《数论算法》教案5章(二次同余方程与平方剩余)
初等数论 第五章 二次同余式与平方剩余
初等数论第五章二次同余式与平方剩余第五章二次同余式与平方剩余第五章二次同余式与平方剩余§1二次同余式与平方剩余二次同余式的一般形式是ax2?bx?c?0(modm),a??0(modm)(1)下面讨论它的解的情况。
?k?1?2令m?p1p2?pk,则(1)有解的充要条件为ax2?bx?c?0(modpi?i),i?1,2,?,k有解,而解f(x)?ax2?bx?c?0(modp?),p为质数(2)又可以归结为解f(x)?ax2?bx?c?0(modp),p为质数(3)。
当p?2时,同余式(3)极易求解,因此,我们只需讨论二次同余式f(x)?ax2?bx?c?0(modp),p为奇质数(4)若p?|a,用4a乘(4)再配方得(2ax?b)2?4ac?b2?0(modp),令y?2ax?b,A?b2?4ac,得y2?A?0(modp)可以证明:同余式(4)和(5)是等价的。
证明必要性显然;反之,设(5)有一解y?y0,因为(p,2a)?1,所以2ax?b?y0(modp)有解,即(4)有解。
以上讨论可知,二次同余式可以化为x2?a(modp),p为奇质数(6)(5)来求解,当p|a时,(6)仅有一个解x?0(modp),所以我们下面总假定p?|a或(p,a)?1。
因此,下面主要研究形如x2?a(modp),(p,a)?1,p为奇质数同余式。
(7)的定义若同余式x2?a(modp),(a,p)?1,p为奇质数有解,则a 叫做模p的平方剩余(二次剩余),若无解,则a叫做模p的平方非剩余(二次非剩余)。
定理1(欧拉判别条件)若(a,p)?1,则a是模p的平方剩余的充要条件为ap?12?1(modp);a是模p的平方非剩余的充要条件为a- 1 - p?12??1(modp)。
若a是模p的平方剩余,则(7)式恰有两解。
第五章二次同余式与平方剩余证明(1)设a是模p 的平方剩余,则同余式x2?a(modp),(a,p)?1有解,设为?,于是??a(modp),从而欧拉定理可知反之,若ap?122ap?12??p?1?1(modp)。
数论算法讲义5章(原根与指标)
第 5 章 原根与指标(一) 内容● 指数 ● 原根● 有原根的整数 ● 指标(对数)(二) 重点● 原根及其意义 ● 有原根的整数的条件 ● 指标及其性质5.1 指数及其基本性质准备知识:(1) 欧拉定理:m >1,(a,m)=1,则()m a ϕ≡1(mod m )(2) 问题:①()m ϕ是否是使得上式成立的最小正整数? ②该最小正整数有何性质? (一) 指数和原根概念【定义5.1.1】(定义1)设m >1,(a,m)=1,则使得e a ≡1(mod m )成立的最小正整数e 叫做a 对模m 的指数(或阶),记作m ord (a)。
若a 的指数e =()m ϕ,则a 叫做模m 的原根。
(二) Diffie —Hellman 密钥交换算法全局公开量q 素数α q 的原根(α<q )交换公开密钥 A →B : A Y B →A : B Y例如:● 素数q =353,原根α=3● A 选 A X =97, 计算A Y ≡973≡40 mod 353 ● B 选 B X =233, 计算B Y ≡2333≡248 mod 353 ● A 与B 交换● A 计算密钥 K ≡97248≡160 mod 353 ● B 计算密钥 K ≡23340≡160 mod 353(三) 用定义求指数和原根【例1】(按定义求指数和原根)(例1)m =7,则ϕ(7)=6。
且11≡1,32≡1,63≡1,34≡1,65≡1,26≡1(mod 7)故对模数7而言,1,2,3,4,5,6的指数分别为1,3,6,3,6,2。
列表表示为因此,3,【例2】(快速求指数)(例2)m =14=2·7, ϕ(14)=6,则11≡1,33≡-1,35≡-1,39≡1,311≡1,213≡1(mod7)列表故3,5【例3】(无原根的整数)(例3)m =15=3·5, ϕ(15)=8,则同理,可知模数m =9时,其原根为2,5;而整数8则没有原根。
《平方剩余》课件
选取一个较大的模数,并计算出满足模数的平方根。在这个过程中,可以深入探讨平方剩余的性质, 如模数的周期性、模数的奇偶性等。同时,也可以介绍平方剩余在密码学、数论等领域的应用。
实例三:实际应用中的平方剩余
总结词
通过实际应用案例,展示平方剩余在解决实际问题中的价值。
详细描述
介绍一些实际应用案例,如利用平方剩余解决几何问题、利用平方剩余进行数据加密等。通过这些案例,可以说 明平方剩余在实际问题中的应用价值,并激发学习者对数学的兴趣和热情。
详细描述
费马小定理是数论中的一个重要 定理,它说明了模n的同余方程 x^2≡a(mod n)有解的充分必要 条件是a^(n-1)≡1(mod n)。利用 费马小定理,我们可以证明平方 剩余。
证明方法二:欧拉定理
总结词
欧拉定理是数论中的另一个重要定理,它揭示了模n的指数和 与模n的乘法逆元之间的关系。通过欧拉定理,我们可以证明 平方剩余。
平方剩余与离散对数问题之间存在一 定的联系。离散对数问题是一个著名 的数学难题,而平方剩余在解决某些 离散对数问题时具有一定的帮助。
通过利用平方剩余的性质,可以设计 出一些算法来求解离散对数问题,这 对于密码学和网络安全等领域具有重 要意义。
在密码学中的应用
平方剩余在密码学中有广泛的应用,因为它们具有一些特 殊的数学性质,这些性质使得它们在加密和解密过程中具 有重要的作用。
详细描述
中国剩余定理说明了对于任意给定的正整数m1,m2,...,ms,且两两互质,存在 唯一的一组解x1,x2,...,xs,满足xi≡b[i] (mod mi)(i=1,2,...,s),并且mi|(b[i+1]b[i])。利用中国剩余定理,我们可以证明平方剩余。
《平方剩余》课件
探索《平方剩余》的奥秘:从基础概念到应用的完整介绍。
什么是平方剩余?
学习平方剩余是理解数论中重要概念的关键。了解平方剩余是什么以及其与 数学中其他概念的联系。
平方剩余的相关概念和定义
探索平方剩余的核心概念,包括剩余类,勒让德符号等。了解这些定义对后 续内容的重要性。
二次剩余和二次非剩余
探索平方剩余定理及其在数学竞赛中的应用。
Euler判别定理
深入研究Euler判别定理的原理和证明,并探讨其在平方剩余问题中的应用。
Jacobi符号和Legendre符号
介绍Jacobi符号和Legendre符号的定义和性质,以及在数论中的重要作用。
平方剩余的判别方法
二次探测法
解释如何使用Leabharlann 次探测法判断数 的平方剩余。Hensel定理和Hensel引理
研究Hensel定理和Hensel引理的证明和应用,以及其在平方剩余问题中的重要性。
费马小定理和欧拉定理
解释费马小定理和欧拉定理以及它们与平方剩余的关系和应用。
平方剩余与离散对数问题
深入研究平方剩余与离散对数问题之间的联系和应用。
平方剩余在数学竞赛中的应用
探索平方剩余在数学竞赛中的应用,包括奥林匹克竞赛和其他数学竞赛中的 典型问题。
深入研究平方剩余的分类,了解二次剩余和二次非剩余之间的关系以及其在 数论中的应用。
模意义下的平方剩余
将平方剩余的概念引入模意义中,探讨模意义下平方剩余的特性和运算规律。
平方剩余的性质
欧拉判别准则
解释欧拉判别准则在判断平方剩余的作用和重要性。
二次互反律
介绍二次互反律对平方剩余的影响和应用。
平方剩余定理
2 ElGamal加密算法
数论01二次同余式与平方剩余共32页
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
数论01二次同余式与平方剩余
•
6、黄金时代是在我们的前面,而ห้องสมุดไป่ตู้在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
二次同余式的解法
二次同余式的解法一、什么是二次同余式二次同余式是指形如ax2+bx+c≡0(mod m)的同余方程,其中a,b,c,m是给定的整数,x是未知数,≡表示模同余。
二、二次同余式的解法解二次同余式的一种常用方法是通过模平方根的性质。
下面介绍二次同余式的两种解法:平方剩余和二次非剩余。
2.1 平方剩余如果存在一个整数x,使得x2≡c(mod m),则称c是模m的平方剩余。
我们可以通过以下步骤求解二次同余式:1.计算模m的平方剩余集合{02,12,22,…,(m−1)2}。
2.判断c是否在平方剩余集合中。
–如果在集合中,即存在x满足x2≡c(mod m),则可以得到两个解:x≡±√c(mod m)。
–如果不在集合中,则二次同余式无解。
2.2 二次非剩余如果不存在一个整数x,使得x2≡c(mod m),则称c是模m的二次非剩余。
解决二次同余式的方法如下:1.计算模m的平方剩余集合{02,12,22,…,(m−1)2}。
2.判断c是否在平方剩余集合中。
–如果在集合中,则二次同余式无解。
–如果不在集合中,可以通过以下步骤求解二次同余式:1.找到一个整数y,使得y2≡c⋅a(mod m),其中a是模m的一个非平方剩余。
2.利用模m的平方剩余集合求解y的平方根。
3.根据平方根的性质,可以得到两个解:x≡±y(mod m)。
2.3 例子假设我们要解决二次同余式3x2+5x+2≡0(mod11)。
按照上述方法,我们可以进行如下步骤:1.计算模11的平方剩余集合:{02,12,22,…,102}={0,1,4,9,5,3,3,5,9,4,1}。
2.判断2是否在平方剩余集合中,发现不在集合中。
3.找到一个整数y,使得y2≡2⋅a(mod11),其中a是模11的一个非平方剩余。
可以选择a=3,则62≡2⋅3(mod11)。
4.利用模11的平方剩余集合求解6的平方根,发现6在平方剩余集合中。
5.得到两个解:x≡±6(mod11)。
数论01二次同余式与平方剩余
平方非剩余
如果一个数$a$模$p$同余于$x^2$模$p$ ,则称$a$为$x^2$的平方非剩余。
判定法则
判定法则一
费马小定理,若$p$是质数,且$(a, p)=1$,则有$a^{p-1} equiv 1 pmod{p}$。
判定法则二
二次互反律,设$p, q$是两个不同的奇素数,且$(p, q)=1$,则有$(p equiv q pmod{4}) Leftrightarrow (q equiv p pmod{4})$。
03
具体的证明过程需要用到一些较为复杂的数学符号 和逻辑推导,这里不再赘述。
应用案例
01
02
03
在密码学中,二次同余 式与平方剩余的概念被 广泛应用于一些加密算 法的设计,如 RSA 算法
。
在数论研究中,这些概 念也是重要的工具,可 以帮助我们解决一些数
论中的难题。
在实际生活中,这些概 念在金融、物流等领域 也有一定的应用,例如 在电子支付和电子签名 的安全性验证等方面。
解释
这是一个关于 (x) 的二次方程,但它 的解必须满足同余条件,即解必须是 模 (m) 的同余类。
性质
性质1
如果 (a, b, c, m) 满足二次同余式的定义,那么对于任意整数 (x),如果 (x^2 + bx + c equiv 0 (mod m)) 成立 ,那么 (ax^2 + bx + c equiv 0 (mod m)) 也一定成立。
THANKS
感谢观看
应用实例
在密码学中的应用
平方剩余在密码学中有重要的应用,例如RSA公钥密码算法中就使用了平方剩余的性质 。
在数论中的应用
平方剩余是数论中的一个重要概念,它在证明费马大定理、哥德巴赫猜想等数学问题中 发挥了重要作用。
二次同余式和平方剩余
§2 勒让德符号
定义:p是一个给定的奇素数,对于整数a定 义勒让德符号
1, a是平方剩余
( 例:
a) p
(1)
1, a是平方剩余
0, p | a
1, (2) 1, (3) 1, (4)
1
55
5
5
为了更方便地计算勒让德符号,我们给出其 相关的性质,即有下面的定理。
定理1:(1)
(a)
p 1
有解。例
(2) (2)(2) 1 ,但 x2 2(mod 9) 无解。
9 33
3、雅可比符号为-1时,则 x2 a(mod m)
一定无解。
因为若
(a) m
=-1,则至少有一个i使得
(
即 x2 a(mod pi ) 无解,则 x2 a(mod
a )
pi
m)
=-1,
无解.
下面给出雅可比符号的类似于勒让德符号性质,
定理:在模P的简化系中,平方剩余和平方非
剩余余各为 p 1个
p 1
2
且 余,2而个且平仅方与乘一余数分一别同与余。1,22 ,
(
p 1)2 2
之一同
证明如下:
证:由欧拉判别定理知平方剩余的个数是
p 1
p 1
x 2 1(mod p) 的解数。但 x p x (x 2 1)q(x)
其余式为0,由定理知
(143) 563
时,可以不
要管143是否为素数而直接用二次互反律,为
计算提供了方便。
例2:若 ( d ) 1, 则p 不能写成x2 dy2 的形式
p
证:若p= x2 dy2 ,则有若P|x, 则有 p|y
于是可设 x px1, y py1
初等数论(严蔚敏版)12 第五章二次同余式与平方剩余
8 / 38
《初等数论》习题解答(第三版)新乡学院
2、 (i)应用前几章的结果证明:模 p 的简化剩余系中一定有平方
剩余及平方非剩余存在,
(ii) 证明两个平方剩余的乘积是平方剩余;平方剩余与平方
非剩余的乘积是平方非剩余。
(iii)应用(i)、(ii)证明:模 p 的简化剩余系中平方剩余与平 p 1
设其解是: x 2mod p,即有: 22 a mod p,
13 / 38
《初等数论》习题解答(第三版)新乡学院
令22 a kp 22 a k p 0 mod p
2
而 2 a 2 C1 21 a C2 22 a a
pQ a
2 a p Q a
21 / 38
《初等数论》习题解答(第三版)新乡学院
3、设n是正整数,4n 3及8n 7都是质数,说明 24n3 1(mod 8n 7) 由此证明:23 | 211 1, 47 | 223 1,503 | 2251 1。
证明:当 p 8n 7时,由本节定理 1 的推论知2为平方剩余,
应用欧拉判别条件即有
p 3
当它们同为1或同时为
1时,
3 p
1,
3
一为1,一为 1时,
p
1
24 / 38
《初等数论》习题解答(第三版)新乡学院
p 1
p1
显然,当 为偶数,而 p 1(mod 4)时,(1) 2 1,
2
p 1
p1
当 是奇数,即 p 1(mod 4)时,(1) 2 1。
2
再因为 p 是奇质数,关于模3我们有 p 1或 p 1,
用 4a 乘 (1) 后再配方,即得 (2ax b)2 q 0(mod m), q b2 4ac 仍记2ax b为 x,即有 x2 q(mod m) 由以上讨论即知若 x x0 (mod m)为(1)的解, 则 x 2ax0 b(mod m)为(2)的解,必要性得证。
二次同余式的解法
二次同余式的解法
(原创实用版)
目录
1.二次同余式的基本概念
2.二次同余式的解法
3.实际应用案例
正文
【1.二次同余式的基本概念】
二次同余式,是指包含两个未知数的同余方程组。
同余方程组,是指一组含有相同未知数的整式方程,并且这些整式方程的解是整数。
在数学研究中,同余方程组的解法一直是一个重要研究领域。
二次同余式广泛应用于数论、代数几何等领域。
【2.二次同余式的解法】
解二次同余式通常采用代数方法,主要包括以下几种:
(1)替换法:将同余式中的一个未知数用另一个未知数表示,代入另一个方程求解。
(2)消元法:通过加减消去一个未知数,得到一个一元二次方程,然后求解。
(3)配方法:将同余式转化为两个一元二次方程,然后通过配方法求解。
(4)韦达定理:对于二次同余式,根据韦达定理,两个方程的根之和与根之积可以表示为另一个方程的系数。
利用这个定理,可以快速求解二次同余式。
【3.实际应用案例】
二次同余式在数学中有广泛应用,例如:已知方程组
```
x + y = 6
2x - y = 5
```
这是一个二次同余式,我们可以通过以上提到的方法求解,得到 x = 3, y = 4。
这个解在实际问题中有很多应用,比如在计算机图形学中,可以用这个解来表示两个图形的坐标。
总的来说,二次同余式是代数学的一个重要组成部分,它提供了一种处理含有两个未知数的整式方程的方法。
初等数论-第5章-二次同余式与平方剩余
2023/11/11
7
例3. 解同余式 x2 x 1 0(mod72 ) (1)
解:x2 x 1 0(mod72 ) 4( x2 x 1) 0(mod72 )
即(2x 1)2 3 0(mod72 ) 令y 2x 1,
y2 3 0(mod72 )
(2)
而y2 3 0(mod7)的解为y 2(mod7). 令y 7t 2,代入(2), 4t 1 0(mod7).
2023/11/11
19
定理2的证明:
由定理1知,平方剩余的个数等于同余式
p1
p1
x 2 1(mod p) 的解数,由 x 2 1 x p x,
所以据§4.4-TH5[P86]知,平方剩余的个数等于p
2
1
.
又模p的简化系中含有p-1个元素,
从而平方非剩余的个数等于 p 1 .
2
显然数列12 , 22 , ,( p 1)2中含有 p 1 个数,
第五章 二次同余式与平方剩余
§5.1一般二次同余式
2023/11/11
1
一、一般二次同余式的转化
二次同余式的一般形式为
ax2 bx c 0 (mod m)。
(1)
ax2
bx
c
0(mod
p ai i
),
i
1, 2,
,k.
其中,m
p p a1 a2 12
pkak , p1, p2 , . pk 为素数.
2023/11/11
4
ax2 bx c 0(mod p ), p (a,b,c) (2) 4、当p 2, 2 a,2 b时,(2)有解 2 c
f '( x) 2ax b 0(mod 2)无解 由§4.3-TH2〔P82〕知
二次同余式的解法
二次同余式的解法1. 引言在数论和抽象代数中,同余是一个重要的概念。
同余关系是指两个整数之间具有相同的余数,即它们除以某个整数所得的余数相等。
在解决一些问题时,我们经常会遇到二次同余式,即形如x^2 ≡ a (mod m)的方程。
本文将介绍二次同余式的解法,并详细讨论三种常用的解法:勒让德符号、平方剩余和中国剩余定理。
2. 勒让德符号勒让德符号是二次剩余理论中一个重要的工具。
对于给定的整数a和素数p,勒让德符号(a/p)定义为:(a/p) = { 1, 若存在整数x满足x^2 ≡ a (mod p) -1, 若不存在整数x满足x^2 ≡ a (mod p) }根据勒让德符号,可以判断一个整数是否为平方剩余。
如果(a/p) = 1,则a是p模意义下的平方剩余;如果(a/p) = -1,则a是p模意义下的非平方剩余。
使用勒让德符号可以解决一些特殊情况下的二次同余式。
例如,当p是奇素数且a是整数时,如果(a/p) = 1,则二次同余式x^2 ≡ a (mod p)有两个解;如果(a/p) = -1,则无解。
3. 平方剩余平方剩余是指对于给定的整数a和模m,存在一个整数x使得x^2 ≡ a (mod m)成立。
平方剩余是二次同余式的一种特殊情况。
为了判断一个整数是否为平方剩余,可以使用勒让德符号。
对于给定的素数p和整数a,如果(a/p) = 1,则a是p模意义下的平方剩余;如果(a/p) = -1,则a是p 模意义下的非平方剩余。
当我们确定一个整数a是模m意义下的平方剩余后,可以进一步求解二次同余式x^2 ≡ a (mod m)。
其中m可以是任意正整数。
求解二次同余式有多种方法,如试位法、勒让德符号法和Tonelli-Shanks算法等。
这些方法都可以根据给定的模m和平方剩余a来找到所有满足条件的x。
4. 中国剩余定理中国剩余定理是一种用于求解一组同余方程组的方法。
对于给定的一组同余方程:x ≡ a1 (mod m1) x ≡ a2 (mod m2) … x ≡ an (mod mn)其中m1, m2, …, mn两两互质,中国剩余定理可以找到一个解x,且满足0 ≤ x < M = m1 * m2 * … * mn。
初等数论第五章:平方剩余.ppt
要 么 无 解 , 要 么 有 偶 数 个 关 于 模 p 的 不 同 余 的 解 。
2 为 了 确 定 同 余 式 x a ( m o d p ) 的 解 的 存 在 性 问 题 ,
我 们 引 入 平 方 剩 余 的 概 念 :
定 义 : 若 同 余 式
2 x a ( m o dp ) ,( ap , ) 1
p1 p1 的 个 数 各 为 , 而 且 个 平 方 剩 余 分 别 与 序 列 2 2 p1 1 ,2 , , 2 中 之 一 数 同 余 , 且 仅 与 一 数 同 余
2 2 2
2 例 1 、 判 断 同 余 式 x 5 ( m o d 1 1 ) 是 否 有 解
剩 余 , 又 是 哪 些 质 数 模 p 的 平 方 非 剩 余 。
定 理 ( 1 欧 拉 判 别 条 件 ) 若 ( ap , ) 1 , 则 a 是 模 p 的 平 方 剩 余 的 充 要 条 件 是 a 1 ( m o d p )
p 1 2
( 2 )
而 a 是 模 p 的 平 方 非 剩 余 的 充 要 条 件 是 a 1 ( m o d p ) 若 a 是 模 p 的 平 方 剩 余 , ( 1 ) 式 恰 有 两 解 。
2
2
勒让德符号
a 定 义 勒 让 德 ( L e g e n d r e ) 符 号 ( 读 作 a 对 p 的 p 勒 让 德 符 号 ) 是 一 个 对 于 给 定 的 单 质 数 p 定 义 在 一 切 整 数 a 上 的 函 数 , 它 的 值 规 定 如 下 :
1 , a 是 模的 p 平 方 剩 余 a 1 , a 模的 p 平 方 非 剩 余 p 0 , pa
第五讲 二次剩余
4、雅可比符号定义 对任意奇数m,定义为:
a a a m p1 pr
1, 1, 0,
a不一定是模m的平方剩余 若a是模m的平方非剩余 若(m, a) 1
课后作业
(1)习题1、3、8 (2)复习数论知识、 预习群
例2 判断同余式
x 2 1(mod305)
是否有解?有解时,求出其解数。 例3 判断同余式
x 2 2(mod413 )
是否有解?有解时,求出其解数。
四、雅可比符号
定义 设 m p1 pr 是奇素数 pi 的乘积。对任意整 数 a ,定义雅可比(Jacobi)符号为
a a a m p1 pr
m
n (5) 设m,n都是奇数,则 (1) m
m1 n1 2 2
m 。 n
例 判断同余式是否有解?
x2 286(mod563)
解:不用考虑563是否为素数,直接计算雅可比符号:
5635631 1431 5631 563 286 2 143 8 2 2 (1) (1) 563 563 563 143 1431 9 1 2 1 (1) 143 143
李艳俊一二次剩余的概念二模为奇素数的平方剩余与平方非剩余三勒让德符号四雅可比符号五小结一二次剩余的概念二次同余式的一般形式是bxax定义1设m是正整数若同余式有解则a叫做模m的平方剩余或二次剩余
第5讲 二次剩余
教师:李艳俊
本讲内容
一、二次剩余的概念
二、模为奇素数的平方剩余与平方非剩余
三、勒让德符号
数论算法讲义5章(原根与指标)
第 5 章 原根与指标(一) 内容● 指数 ● 原根● 有原根的整数 ● 指标(对数)(二) 重点● 原根及其意义 ● 有原根的整数的条件 ● 指标及其性质5.1 指数及其基本性质准备知识:(1) 欧拉定理:m >1,(a,m)=1,则()m a ϕ≡1(mod m )(2) 问题:①()m ϕ是否是使得上式成立的最小正整数? ②该最小正整数有何性质? (一) 指数和原根概念【定义5.1.1】(定义1)设m >1,(a,m)=1,则使得e a ≡1(mod m )成立的最小正整数e 叫做a 对模m 的指数(或阶),记作m ord (a)。
若a 的指数e =()m ϕ,则a 叫做模m 的原根。
(二) Diffie —Hellman 密钥交换算法全局公开量q 素数α q 的原根(α<q )交换公开密钥 A →B : A Y B →A : B Y例如:● 素数q =353,原根α=3● A 选 A X =97, 计算A Y ≡973≡40 mod 353 ● B 选 B X =233, 计算B Y ≡2333≡248 mod 353 ● A 与B 交换● A 计算密钥 K ≡97248≡160 mod 353 ● B 计算密钥 K ≡23340≡160 mod 353(三) 用定义求指数和原根【例1】(按定义求指数和原根)(例1)m =7,则ϕ(7)=6。
且11≡1,32≡1,63≡1,34≡1,65≡1,26≡1(mod 7)故对模数7而言,1,2,3,4,5,6的指数分别为1,3,6,3,6,2。
列表表示为因此,3,【例2】(快速求指数)(例2)m =14=2·7, ϕ(14)=6,则11≡1,33≡-1,35≡-1,39≡1,311≡1,213≡1(mod7)列表故3,5【例3】(无原根的整数)(例3)m =15=3·5, ϕ(15)=8,则同理,可知模数m =9时,其原根为2,5;而整数8则没有原根。
《数论算法》教案4章(二次同余方程与平方剩余)
第 4 章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余2. 模为奇素数的平方剩余3. 勒让德符号、雅可比符号4. 二次同余方程的求解要点 二次同余方程有解的判断与求解4.1 一般二次同余方程(一) 二次同余方程2ax +bx +c ≡0(mod m ),(a 0(mod m ))(1) (二) 化简设m =k k p p p ααα2121,则方程(1)等价于同余方程⎪⎪⎩⎪⎪⎨⎧≡++≡++≡++)()()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 02221221问题归结为讨论同余方程2ax +bx +c ≡0(mod αp ), (p a )(2)(三) 化为标准形式p ≠2,方程(2)两边同乘以4a ,422x a +4abx +4ac ≡0(mod αp )()22b ax +≡2b -4ac (mod αp )变量代换,y =2ax +b (3)有2y ≡2b -4ac (mod αp ) (4)当p 为奇素数时,方程(4)与(2)等价。
即● 两者同时有解或无解;有解时,对(4)的每个解()p y y mod 0≡,通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。
● 两者解数相同。
结论:只须讨论以下同余方程2x ≡a (mod αp ) (5)【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。
(解)方程两边同乘以4a =4×7=28,得196x 2+140x -56≡0(mod 9)配方 (14x +5) 2-25-56≡0(mod 9)移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5得 y 2≡0(mod 9)(解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5)≡2(y -5)≡2y -10≡2y -1≡-7, -1, 5≡-4, -1, 2(mod 9))(四) 二次剩余【定义4.1.1】设m是正整数,a是整数,m a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 二次同余方程与平方剩余内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余3. 勒让德符号、雅可比符号4. 二次同余方程的求解要点二次同余方程有解的判断与求解 5.1 一般二次同余方程(一) 二次同余方程2ax +bx +c ≡0(mod m ),(a 0(mod m ))(1)(二) 化简设m =k kp p p αααΛ2121,则方程(1)等价于同余方程组 ⎪⎪⎩⎪⎪⎨⎧≡++≡++≡++)()()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 02221221ΛΛ ⇒2ax +bx +c ≡0(mod αp ), (pa ) (2)(三) 化为标准形式p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp )()22b ax +≡2b -4ac (modαp )变量代换, y =2ax +b (3)有2y ≡2b -4ac (mod αp ) (4)当p 为奇素数时,方程(4)与(2)等价。
即● 两者同时有解或无解;有解时,对(4)的每个解()p y y mod 0≡,通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。
● 两者解数相同。
结论:只须讨论方程2x ≡a (mod αp ) (5)【例5.1.1】化简方程7x 2+5x -2≡0(mod 9)为标准形式。
(解)方程两边同乘以4a =4×7=28,得196x 2+140x -56≡0(mod 9)配方 (14x +5) 2-25-56≡0(mod 9)移项 (14x +5) 2≡81(mod 9)变量代换y =14x +5得 y 2≡0(mod 9)(解之得y =0, ±3,从而原方程的解为x ≡114-(y -5)≡15- (y -5)≡2(y -5)≡2y -10≡2y -1≡-7, -1, 5≡-4, -1, 2(mod 9))(四) 平方剩余【定义5.1.1】设m 是正整数,a 是整数,m a 。
若同余方程2x ≡a (mod m ) (6)有解,则称a 是模m 的平方剩余(或二次剩余);若无解,则称a 是模m 的平方非剩余(或二次非剩余)。
【例】1是模4平方剩余,-1是模4平方非剩余。
【例】1、2、4是模7平方剩余,3、5、6是模7平方非剩余。
问题:(1)设正整数a是模p的平方剩余,若记方程(6)中的解为x≡a(mod m),那么此处的平方根a(modm)与通常的代数方程2x=a的解a有何区别?(2)如何判断方程(6)有解?(3)如何求方程(6)的解?(五)例【例5.1.2】求以15为模的所有平方剩余和平方非剩余。
(解)直接计算12,22,...,142得模15的平方剩余(实际只需计算12,22, (72)1,4,9,10,6平方非剩余:2,3,5,7,8,11,12,13,14【例5.1.3】求满足方程E:2y≡3x+x+1(mod 7)的所有整点(即坐标为整数的点)。
(解)对x=0,1,2,3,4,5,6分别解出y:x=0,2y≡1(mod 7),y≡1,6(mod 7)x=1,2y≡3(mod 7),无解x=2,2y≡4(mod 7),y≡2,5(mod 7)x=3,2y≡3(mod 7),无解x=4,2y≡6(mod 7),无解x=5,2y≡5(mod 7),无解x=6,2y≡6(mod 7),无解所以,满足方程的点为(0, 1),(0, 6),(2, 2),(2, 5)。
附:方程E :2y ≡3x +x +1的图形称为椭圆曲线。
5.2 模为奇素数的平方剩余与平方非剩余方程2x ≡a (mod p ), (a,p)=1 (1)结论:方程(1)要么无解,要么有两个解(因为()2x -=2x )。
(p =时,方程恰好1个解)5. 2. 1 平方剩余的判断条件【定理5.2.1】(欧拉判别条件)设p 是奇素数,(a,p)=1,则(i )a 是模p 的平方剩余的充要条件是()21-p a ≡1(mod p ) (2)(ii )a 是模p 的平方非剩余的充要条件是 ()21-p a ≡-1(mod p ) (3)并且当a 是模p 的平方剩余时,同余方程(1)恰有两个解。
(证)先证p a 时,式(2)或(3)有且仅有一个成立。
由费马定理1-p a ≡1(mod p )()()221-p a -1≡0(mod p ) ()()()()112121+---p p a a ≡0(mod p ) (4) 即 11--p a p =()()()()112121+---p p a a但()()()1,12121+---p p a a =1或2且p >2。
⇒p 能整除()()()()11121+---p p a a ,但p 不能同时整除()121--p a 和()121+-p a (否则,p 能整除它们的最大公因子1或2) ⇒由式(4)知式(2)或(3)有且仅有一式成立。
(i )必要性:a 是模p 的二次剩余⇒有0x 使得20x ≡a (mod p ), ⇒()()21p 20-x ≡()21-p a (mod p )。
即 ()2110--≡p p a x (mod p )。
由于p a ⇒p 0x ,由欧拉定理10-p x ≡1(mod p )。
充分性:()21-p a ≡1(mod p )⇒p a 。
故一次同余方程bx ≡a (mod p ), (1≤b ≤p -1) (5)有唯一解,对既约剩余系⎭⎬⎫⎩⎨⎧----=21,,1,1,,21p p A ΛΛ (6) 设b =j 时方程(5)的解j x x =(A x j ∈)。
若a 不是模p 的二次剩余⇒jx j ≠⇒A 中各数可按j 、x j配对,两两分完。
(b 1≠b 2,则相应的解x 1≠x 2,且除了±1之外,每个数的逆不是它本身) ⇒()()p a p p m od )!1(21-≡-即 ()()p a p m od 121-≡-(威尔逊定理)与式(2)矛盾⇒必有某个0j ,使00j x j =⇒a 是模p 的二次剩余。
(ii )显然(由(i )的证明即知)其次,若0x 0(mod p )是方程(1)的解,则-0x 也是其解,且必有0x -0x (mod p )。
故当(a , p )=1时,方程(1)要么无解,要么同时有两个解。
(说明:本定理只是一个理论结果,当p >>1时,它并不是一个实用的判断方法)小结:对于任何整数a ,方程(1)的解数可能为()p a x T ;2-=0, 1, 2【例5.2.1】设p =19,验证定理5.2.1的证明过程。
(解)由费马定理18a ≡1(mod 19),a =1, 2, …, 18方程2x ≡1(mod 19)只有两个解,即x ≡±1(mod 19)。
⇒9a ≡±1(mod 19)(视()2918a a ≡≡1(mod 19),即9a x ≡)◆ 针对必要性:【例】a =17是模19的二次剩余,即存在0x ≡6使得26≡17(mod 19)。
有()21-p a≡917≡186≡1(mod 19) 【2】2x ≡2(mod 19)无解,即a =2是模19的二次非剩余。
则9211922≡-≡-1(mod 19)◆ 针对充分性:【例】a =6,()21-p a ≡96≡1(mod 19),验证6是二次剩余。
解方程bx ≡6(mod 19), (1≤b ≤18)所以6是二次剩余。
又选a =8,()21-p a ≡98≡-1(mod 19),验证:解方程 bx ≡8(mod 19), 1≤b ≤181•2•…•18≡(1•8)(2•4)(3•9)(5•13)(6•14)(7•12)(10•16)(11•18)(15•17) ≡98≡-1(mod 19)【例2】判断137是否为模227的平方剩余。
(解)首先,227是素数。
其次,计算()1227137-≡-1(mod 227)所以,137是模227的平方非剩余。
【推论】设p 是奇素数,(a 1, p )=1,(a 2, p )=1,则 (i )若a 1,a 2都是模p 的平方剩余,则a 1a 2是模p 的平方剩余;(ii )若a 1,a 2都是模p 的平方非剩余,则a 1a 2是模p 的平方剩余;(iii )若a 1是模p 的平方剩余,a 2是模p 的平方非剩余,则a 1a 2是模p 的平方非剩余。
(证)因()()2121-p a a =()()12211--p p a a5. 2. 2 平方剩余的个数【定理5.2.2】设p 是奇素数,则模p 的既约剩余系中平方剩余与平方非剩余的个数各为(p -1)/2,且(p -1)/2个平方剩余恰与序列12,22,…,221⎪⎭⎫ ⎝⎛-p 中的一个数同余。
(证)由定理5.2.1,模p 的平方剩余个数等于方程 21-p x ≡1(mod p )的解数。
但 1121---p p x x由定理4.4.5知,方程的解数为21-p ,即平方剩余的个数是21-p ,且平方非剩余的个数是(p -1)-21-p =21-p 。
其次,可以证明当1≤k 1≤21-p ,1≤k 2≤21-p ,且k 1≠k 2时,有21k 22k mod p 。
故结论成立。
(定理4.4.5:设p 为素数,n 为正整数,n ≤p 。
则同余方程()x f =0111a x a x a x n n n ++++--Λ≡0 mod p 有n 个解⇔x x p -被()x f 除所得余式的所有系数都是p 的倍数)5.3 勒让德符号目的:快速判断整数a 是否为素数p 的平方剩余。
(一) 勒让德符号【定义5.3.1】设p 是素数,定义勒让德(Legendre )符号为:L(a, p)=⎪⎪⎭⎫ ⎝⎛p a =⎪⎩⎪⎨⎧-。
当的二次非剩余;是模当的二次剩余;是模当a p p a p a ,0,1,1 【推论】整数a 是素数p 的平方剩余的充要条件是⎪⎪⎭⎫ ⎝⎛p a =1。
(证)由定义5.3.1。
意义:判断平方剩余转化为计算勒让德符号的值。
【例5.3.1】计算勒让德符号17a ⎛⎫ ⎪⎝⎭的值。
其中a =0, 1, 2, …,16。
(解)直接计算: ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛171617151713179178174172171=1 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛1714171217111710177176175173=-1 (注:本例仍是利用平方剩余而得到勒让德符号值) 问题:反过来,如何快速计算勒让德符号的值,以判断平方剩余。