高中数学第三章不等式3.1不等关系不等式的性质及其应用素材北师大版必修
北师大版高一数学必修第一册(2019版)_1。3。1_不等式的性质教学设计(2)
第一章预备知识第3节不等式3.1不等式的性质与相等关系一样,不等关系是数学中最基本的数量关系,作为预备知识,掌握好不等关系和不等式的基本性质,是证明和求解不等式的基础,是解决二次函数和二次不等式问题的前提,通过不等关系和不等式性质的学习,有助于提高学生的数学运算能力和逻辑推理能力,同时为培养学生数学建模能力奠定基础。
(1)知识目标:掌握作差法比较两个实数(代数式)大小的基本方法;掌握不等式的基本性质;熟练运用不等式的基本性质进行不等式的变形、运算和证明。
(2)核心素养目标:通过不等式性质的运用,提高学生数学运算能力和数学建模能力。
(1)作差法比较两个实数(代数式)的大小;(2)不等式的基本性质;(3)熟练运用不等式的基本性质进行不等式的变形、运算和证明。
多媒体课件一、复习引入一天,同学甲问同学乙:“你今年多少岁了?”乙回答说:“16岁了,你呢?”“我满15岁了,哈哈!再过一年,明年我们就一样大了!”乙默然。
这个对话里面包含了什么数学知识呢?提示:两人相差1岁,过一年,两人的年龄同时加1,不可能相等。
思考讨论:高速路上的限速标志,上面的数字是什么意思?提示:车速为v,行车道上的车速应该满足100km/ℎ≤v≤120km/ℎ.二、新知识在生活中,有很多数量关系的问题,它们既有相等关系,又有不等关系。
在数学中,用不等式来表示不等关系。
1、实数大小的比较两个实数a,b,如果a−b>0,那么a>b;如果a−b=0,那么a=b;如果a−b<0,那么a<b.即注意:①这种比较实数大小的方法叫作“作差法”,另外在数轴上可以更加直观的看出两个实数的大小;②比较两个代数式的大小,基本方法也是“作差法”,作差后的结果一般要进行因式分解或配方,然后与0相比较。
如:已知实数a,试比较a2+2与2a的大小.a2+2−2a=a2−2a+1+1=(a−1)2+1>0 ∴a2+2>2a例1.试比较(x+1)(x+5)与(x+3)2的大小.解:作差比较,(x+1)(x+5)−(x+3)2=(x2+6x+5)−(x2+6x+9)=−4<0∴(x+1)(x+5)<(x+3)2例2.试证明:若0<a<b,m>0,则a+mb+m >ab.证明:作差比较,a+mb+m −ab=b(a+m)−a(b+m)b(b+m)=m(b−a)b(b+m)a−b>0⇔a>b a−b=0⇔a=b a−b<0⇔a<b因为a <b ,所以b −a >0,又因a >0,b >0,m >0,所以m(b−a)b (b+m )>0∴a +mb +m >ab2、不等式的基本性质性质 内容备注性质1 如果a >b ,且b >c ,那么a >c 传递性性质2 如果a >b ,那么a +c >b +c 加(减)乘(除)运算性质3如果a >b ,c >0,那么ac >bc如果a >b ,c <0,那么ac <bc性质4 如果a >b ,c >d ,那么a +c >b +d 同向不等式相加 性质5如果a >b >0,c >d >0,那么ac >bd如果a >b >0,c <d <0,那么ac <bd不等式相乘注意:①以上性质均可以利用“作差法”给出证明,下面以性质4为例给出证明,其它,请同学们自行完成.性质4的证明:(a +c )−(b +d )=(a −b )+(c −d)因为a >b ,c >d ,有a −b >0,c −d >0,所以有(a −b )+(c −d )>0 得a +c >b +d②根据性质5,可以得出不等式乘方(开方)的运算性质.即:如果a >b >0,n ∈N +,那么a n >b n如果a >b >0,n ∈N +,那么√a n>√b n③不等式的变形、运算等,务必根据性质进行,避免错误. 如:如果a >b ,那么1a<1b ,对吗?提示:不正确,要由a >b 得到1a <1b ,应该将不等式两边同乘以1ab ,但条件并没有给出ab 的正负,所以结论错误例3. (1)已知a >b ,ab >0,求证:1a <1b ;(2)已知a >b ,c <d ,求证:a −c >b −d .证明:(1)因ab>0,则1ab >0,由不等式的性质3,a·1ab>b·1ab,得1a<1b.(2)因c<d. 由不等式的性质3,−c>−d再由a>b,利用不等式的性质4,同向不等式相加,得a−c>b−d思考讨论(综合练习):(1)已知a>0,b>0,求证:a3+b3≥a2b+ab2;(2)已知2≤x≤4,1≤y≤2,求x−2y的范围;(3)已知1≤a−b≤2,2≤a+b≤3,求2a−4b的范围.提示:(1)作差,(a3+b3)−(a2b+ab2)=(a3−a2b)+(b3−ab2)=a2(a−b)+b2(b−a)=(a−b)2(a+b)因a>0,b>0,(a−b)2≥0,所以(a−b)2(a+b)≥0得a3+b3≥a2b+ab2.(2)由 1≤y≤2得−4≤−2y≤−2,与2≤x≤4不等式相加得−2≤x−2y≤2即x−2y∈[−2,2].(3)设a−b=x,a+b=y,则1≤x≤2, 2≤y≤3,且a=x+y2,b=y−x2所以2a−4b=2·x+y2−4·y−x2=3x−y,与上(2)小题一样得2a−4b∈[0,4].三、课堂练习教材P26,练习1~6.四、课后作业教材P30,习题1-3,A组1~5(1)“作差法”比较大小,是证明不等式的基础,另外还可以采用“作商法”,即如果a>0,b>0,则ba>1⇔b>a;(2)不等式的基本性质是不等式变形、化简、证明的基础,不仅要熟练运用基本性质,还要特别注意性质中的条件.。
(完整版)北师大版高中数学课本目录
必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3.2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1 函数概念2.2 函数的表示法2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像4.2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算4.2 换底公式§5 对数函数5.1 对数函数的概念5.2 y=log2x的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1.1 利用函数性质判定方程解的存在1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识4.2 空间图形的公理§5 平行关系5.1 平型关系的判定5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程1.1 直线的倾斜角和斜率1.2 直线的方程1.3 两条直线的位置关系1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差§5 用样本估计总体5.1 估计总体的分布5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想 1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率 1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与诱导公式§5 正弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3正弦函数的性质§6 余弦函数的性质与图像6.1正弦函数的图像6.2 正弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像与性质7.2 正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度、和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标 4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数2.3 两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列1.1 数列的概念1.2 数列的函数特征§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域4.2 简单线性规划4.3 简单线性规划的应用选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全。
高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5
2.设 M=x2,N=-x-1,则 M 与 N 的大小关系是( )
A.M>N
B.M=N
C.M<N
D.与 x 有关
A [M-N=x2-(-x-1)=x2+x+1=x+122+34>0,故 M>N.]
a>b,b>c⇒_a_>_c_
性质 3(可加性)
a>b⇒_a_+__c_>_b_+__c_
推论 1 性质 3
推论 2
a+b>c⇒_a_>__c_-__b__ a>b,c>d⇒_a_+__c_>__b_+__d_
性质 4(可乘性) a>b,c>0⇒_a_c_>__b_c_;a>b,c<0⇒_a_c_<__b_c_
2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为 正确吗?
[提示] 不正确.因为同向不等式具有可加性与可乘性.但不能 相减或相除,解题时要充分利用条件,运用不等式的性质进行等价变 形,而不可随意“创造”性质.
3.你知道下面的推理、变形错在哪吗? ∵2<a-b<4, ∴-4<b-a<-2. 又∵-2<a+b<2, ∴0<a<3,-3<b<0, ∴-3<a+b<3. 这怎么与-2<a+b<2 矛盾了呢?
1.利用不等式的性质证明不等式注意事项 (1)利用不等式的性质及其推论可以证明一些不等式.解决此类问 题一定要在理解的基础上, 记准、记熟不等式的性质并注意在解题 中灵活准确地加以应用. (2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.
2019_2020学年高中数学第3章不等式3.1不等关系课件北师大版必修5
第51页
第17页
【解析】 设购买 A 型汽车和 B 型汽车分别为 x 辆,y 辆,
则
40x+90y≤500, 4x+9y≤50,
0<x≤5, 0<y≤4,
即00<<xy≤≤54,,
x,y∈N*,
x,y∈N*.
第18页
题型二 不等式性质
例 2 对于实数 a,b,c,有下列结论:
①若 a>b,则 ac<bc; ②若 ac2>bc2,则 a>b;
第49页
6.已知
a,b
为正实数,试比较
a+ b
b与 a
a+
b的大小.
第50页
解析
(
b)=(
a- b
b)+(
b- a
a)
=a-b-a-b=(a-b)( a- b)
ba
ab
( =
a+
b)(
a-
b)2,
ab
( ∵a,b 为正实数,∴
a+
b)( ab
a-
b)2≥0.
∴ a + b ≥ a+ b. ba
②若 b<a<0,则将不等式两边同除以 ab 得b1>1a; ③若 a>0,b<0,则1a>b1. 综上得:a>b⇒1a1a><b1b1,,((aa,,bb异同号号))
第39页
探究 5 (1)本题目的是要学生明确不能冒然由 a>b⇒1a<b1, 这是学生容易出错的地方.
(2)本题是不等式性质 4 的一个典型应用.本例可作为今后有 关不等式问题的一个非常重要的定理,请读者引起足够的重视.
∵a>0,令(a+1)(a-1)>0,得 a>1.
∴当 a>1 时,(a+1)a(a-1)>0,此时 a>1a;
高中数学 第一部分 第三章 §1 不等关系课件 北师大版必修5
知识点一 知识点二 考点一
不 等 关 系
把握热点考向
4
考点二
考点三
应用创新演练
§1
不等关系
某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p应不少于2.3%. 问题1:如何用不等式表示对脂肪含量的规定? 提示:f≥2.5%.
2x2-2x的大小.
解:(x3-1)-(2x2-2x)=(x3-x2)-(x2-2x+1) =x2(x-1)-(x-1)2=(x-1)(x2-x+1), 12 3 3 ∵x -x+1=(x- ) + ≥ >0, 2 4 4
2
∴当 x>1 时,(x-1)(x2-x+1)>0,
即 x3-1>2x2-2x; 当 x=1 时,(x-1)(x2-x+1)=0, 即 x3-1=2x2-2x; 当 x<1 时,(x-1)(x2-x+1)<0, 即 x3-1<2x2-2x.
辆.根据题意,应有如下的不等关系: (1)甲型卡车和乙型卡车的总和不能超过驾驶员人数; (2)车队每天至少要运360 t矿石; (3)甲型卡车不能超过4辆,乙型卡车不能超过7辆.
用关于 x,y 的不等式表示上述不等关系即可. x+y≤9, 10×6x+6×8y≥360, 0≤x≤4,且x∈N, 0≤y≤7,且y∈N. x+y≤9, 5x+4y≥30, 即 0≤x≤4,且x∈N, 0≤y≤7,且y∈N.
6.若x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)
的大小. 解:(x2+y2)(x-y)-(x2-y2)(x+y) =(x-y)[(x2+y2)-(x+y)2] =-2xy(x-y).
∵x<y<0,∴xy>0,x-y<0.
2021_2022学年新教材高中数学第3章不等式3.1不等式的基本性质学案苏教版必修第一册
3.1 不等式的基本性质学习任务核心素养1.结合已有的知识,理解不等式的6个基本性质.(重点)2.会用不等式的性质证明(解)不等式.(重点)3.会用不等式的性质比较数(或式)的大小和求取值范围.(难点)1.通过大小比较,培养逻辑推理素养.2.通过不等式性质的应用,培养逻辑推理素养.3.借助不等式求实际问题,提升数学运算素养.和你的同桌做个游戏:假设有四只盛满水的圆柱形水桶A,B,C,D,桶A,B的底面半径均为a,高分别为a和b,桶C,D的底面半径为b,高分别为a和b(其中a≠b).你们各自从中取两只水桶,得水多者为胜.如果让你先取,你有必胜的把握吗?知识点1不等式(1)不等式的定义用数学符号“>”“<”“≥”“≤”“≠”连接两个数或代数式,含有这些不等号的式子叫作不等式.(2)关于a≥b和a≤b的含义①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b或a=b中有一个正确,则a≤b正确.(3)不等式中常用符号语言大于小于大于或等于小于或等于至多至少不少于不多于><≥≤≤≥≥≤①如果a-b是正数,那么a>b;即a-b>0⇔a>b;②如果a-b等于0,那么a=b;即a-b=0⇔a=b;③如果a-b是负数,那么a<b;即a-b<0⇔a<b.任意两个实数都能比较大小吗?[提示]能.利用作差法比较.1.设a=2x2,b=x2-x-1,则a与b的大小关系为________.a>b[a-b=2x2-(x2-x-1)=x2+x+1=⎝⎛⎭⎫x+122+34>0,∴a>b.]知识点2不等式的基本性质性质1: 若a >b ,则b <a ;(自反性),a >b ⇔b <a . 性质2:若a >b ,b >c ,则a >c ;(传递性) 性质3:若a >b ,则a +c >b +c ;(加法保号性) 性质4:若a >b ,c >0,则ac >bc ;(乘正保号性) 若a >b ,c <0,则ac <bc ;(乘负改号性)性质5:若a >b ,c >d ,则a +c >b +d ;(同向可加性) 性质6:若a >b >0,c >d >0,则ac >bd ;(全正可乘性) 性质7:如果a >b >0,那么a n >b n (n ∈N *).(拓展)不等式的基本性质是不等式变形的依据,也是解不等式的根据,同时还是证明不等式的理论基础.(1)在应用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件. (2)要注意每条性质是否具有可逆性.2.思考辨析(正确的打“√”,错误的打“×”)(1)若ac >bc ,则a >b .( )(2)若a +c >b +d ,则a >b ,c >d .( ) (3)若a >b ,则1a <1b .( )[答案] (1)× (2)× (3)×类型1 利用不等式的性质判断和解不等式 【例1】 (1)对于实数a ,b ,c ,给出下列命题: ①若a >b ,则ac 2>bc 2; ②若a <b <0,则a 2>ab >b 2; ③若a >b ,则a 2>b 2; ④若a <b <0,则a b >ba.其中正确命题的序号是________.(2)求解关于x 的不等式ax +1>0(a ∈R ),并用不等式的性质说明理由. (1)②④ [对于①,∵c 2≥0,∴只有c ≠0时才成立,①不正确; 对于②,a <b <0⇒a 2>ab ;a <b <0⇒ab >b 2,∴②正确;对于③,若0>a >b ,则a 2<b 2,如-1>-2,但(-1)2<(-2)2,∴③不正确; 对于④,∵a <b <0,∴-a >-b >0,∴(-a )2>(-b )2,即a 2>b 2.又∵ab >0,∴1ab >0,∴a 2·1ab >b 2·1ab ,∴a b >ba ,④正确.所以正确答案的序号是②④.](2)[解] 不等式ax +1>0(a ∈R )两边同时加上-1得 ax >-1 (不等式性质3),当a =0时,不等式为0>-1恒成立,所以x ∈R , 当a >0时,不等式两边同时除以a 得 x >-1a(不等式性质4),当a <0时,不等式两边同时除以a 得 x <-1a(不等式性质4).综上:当a =0时,不等式的解集为R ,当a >0时,不等式的解集为⎝⎛⎭⎫-1a ,+∞,当a <0时,不等式的解集为⎝⎛⎭⎫-∞,-1a .1.利用不等式判断正误的2种方法①直接法:对于说法正确的,要利用不等式的相关性质证明;对于说法错误的只需举出一个反例即可.②特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质解不等式,要求步步有据,特别是解含有参数的不等式更加要把握好分类讨论的标准.因为参数的范围不同,不等式的解集不同,所以对于参数的不同范围得到的解集都是独立的,不能求并集.[跟进训练]1.已知a <b <c 且a +b +c =0,则下列不等式恒成立的是( ) A .a 2<b 2<c 2 B .ab 2<cb 2 C .ac <bcD .ab <acC [∵a +b +c =0且a <b <c ,∴a <0,c >0,∴ac <bc ,故选C.]2.若关于x 的不等式ax +b >0的解集为{x |x <2},则不等式bx -a >0的解集为________.⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12 [因为关于x 的不等式ax +b >0的解集为{x |x <2},所以a <0,且x =2是方程ax +b =0的实数根,所以2a +b =0,即b =-2a ,由bx -a >0得-2ax -a >0,因为a <0,所以x >-12,即不等式bx -a >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12.] 类型2 利用不等式的性质比较代数式的大小 【例2】 已知x ≤1,比较3x 3与3x 2-x +1的大小. [解] 3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1) =3x 2(x -1)+(x -1)=(3x 2+1)(x -1). ∵x ≤1,得x -1≤0.而3x 2+1>0, ∴(3x 2+1)(x -1)≤0. ∴3x 3≤3x 2-x +1.1.将本例中“x ≤1”改为“x ∈R ”,再比较3x 3与3x 2-x +1的大小. [解] 3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1) =(3x 2+1)(x -1), ∵3x 2+1>0,当x >1时,x -1>0,∴3x 3>3x 2-x +1. 当x =1时,x -1=0,∴3x 3=3x 2-x +1. 当x <1时,x -1<0,∴3x 3<3x 2-x +1. 2.已知a >0, b >0, 比较1a +1b 与1a +b的大小.[解] 法一:(作差法)⎝⎛⎭⎫1a +1b -1a +b =(ab +b 2)+(a 2+ab )-ab ab (a +b )=a 2+ab +b 2ab (a +b ), 因为a >0, b >0,所以a 2+ab +b 2ab (a +b )>0,所以1a +1b >1a +b.法二:(作商法)因为a >0, b >0,所以1a +1b 与1a +b 同为正数,所以1a +1b 1a +b=(a +b )2ab ,所以(a +b )2ab -1=a 2+ab +b 2ab >0,即(a +b )2ab >1,因为1a +b>0,所以1a +1b >1a +b .法三:(综合法)因为a >0, b >0,所以a +b >0,所以⎝⎛⎭⎫1a +1b (a +b )=a +b a +a +b b =2+b a +a b >1,所以1a +1b >1a +b.1.作差法比较两个数大小的步骤及变形方法 (1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④分母或分子有理化(针对无理式中的二次根式);⑤分类讨论.2.作商法比较大小的三个步骤 (1)作商变形; (2)与1比较大小; (3)得出结论.提醒:作商法比较大小仅适用同号的两个数.3.综合法需要结合具体的式子的特征实施,本题思路为:A >B >0⇔A ·1B>1.[跟进训练]3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2, ∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .故选A.] 4.已知a ,b ∈R ,试比较a 2-ab 与3ab -4b 2的大小.[解] 因为a ,b ∈R ,所以(a 2-ab )-(3ab -4b 2)=a 2-4ab +4b 2=(a -2b )2, 当a =2b 时,a 2-ab = 3ab -4b 2, 当a ≠2b 时,a 2-ab > 3ab -4b 2. 类型3 证明不等式【例3】 若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. [思路点拨] 可结合不等式的基本性质,分析所证不等式的结构,有理有据地导出证明结果.[证明] ∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0.两边同乘以1(a -c )2(b -d )2,得1(a -c )2<1(b -d )2. 又e <0,∴e (a -c )2>e(b -d )2.本例条件不变的情况下,求证: e a -c >e b -d. [证明] ∵c <d <0,∴-c >-d >0. ∵a >b >0,∴a -c >b -d >0, ∴0<1a -c <1b -d, 又∵e <0,∴e a -c >eb -d.利用不等式的性质证明不等式的注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.[跟进训练]5.已知c >a >b >0,求证:a c -a >bc -b .[证明] ∵c >a >b >0.∴c -a >0,c -b >0.⎭⎪⎬⎪⎫由a >b >0⇒1a <1b c >0 ⇒c a <c b ⇒c -a a <c -b b .又c -a >0,c -b >0,∴a c -a >bc -b .类型4 利用不等式求取值范围【例4】 已知1<a <4,2<b <8.试求2a +3b 与a -b 的取值范围.[思路点拨] 欲求a -b 的范围,应先求-b 的范围,再利用不等式的性质求解. [解] ∵1<a <4,2<b <8,∴2<2a <8,6<3b <24, ∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2,又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2), 即-7<a -b <2,故8<2a +3b <32,-7<a -b <2. 即2a +3b 的取值范围为(8,32), a -b 的取值范围为(-7,2).1.在本例条件下,求 ab 的取值范围.[解] ∵2<b <8,∴18<1b <12,又1<a <4,∴18<a b <2. 即ab的取值范围为⎝⎛⎭⎫18,2. 2.若本例改为:已知1≤a +b ≤5,-1≤a -b ≤3,求3a -2b 的范围. [解] 法一:设x =a +b ,y =a -b , 则a =x +y 2,b =x -y 2,∵1≤x ≤5,-1≤y ≤3,∴3a -2b =12x +52y .又12≤12x ≤52,-52≤52y ≤152, ∴-2≤12x +52y ≤10.即-2≤3a -2b ≤10.所以3a -2b 的范围是[-2,10].法二:设3a -2b =m (a +b )+n (a -b )=(m +n )a +(m -n )b =3a -2b ,所以⎩⎪⎨⎪⎧m +n =3,m -n =-2,解得⎩⎨⎧m =12,n =52,即3a -2b =12(a +b )+52(a -b ),因为1≤a +b ≤5,-1≤a -b ≤3, 所以12≤12(a +b )≤52,-52≤52(a -b )≤152,所以-2≤12(a +b )+52(a -b )≤10,即3a -2b 的范围是[-2,10].1.同向不等式具有可加性,同正具有可乘性,但是不能相减或相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.2.已知两个二元一次代数式的范围,求第三个二元一次式的范围,可以用双换元的方法,也可以通过待定系数法,先用已知的两个二元一次代数式表示未知的二元一次式.[跟进训练]6.已知-π2≤α<β≤π2,求α+β2,α-β2的取值范围.[解] ∵已知-π2≤α<β≤π2.∴-π4≤α2≤π4,-π4<β2≤π4,两式相加得-π2<α+β2<π2.∵-π4<β2≤π4,∴-π4≤-β2<π4.∴-π2≤α-β2<π2,又知α<β,∴α-β2<0,∴-π2≤α-β2<0.7.已知-4≤a -c ≤-1,-1≤4a -c ≤5,求9a -c 的取值范围.[解] 令⎩⎪⎨⎪⎧a -c =x ,4a -c =y ,得⎩⎨⎧a =13(y -x ),c =13(y -4x ),∴9a -c =83y -53x ,∵-4≤x ≤-1,∴53≤-53x ≤203,①∵-1≤y ≤5,∴-83≤83y ≤403,②①和②相加,得-1≤83y -53x ≤20,∴-1≤9a -c ≤20.1.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-bB [选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以,否则如a =-1,b =0时不成立,故选B.]2.设a =3x 2-x +1,b =2x 2+x ,则( ) A .a >b B .a <b C .a ≥bD .a ≤bC [a -b =(3x 2-x +1)-(2x 2+x )=x 2-2x +1=(x -1)2≥0,∴a ≥b .] 3.若-1<α<β<1,则α-β的取值范围为________. (-2,0) [由-1<α<1,-1<β<1,得-1<-β<1. 所以-2<α-β<2,但α<β, 故知-2<α-β<0.]4.已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是________.(-π,2π) [结合题意可知3α-β=2(α-β)+(α+β),且2(α-β)∈(-π,π),α+β∈(0,π),利用不等式的性质可知3α-β的取值范围是(-π,2π).]5.已知12<a <60,15<b <36.则a -b 的取值范围为________,ab 的取值范围为________.(-24,45) ⎝⎛⎭⎫13,4 [∵15<b <36, ∴-36<-b <-15,又12<a <60,∴12-36<a -b <60-15,即-24<a -b <45, ∵136<1b <115,∴1236<a b <6015.∴13<a b<4.]回顾本节知识,自我完成以下问题.1.两个代数式的大小关系有哪些?比较大小的方法有哪些? [提示] 大于、小于、等于.作差法、作商法. 2.作差法比较大小的具体步骤有哪些? [提示] 作差、变形、定号. 3.不等式的证明有哪些方法?[提示] 可以用比较法(作差或作商法),也可利用不等式的性质(综合法).。
高中数学第三章不等式3.1不等关系3.1.1不等关系3.1.2不等关系与不等式课件北师大必修5
2.若 m≠2 且 n≠-1,则 M=m2+n2-4m+2n 的值与-5 的
大小关系为( )
A.M>-5
B.M<-5
C.M=-5
D.不确定
解析:选 A.因为 m≠2,n≠-1,所以 M=(m-2)2+(n+1)2 -5>-5.
3.已知 a>b>c,则a-1 b+b-1 c+c-1 a的值为__________(填“正 数”“非正数”“非负数”). 解析:因为 a>b>c,所以 a-b>0,b-c>0,a-c>b-c>0.所以 a-1 b>0,b-1 c>0,a-1 c<b-1 c, 所以a-1 b+b-1 c-a-1 c>0, 所以a-1 b+b-1 c+c-1 a为正数. 答案:正数
(5)加法法则:a>b,c>d⇒a+c > b+d. (6)乘法法则:a>b>0,c>d>0⇒ac > bd. (7)乘方法则:a>b>0⇒an > bn(n∈N+).
(8)开方法则:a>b>0⇒n a > n b(n∈N+).
判断(正确的打“√”,错误的打“×”) (1)实数 a 不大于-2,用不等式表示为 a≥-2.( × ) (2)不等式 x≥2 的含义是指 x 不小于 2.( √ ) (3)若 a<b 或 a=b 之中有一个正确,则 a≤b 正确.( √ ) (4)若 a>b,则 ac>bc 一定成立.( × ) (5)若 a+c>b+d,则 a>b,c>d.( × )
5x+4y≤25, 【解】 根据题意可得x≥1,x∈N,
y≥1,y∈N.
(1)将不等关系表示成不等式(组)的思路 ①读懂题意,找准不等关系所联系的量; ②用适当的不等号连接; ③若有多个不等关系,根据情况用不等式组表示. (2)用不等式(组)表示不等关系时应注意的问题 在用不等式(组)表示不等关系时,应注意必须是具有相同性质, 可以进行比较时,才可用,没有可比性的两个(或几个)量之间 不能用不等式(组)来表示.
数学必修ⅴ北师大版3.1不等关系与不等式 课件.
α+β π π 【例 1】 已知- <α<β< , 求 , 2 2 2 α-β 的取值范围. 2
11
题型分类·深度剖析
题型一
不等式性质的应用
思维启迪 解析 探究提高
α+β π π 【例 1】 已知- <α<β< , 求 , 2 2 2 α-β 的取值范围. 2
不等式性质的应用是本题的 突破点.
a>1⇔a > b b a (2)作商法b=1⇔a = b a<1⇔a < b b
(a∈R,b>0).
2
基础知识·自主学习
要点梳理
难点正本 疑点清源
2.理解不等式的思想 3.不等式的性质 和方法 (1)对称性:a>b⇔b<a; (1)作差法是证明不等式 (2)传递性:a>b,b>c⇒ a>c ; (3)可加性:a>b⇔a+c > b+c,a>b, 的最基本也是很重要的 c>d⇒a+c > b+d; 方法, 应引起高度注意, (4)可乘性: a>b, c>0⇒ac > bc; a>b>0, 要注意强化. c>d>0⇒ac > bd; (2)加强化归意识,把比 n n (5) 可 乘 方 : a>b>0 ⇒ a > b (n∈N , 较大小问题转化为实数 n≥1); 的运算. n n (6)可开方:a>b>0⇒ a > b (n∈N, n≥2).
探究提高
不等式恒成立问题一般要利用函数 的 值 域 , m≤f(x) 恒 成 立 , 只 需 m≤f(x)min.
25
题型分类·深度剖析
高中数学 北师大必修五 3.1不等关系与不等式1
(1)截得两种钢管的总长度不能超过4000mm; (2)截得600mm钢管的数量不能超过500mm的钢管数量的3倍; (3)截得两种钢管的数量都不能为负.
上面三个不等关系,是“且”的关系,要同时满足的话, 可以用下面的不等式组来表示:
第三章 不等式
3.1 不等关系与不等式(一)
问题1、某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元销售量就可能相应减少2000本。
若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收
入仍不低于20万元呢? 思考:(1)销售量减少了多少?
x 2.5 0.2万本 0.1
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
变变式式46、已知-π2≤α<β≤π2,求α+2 β,α-2 β的范围.
解析:∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4. 两式相加,得-π2<α+2 β<π2.
∵-π4<β2≤π4, ∴-π4≤-β2<π4, ∴-π2≤α-2 β<π2. 又∵α<β,∴α-2 β<0. ∴-π2≤α-2 β<0.
判断两个实数大小的依据是:
abab0 a b ab 0 abab0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的性质及其应用
不等式的性质是证明不等式和解不等式的理论依据,不等式性质的应用也是历年高考的重点。
因此掌握不等式的性质及其应用是非常必要的,本文就不等式的性质及其应用加以探讨。
一、不等式最基本的性质
对称性:a b b a >⇔<
传递性:,a b b c a c >>⇔>
加法性: ,a b c R a c b c >∈⇔+>+
乘法性: 00
a b ac bd c d >≥⎧⇒>⎨
>≥⎩
除法性: 110a b ab a b >⎧⇒<⎨>⎩
乘方性: 0()n n a b a b n N *>≥⇒>∈
开方性:
0)a b n N *>≥>∈ 倒数法则:011ab a b
a b >⎧⇒<⎨>⎩ 二、不等式性质的应用
(1)比较实数的大小
因为“0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<”是比较两个实数大小的最基本的方法,通常用它得到这些大小关系。
例1、试比较1(1)log a a
+与(1)log a a +(01)a a >≠且的大小 分析:对于1(1)log a a +和(1)log a a +这两个对数,由于式中含有参数a ,故我们不能直接确定它
们之间的大小关系,于是可用上面的不等式的最基本的性质,让它们作差从而比较大小。
解:∵1
111(1)(1)1log log log log 10a
a a a a a a a a ++++-===-<,∴1(1)(1)log log a a a a ++<
点评:通过让两个式子作差,并经过恒等变形,从而确定了两式差的符号,即确定了两式的大小。
例2、(2006年上海卷)如果0,0a b <>,那么,下列不等式中正确的是( ) A.
11a b
<
22a b < D.||||a b > 解:对于A :如果0,0a b <>,那么110,0a b <>,由不等式的传递性知 11a b <,故选A 点评:在运用不等式性质时,不要忽略性质成立的条件
(2)求范围
利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,求解步骤:先建立待求范围的整体与已知范围的整体的等量关系,然后通过“一次性不等关系的运算,求得待求的范围”。
例2、若二次函数)(x f 图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围。
解:设c ax x f +=2)((0≠a )。
⎩⎨⎧+=+=c a f c a f 4)2()1(⎪⎪⎩
⎪⎪⎨⎧-=-=⇒3)2()1(43)1()2(f f c f f a 3
)1(5)2(83)2()1(4)1(3)2(39)3(f f f f f f c a f -=-+-=+= ∵2)1(1≤≤f ,4)2(3≤≤f ,
∴10)1(55≤≤f ,32)2(824≤≤f ,27)1(5)2(814≤-≤f f , ∴
93
)1(5)2(8314≤-≤f f , 即9)3(314≤≤f 。
点评:对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎。
(3)证明不等式
利用不等式的性质及其推论可以证明一些不等式。
例3、若0>>b a ,0<<d c ,0<e ,求证:d
b e
c a e ->-。
分析:本题考查学生对不等式性质的掌握及灵活应用。
解:∵0<<d c ,0>->-d c ,又0>>b a
∴0>->-d b c a ,故
d b c a -<-11。
而0<
e ,∴d
b e
c a e ->- 点评:解决此类问题一定要熟练掌握不等式的性质并注意性质的使用条件。
(4)解不等式
例5、(2006年安徽卷)不等式112
x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .(,0)-∞⋃(2,)+∞ 解法1:显然0x ≠,所以要对x 进行讨论
①当0x >时,10x >,又102>,由不等式的倒数法则知,此时不等式112
x <的解是2x >; ②当0x <时,10x <,又102>,所以此时不等式112
x <的解是0x <。
综上所述,原不等式的解集为(,0)-∞⋃(2,)+∞,故选D 。
解法2 :由112x <得:112022x x x
--=<,即(2)0x x -<,解得(,0)-∞⋃(2,)+∞, 故选D 。
点评:对于这种简单的不等式,可以利用不等式的性质综合求解,注意讨论要完备。