人教版七年级上册数学【一元一次方程课件】

合集下载

3.1.1一元一次方程-人教版七年级数学上册课件(共20张PPT)

3.1.1一元一次方程-人教版七年级数学上册课件(共20张PPT)

解法二;设快车所用的时间为t小时,则慢车所用的
时间为(t+1)小时,则可列列方程为:
60(t+1)=70t, 求出时间t后再代入求路程。
能列算式吗?
2020/9/9
学习赢得智慧人生
8
数学是思维的体操
归纳:列方程时,要先设未知数, 然后根据问题中的数量关系,列出含 有未知数的方程
例2 根据下列问题,设未知数并列出方程: (1) 用一根长24 cm的铁丝围成一个正方形,正方 形的边长是多少? (2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使 用时间达到规定的检修时间2450 h? (3) 某校女生占全体学生数的52%,比男生 多80人,这个学校有多少学生?
数学是思维的体操
3.1 从算式到方程
3.1.1 一元一次方程
2020/9/9
学习赢得智慧人生
1
数学是思维的体操
学习目标
1.通过处理实际问题,让学生体验从算术方法到代数 方法是一种进步.
2.掌握方程、一元一次方程的定义以及解的概念, 学会判断某个数值是不是一元一次方程的解.(重 点) 3.初步学会如何寻找问题中的等量关系,并列出 方程. (难点)
70t
70 140 210 280 350 420 490 …
2020/9/9
学习赢得智慧人生
15
数学是思维的体操
随堂练习 检验-2,2,3,5哪个是方程 2x-3 = 5x-15的解?
怎样判断一个数是不是方程的解?
先将数值代入方程左右两边进行计算, 若左边=右边,则是方程的解,反之,则不是.
2020/9/9
2020/9/9
学习赢得智慧人生
10

2024人教版七年级上册数学第五单元《一元一次方程》课件PPT

2024人教版七年级上册数学第五单元《一元一次方程》课件PPT

C.4x=5(x+4)
D.4(x+4)=5x
例3:如图,轩轩将一个正方形纸片剪去一个宽为4 cm的长条后,
再从剩下的长方形纸片上剪去一个宽为5 cm的长条(图中阴影部
分).若分两次剪下的长条面积正好相等,则每一个长条的面积
为多少?为解决这个问题,轩轩设正方形的边长为x cm,根据题
意,可列方程为( ) A
情境导入
同学们,你们知道老师的年龄吗? 我是4月出生的,我年龄的2倍减去2,正好是我出生的那个月总天数 的2倍. 请你们猜猜我的年龄是多少?
年龄是31岁
故事导入
同学们,你们知道丢番图是谁吗? 丢番图是古希腊数学家,人们对他的生平事迹知道的很少, 但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶,它忠实地记录了其所经历的人生旅程. 上帝赐予他的童年占六分之一,又过了十二分之一他两颊长出来胡须,再过七分 之一,点燃了新婚的蜡烛,五年之后喜得贵子,可怜迟到的宁馨儿,享年仅其父 之半便入黄泉,悲伤只有用数字研究去弥补,又过四年,他也走完了人生的旅 途.——出自《希腊诗文选》 你能求出丢番图去世时的年龄吗?
【题型二】根据实际问题列方程
例2:根据下列条件列出方程: (1)一个数x比它的 23大45 :_____x_-__23_x_=__45; (2)一个数x的一半比它的3倍大4:___12_x_-__3_x_=__4_; (3)一个数x比它的平方小24:____x_2-__x_=__2_4__; (4)一个数x的40%与25的差等于30:____4_0_%_x_-__2_5_=_3_0.
6是等式,但不是方程
2x-6=6等
-3y=10等
注:判断一个式 子是不是方程:
知识点2:列方程(难点)

人教版初一数学七年级上册 一元一次方程 (方程的概念) 名师获奖PPT教学课件

人教版初一数学七年级上册 一元一次方程 (方程的概念) 名师获奖PPT教学课件

作业布置
习题3.1复习巩固 1.(2)(4)(6) 综合应用 5、6、7
解:(1)设x月后这台计算机的使用时间达 到2450小时,那么在x月里这台计算机使用了 150x小时.
列方程 1700 150x 2450.
(2)用一根长24cm的铁丝围成一个 长方形,使它的长是宽的1.5倍,长方形 的长、宽各应是多少?
解:设长方形的宽为x cm, 那么长为1.5x cm.
列方程 2(x 1.5x) 24.
只含有一个未知数(元)x,未知数x的次 数是1(次),这样的方程叫做一元一次方程 (linear equation with one unknown)
归纳
以上的分析过程可以表示如下 实际问题 设未知数 列方程 一元一次方程
分析实际问题中的数量关系,利用其 中的相等关系列出方程,使用数学解决实 际问题的一种方法.
50 70 (1310) 50 15 13
用方程来解决
汽车匀速行驶途经王家庄、青 地名 时间 山、秀水三地的时间如表所示,翠 王家庄 10:00 湖在青山、秀水两地之间,距青山 青山 13:00 50千米,距秀水70千米.王家庄到 秀水 15:00 翠湖的路程有多远?
如果设王家庄到翠湖的路程为x千米,你能 列出方程吗?
x 70
的意义是
从王家庄到秀水的车速.
5
思考
对于上面的问题,你还能列出其他方程 吗?如果能,你依据的是哪个相等关系?
想一想列方程的过程?
设字母表示未知数 找出问题中的等量关系
写出含有未知数的等式 方程
例题解析
例1 根据下列问题,设未知 数并列方程:
(1)一台计算机已使用1700 小时,预计每月再使用150小时, 经过多少月这台计算机使用时间达 到规定的检修时间2450小时?

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得

3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件

3人教版七年级数学上册第三章  3.1.1 一元一次方程 优秀教学PPT课件

【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.

人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)

人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)

问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1
解: (1)把m=2分别代入方程的左边和 右边. 左边= 8 , 右边= 4 因为左边 ≠ , 右边,
所以m=2 不是 原方程的解.
问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1 解: (2)把m=1分别代入方程的左边和右边 . 左边= 5 ,
一切问题都可以转化为数 学问题,一切数学问题都可以 转化为代数问题,而一切代数 问题又都可以转化为方程。因 此,一旦解决了方程问题,一 切问题将迎刃而解。
——笛卡儿
笛卡儿,1596年3月 31日生于法国都兰城。 笛卡儿是伟大的哲学 家、物理学家、数学 家、生理学家,解析 几何的创始人。
问题7:
根据下列问题,设未知数,列出方程。 (1)环形跑道一周长是400 m,沿跑道跑多少周, 可以跑3000 m? 解:设跑x周,依题意得, 400x=3000 (2)甲种铅笔每支0.3元,乙种铅笔每支0.6元, 用9元钱买了两种铅笔共20支,两种铅笔各买了 多少支? 解:设买甲种铅笔x支,乙种铅笔(20-x)支, 依题意得展
希腊数学家丢番图(公元3–4世纪) 的墓碑上记载着: 他生命的六分之一是幸福的童年; 再活了他生命的十二分之一,两颊长起了细细的胡须;
他结了婚,又度过了一生的七分之一;
再过五年,他有了儿子,感到很幸福; 可是儿子只活了他全部年龄的一半; 儿子死后,他在极度悲痛中过了四年,也与世长辞了。 根据以上信息,你能知道丢番图的寿命吗?
右边= 5 ,
因为左边 = 右边, 所以m=1 是 原方程的解. 使方程中等号左右两边相等的未知数的值, 叫做方程的解
中国人对方程的研究有悠久 的历史,“方程”一词最早出现 于《九章算术》.《九章算术》 全书共分九章,第八章就叫“方 程”. 宋元时期,中国数学家创立 了“天元术” ,即用“天元”表 示未知数进而建立方程,“立天 元一”相当于现在的“设未知数 x”. 14世纪初,我国元朝数学家 朱世杰创立了“四元术”,四元 指天、地、人、物,相当于四个 未知数.

人教版七年级上数学教学课件第三章一元一次方程全章

人教版七年级上数学教学课件第三章一元一次方程全章
如果a=b(c≠0),那么 a b . cc
【等式性质1】 如果a b,那么a c b c.
【等式性质2】 如果a b,那么ac bc.
如果a bc 0 ,那么a b .
cc
1.等式两边都要参加运算,并且是作同一种运算.
注 2.等式两边加或减,乘或除以的数一定是同一个数

或同一个式子.
检验一个数值是不是方程的解的步骤: 1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的解, 反之,则不是.
请你判断下列给定的t的值中,哪个是方程2t+1=7-t 的解?
(1)t=-2 (2)t=2 (3)t=1
根据方程的解的定义,我们得到t=2是方程2t+1=7-t 的解.
试妨问决
一分题这
50千米
70千米
青山
翠湖 秀水
地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
问题:如图,汽车匀速行驶途经王家庄、青
山、秀水三地的时间如表所示,翠湖在青山、
秀水两地之间,距青山50千米,距秀水70千米,
王家庄到翠湖的路程有多远?
回顾:路程=速度×时间 速度=路程÷时间
(3) y 3 6 y 9 (5) x2 1
(4) 0.32m (3 0.02m) 0.7
(6) 1 y 4 1 y
2
3
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm的铁丝围成一个正方形,正方形的边 长是多少? 解:设正方形的边长为x cm, 根据题意列方程得:4x=24. 变式:用一根长24 cm的铁丝围成一个长方形,使它的长 是宽的1.5倍,长方形的长、宽各是多少? 解:设长方形的宽为x cm,则它的长为1.5x cm, 根据题意列方程得:2(x+1.5x)=24.

《一元一次方程》PPT优秀课件

《一元一次方程》PPT优秀课件
列方程: 1700 .150x 2450 .
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.

人教部编版七年级数学上册《第三章 一元一次方程【全章】》精品PPT优质课件

人教部编版七年级数学上册《第三章  一元一次方程【全章】》精品PPT优质课件
解:设正方形的边长为x cm. 列方程 4x = 24.
(2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使用时 间达到规定的检修时间2450 h?
解: 设x月后这台计算机的使用时间达到2450 h, 那么在x月里这台计算机使用了150x h.
列方程
1700 + 150x = 2450
5. 列方程:
(1)某校七年级(1)班共有学生48人,
其中女生人数比男生人数的
4 5
多3人,这个班
有男生多少人?
解:设这个班有男生x人 x+( 4 x+3)=48 5
(2)把1400元奖学金按照两种奖项奖给22名 学生,其中一等奖每人200元,二等奖每人50 元,获得一等奖的学生有多少人? 解:设获得一等奖的学生有x人
(4)x的三分之一减y的差等于6
x y6
____3______________
(5)比a的3倍大5的数等于a的4倍
___3_a_+__5_=__4_a_______
(6)比b的一半小7的数等于a与b的和
1
___2__b_-_7_=__a_+__b_____
4. x=3,x=0,x=-2,各是下列哪个方程的解? (1)5x+7=7-2x; (2)6x-8=8x-4; (3)3x-2=4+x.
解:设甲种铅笔买了x支,乙种铅笔买了(20x)支,
0.3x+0.6(20-x)= 9
3.一个梯形的下底比上底多2 cm,高是5 cm, 面积是40 cm2,求上底.
解:设上底为x cm,
1(x+x+2)×5 = 40 2
4.用买10个大水杯的钱,可以买15个小水杯, 大水杯比小水杯的单价多5元,两种水杯的 单价各是多少元?

3.1.1一元一次方程课件人教版数学七年级上册

3.1.1一元一次方程课件人教版数学七年级上册
3.1.1 一元一次方程
第三章 一元一次方程
学习任务
1.目标 (1)了解什么是方程; (2)体会字母表示数的好处,画示意图有利于分析问题,找相等关 系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一 大进步; (3)会将实际问题抽象为数学问题,通过列方程解决问题.
学习任务
2.重点 (1)知道什么是方程; (2)找相等关系列方程. 3.难点 找相等关系列方程.
活动:拓广探索 训练提升
2.用一根长24 cm的铁丝围成一个长方形,使它长是宽的1.5倍,长方 形的长、宽各应是多少?
解:设长方形的宽为 x cm,那么长为1.5x cm.
1.5x
列方程得:2(x+1.5x)=24.
x
活动:拓广探索 训练提升
3.某校女生占全体学生的52%,比男生多80人,这个学校有多少学生? 解:设这个学校的学生有x人,那么女生数为0.52x,男生数为(1-0.52)x. 列方程得:0.52x-(1-0.52)x=80.
的时间是 x
60
h,
x 70
h,卡车行驶
列方程:根据题意,得到时间相差1小时,
列出方程: x x 1.
60 70
设未知数 找等量关系
归纳:实际问题
方程
练习
1.根据下列条件,列出方程: (1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少? (2)x的三分之一与y的和等于4. 2.根据下列问题,设未知数列出方程: 环形跑道一周长400 m ,沿跑道跑多少周可以跑3000 m? 【答案】1. (1)4x=24;(2)1 x+y=4.
问题: 一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的 行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1小时 经过B地,A、B两地间的路程是多少?

人教版七年级上册数学解一元一次方程(一)第1课时课件

人教版七年级上册数学解一元一次方程(一)第1课时课件
答:黑色皮块有12个,白色皮块有20个.
方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的 每一份为x,然后用含 x 的代数式表示各数量,根据等量关系,列 方程求解.
三、运用新知
例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···.其中某三个相邻数的和是-1701,这三个数各是多少?
二、合作交流,探究新知
思考:上述解方程中的“合并”起了什么作用?
解方程中“合并”起了化简作用,把含有未知数的项合 并为一项,从而到达把方程转化为ax = b的情势,其中a, b 是 常数,“合并”的根据是利用分配律.
三、运用新知
例1 解下列方程:(1) 2x 5 x 6 8 ;
2
解:合并同类项,得
提示:本题中已知黑、白皮块数目比为 3 : 5,可设黑色皮块有 3x 个,则白色皮块有 5x 个,然后利用相等关系“黑色皮块数+白色 皮块数=32” 列方程.
三、运用新知
解:设黑色皮块有 3x 个,则白色皮块有 5x 个. 根据题意列方程 3x + 5x = 32, 解得 x = 4, 则黑色皮块有 3x = 12 (个), 白色皮块有 5x = 20 (个).
答:计划生产Ⅰ型洗衣机1500台,Ⅱ型洗衣机3000台 ,Ⅲ型洗衣机21000台.
五、归纳小结
1. 解形如“ax + bx + ···+ mx = p” 的一元一次方程的步骤. 2. 用方程解决实际问题的步骤.
再见
1. 下列方程合并同类项正确的是 ( D )
A. 由 3x-x=-1+3,得 2x =4 B. 由 2x+x=-7-4,得 3x =-3 C. 由 15-2=-2x+ x,得 3=x D. 由 6x-2-4x+2=0,得 2x=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从算式到方程是数学的进步!
刚才列的方程,有什么特点?
x x 1 60 70 70 y=60(y+1) 70(z-1)=60z
只含有一个未知数,
(一元)
未知数的次数都是1,
(一次)
等号两边都是整式, 这样的方程叫做一元一次方程.
做一做
下列哪些是一元一次方程?
(1)2 x 1 ;
(√2)2m 15 3;
解:设这个学校的学生数为x,那么女生数为0.52x, 男生数为(1-0.52)x. 等量关系:女生人数-男生人数=80 列方程:0.52x- (1-0.52)x=80
请同学们思考: (1)怎样将一个实际问题转化为方程问题? (2)列方程的依据是什么?
实际问题 抓关键句子找等量关系 一元一次方程 设未知数列方程
我们知道当x=5时,170+15x的值是245,所以 方程170+15x=245中的未知数的值应是5.
使方程左右两边相等的未知数的值叫方程的解. 求方程解的过程叫做解方程.
x=420是 x x 1 方程的解吗?
60 70
方法归纳
判断一个数值是不是方程的解的步骤: 1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算,
(5) x+y=8 ( √ )
(6) 2x2-5x+1=0 ( √ )
合作探究
客车 70 km/h
A
60 km/h 卡车
客车
卡车 1 h
B
(3)如果用y表示客车行完AB的总时间,你能从客车 与卡车的路程关系中找到等量关系,从而列出方程吗?
等量关系:客车y小时路程=卡车(y+1)走的路程
方 程:
70 y=60(y+1)
(3)你能用算术的方法算出AB之间的路程了吗?
1 60 70 420km 70-60
讲授新课
一 方程及一元一次方程的概念
自主学习
一辆客车和一辆卡车同时从A地出发沿同一公路同方向行 驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h, 客车比卡车早1 h经过B地,A,B两地间的路程是多少?
甲种支数 乙种支数 20支 解:(1)设沿跑道跑x周,
400x 3 000 是一元一次方程.
(2)设甲种铅笔买了x支,乙种铅笔买了(20-x)支,
0.3x 0.620 x 9 是一元一次方程
(3)一个梯形的下底比上底多2 cm,高是5 cm, 面积是40 cm2,求上底.
分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
三 方程的解
对于方程4x=24,容易知道x=6可以使等式成立,
思 考
对于方程170+15x=245,你知道x等于什么时,等式成
立吗?我们来试一试.
x 1 2 345 6… 170+15x 185 200 215 230 245 260 …
列方程: 4x 24.
x
(2)一台计算机已使用1700 h,预计每月再使用150 h, 经过多少月这台计算机的使用时间达到规定的检修时 间2450 h?
解:设x月后这台计算机的使用时间达到2450 h 等量关系:已用时间+再用时间=检修时间.
列方程:1700 15. 0x 2450
(3)某校女生占全体学生数的52%,比男生多80人,这 个学校有多少学生?
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.初步学会如何寻找问题中的相等关系,列出方程,了解 方程的概念.(难点) 2.理解一元一次方程、方程的解等概念.(重点)
导入新课
问题引入
一辆客车和一辆卡车同时从A地出发沿同一公路同方向行 驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h, 客车比卡车早1 h经过B地,A,B两地间的路程是多少?
分析: (1)上述问题中涉及到了哪些量?
客车 70 km卡车 1 h
(2)如果将AB之间的路程用x表示, 客车行完AB全程所用时间: 卡车行完AB全程所用时间:
用含x的式子表示下列时间关系: xh 70 x h 60
两车所用的时间关系:
客车比卡车早到1h
即:(卡车用时 )- ( 客车用时)=1
(√3)3x-5=5 x+4;(4)x2+2x-6 0;
(5)3x+1.8=3 y ;(6)3a 9 15 .
(7)
x
1
6
1
二 列方程
典例精析
例1 根据下列问题,设未知数并列出方程 (1)用一根长24 cm的铁丝围成一个正方形,正方形 的边长是多少?
解:设正方形的边长为x cm. 等量关系:正方形边长×4=周长.
把文字用符号替换为: x x 1
60 70
方程
小学我们已经学过简易方程, 那么方程是如何定义的呢?
含有未知数的等式叫做方程.


做一做
判断下列各式是不是方程,是的打“√”,不是的打“×”.
(1) -2+5=3 ( × ) (3) 2a+b ( × )
(2) 3x-1=7 (4) x﹥3
( √) ( ×)
3.若左边=右边,则是方程的解,反之,则不是.
当堂练习
根据下列问题,找出等量关系,设未知数列出 方程,并指出是不是一元一次方程
(1)环形跑道一周长400m,沿跑道跑多少周, 可以跑3 000 m? 一周长 周数 总路程
(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元, 用9 元钱买了两种铅笔共20 支,两种铅笔各买了多 少支? 买甲种共用的钱 买乙种共用的钱 9元
客车 70 km/h
A
60 km/h 卡车
客车
卡车 1 h
B
(4)如果用z表示卡车行完AB的总时间,你能找到等量 关系列出方程吗?
等量关系:卡车z小时路程=客车提前1小时走的路程
方 程: 70(z-1)=60z
比较:列算式和列方程 列算式:列出的算式表示解题的计算过程, 只能用已知数. 对于较复杂的问题,列算式比较困难. 列方程:方程是根据题中的等量关系列出的等式. 既可用 已知数,又可用未知数,解决问题比较方便.
客车 70 km/h
A
60 km/h 卡车
客车
B 卡车 1 h
客车 70 km/h
A
60 km/h 卡车
客车
B 卡车 1 h
(1)客车每小时比卡车每小时多行多少km?
70-60=10km
(2)当客车到达B地时客车比卡车多走多少km?全程走了
多少时间呢? 卡车1h的路程 160 60km
1 60 6h 70-60
相关文档
最新文档