+λ6=0(λ1=λ3=λ4=λ5=λ6=1,λ2=-1)时,|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|取得最小值0.考虑到λ5-λ6,λ5+λ6有相关性,要确保所求模最大,只需使|λ1-λ3+λ5-λ6|,|λ2-λ4+λ5+λ6|尽可能取到最大值,即当λ1-λ3+λ5-λ6=2,λ2-λ4+λ5+λ6=4(λ1=λ2=λ5=λ6=1,λ3=λ4=-1)时可取到最大值,∴|λ1AB →+λ2BC →+λ3CD →+λ4DA →+λ5AC →+λ6BD →|的最大值为4+16=2 5. 感悟升华 (1)关于数量积问题常用投影分析法;(2)当向量线性表达式系数较多且给出其取值范围时,常用系数分析法. 【训练3-5】 (1)已知正三角形ABC 的边长为4,O 是平面ABC 内的动点,且∠AOB =π3,则OC →·AB →的最大值为________. (2)(2021·浙江名师预测一)已知等边△ABC 的边长为1,当每个λi (i =1,2,3)在{-1,0,1}中取值时,则|λ1AB →-λ2BC →+λ3CA →|的最小值是________,最大值是________. 答案 (1)1633 (2)0 2解析 (1)如图,圆E 2为△ABC 的外接圆,圆E 1与圆E 2关于直线AB 对称,由题意知O 在圆E 1,E 2的优弧AB ︵上(圆E 1,E 2半径相等),设AB 的中点为D ,OC →·AB →=(DC →-DO →)·AB→=BA →·DO →=|BA →|·|DO →|·cos ∠ADO ,易知DO →在BA →方向上的射影最大时,OC →·AB →取得最大值,易知DO →在BA →方向上射影的最大值为△ABO 外接圆的半径,故所求最大值为4×42sin π3=1633. (2)当λi (i =1,2,3)中三个均为0时,|λ1AB →-λ2BC →+λ3CA →|=0;当λi (i =1,2,3)中恰有2个为0时,|λ1AB →-λ2BC →+λ3CA →|≤1;当λi (i =1,2,3)中恰有1个为0时,1≤|λ1AB →-λ2BC →+λ3CA →|≤3;当λi (i =1,2,3)中均不为0时,0≤|λ1AB →-λ2BC →+λ3CA →|≤2,综上所述,|λ1AB →-λ2BC →+λ3CA →|的最小值是0,最大值是2.一、选择题1.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A .2 B .3 C .6 D .8 答案 C解析 如图,由已知|OF |=1,取FO 中点E ,连接PE ,由极化恒等式得OP →·FP→=|PE |2-14|OF |2=|PE |2-14, ∵|PE |2max =254,∴OP →·FP→的最大值为6. 2.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN→的最大值为( )A .3B .2 3C .6D .9 答案 D解析 由平面向量数量积的几何意义知,AM →·AN →等于|AM →|与AN →在AM →方向上的投影之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB →+AD →)=12AB →2+AD →2+32AB →·AD→=9.3.(一题多解)(2020·新高考山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是( )A .(-2,6)B .(-6,2)C .(-2,4)D .(-4,6) 答案 A解析 法一 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP →=(x ,y ), AB→=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6). 故选A.法二 AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB→方向上的投影,所以结合图形可知,当P 与C 重合时投影最大.当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB →∈(-2,6).故选A. 4.(2021·镇海中学检测)已知向量m ,n 满足(m +n )·(m -2n )=0,(m -n )·(m +2n )+1=0,则|n |的最小值为( ) A.14 B.12 C.22 D .1 答案 C解析 因为(m +n )·(m -2n )=0,所以m 2-m ·n -2n 2=0.因为(m -n )·(m +2n )+1=0,所以m 2+m ·n -2n 2+1=0,所以m ·n =-12,且m 2=2n 2-12>0.因为(m ·n )2=14≤|m |2·|n |2=⎝ ⎛⎭⎪⎫2|n |2-12·|n |2,解得|n |2≥12,所以|n |≥22,即|n |的最小值为22,故选C.5.如图,△BCD 与△ABC 的面积之比为2,点P 是区域ABDC 内的任一点(含边界).且AP →=λAB →+μAC →,则λ+μ的取值范围是( )A .[0,1]B .[0,2]C .[0,3]D .[0,4] 答案 C解析 过点P 作GH ∥BC ,交AC 、AB 的延长线于G ,H ,则AP→=xAG →+yAH →,且x +y =1,当点P 位于D 点时,G ,H 分别位于C ′,B ′,∵△BCD 与△ABC 的面积之比为2,∴AC ′=3AC ,AB ′=3AB ,∴OP →=xAG →+yAH →=xAC ′→+yAB ′→=x ·3·AC →+y ·3·AB →=λAB →+μAC →,所以λ=3y ,μ=3x ⇒λ+μ=3x +3y =3.当点P 位于A 点时,显然有λ+μ=0,选C.6.(一题多解)已知点C 为扇形AOB 的弧AB 上任意一点,且∠AOB =120°,若OC →=λOA→+μOB →(λ,μ∈R ),则λ+μ的取值范围是( ) A .[-2,2] B .(1,2] C .[1,2] D .[1,2] 答案 D解析 法一 (常规方法)设半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,建立直角坐标系,其中A ⎝ ⎛⎭⎪⎫-12,32;B (1,0);C (cos θ,sin θ)(其中∠BOC =θ⎝ ⎛⎭⎪⎫0≤θ≤2π3,有OC→=λOA →+μOB →(λ,μ∈R ),即(cos θ,sin θ)=λ⎝ ⎛⎭⎪⎫-12,32+μ(1,0),整理得-12λ+μ=cos θ;32λ=sin θ,解得λ=2sin θ3,μ=cos θ+sin θ3,则λ+μ=2sin θ3+cos θ+sin θ3=3sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π6,θ∈⎣⎢⎡⎦⎥⎤0,2π3,易得λ+μ∈[1,2].法二 (等和线定理) 设λ+μ=k ,当C 位于A 或B 时,A 、B 、C 三点共线, 所以k =λ+μ=1,当点运动到AB ︵的中点C 时,k =λ+μ=2,∴λ+μ∈[1,2].7.设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1,则( )A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定 答案 B解析 |b +t a |2=b 2+2a ·b ·t +t 2a 2 =|a |2t 2+2|a |·|b |cos θ·t +|b |2. 因为|b +t a |min =1, 所以4|a |2·|b |2-4|a |2·|b |2cos 2θ4|a |2=|b |2(1-cos 2θ)=1.所以|b |2sin 2θ=1,所以|b |sin θ=1,即|b |=1sin θ. 即θ确定,|b |唯一确定.8.(2021·龙湾中学检测)已知平面向量a ,b ,c 满足|a |=|b |=a ·b =2,(a -c )·(b -2c )=1,则|b -c |的最小值为( ) A.7-52 B.7-32 C.5-32 D.3-12答案 A解析 由|a |=|b |=a ·b =2得〈a ,b 〉=π3,则不妨设a =OA →=(1,3),b =OB →=(2,0),c =OC→=(x ,y ),则a -c =(1-x ,3-y ),b -2c =(2-2x ,-2y ).由(a -c )·(b -2c )=1得(x -1)2+⎝ ⎛⎭⎪⎫y -322=54,则点C (x ,y )的轨迹是以⎝⎛⎭⎪⎫1,32为圆心,52为半径的圆,则|b -c |=|CB →|的最小值为(2-1)2+⎝⎛⎭⎪⎫0-322-52=7-52,故选A.9.(2021·武汉质检)已知等边△ABC 内接于圆Γ:x 2+y 2=1,且P 是圆Γ上一点,则P A →·(PB→+PC →)的最大值是( )A. 2 B .1 C. 3 D .2 答案 D 解析 设BC 的中点为E ,连接AE ,向量PO→,OE →的夹角为θ.因为等边△ABC 内接于圆Γ:x 2+y 2=1,所以点O 在AE 上,且OA =2OE =1,所以P A →·(PB →+PC →)=P A →·2PE →=2(PO →+OA →)·(PO →+OE →)=2[PO →2+PO →·(OA →+OE →)+OA →·OE →]=2[PO →2+PO →·(-OE →)-2OE →2]=2⎣⎢⎡⎦⎥⎤1-1×12cos θ-2×⎝ ⎛⎭⎪⎫122=1-cos θ,所以当cos θ=-1,∴〈PO→,OE →〉=π,∴〈OP →,OE →〉=0,即点P 为AE 的延长线与圆的交点时,P A ·(PB →+PC →)取最大值2,故选D.10.(2021·名校冲刺卷三)已知|a |=|b |=|c |=2,且a ·b =2,(a -c )·(b -c )≤0,则|a +b +c |( )A .有最小值23-2,最大值23+2B .有最小值23-2,最大值27C .有最小值27,最大值23+2D .有最小值23-2,最大值2 答案 C 解析 如图所示,令a =OA →,b =OB →,c =OC →,由a ·b =2,|a |=|b |=|c |=2可得∠AOB =π3.又(a -c )·(b -c )≤0,所以点C 在以AB 为直径的圆内,|a +b +c |=|OD →+OC →|,所以|a +b +c |的最大值是OC→,OD →同向为23+2,最小值是点C 与点A 或点B 重合为27,故选C. 11.已知m ,n 是两个非零向量,且|m |=1,|m +2n |=3,则|m +n|+|n|的最大值为( )A. 5B.10 C .4 D .5答案 B解析 因为(m +2n )2=4n 2+4m ·n +1=9,所以n 2+m ·n =2,所以(m +n )2=m 2+2m ·n +n 2=5-n 2,所以|m +n |+|n |=5-|n |2+|n |.令|n |=x (0<x ≤5),f (x )=5-x 2+x ,则f ′(x )=-2x 25-x2+1.由f ′(x )=0,得x =102,所以当0<x <102时,f ′(x )>0时,当102<x ≤5时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,102上单调递增,在⎝ ⎛⎦⎥⎤102,5上单调递减,所以f (x )max =f ⎝ ⎛⎭⎪⎫102=10,故选B. 12.(2021·北京海淀区检测)已知点M 在圆C 1:(x -1)2+(y -1)2=1上,点N 在圆C 2:(x +1)2+(y +1)2=1上,则下列说法错误的是( )A.OM →·ON→的取值范围为[-3-22,0] B .|OM→+ON →|的取值范围为[0,22] C .|OM→-ON →|的取值范围为[22-2,22+2] D .若OM→=λON →,则实数λ的取值范围为[-3-22,-3+22] 答案 B解析∵M 在圆C 1上,点N 在圆C 2上,∴∠MON ≥90°,∴OM →·ON →≤0,又|OM→|≤2+1,|ON →|≤2+1, ∴当|OM→|=2+1,|ON →|=2+1时, OM →·ON→取得最小值, (2+1)2cos π=-3-22,故A 正确;设M (1+cos α,1+sin α),N (-1+cos β,-1+sin β),则OM→+ON →=(cos α+cos β,sin α+sin β), ∴|OM→+ON →|2=2cos αcos β+2sin αsin β+2 =2cos (α-β)+2,∴0≤|OM→+ON →|≤2,故B 错误; ∵两圆外离,半径为1,|C 1C 2|=22,∴22-2≤|MN |≤22+2,即22-2≤|OM→-ON →|≤22+2,故C 正确; ∵2-1≤|OM→|≤2+1,2-1≤|ON →|≤2+1, ∴当OM →=λON →时,2-12+1≤-λ≤2+12-1, 解得-3-22≤λ≤-3+22,故D 正确.13.已知向量OA →,OB →满足|OA →|=|OB →|=2,OA →·OB →=2,若OC →=λOA →+μOB →(λ,μ∈R ),且λ+μ=1,则|OC→|的最小值为( ) A .1 B.52 C. 2 D. 3答案 D解析 |OC →|2=(λOA →+μOB →)2=[λOA →+(1-λ)OB →]2=4λ2+4(1-λ)2+2λ(1-λ)OA →·OB→, 因为OA →·OB →=2,所以|OC →|2=4λ2+4(1-λ)2+2λ(1-λ)·2=4λ2-4λ+4=4⎝ ⎛⎭⎪⎫λ-122+3,当λ=12时,|OC →|取得最小值 3.二、填空题14.在△ABC 中,AB =6,AC =5,A =120°,动点P 在以C 为圆心,2为半径的圆上,则P A →·PB→的最小值为________. 答案 16解析 设AB 的中点为M ,则P A →·PB →=⎣⎢⎡⎦⎥⎤12(P A →+PB →)2-⎣⎢⎡⎦⎥⎤12(P A →-PB →)2=PM →2-MA→2=PM →2-9, 所以要求P A →·PB→的最小值,只需求|PM →|的最小值,显然当点P 为线段MC 与圆的交点时,|PM→|取得最小值,最小值为|MC |-2.在△AMC 中,由余弦定理得|MC |2=32+52-2×3×5×cos 120°=49,所以|MC |=7,所以|PM →|的最小值为5,则P A →·PB→的最小值为16.15.(2021·宁波适考)在Rt △ABC 中,CA =CB =2,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤32,2 解析 取MN 的中点为P ,由极化恒等式得CM →·CN →=14[(2CP →)2-MN →2]=CP →2-12.问题转化为求|CP →|的取值范围,当P 为AB 的中点时,|CP →|取最小值为2,则CM →·CN→的最小值为32;当M 与A (或N 与B )重合时,|CP →|取最大值为102,则CM →·CN →的最大值为2,所以CM →·CN →的取值范围是⎣⎢⎡⎦⎥⎤32,2. 16.(2021·浙江新高考仿真二)若非零向量a 和b 满足|a +b |=|b |=2,则|a |的取值范围是________,|a -b |的取值范围是________.答案 (0,4] [2,6]解析 因为||a +b |-|b ||≤|a |=|a +b -b |≤|a +b |+|b |=4,又a 是非零向量,所以|a |的取值范围是(0,4],因为|a -b |+|a +b |≥2|b |=|(a +b )-(a -b )|≥||a -b |-|a +b ||,所以-4≤|a -b |-|a +b |≤4,|a -b |+|a +b |≥4,又|a +b |=2,解得|a -b |的取值范围是[2,6].17.(2021·稽阳联考)在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE →=2EC →,则DE →·AC→=________. 答案 13解析如图,以B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y 轴,建立平面直角坐标系,则B (0,0),A (1,0),C (0,2),所以AC→=(-1,2). 因为D 为BC 的中点,所以D (0,1),因为AE →=2EC →,所以E ⎝ ⎛⎭⎪⎫13,43, 所以DE →=⎝ ⎛⎭⎪⎫13,13, 所以DE →·AC →=⎝ ⎛⎭⎪⎫13,13·(-1,2)=-13+23=13. 18.(2021·镇海中学检测)已知向量a ,b ,c 满足a +b +c =0,|c |=23,c 与a -b 所成的角为5π6,若t ∈R ,则|t a +(1-t )b |的最小值是________,此时|t a +(1-t )b -c |=________.答案 32 372解析 因为a +b +c =0,且|c |=23,所以|a +b |=2 3.因为c 与a -b 所成的角为5π6,所以a +b 与a -b 所成的角为π6.设d =t a +(1-t )b ,则当三个向量的起点在一起时,终点在a -b 所在直线上,|d |有最小值,所以|t a +(1-t )b |min =|a +b |2·sin 30°=32,此时|t a +(1-t )b -c |=12+34+23×32=372.。
平面向量中最值、范围问题
平面向量中的最值、范围问题一、考情分析平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合.其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量夹角、系数的范围的等,解决思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合. 二、经验分享1.利用平面向量的数量积可以解决几何中的垂直、夹角、长度等问题,即只需将问题转化为向量形式,用向量的运算来求解.如果能够建立适当的直角坐标系,用向量的坐标运算往往更为简捷.1.平面向量线性运算问题的常见类型及解题策略2.几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.3.坐标是向量代数化的媒介,通过向量的坐标表示可将向量问题转化为代数问题来解决,而坐标的获得通常要借助于直角坐标系. 对于某些平面向量问题, 若能建立适当的直角坐标系,可以使图形中复杂的几何关系转化为简单明朗的代数关系,减少推理过程,有效地降低思维量,起到事半功倍的效果.上面两题都是通过建立坐标系将向量问题转化为函数与不等式问题求解,体现了向量解题的工具性. 三、知识拓展1.-≤⋅≤a b a b a b . 2.-≤±≤+a b a b a b 四、题型分析(一) 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算. 【例1】在边长为2的等边三角形ABC 中,D 是AB 的中点,E 为线段AC 上一动点,则ED EB ⋅的取值范围为【分析】利用向量的加法或减法法则,将向量,EB ED 分别表示,结合已知条件设|AE |x =(02x ≤≤),将ED EB ⋅用变量x 表示,进而转化为二次函数的值域问题.【点评】将⋅用某个变量表示,转化为函数的值域问题,其中选择变量要有可操作性.【小试牛刀】【江苏省盐城中学2018届高三上学期期末】已知ABC ∆的周长为6,且,,BC CA AB 成等比数列,则BA BC ⋅的取值范围是______. 【答案】2795⎡-⎢⎣⎭【解析】因为,,BC CA AB 成等比数列,所以622a c bb ac +-=≤=,从而02b <≤,所以()()22222263cos 32722b b ac bBA BC ac B b --+-⋅====-++,又()()2222,,4a c b a c b a c ac b -<∴-<+-<,即2390b b +->,3532b -<≤,故27952BA BC -≤⋅<. (二) 平面向量模的取值范围问题设(,)a x y =,则222a a x y ==+,向量的模可以利用坐标表示,也可以借助“形”,向量的模指的是有向线段的长度,过可结合平面几何知识求解,尤其注意,如果直接求模不易,可以将向量用基底向量表示再求.【例2】已知向量,,a b c 满足4,22,a b ==a 与b 的夹角为4π,()()1c a c b -⋅-=-,则c a -的最大值为 .【分析】根据已知条件可建立直角坐标系,用坐标表示有关点(向量),确定变量满足的等式和目标函数的解析式,结合平面几何知识求最值或范围. 【解析】设c OC b OB a OA ===,,;以OA 所在直线为x,O 为坐标原点建立平面直角坐标系,4,22,a b ==a 与b 的夹角为4π,则A (4,0),B (2,2),设C (x,y ) ∵()()1c a c b -⋅-=-, ∴x 2+y 2-6x-2y+9=0,即(x-3)2+(y-1)2=1表示以(3,1)为圆心,以1为半径的圆,c a -表示点a -的最大值【点评】建立直角坐标系的原则是能准确快捷地表示有关向量或点的坐标,正确找到变量间的关系,以及目标函数代表的几何意义是解题关键.【小试牛刀】【2018届山东省济南高三上学期期末】已知平面上的两个向量OA 和OB 满足OA a =,OB b =,且221a b +=, 0OA OB ⋅=,若向量(),R OC OA OB λμλμ=+∈,且()()222221214a b λμ-+-=,则OC 的最大值为__________. 【答案】32【解析】因为OA a =, OB b =,且221a b +=, 0OA OB ⋅=,, 1,AB OA OB =⊥,如图,取AB 中点D ,则()12OD OA OB =+, 12OD = , 1122DC OC OD OA OB λμ⎛⎫⎛⎫∴=-=-+- ⎪ ⎪⎝⎭⎝⎭,由()()222221214a b λμ-+-=可得222211122a b λμ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭2222211122DC a b λμ⎛⎫⎛⎫∴=-+-= ⎪ ⎪⎝⎭⎝⎭, 1DC ∴=, C ∴在以D 为圆心, 1为半径的圆上, ∴当O C ,, D 共线时OC 最大, OC ∴的最大值为312OD +=,故答案为32.(三) 平面向量夹角的取值范围问题设11(,)a x y =,22(,)b x y =,且,a b 的夹角为θ,则121222221122cos a b a bx y x y θ⋅==⋅+⋅+.【例3】已知向量→OA 与→OB 的夹角为θ,→→→→→→→-====PQ OB t OQ OA t OP OB OA ,)1(,,1,20t 在时取得最小值,当0105t <<时,夹角θ的取值范围为________________. 【分析】将PQ 表示为变量t 的二次函数PQ 1)cos 42()cos 45(2+--++=t t θθ,转化为求二次函数的最小值问题,当θθcos 45cos 210++=t 时,取最小值,由已知条件0105t <<,得关于夹角θ的不等式,解不等式得解.【点评】求变量的取值范围、最值,往往要将目标函数用某个变量表示,转化为求函数的最值问题,期间要注意变量之间的关系,进而得解.【小试牛刀】已知非零向量,a b 满足2a b = ,若函数3211().132f x x a x a bx =+++ 在R 上存在极值,则a 和b 夹角的取值范围为 【答案】,3ππ⎛⎤⎥⎝⎦【解析】()'2fx x a x a b =++⋅,设a 和b 夹角为θ,因为()f x 有极值,所以240a a b ∆=-⋅>,即24cos 0a a b θ∆=-⋅⋅>,即1cos 2θ<,所以,3πθπ⎛⎤∈ ⎥⎝⎦. (四)平面向量系数的取值范围问题平面向量中涉及系数的范围问题时,要注意利用向量的模、数量积、夹角之间的关系,通过列不等式或等式得系数的不等式,从而求系数的取值范围.【例4】已知()2,λ=a ,()5,3-=b ,且a 与b 的夹角为锐角,则λ的取值范围是 .【分析】a 与b 的夹角为锐角等价于0a b ⋅>,且a 与b 不共线同向,所以由0a b ⋅>,得310<λ,再除去a 与b 共线同向的情形.【解析】由于a 与b 的夹角为锐角,0>⋅∴b a ,且a 与b 不共线同向,由01030>+-⇒>⋅λb a ,解得310<λ,当向量a 与b 共线时,得65-=λ,得56-=λ,因此λ的取值范围是310<λ且56-≠λ.【点评】注意向量夹角与三角形内角的区别,向量夹角的范围是[0,]π,而三角形内角范围是(0,)π,向量夹角是锐角,则cos 0,θ>且cos 1θ≠,而三角形内角为锐角,则cos 0,θ>.【小试牛刀】【江苏省泰州中学2018届高三10月月考】如图,在ABC ∆中, 21,3AB AC BAC π==∠=. (1)求AB BC ⋅的值;(2)设点P 在以A 为圆心, AB 为半径的圆弧BC 上运动,且AP x AB y AC =+,其中,x y R ∈.求xy 的取值范围.【解析】(1)()AB BC AB AC AB ⋅=⋅- 213||122AB AC AB =⋅-=--=-. (2)建立如图所示的平面直角坐标,则()131,0,,22B C ⎛⎫- ⎪ ⎪⎝⎭.设()2cos ,sin ,0,3P πθθθ⎡⎤∈⎢⎥⎣⎦,由AP x AB y AC =+, 得()()13cos ,sin 1,0,2x y θθ⎛⎫=+- ⎪ ⎪⎝⎭.所以3cos ,sin 2y x y θθ=-=. 所以323cos sin ,sin x y θθθ=+=. 22323121sin cos sin sin2sin 233363xy πθθθθθ⎛⎫=+=+=-+ ⎪⎝⎭. 因为270,,2,3666ππππθθ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦, 所以,当262ππθ-=时,即3πθ=时, xy 的最大值为1;当266ππθ-=-或7266ππθ-=即0θ=或23πθ=时, xy 的最小值为0.五、迁移运用1.【江苏省常州2018届高三上学期期末】在ABC ∆中, 5AB =, 7AC =, 3BC =, P 为ABC ∆内一点(含边界),若满足()14BP BA BC R λλ=+∈,则BA BP ⋅的取值范围为________. 【答案】525,84⎡⎤⎢⎥⎣⎦【解析】由余弦定理,得2225371cos 2532B +-==-⨯⨯,因为P 为ABC ∆内一点(含边界),且满足()14BP BA BC R λλ=+∈,所以30,4λ⎡⎤∈⎢⎥⎣⎦,则14BA BP BA BA BC λ⎛⎫⋅=⋅+ ⎪⎝⎭212515525,44284BA BA BC λλ⎡⎤=+⋅=-∈⎢⎥⎣⎦. 2.【江苏省南通市2018届高三上学期第一次调研】如图,已知矩形ABCD 的边长2AB =, 1AD =.点P ,Q 分别在边BC , CD 上,且45PAQ ︒∠=,则AP AQ ⋅的最小值为_________.【答案】424-3.【江苏省如皋市2017--2018学年度高三年级第一学期教学质量调研】已知点P 是边长为3形ABC 内切圆上的一点,则PA PB ⋅的取值范围为_______. 【答案】[]3,1-【解析】以正三角形ABC 的中心为原点,以AB 边上的高为y 轴建立坐标系,则())3,1,3,1A B ---,正三角形ABC 内切圆的方程为221x y +=,所以可设()cos ,sin P αα,则()()3cos 1,3cos 1PA sin PB sin αααα=----=---,,, 22cos 3sin 21PA PB sin ααα⋅=-+++[]213,1sin α=-∈-,故答案为[]3,1-.4.【南京市、盐城市2018届高三年级第一次模拟考试】如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则AB CD ⋅ 的最大值为________.【答案】24【解析】先建立直角坐标系,由向量投影知AB CD ⋅ 取最大值时()()()390,5,3,0,,,0,022C D A B ⎛⎫- ⎪ ⎪⎝⎭ ,即AB CD ⋅ ()39345,3,5242222⎛⎫=--⋅--=+= ⎪ ⎪⎝⎭5.【江苏省泰州中学2018届高三12月月考】已知单位向量a , b 的夹角为120︒,那么2a xb -(x R ∈)的最小值是__________. 3 【解析】()()22222244cos1202413a xb a xbx x x x x -=-=+-︒=++=++ ∴ 2a xb-36.【江苏省溧阳市2017-2018学年高三第一学期阶段性调研】扇形AOB 中,弦2AB C =,为劣弧AB 上的动点, AB 与OC 交于点P ,则·OP BP 的最小值是_____________________. 【答案】14-【解析】设弦AB 中点为M,则()·OP BP OM MP BP MP BP ⋅=+=⋅ 若,MP BP 同向,则0OP BP ⋅>,若,MP BP 反向,则0OP BP ⋅<, 故OP BP ⋅的最小值在,MP BP 反向时取得,此时1MP BP +=,则: 2124MP BP OP BP MP BP ⎛⎫+⎪⋅=-⋅≥-=- ⎪⎝⎭, 当且仅当12MP BP ==时取等号,即OP BP ⋅的最小值是14-. 7.【苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中】已知AB 为圆O 的直径,M 为圆O 的弦CD 上一动点,8AB =,6CD =,则MA MB ⋅的取值范围是 . 【答案】[9,0]- 【解析】试题分析:22216MA MB MO AO MO ⋅=-=-,而222[,][7,16]O CD MO d r -∈=,所以MA MB ⋅的取值范围是[9,0]-8.【泰州中学2017届高三上学期期中考试】在ABC ∆中,()30AB AC CB -=,则角A 的最大值为_________. 【答案】6π9.【泰州中学2017届高三上学期期中考试】在平面内,定点,,,A B C D 满足,4DA DB DC DA DB DB DC DC DA =====-,动点,P M 满足2,AP PM MC ==,则BM 的最大值是__________.【答案】321【解析】试题分析:设r DC DB DA ===||||||,则4cos cos cos 222-===γβαr r r .由题设可知0120===γβα,且2282=⇒=r r .建立如图所示的平面直角坐标系,则)0,6(),0,6(),23,0(C B A -,由题意点P 在以A 为圆心的圆上,点M 是线段PC 的中点.故结合图形可知当CP 与圆相切时,BM 的值最大,其最大值是123-.应填答案1.10.【2017届甘肃天水一中高三12月月考】已知ABC ∆中,过中线AD 的中点E 任作一条直线分别交边AB ,AC 于M ,N 两点,设AM xAB =,AN y AC =(0xy ≠),则4x y +的最小值 .【答案】94【解析】由已知可得AB x AM AE ME AD AE AD )41(4212-=-=⇒+==⇒+=AC y AB x AM AN MN AC +-=-=+,41,由=+⇒=+⇒=--⇒y x yx y x xMN ME 44114141// 49)425(41)45(41)11)(4(41=⋅+≥++=++y x x y y x x y y x y x . 11.【2017吉林长春五县高二理上学期期末】已知0m >,0n >,向量(),1,3a m =-与()1,,2b n =垂直,则mn 的最大值为 .【答案】9【解析】因为向量(),1,3a m =-与()1,,2b n =垂直,所以60a b m n ⋅=+-=,即6m n +=,所以292()m n mn +≤=,当且仅当3m n ==时取等号,所以mn 的最大值为9,故答案为9. 12.【2017河北武邑中学周考】已知直角梯形ABCD 中,BC AD //,90=∠ADC ,2=AD ,1=BC ,P 是腰DC 上的动点,则3PA PB +的最小值为________. 【答案】5【解析】如图所示,以直线,DA DC 分别为,x y 轴建立平面直角坐标系,则(2,0),(1,),(0,),(0,0)A B a C a D ,设(0,)(0)P b b a ≤≤,则(2,),(1,)PA b PB a b =-=-,所以3(1,5,34)PA PB a a b +=--,所以2325(34)5PA PB a b +=+-≥,所以3PA PB +的最小值为5.13.【2017学年河北武邑中学周考】在平面直角坐标系中,O 为原点,()0,1-A ,()3,0B ,()0,3C ,动点D 满足1CD =,则OA OB OD ++的最大值是________. 【答案】17+【解析】由题意可得,点D 在以(3,0)C 为圆心的单位圆上,设点D 的坐标为(3cos ,sin )θθ+,则71OA OB OD OA OB OC CD ++≤+++=.14.【2017届河北武邑中学高三周考】已知向量()1,1OA =,()1,OB a =,其中O 为原点,若向量OA 与OB 的夹角在区间0,12π⎡⎤⎢⎥⎣⎦内变化,则实数a 的取值范围是 . 33a ≤≤【解析】因为),1(),1,1(a OB OA ==,所以a +=⋅1;又θcos 122a +⋅=⋅,故)1(21cos 2a a ++=θ,注意到]12,0[πθ∈,故]1,426[cos +∈θ,即]1,426[)1(212+∈++a a ,解之得333a ≤≤;应填答案333a ≤≤. 15.【2018届辽宁师范大学附属中学高三上学期期末】直角梯形ABCD 中, CB CD ⊥, AD BC ,ABD 是边长为2的正三角形, P 是平面上的动点, 1CP =,设AP AD AB λμ=+(λ, R μ∈),则λμ+的最大值为__________.【答案】923+ 【解析】以C 为原点, CD 为x 轴, BC 所在直线为y 轴,建立直角坐标系, 1,CP =∴可设()()()cos ,,1,3,2,0CP sin AD AB αα==-=-, (,3,AC =- (cos 2,3,AP AC CP sin αα=+=-+因为AP AD AB λμ=+,所以()()cos 2,32,3sin ααλμλ-+=--3122{{3313122cos sin cos λαλμαλαμαα=+--=-⇒==-+,)13333cos 222λμαααϕ+=-+-+ 332≤=923+即λμ+的最大值为923+923+. 16.【2018届湖南师范大学附属中学高三上学期月考】已知向量,a b 夹角为3π, 2b =,对任意x R ∈,有b xa a b +≥-,则()2atb a tb t R -+-∈的最小值是__________.【答案】7 【解析】向量,a b 夹角为,23b π=,对任意x R ∈,有b xa a b +≥-,两边平方整理可得()222220x a ax b a a b +⋅-⋅≥,则()()2224420a b a a a b ∆=⋅+-⋅≤,即有()220a a b -⋅≤,即()0a a b ⋅-=,则()a b a -⊥,由向量,a b 夹角为,23b π=,由2cos3a ab a b π=⋅=⋅⋅,即有1a =,则2223a b a b a b -=+-⋅=,画出AO a =, AB b =,建立平面直角坐标系,如图所示,则()()1,0,3,A B ()()1,0,1,3a b ∴=-=- ()()22132a tb a tb t t∴-+-=-+()2222113421424t tt t t t ⎛⎫-+=-++-+= ⎪⎝⎭2222131********t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⎢-+--++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎢⎣,表示(),0P t 与1313,48M N ⎛⎛ ⎝⎭⎝⎭的距离之和的2倍,当,,M P N 共线时,取得最小值2MN ,即有2211337224848MN ⎛⎫⎛⎫=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭,故答7. 17.【2018届江苏省泰州中学高三12月月考】在矩形ABCD 中, 3AB =, 1AD =,若M , N 分别在边BC , CD 上运动(包括端点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是__________.【答案】[1,9]【解析】分别以AB,AD 为x,y 轴建立直角坐标系,则()()(0,03,0,3,1,0,1A B C D ),(),设()(3,,,1M b N x ),因为BM CN BCCD=,所以33x b -=,则()3=,1,=3,3x AN x AM -⎛⎫⎪⎝⎭,故()8=1033AM AN x x ⋅+≤≤,所以81193x ≤+≤,故填[1,9]. 18.【2018届安徽省蒙城“五校”联考】在ABC ∆中,点D 在线段BC 的延长线上,且12BC CD =,点O 在线段CD 上(与点,C D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是__________. 【答案】()2,0-19.【2017届四川双流中学高三训练】已知向量(),2a x =-,(),1b y =,其中x ,y 都是正实数,若a b ⊥,则2t x y =+的最小值是___________. 【答案】4【解析】由a b ⊥,得0=⋅b a ,即()()21,2,-=⋅-xy y x ,所以2=xy .又x ,y 都是正实数,所以422222=⋅=⋅≥+=y x y x t .当且仅当y x 2=时取得等号,此时2=x ,1=y ,故答案为:4.20.【2017届江苏南京市盐城高三一模考】在ABC ∆中,已知3AB =,3C π=,则CA CB ⋅的最大值为 . 【答案】32【解析】1cos 2CA CB ba C ab ⋅==,由余弦定理得:2232cos 23a b ab ab ab ab π=+-≥-=,所以32CA CB ⋅≤,当且仅当a b =时取等号21.【2017届浙江杭州地区重点中学高三上学期期中】已知△ABC中,4AB =,2AC =,|(22)|AB AC λλ+-(R λ∈)的最小值为若P 为边AB 上任意一点,则PB PC ⋅的最小值是 .【答案】94-【解析】令()f λ=22222|(22)|(22)2(22)AB AC AB AC AB AC λλλλλλ+-=+-+-⋅=216λ+24(22)λ-+2(22)8cos A λλ-⋅=216[(22cos )(2cos 2)1]A A λλ-+-+,当cos 0A =时,()f λ=221116(221)16[2()]822λλλ-+=-+≥,因为>所以2A π=,则建立直角坐标系,(0,0)A ,(4,0),(0,2)B C ,设(,0)P x (04)x <<,则(4,0)PB x =-,(,2)PC x =-,所以PB PC ⋅=(4)x x --=2(2)4x --;当cos 0A ≠时,()f λ=2116[(22cos )()2A λ--+1cos]2A +≥88cos 12A +=,解得1cos 2A =,所以3A π=,则建立直角坐标系,(0,0)A ,(4,0),B C ,设(,0)P x (04)x <<,则(4,0)PB x =-,(1PC x =-,所以PB PC ⋅=(4)(1)x x --=259()24x --.综上所述,当52x =时,PB PC ⋅取得最小值94-.。
平面向量中最值、范围问题解题模板
因为 ,所以 ,所以 ,所以 ,故选:C.
【点睛】本题考查向量的数量积的最值求解,常常运用建立直角坐标系,利用坐标运算和转化为已知向量的方法,属于中档题.
8.在 中, , , ,点 是 边上的一点(包括端点),点 是 的中点,则 的取值范围是().
A. B. C. D.
【答案】B
3.如图,在 中, ,点 , 分别在 , 上,且 , .若 与 相交于点 ,则 的取值范围是__.
【答案】 .
【分析】设 , ,由三点共线的向量表示可设 ,结合已知条件进一步得到 ,
由此可得 ,结合余弦函数的有界性即可得出答案.
【解析】不妨设 , ,由于 , , 三点共线, , , 三点共线,
故由平面向量基本定理可设, ,
7.已知AB是半圆O的直径,AB=2,等腰三角形OCD的顶点C、D在半圆弧 上运动,且OC=OD,∠COD=120°,点P是半圆弧 上的动点,则 的取值范围()
A. B.
C. D.
【答案】C
【分析】建立直角坐标系,设出点C、D、P的坐标,利用向量的数量积运算和三角函数的性质可得选项.
【解析】以点O为原点,AB为x轴,垂直于AB的直线为y轴建立直角坐标系,如下图所示,
A. B. C. D.
【答案】A
【分析】作出图像如下图所示,取 的中点为D,由 ,则P在以O为圆心,以1为半径的圆上,再由公式 ,可得选项.
【解析】作出图像如下图所示,取 的中点为D,则 ,因为 ,则P在以O为圆心,以1为半径的圆上,
则 .又 为圆O上的点P到D的距离,则 ,
∴ 的最小值为 .
故选:A.
【点睛】本题考查向量的数量积的最值,转化法是解决此类问题的常用方法,属于中档题.
解答平面向量数量积问题的三种途径
平面向量的数量积问题侧重于考查平面向量的数量积公式、向量的模的公式、数乘运算法则、加减法的几何意义、基本定理、共线定理的应用.解答这类问题常用的途径有利用坐标法、定义法、数形结合法.下面结合实例来进行介绍.一、利用坐标法坐标法是指通过建立平面直角坐标系,将问题转化为坐标运算问题来求解.运用坐标法解答平面向量数量积问题,需根据几何图形的特点,寻找或构造垂直关系,建立合适的平面直角坐标系,熟练掌握并灵活运用向量的坐标运算法,如a ∙b=()x 1,y 1∙()x 2,y 2=x 1x 2+y 1y 2、||a =x 12+y 12、a +b =()x 1+x 2,y 1+y 2、a -b=()x 1-x 2,y 1-y 2.例1.已知P 是半径为1,圆心角为23π的一段圆弧AB 上的一点,若 AC =2 CB ,则 PA ∙PC 的取值范围是_____.解:以O 为原点、OB 为x 轴,建立如图1所示的平面直角坐标系.图1可得O ()0,0,B ()1,0,A æèçø-12,过点C 作CD ⊥OB ,垂足为D ,∵|| OA =||OB =1,∠AOB =2π3,∴|| A B =3,∵ AC =2CB ,∴|| CB =13|| A B =,在Rt△CDB 中,∠CBD =π6,∴|| CD =12|| CB,|| DB =12,∴|| OB =12,∴C æèçø12,设P ()cos θ,sin θ,0≤θ≤2π3,∴ PC ∙ PA=æèçöø÷12-cos θ-sinθ∙æèçöø÷-12-cos θ-sin θ=cos 2θ-14+14-θ+sin 2θ=1-θ,∵0≤θ≤2π3,∴0≤sin θ≤1,∴1≤1θ≤1,∴ PA ∙PC 的取值范围是éëêùûú1-.首先根据圆弧的特点,以O 为原点建立平面直角坐标系;然后设出点P 的坐标,求得其他各点、各个向量的坐标,即可通过向量坐标运算,求得 PA ∙PC 的表达式;再根据三角函数的有界性求得问题的答案.二、采用定义法定义法是指根据平面向量数量积的定义:a ∙b=||a ∙||||b cos a ,b 解题.在解题时,要分别求得所求平面向量的模长、向量之间的夹角或其余弦值,即可根据平面向量数量积的定义求得答案.例2.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,求|c |的最大值.解:因为|a |=|b |=1,a ·b =0,则(a -c )·(b -c )=-c ·(a +b )+|c |2=-|c ||a +b |·cos θ+|c|2=0,其中θ为c 与a +b 的夹角,所以|c |=|a +b |cos θ=2cos θ≤2,47所以|c |的最大值是2.解答本题主要运用了定义法.我们先通过向量的数乘运算、加法运算、减法运算,根据已知关系式,将问题转化为求向量的模的平方以及向量的数量积;然后根据向量的数量积公式将问题转化为求c 与a +b 的夹角的余弦值以及|a +b |的乘积的最值,根据基本不等式求解,即可解题.例3.已知点P 是边长为1的正十二边形A 1A 2⋯A边上任意一点,则 AP ∙A 1A 2的最小值为().A.- B.- C.-3 D.-2解:如图2所示,延长A 10A 11、A 2A 1交于Q ,图2由题意可得A 10A 11⊥A 2A 1,过A 12分别作A 1Q 、A 11Q 的垂线,垂足分别为M 、N ,正十二边形A 1A 2⋯A 12的每个内角()12-2×180°12=150°,在Rt△A 12MA 1中,||A 1A 12,∠MA 1A 12=30°,则||A 1M =||A 1A 12cos 30°,在Rt△A 11NA 12中,||A 11A 12=1,∠NA 11A 12=30°,则||QM =||A 12N =||A 11A 12sin 30°=12,所以||A 1Q =||A 1M +||QM =,而 A 1P ∙ A 1A 2=|| A 1A 2∙|| A 1P cos θ,θ为 A 1P 、 A 1A 2的夹角,所以数量积 A 1P ∙ A 1A 2等于A 1P 在 A 1A 2方向上的投影||A 1P cos θ的乘积,当点P 在线段A 10A 11上时, A 1P ∙A 1A 2取最小值,可得 A 1P ∙ A 1A 2=|| A 1P ∙||A 1A 2cosθ=||A 1A 2()-|| A 1Q=.解答本题,首先要根据正十二边形的特征和向量数量积的几何意义找出 A 1P ∙A 1A 2取得最小值的情形:点P 在线段A 10A 11上;然后根据平面向量数量积的定义,求得向量 A 1P 、A 1A 2的模长及其夹角的大小,即可求得最小值.三、数形结合数形结合法是解答函数问题、向量问题的重要方法.在解题时,需先将向量的模看作线段的长,根据三角形法则、平行四边形法则构造几何图形,添加辅助线;然后将两个向量的夹角看作三角形、平行四边形的内角,利用三角形的性质、平行四边形的性质、圆的性质解题.例4.如图3,AB是圆O 的一条直径,且||AB =4,点C 、D 是圆O 上任意两点,点P 在线段CD 上,则PA ∙PB 的取值范围为______.图3图4解:如图4所示,连接OP ,则 PA ∙ PB =() PO + OA ∙()PO + OB = PO 2+ PO ∙()OA + OB + OA ∙ OB =|| PO 2-4,而P 在线段CD 上,且||CD =2,则圆心到直线CD 的距离d =22-12=3,所以3≤|| PO 2≤4,可得-1≤|| PO 2-4≤0,故 PA ∙PB 的取值范围为[]-1,0.解答本题,要先根据三角形法则和向量运算,将求 PA ∙PB 转化为求|| PO 2的最值;然后根据弦心距、圆的半径、弦之间的关系建立关系式,求得圆心到直线CD 的距离,该值即为|| PO 的最小值,||PO 的最大值为圆的半径,这样便确定了求|| PO 2的最值,从而求得问题的答案.上述三种方法都是解答平面向量数量积问题的重要方法.其中坐标法、定义法较为简单,数形结合法具有较强的灵活性,需根据题意构造出合适的几何图形,并将问题与平面几何、解析几何知识关联起来.(作者单位:云南省会泽县大成高级中学)48。
高考数学专题二 微专题19 平面向量的数量积及最值与范围问题
微专题19
平面向量的数量积 及最值与范围问题
考情分析
平面向量的数量积有关的最值和范围问题是高考的热点之一, 其基本题型是根据已知条件求某个变量的范围、最值,比如向 量的模、数量积、夹角、系数的范围等.解决思路是建立目标 函数的解析式,转化为求函数(二次函数、三角函数)等的最值 或应用基本不等式.同时向量兼顾“数”与“形”的双重身份, 所以还有一种思路是数形结合,应用图形的几何性质.一般难 度较大.
=x-322+(y-2)2-245.
又x-322+(y-2)2 表示圆 x2+y2=1 上一点到点32,2距离的平方,圆 心(0,0)到点32,2的距离为52, 所以P→A·P→B∈52-12-245,52+12-245, 即P→A·P→B∈[-4,6].
跟踪训练2 (1)如图,已知 AOB 是半径为 4,圆心角为π2的扇形,点 E,
(2)已知向量 a,b 满足a-b=3,a=2b,设 a-b 与 a+b 的夹角为 θ, 则 cos θ 的最小值为
A.45
√B.35
C.13
D.25
令b2=t,则a2=4b2=4t, 则a-b2=(a-b)2=a2-2a·b+b2=9,2a·b=5t-9, 由 5t-9=2a·b≤2ab=4t 得 t≤9, 由 5t-9=2a·b≥-2ab=-4t 得 t≥1, 所以 1≤t≤9,a+b= a+b2= a2+2a·b+b2= 10t-9, 所以 cos θ=aa++bb·aa--bb= 1a02t--b92×3= 10tt-9= 10tt-2 9, 令 y=10tt-2 9,显然 y>0,t2-10yt+9y=0,
解得1≤z≤3,所以z的最大值是3,即λ+μ的最大值是3.
平面向量中的最值和范围问题
平面向量中的最值和范围问题平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合. 考点1、向量的模的范围例1、(1) 已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,1,2==BC AD ,P 是腰DC 上的+的最小值为____________.(2)(2011辽宁卷理)若c b a ,,均为单位向量,且0=⋅b a ,0))((≤--c b c a b -+最大值为( ) A.2-1 B .1 C. 2 D .2(3)(2010浙江卷理)已知平面向量),(,βααβα≠≠01=,且α与αβ-的夹角为120°的取值范围是_____________ .变式:已知平面向量α,β满足||||1αβ==,且α与βα-的夹角为120︒,则|(1)2|t t αβ-+()t R ∈的取值范围是 ;小结1、模的范围或最值常见方法:①通过|a →|2=a →2转化为实数问题;②数形结合;③坐标法. 考点2、向量夹角的范围例2、已知OB →=(2,0),OC →=(2,2),CA →=(2cos α,2sin α),则OA →与OB →夹角的取值范围是( )A.⎣⎡⎦⎤π12,π3B.⎣⎢⎡⎦⎥⎤π4,5π12C.⎣⎢⎡⎦⎥⎤π12,5π12D.⎣⎢⎡⎦⎥⎤5π12,π2小结2、夹角范围问题的常见方法:①公式法;②数形结合法;③坐标法.考点3、向量数量积的范围例3、(1)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,则PB PA ⋅的最小值为( ) (A) 24+- (B) 23+- (C) 224+- (D) 223+-(2)如右图,在梯形ABCD 中,DA=AB=BC =12CD =1.点P 在阴影区域(含边界)中运动,则AP →·BD→的取值范围是 ;小结3、数量积问题涉及的方法较多,常用的方法有:①定义;②模与投影之积;③坐标法;④a →·b →=(a →+b →2)2-(a →-b →2)2.考点4、向量的系数问题:例4、给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB ⌒上变动.若OC →=xOA →+yOB →其中x ,y ∈R ,则x +y 的最大值是______.小结4、向量系数问题的一般处理方法:①点乘法;②几何法;③整体法.变式:已知点G 是ABC ∆的重心,点P 是GBC ∆内一点,若,AP AB AC λμλμ=++则的取值范围是( ) A .1(,1)2 B .2(,1)3 C .3(1,)2D .(1,2)专题十、平面向量中的最值和范围问题练习题1、(2011全国新课标理)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是( ) A.14,p p B.13,p p C.23,p p D.24,p p2、(2012广东卷)对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满 足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=a b ( )A .12B .1C .32D .523、(201宁波市期末)在ABC∆中,D 为B C 中点,若120=∠A ,,则AD 的最小值是 ( )A.21 B.23C.2D.224、(2011福建卷)已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x ,上的一个动点,则OA OM ⋅的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2] 5、(2012浙江会考)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P , Q 是正方 体内部及面上的两个动点,则PQ AM ⋅的最大值是( ) A.21 B.1 C.23D.456、(2011全国大纲理)设向量c b a ,,满足1==b a ,21-=⋅b a ,060,=--c b c a ,则c 的最大值等于( ) A .2 B .3 C .2 D .17、如图,在直角梯形ABCD 中,,动点P在以点C 为圆心,且与直线BD 相切的圆内运动,设,则的取值范围是( )O A BCEFxy A. B. C. D.8、(2012安徽卷)若平面向量,a b 满足:23a b -≤;则b a ⋅的最小值是_____;9、已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则yx 39+的最小值为 ;10、(2012北京卷)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则CB DE ⋅的值为________,DC DE ⋅的最大值为____ __;11、如图,在平面直角坐标系中,正方形OABC 的边长为1,E 为AB 的中点,若F 为正方形 内(含边界)任意一点,则OE OF ⋅的最大值为 ;12、如图,线段AB 长度为2,点,A B 分别在x 非负半轴和y 非负半轴上滑动,以线段AB 为一 边,在第一象限内作矩形ABCD ,1BC =,O 为坐标原点,则OD OC •的范围是 .11题图 12题图13、(2012上海卷理)在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ ;。
平面向量与复数专题培优课平面向量中的最值范围问题课件-2025届高三数学一轮复习
A.-12
B.-1
C.-2
D.-4
答案:B
题型三 与向量的模有关的最值(范围)问题
例 3 设向量a,b满足|a|=|b|=1,a·b=0,若向量c满足|c-a-b|=1,
则|c|的取值范围是( )
A.[ 2-1, 2+1] B.[ 2-1, 2+2]
C.[1, 2+1]
D.[1, 2+2]
答案:A
解析:∵|a|=|b|=1,a·b=0,且|c-a-b|=|c-(a+b)|=1, ∴作出图象如图,由图可知,|c|最小值为 2-1,最大值为 2 +1.故选A.
题后师说 与向量的模有关的最值(范围)问题的两种常用方法
(1)代数法,把所求的模表示成某个变量的函数,或通过建立平面直 角坐标系,借助向量的坐标表示;需要构造不等式,利用基本不等式, 三角函数,再用求最值的方法求解;
巩固训练4 平面向量a,b满足|a|=|b|,且|a-3b|=1,则cos 〈b,3b-a〉的最 小值是________.
答案:2 2
3
1 . 已 知 向 量a , b , c满 足a =(3 ,0) ,b =(0 ,4) ,c =λa +(1 -
λ)b(λ∈R),则|c|的最小值为( )
A.56
答案:B
题后师说 与数量积有关的最值(范围)问题的两种常用解法
(1)坐标法:通过建立直角坐标系,运用向量的坐标运算转化为代数 问题处理.
(2)向量法:运用向量数量积的定义、不等式、函数性质等有关知识 解决.
巩固训练2
[2024·山东滨州模拟]在△ABC中,AB=2,AC=3,∠BAC=60°,
M是线段AC上任意一点,则MB·MC的最小值是( )
答案:C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用坐标法解决平面向量的最值问题
发表时间:2013-04-22T16:02:45.093Z 来源:《中学课程辅导·教学研究》2013年第7期供稿作者:卫保新[导读] 在原题目中没有给出相应的图形,在画出的常规图形也难以使学生联想出到建立直角坐标系。
卫保新
摘要:本文通过对三个数学例题的简要分析,简要谈了应如何运用坐标法解决平面向量的最值问题,并提出了笔者的一些体会。
关键词:坐标法;平面向量;最值问题
在平面向量中,解决有关最大、最小值问题是高考命题中一个比较常见的热点问题,题目主要考查平面向量的数量积、向量的模、向量的基本运算等重要知识点。
解题的方法除了运用数量积的定义,也可运用数量积的坐标运算。
知识综合运用三角、不等式、函数等内容。
解题的思想体现了数形结合、等价转换、函数与方程等思想方法。
在高考和平时的课堂教学中,学生解题过程时很难联想到引入直角坐标系、运用坐标建立函数模型、不等式模型解决问题。
那么,如何建立适当的直角坐标系呢?一是抓住题中直接或间接的垂直关系;二是抓住题中定量与不定量的关系;三是抓住是否有利于图形写出方程的简单化;四是抓住点的坐标更容易写出;五是所建立的直角坐标系不影响求解的结论。
下面用具体例子说明建立直角坐标系、运用坐标法解决平面向量最值问题(以下的解法仅给出坐标法说明,原标准方法在此不再列出)
说明:在例1中原题中没有给出图形,学生在解决问题时虽然能作出图形,由于点P的不确定性,所以学生不容易联想到建立直角坐标系把问题代数化,在P点的选择技巧上,由于圆外一点均可作出圆的两条切线,并且无论点P位于何处,总可以以PO为x轴或y轴建立适当的直角坐标系。
本题运用了重要的知识点——平均值不等式求最值。
说明:在原题目中没有给出相应的图形,在画出的常规图形也难以使学生联想出到建立直角坐标系,用坐标法去解决问题。
在原标准
适当的直角坐标系,认知也不透。
本题考虑到的特殊性,并且坐标易写出的特征,问题得以转化为坐标法,再进一步结合了几何法解决。
说明:在原标准解法中,在两边点乘向量、转化为模,且点乘后相加,还有得出,在教学中发现,学生都不容易推理得到。
本题从所给出的图形中就可以联想到建立坐标系,由A,B的坐标写出C点坐标进一步构造成不等式或函数的模型解决问题。
从以上三道例题可以看出,在解决向量数量积、向量的模、向量的夹角等有关问题,以及在求有关最大、最小值问题时,常常会碰到某些难以突破的几何关系。
在题目所给出的几何条件、几何关系或所隐藏的几何关系相对较难寻找的情况下,运用数量积的定义、向量的几何意义难以完成解题思路时,培养学生建立直角坐标系、运用坐标法解决问题的意识、运用向量的坐标运算、寻找出变量与变量之间的关系、运用函数与方程求最值的方法、平均值不等式等解决问题的方法是一种非常好的思想方法。
这使学生在碰到困难时,有更强的解决问题的能力。
所以,在教学中,教师要想办法贯穿几何法、坐标法两条教学主线,让学生能在学习中站在高处看问题,解决问题的方法更丰富。
教会学生建立适当的直角坐标系,引入了坐标也能很好地运用函数与方程的思想、曲线与方程的思想、函数与不等式等,同时也能
培养学生养成良好的数学素养。