U型管式换热器设计毕业设计说明书

合集下载

U形管换热器设计任务书

U形管换热器设计任务书

U型管换热器设计任务书
1、 设计题目:U型管换热器结构设计
2、 设计任务及条件:
表2-1冷却流体参数
被冷却流体水蒸气
进气温度180℃
出气温度130℃
设计温度180℃
设计压力 2.0Mpa
表2-2冷却介质参数
冷却介质类型自来水
进口温度常温 4℃
出口温度95℃
设计温度95℃
设计压力 1.0Mpa
以下为参考数据
换热面积 90
换热管规格及管束级别252 长6m Ⅰ类
程数22
标准规范GB150-1999;GB151-1999
三、设计内容:
1、 根据两种介质的流量、进出口温度、操作压力等计算出换热器所需的传递热

2、 根据介质性质选择合适的材料。

3、 选择换热器的结构形式。

4、 计算所需要的换热面积。

5、 管字数的计算。

6、 管子的排列方式,管间距的确定。

7、 换热器壳体直径、壁厚的确定;
8、 换热器封头的选择。

9、 管板尺寸的确定。

10、 管子拉脱力的计算。

11、 计算是否安装膨胀节。

12、 折流板,开孔补强和支座的设计。

3、 设计成果:
(1) 设计说明书一份;
(2) 换热器装配图一张;。

U型管换热器毕业设计说明书

U型管换热器毕业设计说明书

机械制造工艺学学号:毕业设计说明书U型管换热器设计U tube heat exchanger design学院机电工程学院专业化工设备与机械班级学生指导教师(职称)完成时间年月日至年月日广东石油化工学院专科毕业设计诚信承诺保证书本人郑重承诺:《U型管换热器设计》毕业设计的内容真实、可靠,是本人在指导教师的指导下,独立进行研究所完成。

毕业设计中引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处,如果存在弄虚作假、抄袭、剽窃的情况,本人愿承担全部责任。

学生签名:年月日毕业设计任务书院(系):专业班级:学生:学号:一、毕业论文课题 U形管换热器设计二、毕业论文工作自年月日起至年月日止三、毕业论文进行地点本校、实习地四、毕业论文的内容要求 1.毕业设计说明书 2.零号图纸1.5张基础数据:序号项目名称壳程管程单位1设计压力1817MPa2工作压力17.115.6MPa3设计温度400454℃4工作温度373415℃5操作介质混氢油反应产物—6焊接街头系数11—7腐蚀裕量33mm8水压试验压力24.6424.31MPa9入口温度134370℃10出口温度316210℃主要内容:1.结构设计参照相关手册、标准等确定换热器的结构。

包括总体结构尺寸的确定、折流板、接管、法兰、支座及拉杆的选择。

2.强度计算通过此部分计算,确定换热器的强度尺寸。

包括筒体、封头、管板的强度计算。

要求:1.毕业设计说明书2.零号图纸1.5张设计进度计划:第1~5周——查阅资料、现场调研、确定设计方案、工艺计算、确定工艺尺寸;第6~13周——结构设计、强度计算、绘图;第14~15周——撰写论文、打印论文、准备答辩。

主要参考资料:[1]毛希谰. 换热器设计[M]. 上海:上海科学技术出版社,1998[2]姚玉英. 化工原理[M].天津:天津大学出版社,1999[3]夏青德. 化工设备设计[M].北京:化学工业出版社,2000[4]GB150-1998,钢制压力容器[S].中国标准出版社出版.2000[5]GB151-1999,管壳式换热器[S].中国标准出版社.1998.指导教师接受论文任务开始执行日期 2014 年 3 月17 日学生签名摘要换热器是许多工业部门广泛应用的工艺设备。

U型管换热器设计说明书

U型管换热器设计说明书

流体流量进口温度出口温度压力煤油10tℎ⁄180℃40℃1MPa 水?tℎ⁄20℃40℃0.5MPa 一.热力计算1.换热量计算Q=m1∙C p1∙(T1−T2)=100003600∙2100∙(180−40)=817.32KJ/s 2.冷却剂用量计算m2=QC P2∙(t1−t2)=817.32∙1000 4183∙(40−20)=9.77KJ/s由于水的压力较之煤油较大,黏度较之煤油也较大,所以选择水为壳程,煤油为管程。

3.换热面积估算∆t1=|T1−t2|=140℃∆t2=|T2−t1|=20℃∆t m′=∆t1−∆t2ln∆t1∆t2=140−20ln14020=61.67∆t m′——按纯逆流时计算的对数平均温差∆t m=ε∆t∙∆t m′ε∆t——温差矫正系数ε∆t=φ(R.P)R=热流体的温降冷流体的温升=T1−T2t1−t2=180−4040−20=7P=冷流体温升两流体的初始温差=t2−t1T1−t1=40−2080−20=0.16查图d o−−换热管外径,mL=38.1320∙4∙π∙0.019=7.98m考虑到常用管为9m管,为生产加工方便,选用单程管长8m又考虑到单程管长8m会使得换热器较长,在选取换热器壳体内径时,尽量选取较大的,以保证安全,因此换热器内部空间较大,故选用较为宽松的正方形排布。

换热管材料由于管程压力大于0.6MPa,不允许使用焊接钢管,故选择无缝冷拔钢管。

按照GB—151管壳式换热器1999选取常用管心距p i= 25mm;分程隔板两侧管心距p s=38mm按下图作正方形排列选择布管限定圆直径D L=D i−0.5d o=400−10=390mm由布管限定圆从《GB151—1999》管壳式换热器中选定工程直径DN=400mm的卷制圆筒,查得碳素钢,低合金钢圆筒最小厚度不得小于8mm,高合金钢圆筒最小厚度不得小于3.5mm圆筒厚度计算:选用壳体材料为现在工业生产中压力容器的常用材料Q345R,为一种低合金钢。

U型管式换热器

U型管式换热器
Key words: U type heat exchanger, structure, design and calculation
绪论
能源是当前人类面临的重要问题之一,能源开发及转换利用已成为各国的重要课题,而换热器是能源利用过程中不可缺少的设备,几乎一切工业领域都要使用,化工、冶金、动力、交通、航空与航天等部门应用尤为广泛。近几年由于新技术发展和新能源开发利用,各种类型的换热器越来越受到工业界的重视,而换热器又是节能措施中较为关键的设备,因此,无论是从工业的发展,还是从能源的有效利用,换热器的合理设计、制造、选型和运行都具有非常重要的意义。
The design for the two types of pressure vessels, design temperature and pressure are very high, so high design requirements. The heat exchanger adopts a pipe shell, stainless steel tube manufacturing. In the design of the structure design of the heat exchanger, intensity and components selection and process design.
对同一种型式的换热器,由于各种条件不同,往往采用的结垢亦不相同。在工程设计中,出尽量选用定型系列产品外,也常按其特定的条件进行设计,以满足工艺上的需要。
U型管式换热器仅有一块管板,且无浮头,所以结构简单,造价比其它换热器便宜,管束可以从壳体内抽出,管外便于清洗,但管内清洗困难,所以管内介质必须清洁及不易结垢的物料。U型管的弯管部分曲率不通,管子长度不一。管子因渗漏而堵死后,将造成传热面积的损失。

U型管换热器设计说明书68459

U型管换热器设计说明书68459
管外流体给热系数 :
精品
.
查得定性温度下流体的粘度为 壁温下流体的粘度 1004
查得壳程流体的普朗克数 查得水的导热系数
管内流体给热系数 :
查得煤油的导热系数 查得煤油的密度 管内流体的流速 煤油的粘度 煤油的比热 换热管的内径
在总传热系数计算公式中, 可看作 管外流体的污垢热阻 管内流体的污垢热阻 用外表面表示的管壁热阻
,允许正偏差为
0.3,负偏差为 0,即管孔为
(4) 折流板的固定 折流板的固定一般采用拉杆与定距管等原件与管 板固定,其固定形式由一下几种: a. 采用全焊接法,拉杆一段插入管板并与管板固 定,每块折流板与拉杆焊接固定。 b. 拉杆一段用螺纹拧入管板,每块折流板之间用 定距管固定,每一拉杆上最后一块折流板与拉 杆焊接 c. 螺纹与焊接相结合,拉杆一端用螺纹拧入管板, 然后将折流板焊接在拉杆上 d. 拉杆的一端用螺纹拧入管板,中间用定距管将 折流板固定,最后一快折流板用两螺母锁紧并 点焊固定。 这里选择 d.作为折流板固定的方法。
箱法兰连接。管板形式如下图:
折流板厚度 5mm
(2)管板计算 按照 GB151——1999 管壳式换热器中 a 型连接方式管板
的计算步骤进行下列计算。 a)根据布管尺寸计算
精品
. 在布管区范围内,因设置隔板槽和拉杆结 构的需要,而未能被换热管支撑的面积,
精品
. 对于正方形排布
拉杆直径 12mm 拉杆长度 8000mm
从 GB150.2 查得 40Cr 在 40 下的许用应力:
取其中面积较大者 (3)螺栓设计载荷 螺栓设计载荷按下列规定确定: a. 预紧状态螺栓设计载荷按下式计算:
b. 操作状态螺栓设计载荷按下式计算:
精品

U型管式换热器的设计

U型管式换热器的设计
本次设计的换热器在编制说明书分了六部分:第一部分前言,主要是对U型管换热器的应用、优缺点作了论述。。第二部分简单了工艺计算,通过计算传热量,流体阻力来选型。第三部分就所选型式换热器作结构及强度计算。第四部分简要介绍了U型管式换热器的制造工艺。第五部分是关于U型管式换热器的检验、安装、维修和使用。第六部分是材料的的经济性讨论;第七部分个人小结以及致谢,是针对本次设计的总结和设计后的感想。最后是附录, 参考文献。
筒体材料为16MnR 查GB 150-1998 ???
?

2.3.2 管箱封头设计
材料:16MnR
封头材料为16MnR 查GB 150-1998
?
厚度附加量C=C1+C2=2.0+0=2.0mm
取封头名义厚度与壳体名义厚度相等取
选择标准椭圆形封头,根据JB/T4736-2002,选以内径为基准,类型代号为EHA,型式参数关系为:Di/2(H-h)=2。标准椭圆形封头是由半个椭球面和短圆筒组 成。直边段的作用是避免封头和圆筒的连接焊缝处出现经向曲率半径突变,以改善焊缝的受力状况。
??逆流的另一优点是可以节约冷却或加热剂的用量,因为并流时t总是低于T,而逆流是,t却可以高于T,所以逆流冷却时,冷却剂的升温(T1-T2)可比并流的大一些,单位时间内传过的热量相同时,冷却剂用量就可以少些.同理,逆流加热时,加热剂本身温降(T1-T2)可比并流时大一些,也就是说,加热剂的用量少些.
℃ 焊接
系数 腐蚀裕量
mm 换热面积
m2 容器
类型 管程 1.7 300 0.85 2 110 Ⅱ 壳程 2.0 400 0.85 2 型号说明
2.1.2 换热管的选型
换热面积A=110m2 ?参照JB/T4714—92 选择换热器基本参数

换热器设计毕业设计

换热器设计毕业设计

换热器设计毕业设计一、引言换热器是工业生产中重要的设备之一,主要用于将热流体的热量传递给冷流体。

换热器的设计需要考虑到传热效率、流动阻力、设备成本、材料选择等多个方面。

本文将介绍一种新型换热器的设计,该设计旨在提高传热效率,降低流动阻力,并优化设备成本。

二、换热器设计本文所设计的换热器采用板式结构,主要由板片、密封垫和夹紧螺栓组成。

板片之间通过密封垫密封,形成流体通道。

板片材质选择不锈钢,以提高设备的耐腐蚀性能和使用寿命。

夹紧螺栓用于固定板片,保持设备的密封性。

在板式换热器中,流体分为冷流体和热流体。

冷流体通过板片的冷流道,热流体通过板片的热流道。

由于板片之间的密封垫较薄,因此可以形成较小的通道,减小流动阻力。

同时,板片的波纹结构可以增加传热面积,提高传热效率。

三、设计优化为了进一步提高换热器的性能,本文提出以下优化措施:1、增加板片数量:增加板片数量可以增加传热面积,提高传热效率。

但同时也会增加设备的成本和重量。

因此,需要综合考虑传热效率、设备成本和重量等因素来确定板片数量。

2、优化流道结构:流道结构的优化可以减小流动阻力,提高传热效率。

可以通过改变流道形状、减小流道截面等方式来优化流道结构。

3、采用强化传热材料:采用强化传热材料可以增加传热效率,但需要考虑到材料的耐腐蚀性能和使用寿命等因素。

4、增加设备密封性:增加设备密封性可以防止流体泄漏,提高设备的使用安全性。

可以通过选用高质量的密封垫和夹紧螺栓等措施来增加设备密封性。

四、结论本文所设计的换热器采用板式结构,具有较高的传热效率和较低的流动阻力。

通过增加板片数量、优化流道结构、采用强化传热材料和增加设备密封性等措施,可以进一步提高换热器的性能。

该设计具有一定的实用价值和推广意义。

管壳式换热器结构设计在化工、石油和能源等领域中,管壳式换热器是一种广泛应用的高效换热设备。

本文将详细探讨管壳式换热器的结构设计,包括材料选择、传热原理和应用特点等方面的内容,旨在提高设备的传热效率和可靠性。

换热器的设计说明书

换热器的设计说明书

换热器的设计1.1换热器概述换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。

换热器种类很多,但根据冷、热流体热量交换的原理和方式根本上可分三大类即:间壁式、混合式和蓄热式。

在三类换热器中,间壁式换热器应用最多。

换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。

由于使用条件的不同,换热设备又有各种各样的形式和构造。

换热器选型时需要考虑的因素是多方面的,主要有:①热负荷及流量大小;②流体的性质;③温度、压力及允许压降的围;④对清洗、维修的要求;⑤设备构造、材料、尺寸、重量;⑥价格、使用平安性和寿命;按照换热面积的形状和构造进展分类可分为管型、板型和其它型式的换热器。

其中,管型换热器中的管壳式换热器因制造容易、生产本钱低、处理量大、适应高温高压等优点,应用最为广泛。

管型换热器主要有以下几种形式:〔1〕固定管板式换热器:当冷热流体温差不大时,可采用固定管板的构造型式,这种换热器的特点是构造简单,制造本钱低。

但由于壳程不易清洗或检修,管外物料应是比拟清洁、不易结垢的。

对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。

〔2〕浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。

另一端管板不与壳体连接而可相对滑动,称为浮头端。

因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。

适用于冷热流体温差较大,壳程介质腐蚀性强、易结垢的情况。

〔3〕U形管式换热器换:热效率高,传热面积大。

构造较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。

表1-1 换热器特点一览表在过程工业中,由于管壳式换热器具有制造容易,生产本钱低,选材围广,清洗方便,适应性强,处理量大,工作可靠,且能适应高温高压等众多优点,管壳式换热器被使用最多。

工业中使用的换热器超过90%都是管壳式换热器,在工业过程热量传递中是应用最为广泛的一种换热器。

氢气冷却器设计(U型管换热器)辽宁工业大学毕业设计(课程设计)师兄宋超 提供最全面说明书

氢气冷却器设计(U型管换热器)辽宁工业大学毕业设计(课程设计)师兄宋超 提供最全面说明书

摘要换热器是目前许多工业部门广泛应用的通用工艺设备,广泛应用于化工,石油化工和石油行业。

本次设计的换热器采用U型管式换热器,管程介质为氢气,工作压力0.7MPa,进口温度为150℃,出口温度为42℃;壳程介质为水,工作压力为1.0MPa,进口温度为32℃,出口温度为42℃;主体材质:管束为不锈钢、筒体为0Cr18Ni12Mo2Ti;主要内容包括三部分:第一部分对换热器的选型进行了论述,第二部分则阐述了换热器的设计计算,第三部分对加工制造及要求和总体经济分析作了简单说明。

设计的主要有工艺设计、强度设计计算、零件结构形式的选择及换热器的检验和验收等。

其中工艺设计包括:估算传热面积、确定工艺结构尺寸、核算压降和传热系数等;强度设计计算包括:壁厚、壳体上开孔补强、管箱开孔补强面积、管板、壳体法兰的计算;零件结构形式的选择包括:折流版、拉杆、定距管、隔程挡板、接管、防冲板与导流筒、排气排液管和鞍座等。

关键词:换热器;工艺设计计算;强度设计计算;管程;壳程;AbstractThe heat exchanger is widely used in many industrial sectors common process equipment, widely used in chemical, petrochemical and oil industry. industry.U tube heat exchanger is designed in the topic. The hydrogen is flowed in the U tube. the pressure is 0.7MPa, the intake temperature is 150 ℃, the outlet temperature is 42 ℃; the shell regulation walks water, the pressure is 1.0MPa, the intake temperature is 32 ℃, the outlet temperature is 42 ℃. main material: tubes are used by stainless steel ,the body of cylinder are used by 0Cr18Ni12Mo2Ti . Main contents include three parts: The first part has carried on the elaboration to the heat interchanger shaping, the second part is in detail narrated and has analyzed the interchanger design calculation, the third part give the simple explanation to the request of manufacture and the economic analysis.The main design including process design, calculations of strength design , selection and structure in the form of heat exchanger parts inspection and acceptance . Which process design including: estimating the heat transfer area , determine the process structure, size, pressure drop and heat transfer coefficient calculation; strength design calculations include:wall thickness, opening reinforcement on the housing tube box opening reinforcement area , the management board , the housing law Portland calculations ; parts structure options include : baffle version , rod , fixed pitch pipe , baffle every way , receivership, anti-red plate with draft tube , exhaust pipes and drain saddle and so on.Key words:heat exchanger;the design calculation of technolog;strength design calculation;shell side;tube side.目录第1章绪论 (1)1.1 概述 (1)1.2 换热器的分类 (2)1.3 换热器的特点及其选择 (3)1.4 国内发展前景及技术进步 (5)第2章设计方案的选择 (7)2.1 工艺简介 (7)2.2 操作条件 (7)2.3 选择换热器的类型 (7)2.4 经济分析与评价 (8)2.5 物性的确定 (8)2.6 流程的安排 (9)第3章工艺设计计算 (10)3.1 估算传热面积 (10)3.1.1 计算热负荷 (10)3.1.2 计算冷却水的流量 (10)3.1.3 计算两流体的平均温度差 (11)3.1.4 初选传热面积 (12)3.2 工艺结构尺寸 (12)3.2.1 换热管及管内流速选择 (12)3.2.2 管程数与换热管数 (13)3.2.3 平均传热温差校正及壳程数 (14)3.2.4 换热管排列方式与管间距的确定 (14)3.2.5 换热器壳体内径的确定 (16)3.2.6 折流板 (16)3.2.7 接管 (17)3.3 换热器的核算 (18)3.3.1 壳程对流传热系数 (18)3.3.2 管程对流传热系数 (19)3.3.3 污垢热阻的选择 (20)3.3.4 传热系数的计算 (21)3.3.5 传热面积 (21)3.4 流动阻力及换热器内压降核算 (22)3.4.1 管程流动阻力 (22)3.4.2 壳程流动阻力 (23)3.4.3 总阻力 (24)第4章强度设计计算 (26)4.1 换热器的选材 (26)4.2 筒体的设计与校核 (28)4.2.1 操作条件 (28)4.2.2 筒体厚度的计算 (28)4.2.3 筒体最小壁厚校核 (30)4.2.4 筒体厚度的强度 (30)4.3 封头的设计与校核 (32)4.3.1 封头的形式及选择 (32)4.3.2 封头的壁厚 (33)4.3.3 封头水压试验及强度校核 (34)4.4 管箱结构设计 (36)4.4.1 管箱结构设计 (36)4.4.2 管箱壁厚设计 (37)4.4.3 隔板 (40)4.5 管板的设计及计算 (40)4.5.1 管板连接设计 (40)4.5.2 管板设计计算 (42)4.6 接管的设计 (46)4.6.1 接管的一般要求 (46)4.6.2 壳程流体进出口接管计算 (46)4.6.3 管程流体进出口接管计算 (47)4.6.4 接管高度确定 (47)4.6.5 接管位置尺寸 (47)4.7 开孔补强 (48)4.7.1 补强结构 (48)4.7.2 补强计算 (49)4.8 密封装置设计 (57)4.8.1 法兰的选取与校核 (57)4.8.2 垫片的设计与选取 (62)4.8.3 螺栓与螺母的选取 (64)4.9 鞍座的设计与校核 (67)4.9.1 标准鞍式支座选用要求及说明 (67)4.9.2 支反力计算及水压校核 (68)4.9.3 鞍座的型号及尺寸 (68)4.9.4 鞍座的位置 (70)第5章零部件结构尺寸设计 (71)5.1 折流板的设计 (71)5.1.1 折流板的类型 (71)5.1.2 折流板的结构尺寸 (71)5.2 拉杆与定距管 (72)5.3 防冲挡板 (73)5.4 换热管在壳体内的排布 (73)5.5 排气与排液管 (74)第6章加工制造要求 (75)6.1 钢材 (75)6.2 焊接结构 (75)6.2.1 焊接要求 (75)6.2.2 主要焊接区结构 (75)6.2.3 焊接方法的选择 (76)6.2.4 主要焊接缺陷分析 (76)6.2.5 无损探伤 (77)6.3 技术要求 (77)6.4 加工制造要求 (77)6.4.1 滚圆原理 (77)6.4.2 滚圆工艺 (78)6.4.3 边缘加工 (78)6.4.4 设备组队装配 (79)6.4.5 组队基本工序及工具 (80)第7章经济分析 (81)7.1 单元设备价格估算 (81)7.2 总投资估算 (81)参考文献 (83)致谢 (84)附录 (85)第1章绪论1.1概述化工生产中,绝大多数的工艺过程都有加热、冷却、汽化和冷凝的过程,这些过程总称为传热过程。

U形管式换热器课程设计

U形管式换热器课程设计

《过程设备课程设计》指导书1.课程设计任务书课程设计题目:U型管式换热器设计课程设计要求及原始数据(资料):一、课程设计要求:1.使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。

2.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。

3.设计计算采用电算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。

4.工程图纸要求手工绘图。

5.毕业设计全部工作由学生本人独立完成。

二、原始数据:1. 卧式换热器设计条件表序号项目壳程管程1 设备名称冷却器2 型式BEM3 工作压力MPa 见设计参数表见设计参数表4 工作温度℃(进/ 出)见设计参数表见设计参数表5 工作介质水、甲醇水6 介质特性易燃易爆、中度危害7 腐蚀裕量mm 2.02.卧式换热器条件图3.卧式U型管式换热器设计参数表三、课程设计主要内容:1.设备的结构设计包括:管箱、管板、折流板、拉杆等结构形式的确定以及标准件(支座、容器法兰、管法兰)的选取等。

2. 设备强度计算(1)管、壳程的筒体及封头壁厚计算以及水压试验应力校核。

(2)管板的厚度计算及应力校核。

3.技术条件编制4.绘制设备总装配图5.编制设计说明书四、学生应交出的设计文件(论文):1.设计说明书一份2.总装配图一张(折合A1图纸一张)五、主要参考资料:[1] GB150-1998《钢制压力容器》,学苑出版社,1999[2] GB151-1999《管壳式换热器》,中国标准出版社,2000[3] 秦叔经叶文邦等,《化工设备设计全书——换热器》,化学工业出版社,2002.12[4] 中国化工设备设计技术中心站,《化工设备图样技术要求》,2000,11[5] 郑津洋、董其伍、桑芝富,《过程设备设计》,化学工业出版社,2001[6] 国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999[7] 中国石化集团上海工程有限公司,《化工工艺设计手册》,化学工业出版社,20092.过程设备课程设计、计算2.1结构设计换热器的结构设计包括:管箱、管板、折流板、拉杆等结构形式的确定以及标准件(支座、容器法兰、管法兰)的选取。

U型管换热器毕业设计说明书

U型管换热器毕业设计说明书

U型管式换热器设计摘要本文介绍了U型管换热器的整体结构设计计算。

U型管换热器仅有一个管板,管子两端均固定于同一管板上,管子可以自由伸缩,无热应力,热补偿性能好;管程采用双管程,流程较长,流速较高,传热性能较好,承压能力强,管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。

U型管式换热器的主要结构包括管箱、筒体、封头、换热管、接管、折流板、防冲板和导流筒、防短路结构、支座及管壳程的其他附件等。

本次设计为二类压力容器,设计温度和设计压力都较高,因而设计要求高。

换热器采用双管程,不锈钢换热管制造。

设计中主要进行了换热器的结构设计,强度设计以及零部件的选型和工艺设计。

关键词:U型管换热器,结构,强度,设计计算U-TUBE HEAT EXCHANGER DESIGNABSTRACTThis paper introduces the U-tube heat exchanger design and calculation. U-tube heat exchanger has only one tube sheet, tubes are fixed at both ends of boards in the same tube, and tubes could telescopic freely, non-thermal stress, thermal performance and compensation; use of double-tube process, the process is longer, higher speed, better heat transfer performance, pressure capacity, and control can be extracted from the shell with easy maintenance and cleaning, and simple structure cost less. The main structure of U-tube heat exchanger, includes Equipment control, shell, head, exchanger tubes, nozzles, baffled, impingement baffle, guide shell, anti-short-circuit structure, support and other shell-tube accessories.This time I designed a second category pressure vessel, which has high design temperature and high design pressure. Thus the design demands are strict. It has dual heat exchanger tube, stainless steel heat exchanger manufacturers. I mainly carried out the design of heat exchanger structural design, strength of design and parts selection and process design.KEYWOEDS: U-tube heat exchanger, frame, intensity, design and calculation目录摘要 (1)绪论 (5)第一部分、换热器简介及选择 (7)1、换热器简介 (7)2、换热器材料选择 (7)2.1 选材原则 (8)3、换热器结构设计 (8)第二部分、设计说明书 (9)1、传热工艺计算 (9)1. 原始数据 (9)2. 定性温度及物性参数 (9)3. 传热量与冷水流量 (10)4. 有效平均温差 (10)5. 管程换热系数计算 (11)6. 壳程换热系数计算 (12)7.传热系数计算 (13)8.管壁温度计算 (14)9.管程压降计算 (14)10. 壳程压降计算 (15)2、强度计算 (16)2.1换热管材料、规格的选择及功能的确定 (16)2.2 管子的排列方式 (16)2.3 确定壳体直径 (17)2.4 筒体壁厚确定 (17)2.5 液压试验 (18)2.6 壳程标准椭圆形封头厚度的计算 (18)2.7 管程标准椭圆形封头厚度的计算 (19)2.8 法兰的选择 (21)2.9 管板的设计 (22)2.10 管箱短节壁厚的确定 (24)2.11拉杆和定距管的确定 (25)2.12 折流板的选择 (25)2.13防冲板的选择 (26)2.14 接管及开孔补强 (26)2.15 分程隔板厚度选取 (28)2.16支座的选择及应力校核 (29)第三部分、换热器的制造、检验、安装与维修 (33)1、换热器的制造、检验与验收 (33)3.1.1筒体 (33)3.1.2 换热管 (33)3.1.3管板 (34)3.1.4 折流板、支持板 (34)3.1.5 管束的组装 (34)3.1.6换热器的组装 (34)3.1.7 压力试验 (35)2、换热器的安装与维护 (35)3.2.1安装 (35)3.2.2维护 (35)结束语 (36)参考文献 (37)绪论能源是当前人类面临的重要问题之一,能源开发及转换利用已成为各国的重要课题,而换热器是能源利用过程中必不可少的设备,几乎一切工业领域都要使用,化工、冶金、动力、交通、航空与航天等部门应用尤为广泛。

U型管式换热器设计

U型管式换热器设计

U型管式换热器设计
首先,U型管式换热器的结构设计要考虑到流体在管内的流动情况以及换热管的换热能力。

由于U型管式换热器采用U型管作为热交换管,其双管道设计可以使两种不同介质在管内同时进行换热。

因此,在设计U型管式换热器时要保证两种介质的流量分别在两个管道内均匀分布,并且流体之间不能相互混合。

为了实现这一目的,可以在管道内部加入隔板或者采用平行的管道。

其次,选择合适的换热管材料也是U型管式换热器设计中必不可少的一项工作。

换热管材料需要满足介质的特性以及工艺要求。

一般来说,常用的换热管材料包括不锈钢、碳钢、铜及铜合金等。

选择合适的换热管材料可以提高换热效率并且延长换热器的使用寿命。

另外,在U型管式换热器的热工计算中,需要考虑到换热面积、热载荷以及热媒等因素。

换热面积可以根据实际需要进行计算,一般使用单位面积的对流换热系数与换热器的换热面积进行乘积来计算总换热面积。

热载荷是指每小时热媒需要吸收或释放的热量,根据实际生产过程中的需求进行合理选取。

最后,根据热媒流体的特性确定热媒的出口温度和入口温度,进而计算出所需的冷却水量或者加热水量。

在设计U型管式换热器时还需要考虑到管壳两侧的介质流动阻力及换热媒体的温度降低。

为了降低介质流动阻力,可以合理设计进出口管道的位置,保证流体在管内的流动速度均匀,减小流动阻力。

同时,为了充分利用能量,减小换热媒体的温度降低,可以采用多级换热器或者增加管道长度来提高换热效果。

综上所述,U型管式换热器的设计需要综合考虑结构设计、换热管材料的选择以及热工计算等多个因素。

合理的设计可以提高换热效率,满足工业生产中的热交换需求。

u型管式换热器毕业设计

u型管式换热器毕业设计

u型管式换热器毕业设计U型管式换热器毕业设计导言换热器是工业领域中常见的设备,用于将热能从一个介质传递到另一个介质。

U型管式换热器是一种常见的换热器类型,它具有结构简单、传热效率高等优点,因此在许多工业领域得到广泛应用。

本文将探讨U型管式换热器的毕业设计,包括设计原理、结构优化和性能评估等方面。

设计原理U型管式换热器的设计原理基于热传导和对流传热的基本原理。

换热器内部由一系列U型弯管组成,热源介质通过管道的一侧流过,而冷却介质则通过管道的另一侧流过。

热源介质在管道内释放热量,而冷却介质则吸收这些热量,实现热能的传递。

结构优化在U型管式换热器的毕业设计中,结构优化是一个重要的考虑因素。

优化设计可以提高换热器的传热效率、降低能耗和减小设备体积。

以下是一些常见的结构优化方法:1. 材料选择:选择具有良好导热性能和耐腐蚀性的材料,以确保换热器的长期稳定运行。

2. 管道布局:通过合理的管道布局,最大限度地增加管道的接触面积,提高传热效率。

3. 流体流动优化:通过优化流体的流动路径和速度分布,减小流体的阻力,提高传热效率。

4. 热交换面积增加:通过增加管道的长度或增加管道的数量,增加热交换面积,提高传热效率。

性能评估在U型管式换热器的毕业设计中,性能评估是必不可少的一步。

通过性能评估,可以验证设计的合理性,并对换热器的传热效率和能耗进行评估。

以下是一些常见的性能评估指标:1. 传热效率:传热效率是衡量换热器传热性能的重要指标。

传热效率越高,表示换热器能够更有效地传递热能。

2. 温度差:温度差是指热源介质和冷却介质之间的温度差异。

温度差越大,表示换热器能够更快速地传递热量。

3. 能耗:能耗是指在换热过程中消耗的能量。

通过降低能耗,可以提高换热器的能源利用效率。

结论U型管式换热器是一种常见且有效的换热器类型,在工业领域中得到广泛应用。

在毕业设计中,结构优化和性能评估是关键的考虑因素。

通过合理的结构优化和科学的性能评估,可以设计出高效、节能的U型管式换热器,满足工业生产中的换热需求。

u型管式换热器结构设计及温度控制

u型管式换热器结构设计及温度控制

u型管式换热器结构设计及温度控制下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!U型管式换热器是一种常见的换热设备,广泛应用于工业生产中的热交换过程。

各种换热器设计详细说明书--原稿

各种换热器设计详细说明书--原稿

;化工设计说明书:设计题目:煤油冷却器的设计设计人:专业班级:学号:指导老师:…二〇〇九年六月八日前言化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。

通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。

!化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。

围绕以某一典型单元设备(如板式塔、填料塔、干燥器、蒸发器、冷却器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。

设计时数为3周,其基本内容为:(1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。

(2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。

(3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。

(4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。

(5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。

(6)设计说明书的编写。

设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参考文献。

整个设计由论述,计算和图表三个部分组成,论述应该条理清晰,观点明确;计算要求方法正确,误差小于设计要求,计算公式和所有数据必需注明出处;图表应能简要表达计算的结果。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且是上述这些行业的通用设备,占有十分重要的地位。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

热管式热交换器设计说明

热管式热交换器设计说明

本科毕业设计说明书热管式热交换器(烟气余热回收空气预热器)Heat pipe heat exchanger (flue gas heat recovery air preheater)摘要热管是一种依靠管内工质的蒸发,凝结和循环流动而传递热量的部件。

由热管元件组成的,利用热管原理实现热交换的换热器称之为热管换热器。

热管换热器最大的特点是:结构简单,传热效率高、动力消耗小。

其越来越受到人们的重视,是一种应用前景非常好的换热设备。

目前,它被广泛应用于动力、化工、冶金、电力、计算机等领域。

本文就热管换热器的发展现状、趋势、应用及设计做了一个简要的论述,着重探讨了热管换热器的设计。

在讨论热管换热器的设计过程中,主要针对热力计算,设备结构计算、元件参数的选择做了一个合理构建。

关键词:热管;热管热交换器;设计计算;ABSTRACRely on heat pipe is a pipe working fluid evaporation, condensation and recycling the flow of heat transfer member. Components of the heat pipe, heat pipe principle the use of heat exchange heat exchanger called the heat pipe heat exchanger. Heat pipe heat exchanger biggest feature is: simple structure, high heat transfer efficiency, power consumption is small. Which more and more people's attention, is a very good application prospects heat transfer equipment. Currently, it is widely used in power, chemical, metallurgy, electric power, computers and other fields. In this paper, the development of heat pipe heat exchanger status, trends, application and design to make a brief discussion, focused on the heat pipe heat exchanger design. In discussing the heat pipe heat exchanger design process, mainly for thermal calculation, equipment, structural calculations, component selection of parameters made a reasonable construction.Key words:Heat pipe;Heat pipe heat exchanger;Design calculations;目录第一章绪论 (1)第一节热管及热管换热器概述 (1)第二节热管及其应用 (3)1.2.1热管的构造原理 (3)1.2.2热管的工作原理 (7)1.2.3热管的基本特性 (8)1.2.4热管分类 (8)1.2.5热管技术 (9)1.2.6热管技术特点 (10)第二章热管换热器 (12)第一节热管换热器技术优势 (12)第二节热管换热器的分类 (12)第三节换热器应用前景 (14)第三章热管气-气换热器设计中应注意的问题 (16)第四章热管气-气换热器设计步骤 (17)第一节计算步骤 (17)第二节符号说明 (19)第三节标注说明 (20)致谢 (22)参考文献 (23)附录 (25)外文资料及翻译 (35)任务书 (55)第一章绪论第一节热管的发展及现状在现有的传热元件中,热管是我们所知的最高效的传热元件之一,它能将大量热量通过其特别小的截面积远距离地传输而不需要外加动力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘 要
换热器是化工生产过程中的重要设备,它能够实现介质之间热量交换。广泛应用于石油、化工、制药、食品、轻工、机械等领域。U型管式换热器是换热器的一种,它只有一个管板,结构简单,密封面少,且U形换热管可自由伸缩,不会产生温差应力,因此可用于高温高压的场合。一般高压、高温、有腐蚀介质走管程,这样可以减少高压空间,并能减少热量损失,节约材料,降低成本。
图4-6
接管位置
图4-7
偏心载荷简化图
图4-8
设备质心计算简化图
图4-9
支座
图4-10
耳式支座安装尺寸
图4-11
载荷近似计算简图




表2-1
钢板许用应力
表2-2
钢管许用应力
表2-3
锻件许用应力
表3-1
EHA椭圆形封头型式参数
表3-2
EHA椭圆形封头质量
表3-3
低铬钼钢弹性模量
表4-1
This design mainly based on GB150 "steel pressure vessels"and GB151 "shell and tube heat exchangers, " the main pressure parts of the equipment was designed and strength calculation, but also with HG/T20615 "steel pipe flange", JB / T 4712 "containers bearing" pressure vessels and other relevant standards, the design of other components, he finally completed the methanationⅡtype heat exchanger design.
甲烷化换热器,是合成氨生产中的重要设备之一,它能将27℃的H2N2混合气升温至274℃,同时将339℃的H2N2精制气降温至90℃。甲烷化换热器一般选用U型管换热器,它由一台Ⅰ型甲烷化换热器与一台Ⅱ型甲烷化换热器连接组成。其中Ⅰ型甲烷化换热器将27℃的H2N2混合气升温至150℃,同时将215℃的H2N2精制气降温至温至274℃,同时将339℃的H2N2精制气降温至215℃。
本次设计主要根据GB150《钢制压力容器》及GB151《管壳式换热器》对设备的主要受压元件进行了设计及强度计算,又结合HG/T20615《钢制管法兰》、JB/T 4712《容器支座》等其它压力容器相关标准,对其它各部件进行设计,最终完成了Ⅱ型甲烷化换热器的设计。
关键词:换热器;甲烷化换热器
Abstract
Heat exchanger is important in the process of chemical production equipment, which can be achieved between the heat exchange media. Widely used in petroleum, chemical, pharmaceutical, food, light industry, machinery and other fields. U-tube heat exchanger is a heat exchanger, it has only one tube plate, simple structure, less sealing surface, and the U-shaped tubes are free to stretch, no thermal stress, it can be used for high temperature and pressure of the occasion . General high-pressure, high temperature, corrosive media, take control process, thus reducing the pressure of space, and can reduce heat loss and saving materials and reduce costs.
Methanation heat exchanger, ammonia production is one of the important equipment, it will be 27℃of H2N2 mixture heated to 274℃, 339℃while the H2N2 refined gas cooled to 90℃. Methanation heat exchanger is generally used in U-tube heat exchanger, which consists of TypeⅠand typeⅡmethanation methanation Heat exchanger connected to form a methanation type. Heat exchanger typeⅠmethanation of H2N2 to 27℃heating the mixture to 150℃, 215℃while the H2N2 refined gas cooled to 90℃;Ⅱ-type heat exchanger can methanation 150℃, heating the mixture to the H2N2 274℃, 339℃while the H2N2 refined gas cooled to 215℃.
Keywords: Heat exchanger;Methanation heat exchanger
图表清单
类别
标号
名称


图3-1
标准椭圆形封头
图3-2
换热管布管图
图3-3
换热管与管板的连接
图4-1
凹凸面法兰的密封面
图4-2
带颈对焊钢制管法兰
图4-3
钢制管法兰盖
图4-4
垫片尺寸
图4-5
分程隔板连接面
相关文档
最新文档