最新最全数学高考全国卷必刷题目:三角函数大题100题库

合集下载

高考数学三角函数与解三角真题100题含答案

高考数学三角函数与解三角真题100题含答案

高考数学三角函数与解三角真题训练100题含答案学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知2sin 3且,02πα⎛⎫∈- ⎪⎝⎭,则tan α=( )A B . CD .2.在ABC ∆中,1,2,60a c B ︒===,则b = A.1BC D .33.函数tan 2y x =的周期为 A .2π B .π C .2π D .4π4.下列三角函数值的符号判断错误的是( ) A .sin1650> B .cos 2800> C .tan1700>D .tan 3100<5.计算sin133cos197cos47cos73︒︒+︒︒的结果为( )A .12B .12-C D . 6.函数2cos 1([0,2])=+∈y x x π的单调递减区间为( ) A .[0,2]πB .[0,]πC .[,2]ππD .3[,]22ππ7.已知三角形的两边长分别为4,5,它们夹角的余弦是方程2x 2+3x -2=0的根,则第三边长是A B C D8.已知扇形的半径为2,面积为23π,则该扇形的圆心角为( ) A .6πB .4π C .3π D .23π 9.下列函数中,在区间(0,)+∞上为增函数的是 A .1y x=B .y ln x =C .sin y x =D .2x y -=10.在ABC 中,已知60,2A a b ===,则B =( )A .30或150B .60C .30D .60或12011.一艘向正东航行的船,看见正北方向有两个相距海里的灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的北偏西,另一灯塔在船的北偏西,则这艘船的速度是每小时A .海里B .海里C .海里D .海里12.函数()sin cos f x x x =+的最小正周期是( ) A .4π B .2π C .π D .2π13.若复数cos sin z i αα=+,则当2απ<<π时,复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限14.在ABC 中,若(sin sin )(sin sin )sin (sin sin )A B A B C C B +-≤-,则A 的取值范围是 A .0,6π⎛⎤ ⎥⎝⎦B .,6ππ⎡⎤⎢⎥⎣⎦C .0,3π⎛⎤ ⎥⎝⎦D .,3ππ⎡⎫⎪⎢⎣⎭15.已知角α终边经过点()1,m -,且3sin 5α=-,则tan α=( )A .34±B .34C .34-D .4316.设sin35sin72sin55sin18a =︒︒-︒︒,cos3214sin172cos188b ︒-=︒︒,221tan 361tan 36c -︒=+︒,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>17.将函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度,所得的图象关于y 轴对称,则ϕ=( ) A .6πB .4π C .3π D .2π 18.斐波那契螺旋线被誉为自然界最完美的“黄金螺旋”,它的画法是:以斐波那契数:1,1,2,3,5,8,……为边的正方形拼成长方形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线.自然界存在很多斐波那契螺旋线的图案,例如向日葵、鹦鹉螺等.下图为该螺旋线的前一部分,如果用接下来的一段圆弧所对应的扇形做圆锥的侧面,则该圆锥的高为( )A B C .134D .13219.若一扇形的中心角为2,中心角所对的弦长为2,则此扇形的面积为 A .2B .1C .21sin 1D .21cos 120.在中,则A .B .C .D .21.已知,则sinxcosx+1等于A .B .C .D .22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin 3cos 0a B b A +=,则tan A =( ) A .3B .13C .13-D .3-23.函数3cos y x x =-的部分图象可能是( )A .B .C .D .24.已知2{|0}1x A x x -=<+,{}|cos ,B y y x x A ==∈ ,则A B =( ) A .(cos2,1]B .[cos2,1]C .(1,2]-D .(1,cos2]-25.已知3,22ππα⎛⎫∈ ⎪⎝⎭,且212sin 5cos 9αα-=,则cos2=α( ) A .13B .79-C .79D .1826.cos160sin10sin20cos10-=( )A .BC .12-D .1227.函数y =sin (x π6-)的图象与函数y =cos (2x π3-)的图象A .有相同的对称轴,但无相同的对称中心B .有相同的对称中心,但无相同的对称轴C .既有相同的对称轴,也有相同的对称中心D .既无相同的对称中心,也无相同的对称轴28.已知6x π=-为函数()sin f x a x x =的图象的一条对称轴,若()()120f x f x +=,且()f x 在()12,x x 单调,则()12f x x +=( )A .0B .1CD .229.当θ取遍全体实数时,直线πcos sin 4)4x y θθθ+=+ 所围成的图形的面积是( ) A .πB .4πC .9πD .16π30.已知α为锐角,3cos 5α=,则tan 42πα⎛⎫+= ⎪⎝⎭( ) A .13B .12C .2D .331.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如下图所示,下列说法错误..的是( )A .函数()y f x =在,02π⎡⎤-⎢⎥⎣⎦上单调递增B .函数()y f x =的图象关于直线512x π=-对称 C .函数()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称D .该图象对应的函数解析式为2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭32.在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c .若2cos c a a B -=,则ba的取值范围是( )A .(B .C .(D .()0,133.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =34.下列区间中,使函数cos y x =为增函数的是 A .[0,]πB .3[,]22ππC .[,2]ππD .[,]22ππ-35.已知α△3π,π2⎛⎫⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( )A .7B .17C .-17D .-736.在平面直角坐标系中,角α的始边与x 轴的非负半轴重合,终边经过点()P ,则cos2=α( )A .12-B .12C .D 37.函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象与x 轴正半轴两交点之间的最小距离为π2,若要将函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭的图象向左平移π12个单位得到()g x 的图象,则()g x 的单调递增区间为A .()π2ππ,π63k k k ⎛⎫++∈ ⎪⎝⎭Z B .()π7ππ,π1212k k k ⎛⎫++∈ ⎪⎝⎭ZC .()5πππ,π1212k k k ⎛⎫-++∈ ⎪⎝⎭ZD .()πππ,π66k k k ⎛⎫-++∈ ⎪⎝⎭Z38.在ABC ∆中,15,10,60,a b A ===︒则cos B =( )A B C .D 或39.“34πθ=”tan 2πθθ⎛⎫+= ⎪⎝⎭的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件40.已知点(cos ,sin )P θθ与点(cos()sin())66Q ππθθ+⋅+,关于x 轴对称,则( )A .1sin(2)62πθ+=B .1cos(2)62πθ+=C .sin 2sin(2)3πθθ=+D .cos 2cos(2)3πθθ=+41.函数21()cos cos 2f x x x x =+-在下列某个区间上单调递增,这个区间是 A .-03π⎡⎤⎢⎥⎣⎦, B .03π⎡⎤⎢⎥⎣⎦,C .-33ππ⎡⎤⎢⎥⎣⎦,D .263,ππ⎡⎤⎢⎥⎣⎦42.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则ϕ=( )A .π6B .π6-C .π3D .π3-43.已知角α的始边与x 轴非负半轴重合,终边上一点()sin3,cos3P ,若02απ≤≤,则α=( ) A .3B .32π- C .532π- D .32π-44.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,已知15A =,2a =,则b cc b+的值为( )A B .C D .45.已知抛物线的焦点F 到准线l 的距离为p ,点A 与F 在l 的两侧,⊥AF l 且2AF p =,B 是抛物线上的一点,BC 垂直l 于点C 且2BC p =,AB 分别交l ,CF 于点,DE ,则BEF ∆与BDF ∆的外接圆半径之比为A .12B C D .2二、填空题46.已知tan α=[],αππ∈-,则α=______. 47.22cot csc αα-=______________. 48.已知复数ππsini cos 33z =+,则z =________. 49.函数()sin cos f x x x =+的值域为___________. 50.函数sin 2()1cos x f x x=-的最小正周期是________.51.某饭店顶层旋转餐厅的半径为20米,该餐厅每分钟旋转112弧度,则餐厅边缘一点1小时所转过的弧长是____________米.52.若πsin 47α⎛⎫+= ⎪⎝⎭,则sin 2α=______.53.ABC 中,3A π=,4B π=,BC =,则ABC 的周长是______.54.如图,为测量一个旗杆AB 的高度,在C 处测得杆顶的仰角为60︒,后退40米到达D 处测得塔顶的仰角为30,则旗杆的高度为___________米.55.已知()1cos 753α︒+=,则()()sin 15cos 105αα-︒+︒-的值是________.56________ . 57.在中,若==,则的形状是_________三角形.58.三角形ABC 的内角A ,B 的对边分别为,a b ,若()cos sin 02a A b B ππ⎛⎫-++= ⎪⎝⎭,则三角形ABC 的形状为__________.59.设ABC 分别为,,a b c 内角,,A B C 的对边.已知a =4b =,c =则C =_____. 60.若函数1()2cos f x x =+,则3f π⎛⎫'= ⎪⎝⎭________.61.若4sin 5α,0,2πα⎛⎫∈ ⎪⎝⎭,则sin 2α等于_________. 62.已知ABC 中角A 、B 、C 所对的边分别为a 、b 、c ,sin 1cos sin 2cos A A B B +=-,3cos 5A =,6ABCS=,则=a ______.63.在ABC 中,60A ︒∠=,3AC =,面积为332,那么BC 的长度为_________. 64.函数2sin cos 1y x x =-+的最大值为___________ .65.已知函数()sin(3)5f x x π=+的图象关于直线()0x m m π=<<对称,则m 的最大值为___________.66.在△ABC 中,AB =2,AC =3,△BAC =120°,点D 在边BC 上,且AD 平分△BAC ,则AD 的长为________67.已知三棱锥P ABC -外接球的表面积为676π,PB ⊥平面ABC ,10PB =,150BAC ∠=︒,则BC 的长为___________.68.已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是____.69.将函数2()2sin sin 21f x x x =+-图像先向左平移4π个单位,再将每一点的横坐标变为原来的2倍(纵坐标不变),得到函数()g x 的图像,若1()2g α=,,44ππα⎛⎫∈- ⎪⎝⎭,则cos α=______.70.已知函数y =sin (ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则φ=______.71.若函数()sin 2cos 2f x x x =+在[0,]2m和[3,]m π上均单调递增,则实数m 的取值范围为________.72.某城市的电视发射搭建在市郊的一座小山上. 如图所示,小山高BC 为30米,在地平面上有一点A ,测得,A C 两点间距离为50米,从点A 观测电视发射塔的视角(CAD ∠)为45︒,则这座电视发射塔的高度为_________米.73.在ABC 中,若3BC =,AC =2B A =,则cos A =___________.74.为创建全国文明城市,上饶市政府决定对某小区内一个近似半圆形场地进行改造,场地如图,以O 为圆心,半径为一个单位,现规划出以下三块场地,在扇形AOC 区域铺设草坪,OCD 区域种花,OBD 区域养殖观赏鱼,若AOC COD ∠=∠,且使这三块场地面积之和最大,则cos AOC ∠=___________.三、解答题75.已知()()sin cos 2ππαπααπ⎛⎫--+<< ⎪⎝⎭,求下列各式的值: (1)sin cos αα-;(2)33sin +cos 22ππαα⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.76.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3cos 5A =,1tan()3B A -=.(1)求tan B 的值;(2)若13,c =求ABC ∆的面积.77.已知4tan 3α=-,且α是第四象限角,求cot ,cos ,csc ααα的值.78.已知α,0,2πβ⎛⎫∈ ⎪⎝⎭,且3cos 2cos cos cos 5αβαβ=⎧⎪⎨=⎪⎩(1)求αβ+的值; (2)证明:04παβ<-<,并求()sin αβ-的值.79.已知、、分别是的三个内角、、所对的边 (1)若面积求、的值;(2)若,且,试判断的形状.80.已知函数()2cos cos 3f x x x π⎛⎫=-- ⎪⎝⎭. (1)求函数f (x )的最小正周期及单调递增区间;(2)△ABC 内角A 、B 、C 的对边长分别为a 、b 、c ,若()1,f B b c ===a 的值.81.2022年是上海浦东开发开放32周年,浦东始终坚持财力有一分增长,民生有一分改善,全力打造我国超大城市的民生样板,使寸土寸金的商业用地变身“城市绿肺”,老码头、旧仓库变身步行道、绿化带等.现有一足够大的老码头,计划对其进行改造,规划图如图中五边形ABCDE 所示,线段BE 处修建步行道,BDE 为等腰三角形,且1112CDE π∠=,3BCD π∠=,4CBD π∠=,CD =.(1)求步行道BE 的长度;(2)若沿海的ABE △区域为绿化带,23π∠=BAE ,当绿化带的周长最大时,求该绿化带的周长与面积. 82.已知23sin 2sin 12αα=-(1)求sin 2cos2αα+的值;(2)已知(0,)απ∈,,2πβπ⎛⎫∈ ⎪⎝⎭,22tan tan 10ββ--=,求αβ+的值.83.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222b c a +=. (1)求角A 的大小;(2)若a =1)b +的取值范围.84.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n n P AP θ+∠=,n *∈N .(1)若31arctan 3θ=,求点A 的坐标;(2)若点A 的坐标为(,求n θ的最大值及相应n 的值.85.在△3sin 4cos a C c A =;△2sinsin 2B Cb B +这两个条件中任选一个,补充在下面问题中.然后解答补充完整的题,在ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知______,a =(1)求sin A ;(2)如图,M 为边AC 上一点,MC MB =,2ABM π∠=,求边c .86.一艘海轮从A 出发,沿北偏东70︒的方向航行1)n mile 后到达海岛B ,然后从B 出发,沿北偏东10︒的方向航行2n mile 到达海岛C .(1)求AC 的长;(2)如果下次航行直接从A 出发到达C ,应沿什么方向航行?87.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2cos cos 0a c B b A -+=. (1)求B ;(2)从以下条件中选择两个,使△ABC 存在且唯一确定,并求△ABC 的面积. △若5a =;△3b =;△23C π=;△△ABC 的周长为9.88.在△sin sin sin sin a A b B A c C ⎫+=+⎪⎪⎝⎭,△22cos b c A a =+,△222cos sin sin sin cos A A B B C +=+,这三个条件中任选一个,补充在横线上,并加以解答.在ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,且______. (1)求角C 的大小;(2)若AC π4B =,求AB 的长度. 89.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,且满足cos cos 2A aB b c=-+. (1)求角A 的大小; (2)求sin sin B C 的最大值.90.在△ ABC 中,C 为锐角,角A 、B 、C 的对边分别为a 、b 、c ,R 是外接圆半径,已知向量(,),(cos ,cos )m a b n B A ==,且m n R ⋅=. (△)求角C ;(△)若2b =,△ ABC cos()3B π+的值.91.已知向量()sin ,cos a m x x =,()cos ,cos b x n x =,()f x a b =⋅,且()f x 的图像过点12π⎛ ⎝⎭和点1,82π⎛⎫- ⎪⎝⎭. (1)求m ,n 的值及()f x 的最小正周期; (2)若将函数()y f x =的图像向左平移8π个单位长度,得到函数y g x 的图像,求()g x 在,63x ππ⎡⎤∈-⎢⎥⎣⎦时的值域和单调递减区间.92.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos 2A =,3AB AC ⋅=. (1)求ABC ∆的面积; (2)若1c =,求a 的值.93.在ABC 中,角,,A B C 的对边分别为,,a b c ,cos cos 2cos a B b A c C +=. (1)求角C 的大小;(2)若4CA CB ⋅=,6a b +=,求c . 94.正方体1111ABCD A B C D -中:(1)求AC 与1A D 所成角的大小;(2)若F 分别为AD 的中点,求1BD 与CF 所成角的余弦值.参考答案:1.B【解析】【分析】利用同角三角函数的基本关系即可求解.【详解】由2sin3且,02πα⎛⎫∈-⎪⎝⎭,则cosα===所以2sintancosααα-====.故选:B【点睛】本题考查了同角三角函数的基本关系,考查了计算求解能力,属于基础题.2.C【解析】根据由余弦定理,可得2222cosb ac ac B=+-,代入数据,即可求得答案.【详解】由余弦定理,得2222cos3b ac ac B=+-=,∴b=故选:C.【点睛】本题考查了根据余弦定理求三角形边长,解题关键是掌握余弦定理,考查了计算能力,属于基础题.3.A【解析】【分析】利用正切型函数的周期公式可计算出函数tan2y x=的周期.【详解】由题意可知,函数tan 2y x =的周期为2T π=.故选A. 【点睛】本题考查正切型函数周期的计算,利用正切型函数的周期公式计算是解题的关键,考查计算能力,属于基础题. 4.C 【解析】 【分析】根据各角度所在象限,即可判断各个选项的正误,即可得答案. 【详解】165°是第二象限角,因此sin165°>0,故A 正确; 280°是第四象限角,因此cos280°>0,故B 正确; 170°是第二象限角,因此tan170°<0,故C 错误; 310°是第四象限角,因此tan310°<0,故D 正确. 故选:C 5.B 【解析】先用诱导公式将sin133cos197cos47cos73︒︒+︒︒化为cos47cos73+sin 43sin17-︒︒︒︒,然后用余弦的差角公式逆用即可. 【详解】sin133cos197cos47cos73︒︒+︒︒cos43cos17+sin 43sin17=-︒︒︒︒1cos 43cos17sin 43sin17)co (s602=︒︒-︒︒=-︒--=故选:B 【点睛】本题考查诱导公式和和角的三角函数公式的应用,属于基础题. 6.B 【解析】 【分析】函数2cos 1y x =+的单调递减区间与函数cos y x =相同,求得cos y x =的单调区间界,既得答案. 【详解】由题可知函数2cos 1y x =+的单调递减区间与函数cos y x =相同 因为函数cos y x =在[0,2]xπ内的单调递减区间为[0,]π所以函数2cos 1y x =+的单调递减区间为[0,]π. 故选:B 【点睛】本题考查余弦函数的单调区间,属于简单题. 7.B 【解析】 【详解】试题分析:2x 2+3x -2=0的根为-1,12,所以三角形的两边夹角的余弦是12,由余弦定B .考点:本题主要考查余弦定理的应用.点评:简单题,注意到三角形中,角的取值范围是(0,π),因此,三角形内角的余弦不可能为-1. 8.C 【解析】 【分析】根据扇形面积公式先求出弧长,进而求出圆心角的弧度. 【详解】设该扇形的弧长、半径及圆心角的弧度分别为,,l r α,则r =2,扇形面积2112232223323l S lr l l r ππππα==⨯⨯=⇒=⇒===. 故选:C. 9.B 【解析】 【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案.【详解】根据题意,依次分析选项: 对于A ,y 1x=,为反比例函数,在(0,+∞)上为减函数,不符合题意; 对于B ,y =lnx ,为对数函数,在区间(0,+∞)上为增函数,符合题意; 对于C ,y =sin x ,为正弦函数,在(0,+∞)上不是单调函数,不符合题意; 对于D ,y =2﹣x =(12)x ,是指数函数,在(0,+∞)上为减函数,不符合题意;故选B . 【点睛】本题考查函数的单调性的判断,关键掌握常见函数的单调性,属于基础题. 10.C 【解析】 【分析】利用正弦定理求解以及用三角形的大边对大角进行检验. 【详解】因为在ABC 中,60,2A a b ===, 由正弦定理有:sin sin a bA B=, 所以sin 1sin2b A B a ===, 解得30B =或150,又因为a b >可得A B > 所以150B =不符合题意,舍去. 可得30B =,故A ,B ,D 错误. 故选:C . 11.C 【解析】 【详解】试题分析:设两灯塔分别为,A B ,这艘船初始位置为O ,航行半小时后所在位置为C ,OB OC ⊥ 且10AB =海里, 15,150A ACB ABC ∠=∠=∠=.所以可得10BC AB ==,60OCB ∠=, 所以在Rt BOC ∆中1cos601052OC BC ==⨯=海里,所以这艘船的速度51012V ==/海里小时.故C 正确. 考点:解三角形. 12.C 【解析】 【分析】化简()4f x x π⎛⎫=+ ⎪⎝⎭,画出函数图像得到答案.【详解】()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,函数图像为将()4g x x π⎛⎫=+ ⎪⎝⎭的图像在x 轴下方的部分向上翻折形成,如图所示:根据图像知函数周期为π. 故选:C .【点睛】本题考查了三角函数周期,画出函数图像是解题的关键. 13.B 【解析】根据角的范围,结合复数的几何意义,即可判断出点的符号,进而得复数z 在复平面内对应的点所在象限. 【详解】复数cos sin z i αα=+,在复平面内对应的点为()cos ,sin αα, 当2απ<<π时,cos 0,sin 0αα<>,所以对应点的坐标位于第二象限, 故选:B. 【点睛】本题考查了复数的几何意义,三角函数符号的判断,属于基础题. 14.C 【解析】 【分析】利用正弦定理得到222a b c bc -≤-,再利用余弦定理得到1cos 2A ≥,计算得到答案. 【详解】 根据正弦定理:222(sin sin )(sin sin )sin (sin sin )A B A B C C B a b c bc +-≤-⇒-≤-根据余弦定理:2222212cos cos 023a b c bc A b c bc A A π=+-≤+-⇒≥⇒<≤ 故答案选C 【点睛】本题考查了正弦定理和余弦定理,意在考查学生对于正余弦定理的灵活运用和计算能力. 15.B 【解析】 【分析】由任意角的三角函数的定义列方程求出m ,从而可求出tan α, 【详解】因为角α终边经过点()1,m -,且3sin 5α=-,35=-,所以229125m m =+,且0m <, 解得34m =-,所以3tan 14m m α==-=- 故选:B. 16.C【解析】 【分析】利用三角变换化简,,a b c ,再根据正弦函数的单调性可得正确的选项. 【详解】sin35cos18cos35sin18sin17a =︒︒-︒︒=︒,2cos3212sin 16sin164sin172cos1884sin8cos8b ︒-︒===︒︒︒︒︒,22221tan 36cos 36sin 36cos 72sin181tan 36c -︒==︒-︒=︒=︒+︒, 因为016171890︒<︒<︒<︒<︒,故sin16sin17sin18︒<︒<︒. 故c a b >>, 故选:C. 17.A 【解析】 【分析】图象平移后解析式为sin 226y x πϕ⎛⎫=++ ⎪⎝⎭,由关于y 轴对称得2,62k k ϕππ+=+π∈Z ,结合ϕ的取值范围,即可求出ϕ的值. 【详解】()f x 的图象向左平移ϕ个单位长度后得()sin 2sin 2266x x y ππϕϕ⎡⎤⎛⎫++=++ ⎪⎢⎥⎣⎝=⎦⎭,图象关于y 轴对称,则2,62k k ϕππ+=+π∈Z ,即,62k k ϕππ=+∈Z ,因为02πϕ<≤,所以当0k =时,6π=ϕ, 故选: A. 【点睛】本题考查了三角函数的图象平移变换,考查了三角函数的性质.本题的关键是写出平移后的函数的解析式. 18.B 【解析】 【分析】根据斐波那契数的规律,求出下一个圆弧的半径和弧长,即可求出圆锥的底面半径与高. 【详解】解:由斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和, 即接下来的圆弧对应的圆面半径是5813+=,对应的弧长是11321342l ππ=⨯⨯=, 设圆锥底面半径为r ,则1322r ππ=,解得134r =,所以圆锥的高为h . 故选:B . 19.C 【解析】 【分析】根据扇形的中心角以及弦长,求出扇形的半径和弧长,利用扇形的面积公式求解即可. 【详解】由题得因为扇形的中心角为2, 中心角所对的弦长为2.故扇形的半径1sin1r =,故扇形的弧长为122sin1sin1⨯=.故扇形面积为211212sin1sin1sin 1⨯⨯= 故选:C 【点睛】本题考查了扇形的相关计算,属于基础题型. 20.A 【解析】 【详解】试题分析:由题根据正弦定理可得1.sin 45sin 60b b ︒=∴=︒,故选A. 考点:正弦定理 21.A 【解析】 【详解】试题分析:由条件利用同角三角函数的基本关系,求得要求式子的值.解:△,则sinxcosx+1=+1=+1=+1=,故选A .考点:同角三角函数基本关系的运用. 22.D 【解析】 【分析】由已知结合正弦定理可得()sin sin 3cos 0B A A +=,根据三角形内角的性质易知sin 0B ≠,即可求tan A . 【详解】由sin 3cos 0a B b A +=,结合正弦定理有sin sin 3sin cos 0A B B A +=, △()sin sin 3cos 0B A A +=,又0B π<<,即sin 0B ≠, △sin 3cos 0A A +=,可得tan 3A =-. 故选:D. 23.D 【解析】 【分析】根据函数奇偶性的定义可判断()f x 为奇函数,进而排除选项A 、B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x <,排除选项C ,从而可得答案. 【详解】解:因为()3cos y f x x x ==-,所以()()()3cos 3cos f x x x x x -=---=, 所以()()f x f x -=-,又()f x 定义域为R , 所以()f x 为奇函数,其图象关于原点中心对称, 所以排除选项A 、B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C ,从而可得选项D 正确,故选:D. 24.A 【解析】分别根据分式不等式求解以及余弦的值域求解计算集合,A B ,再求交集即可. 【详解】{}2{|0}|121x A x A x x x -=<==-<<+,{}{}|cos ,|cos21B y y x x A y y ==∈=<≤. 故A B =(cos2,1]. 故选:A 【点睛】本题主要考查了分式不等式的求解以及根据定义域求余弦函数的值域方法,同时也考查了交集的运算,属于基础题. 25.D 【解析】 【分析】利用同角公式化正弦为余弦,求出cos α的值,再利用二倍角的余弦公式求解即得. 【详解】依题意,原等式化为:()2121cos 5cos 9αα--=,整理得:()()4cos 33cos 10αα+-=,因为3,22ππα⎛⎫∈ ⎪⎝⎭,则cos 0α<,△3cos 4α=-,所以21cos 22cos 18αα=-=. 故选:D. 26.C 【解析】 【分析】先根据诱导公式化角,再根据两角和正弦公式求结果. 【详解】()1cos160sin10sin20cos10cos20sin10sin20cos10sin 10202-=--=-+=-,选C.【点睛】本题考查诱导公式以及两角和正弦公式,考查基本求解能力,属基础题. 27.A 【解析】 【详解】试题分析:函数sin 26y x π⎛⎫=- ⎪⎝⎭的对称轴为2,6223k x k x k Z πππππ-=+⇒=+∈ 函数cos 3y x π⎛⎫=- ⎪⎝⎭的对称轴为,33x k x k k Z ππππ-=⇒=+∈;当0k =时,二者有相同的对称轴3x π=;同理,由三角函数的性质可得函数sin 26y x π⎛⎫=- ⎪⎝⎭的对称中心为,0212k k Z ππ⎛⎫+∈ ⎪⎝⎭,函数cos 3y x π⎛⎫=- ⎪⎝⎭的对称中心为5,0,6k k Z ππ⎛⎫+∈ ⎪⎝⎭,二者没有相同的对称中心考点:三角函数的对称轴,对称中心 28.C 【解析】 【分析】由()sin f x a x x =)x θ-,tan θ=6x π=-是()f x 的图象的一条对称轴,可求得a ,再由()()120f x f x +=,且()f x 在()12,x x 单调, 则11(,())x f x ,22(,())x f x 两点关于()f x 图象的对称中心对称,求得答案. 【详解】由()sin f x a x x =)x θ-, 由6x π=-是()f x 的图象的一条对称轴,则62k ππθπ--=+,得23k πθπ=--,又tan θ==1a =,则()sin f x x x =2sin()3x π=-,若()()120f x f x +=,且()f x 在()12,x x 单调,则11(,())x f x ,22(,())x f x 两点关于()f x 图象的对称中心对称,即1233,2x x k k Z πππ-+-=∈,得12223x x k ππ+=+,则()12f x x +=22sin(2)33k πππ+-= 故选:C. 【点睛】本题考查了辅助角公式,正弦型函数的对称轴和对称中心的应用,还考查了学生的分析理解能力,转化能力,属于中档题.29.D 【解析】 【详解】因为sin cos 4sin cos x y θθθθ+=++,所以(1)sin (1)cos 4x y θθ-+-=,也即)4θϕ+=1=4=,这表示的以(1,1)C 为圆心,4为半径的圆,所以当θ取遍全体实数时,直线πcos sin 44x y θθθ⎛⎫+=++ ⎪⎝⎭ 所围所围成的图形(圆)的面积是16S π=,应选答案D .30.D 【解析】 【分析】先利用半角公式(或二倍角公式)求得tan 2α,再根据两角和正切公式求结果.【详解】△α为锐角,3cos 5α=,△4sin 5α, 则2sin 2sincos 222tan2cos2cos 22αααααα==4sin 1531cos 215αα===++, △1tantan1422tan 31421tan tan 1422παπαπα++⎛⎫+=== ⎪⎝⎭--. 故选:D 【点睛】本题考查同角三角函数关系、二倍角公式、两角和正切公式,考查基本分析求解能力,是基础题. 31.A 【解析】 【分析】根据函数图像解出函数解析式后,对选项逐一判断 【详解】由图可知2A =,4()312T πππ=⨯-=,故2ω=,将(,2)12π代入解得3πϕ=故2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,D 正确对于A ,令2[2,2],322x k k k Z πππππ+∈-++∈,解得5[,],1212x k k k Z ππππ∈-++∈,故A 错误对于B ,令2,32πππ+=+∈x k k Z ,解得对称轴为,122k x k Z ππ=+∈,故B 正确 对于C ,令2,3x k k Z ππ+=∈,解得对称中心为,0,62k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故C 正确 故选:A 32.B 【解析】 【分析】化简已知得2B A =,根据已知求出A 的范围和2cos bA a=,即得b a 的取值范围.【详解】由正弦定理得2cos c a a B -=.sin 2sin cos sin sin cos cos sin C A B A A B A B =+=+()sin sin A B A ∴=-. 22B A π∴=<,因为32C A ππ=-<,02A π<<,64A ππ∴<<,所以sin sin 22cos sin sin b B AA a A A===∈.故选:B 【点睛】本题主要考查正弦定理边角互化,考查三角恒等变换和余弦函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 33.B 【解析】 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项.【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式.. 34.C 【解析】 【详解】由余弦函数的图像可知其增区间为[2,2]()k k k Z πππ-+∈,则当1k =函数增区间为[,2]ππ,应选答案C . 35.B 【解析】 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力. 36.B 【解析】 【分析】由三角函数的定义求出cos a ,再由二倍角公式求出cos2a . 【详解】cos α==21cos 22cos 12αα=-=. 故选:B. 37.C 【解析】 【分析】根据题意,求得T π=,得到函数的解析式()sin(2)6f x x π=+,再根据图象的变换求得函数()sin(2)3g x x π=+,再由函数的单调性,即可求解函数的单调区间.【详解】由函数()sin()6f x wx π=+的图象与x 轴正半轴两交点之间的最小距离为2π,即22T π=,即T π=,所以2w ππ=,解得2w =,即()sin(2)6f x x π=+, 将函数()f x 的图象向左平移12π个单位得到()sin[2()]sin(2)1263g x x x πππ=++=+, 令222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-+≤≤+∈, 即函数的单调递增区间为5[,],1212k k k Z ππππ-++∈,故选C. 【点睛】本题主要考查了三角函数的图象变换及三角函数的图象与性质,对于三角函数图像变换问题,首先要将不同名函数转换成同名函数;另外在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 38.B 【解析】 【分析】根据正弦定理得到sin B =cos B 得到答案. 【详解】10sin B =,故sin B =,且60B <︒,故cos B .故选:B . 【点睛】本题考查了正弦定理,意在考查学生的计算能力. 39.A 【解析】 【分析】先看34πθ=tan 2πθθ⎛⎫+= ⎪⎝⎭tan 2πθθ⎛⎫+= ⎪⎝⎭成立时,能否推出34πθ=,即判断必要性,由此可得答案. 【详解】当34πθ=31tan 224πππθθ⎛⎫⎛⎫+=+=-= ⎪ ⎪⎝⎭⎝⎭,即“34πθ=”tan 2πθθ⎛⎫+= ⎪⎝⎭的充分条件;tan 2πθθ⎛⎫+= ⎪⎝⎭时,sin tan =cos θθθθ=,则sin 0θ= 或cos θ=,则k θπ= 或32,4k k Z πθπ=±∈,tan 2πθθ⎛⎫+= ⎪⎝⎭成立,推不出34πθ=一定成立,故“34πθ=”tan 2πθθ⎛⎫+= ⎪⎝⎭的必要条件, 故选:A. 40.D 【解析】 【分析】依题意可得cos cos 6πθθ⎛⎫=+ ⎪⎝⎭,sin sin 6πθθ⎛⎫=-+ ⎪⎝⎭,从而得到2,12k k Z πθπ=-+∈,即可求出sin 26πθ⎛⎫+ ⎪⎝⎭、cos 26πθ⎛⎫+ ⎪⎝⎭,最后利用二倍角公式求出cos2θ与sin2θ即可;【详解】解:由已知可知:cos cos 6πθθ⎛⎫=+ ⎪⎝⎭,sin sin 6πθθ⎛⎫=-+ ⎪⎝⎭,所以2,12k k Z πθπ=-+∈.所以sin 2sin 4sin 006k πθπ⎛⎫+=== ⎪⎝⎭,cos 2cos 4cos 016k πθπ⎛⎫+=== ⎪⎝⎭,sin22sin cos 2sin cos sin 2663πππθθθθθθ⎛⎫⎛⎫⎛⎫==-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2222cos2cos sin cos sin cos 2663πππθθθθθθ⎛⎫⎛⎫⎛⎫=-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:D . 41.A 【解析】 【详解】△函数()21cos cos 2f x x x x =+- △()sin(2)6f x x π=+令222,262k x k k Z πππππ-+≤+≤+∈,则,36k x k k Z ππππ-+≤≤+∈.△当0k =时,36x ππ-≤≤,即函数()f x 的一个单调增区间为[,]36ππ-. 故选A. 42.B 【解析】 【分析】结合函数图像,由周期求出ω,再由()16f π=求出ϕ的值.【详解】由图像可知:2()6122T πππ=⨯+=,故2==4Tπω, 又()16f π=,所以4+=+2()62k k Z ππϕπ⨯∈,2()6k k Z πϕπ∴=-+∈又||2ϕπ<,故:6πϕ=-.故选:B 43.C 【解析】 【分析】根据三角函数的定义求出tan α,结合诱导公式即可得解,注意角所在的象限.【详解】解:因为角α的终边上一点()sin3,cos3P , 所以cos31tan 0sin 3tan 3α==<, 又cos30,sin30<>, 所以α为第四象限角, 所以23,Z 2k k παπ=+-∈,又因02απ≤≤, 所以532πα=-. 故选:C. 44.B 【解析】 【分析】由已知结合三角形的面积公式及余弦定理可得221sin152cos152bc b c bc ︒=+-︒,化简即可求解 【详解】解:15A =,2a =,∴221sin152cos152bc b c bc ︒=+-︒,22sin152cos15bc b c ∴︒+︒=+,2214cos152bc b c ⎫∴︒+︒=+⎪⎪⎝⎭ ()224sin 1530bc b c ∴︒+︒=+整理可得,22b c +=,∴22b c bc bc+=则b c c b+=故选:B . 【点睛】本题主要考查了余弦定理及三角形的面积公式的简单应用,属于中档题【解析】【详解】由题得如图,3,3,,2,AFBC ,FC 2B p p AF BC p EF FC FE p 所以为平行四边形,又⎛⎫====∴= ⎪⎝⎭,11,23AD AM AD AB BD BC ==∴=,A B =所以,,AF AD p DF AD p ∴===又为中垂线,所以,由正弦定理得,122,2sin sin EF DF R R EBF EBF==∠∠,所以BEF BDF 、的外接圆半径之比为EF DF =故选B 点睛:考察正弦定理和三角想外接圆半径的关系,正弦定理的值是三角形外接圆的直径,做此类型得题多化草图分析理解题意46.23π或3π- 【解析】【分析】根据正切函数值及角的所属范围求角即可.【详解】πtan π,3a k k Z α==-∈又[]ππ,π3αα∈-∴=- 或2π3α=. 故答案为:2π3或π3-. 47.1-【分析】将余切和余割都转化为正弦和余弦,然后利用同角三角函数的基本关系式进行化简,由此求得表达式的结果.【详解】 依题意,原式22222cos 1sin 1sin sin sin ααααα-=-==-. 故填:1-.【点睛】本小题主要考查同角三角函数的基本关系式,考查运算求解能力,属于基础题.48.1【解析】【分析】先结合三角函数值化简复数z ,进而求出复数的模【详解】△1sin i cos i 33π2πz =+=△1z ==. 故答案为:149.[【解析】【分析】化简得())4f x x π=+,即得解. 【详解】由题得())4f x x π=+,所以当sin()14x π+=-时,()=min f x当sin()14x π+=时,()max f x所以函数的值域为[.故答案为:[50.π【解析】【详解】1()sin cos 2sin 222f x x x x =+=+,T=22ππ=. 51.100【解析】【分析】求出圆心角的弧度数后,利用弧长公式可求得结果.【详解】 依题意可得圆心角的弧度数160512α=⨯=弧度,又半径20r =米 根据弧长公式可得餐厅边缘一点1小时所转过的弧长l r α=⋅205100=⨯=米.故答案为:10052.3349- 【解析】【分析】将题干条件展开,平方后即可得到答案.【详解】因为)πsin sin cos 4ααα⎛⎫+=+ ⎪⎝⎭所以()224sin cos 7αα⎛⎫+= ⎪⎝⎭,所以161sin 249α+=,故33sin 249α=-. 故答案为:3349-53【解析】【分析】用正弦定理和两角和公式计算即可.【详解】依题意,43C πππ⎛⎫∠=-+ ⎪⎝⎭,由正弦定理得:,sin sin BC AC AC A B==,,2sin 2sin cos cos sin sin sin 433434AB BC AB C A πππππππ⎡⎤⎛⎫⎛⎫==-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,ABC 的周长=AB BC AC ++=;.54.【解析】【分析】 利用AB 表示出BC ,BD ,让BD 减去BC 等于40即可求得AB 长.【详解】解:设m AB h =,则BC =,BD =,40=,h ∴=,故答案为:55.23- 【解析】【分析】利用诱导公式可求()1sin 153α-︒=-,()1cos 1053α︒-=-,从而可求三角函数式的值. 【详解】因为()1cos 753α︒+=, 所以()()()1sin 15sin 7590cos 753ααα⎡⎤-︒=︒+-︒=-︒+=-⎣⎦ ()()()1cos 105cos 18075cos 753ααα⎡⎤︒-=︒-︒+=-︒+=-⎣⎦. 所以()()2sin 15cos 1053αα-︒+︒-=-.故答案为:23-. 【点睛】本题考查诱导公式的应用,注意对已知的角和未知的角的关系进行分析,从而选择合适的诱导公式进行化简,本题属于基础题.56.sin3cos3-【解析】利用诱导公式和完全平方公式将式子化成|sin3cos3|-,再根据绝对值内数的正负去绝对值.【详解】原式sin3cos3===-,又sin30>,cos30<,△sin3cos30->,△原式sin3cos3=-.故答案为:sin3cos3-.【点睛】本题考查诱导公式的应用、三角函数值的大小比较,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意sin3表示3弧度角的正弦值.57.等边【解析】【详解】试题分析:由正弦定理可得,则,故是等边三角形.故应填答案等边.考点:正弦定理及运用.58.等腰三角形或直角三角形【解析】【分析】利用三角形内角和以及诱导公式将原式化简为cos cos a A b B =,再利用正弦定理、二倍角公式化简即可.【详解】试题分析:将原式化简为cos cos a A b B =,根据正弦定理sin cos sin cos A A B B =,化简为11sin2sin222A B =, 因为,(0,)A B π∈,所以即有22A B =或22A B π+=A B =或2A B π+=,所以三角形是等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.59.56π(或150°) 【解析】利用已知条件通过余弦定理直接求解即可.【详解】因为cos C =,()0,C π∈,所以56C π=, 故答案为:56π(或150). 【点睛】本题主要考查三角形的解法,余弦定理的应用,属于基础题.60【解析】【分析】根据题意,结合导数运算法则,直接求解即可.【详解】 由1()2cos f x x=+,得()2sin ()2cos f x x x '=+,因此223122f π⎛⎫'== ⎪⎝⎭⎛⎫+ ⎪⎝⎭61.2425【解析】【分析】由同角三角函数基本关系求出cos α的值,再由正弦的二倍角公式即可求解.【详解】因为4sin 5α,0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α==, 所以4324sin 22sin cos 25525ααα==⨯⨯=, 故答案为:2425. 62.4【解析】【分析】 利用两角的正弦公式以及正弦定理得出2a b c =+,根据已知条件求出sin A 的值,结合三角形的面积公式可求得bc 的值,再利用余弦定理可求得a 的值. 【详解】由sin 1cos sin 2cos A A B B+=-得2sin sin cos sin cos sin A A B B A B -=+, 则()2sin sin sin cos cos sin sin sin sin sin A B A B A B B A B B C =++=++=+,即2a b c =+,由3cos 05A =>可知A 为锐角,则4sin 5A =, 16sin 2ABC S bc A ∴==⋅△得15bc =, 由余弦定理得()22222316244855a b c bc b c bc a =+-⋅=+-=-, 即2348a =,解得4a =.故答案为:4.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.63.。

高考数学三角函数与解三角真题训练100题含答案

高考数学三角函数与解三角真题训练100题含答案

高考数学三角函数与解三角真题训练100题含答案学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.数学家欧拉通过研究,建立了三角函数和指数函数之间的联系,得到著名的欧拉公式i e cos isin x x x =+(i 为虚数单位),此公式被誉为“数学中的天桥”.根据欧拉公式,3i e 表示的复数在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.函数22()cos 3sin 1f x x x =-+的最小正周期为( ) A .2πB .πC .π2D .π43.若360k αθ=⋅︒+,()360,m k m βθ=⋅︒-∈Z ,则角α与角β的终边一定( ) A .重合 B .关于原点对称 C .关于x 轴对称D .关于y 轴对称4.sin 480︒的值是( )A .12B .12-C D . 5.下列各角中与60︒角终边相同的角是( ) A .-300°B .-60°C .600°D .1 380°6.一架直升飞机在300m 高度处进行测绘,测得一塔顶与塔底的俯角分别是30和60︒,则塔高为( )A .200mB .C .D .100m7.已知ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,b =1a =,23B π=,则c =( )A B .2CD .38.为了得到函数2cos ,y x x R =∈的图像,只需把cos ,y x x R =∈图像上所有点( ) A .纵坐标不变,横坐标伸长为原来的2倍 B .纵坐标不变,横坐标缩短为原来的12倍 C .横坐标不变,纵坐标伸长为原来的2倍 D .横坐标不变,纵坐标缩短为原来的12倍9.把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( )A .π12B .π12-C .5π12D .5π12-10.设sin160a ︒=,则cos340︒的值是( )A .21a - BC .D .11.已知,04πα⎛⎫∈- ⎪⎝⎭且24sin225α=-,则sin cos αα+=( )A .15B .15- C .75- D .7512.已知1tan 42πα⎛⎫+= ⎪⎝⎭,则2sin 2cos 1cos 2ααα-=+( ) A.56- B .75- C .2- D .13.已知函数2sin y x =的定义域为[,]a b ,值域为[2,1]-,则b a -的值不可能是 A .2πB .76πC .56π D .π14.已知曲线21:C y x =,曲线2:sin 2cos 2C y x x =+,则下列结论正确的是( )A .曲线1C 关于原点对称B .4x π=是曲线2C 的一条对称轴C .曲线1C 向右平移8π个单位长度,得到曲线2C D .曲线2C 向左平移4π个单位长度,得到曲线1C15.函数3sin 2x y x =的图象可能是( ).A .B .C .D .16.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()5c a b =-+,3C π=,则ABC 的面积是( )A .3B C D .17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c =,b ,则ABC 的面积最大值为( )AB .CD .18.已知sin()0,cos()0θπθπ+<->,则θ是第象限角. A .一 B .二 C .三D .四19. 若,且,42x ππ<<则cos sin x x -的值是A .B .C .D .20.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b =( ) A .513B .6365C .2113D .31021. E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan△ECF=A .B .C .D .22.已知θ为第四象限角,sin cos θθ+=sin cos θθ-=( )A .B .C D23.在数列{}n a 中,()*1153n n a a a n n N +==-+∈,,若该数列的前三项可作为三角形的三边长,则此三角形最小角与最大角之和为 A .150°B .135°C .120°D .90°24.将函数()π2sin +36x f x ⎛⎫= ⎪⎝⎭的图象向左平移π4个单位,再向下平移1个单位,得到函数 g ( x ) 的图象,则 g ( x ) 的解析式为 A .()π2sin +134x g x ⎛⎫=- ⎪⎝⎭ B .()π2sin 134x g x ⎛⎫=-- ⎪⎝⎭ C .()π2sin 1312x g x ⎛⎫=-+ ⎪⎝⎭D .()π2sin 1312x g x ⎛⎫=-- ⎪⎝⎭25.某船在岸边A 处向正东方向航行x 海里后到达B 处,然后向南偏西60︒方向航行3海里达到C 处,若A 与Cx 的值是( )A .3BC .D .26.一艘船航行到点B 处时,测得灯塔C 在其北偏东15°的方向,如图,随后该船以25海里/小时的速度,沿西北方向航行两小时后到达点A ,测得灯塔C 在其正东方向,此时船与灯塔C 间的距离为( )A .(253海里B .25海里C .(253海里D .(25海里27.北京大兴国际机场(如图所示)位于中国北京市大兴区和河北省廊坊市交界处,为4F 级国际机场、世界级航空枢纽、如图,天安门在北京大兴国际机场的正北方向46km处,北京首都国际机场在北京大兴国际机场北偏东16.28°方向上,在天安门北偏东47.43°的方向上,则北京大兴国际机场与北京首都国际机场的距离约为( ) (参考数据:sin16.280.28︒≈,sin47.430.74︒≈,sin31.150.52︒≈)A .65.46kmB .74.35kmC .85.09kmD .121.12km28.已知定义域为[1,1]-函数3()sin f x x x =+,则关于a 的不等式2(2)(4)0f a f a -+->的解集是( )A.(3,2)-B .2)C .D .29.某学习小组的学习实践活动是测量图示塔AB 的高度.他们选取与塔底在同一水平面内的两个测量基点C ,D ,测得3BCD π∠=,4BDC π∠=,且基点C ,D 间的距离为(30m CD =+,同时在点C 处测得塔顶A 的仰角为6π,则塔高AB 为( )A .20mB .C .40mD .30.若tan()74πα+=,则2cos 2sin 2αα+=( )A .6425B .4825C .1D .162531.已知sin α+cos αα△(0,π),则tan α=( )A .-1 BC D .132.要得到函数2sin 2y x =的图象,只需将函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向右平移6π个单位长度33.已知函数f (x )=A cos (ωx +φ)(A >0,ω>0,0<φ<π)的图象的一个最高点为(312π-,),与之相邻的一个对称中心为06π⎛⎫ ⎪⎝⎭,,将f (x )的图象向右平移6π个单位长度得到函数g (x )的图象,则( ) A .g (x )为偶函数B .g (x )的一个单调递增区间为51212ππ⎡⎤-⎢⎥⎣⎦,C .g (x )为奇函数D .函数g (x )在02π⎡⎤⎢⎥⎣⎦,上有两个零点34.在ABC 中,如果4sin 2cos 1,2sin 4cos A B B A +=+=C ∠的大小为( ) A .30B .150︒C .30或150︒D .60︒或120︒35.已知()2cos f x x =,[],x m n ∈,则“存在[]12,,x x m n ∈使得()()124f x f x -=”是“πn m -≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件36.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,点P 是ABC 的重心,且AP =若2b =,(()cos 24sin 1A B C ++=,则=a ( )A .B .C .D .37.把函数y= sin 3x π⎛⎫+ ⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移3π个单位,所得图象对应的函数为( )A .y=sin 23x π⎛⎫- ⎪⎝⎭B .y=sin2xC .y=sin 126x π⎛⎫- ⎪⎝⎭D .y=sin 12x38.将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()g x 的图象.再把()g x 图象上所有点向左平移()0θθ>个单位长度,得到函数()h x 的图象,则下列叙述正确的是( )A .当6πθ=时,,012π⎛⎫⎪⎝⎭为函数()h x 图象的对称中心B .当6πθ=时,若0,4x π⎡⎤∈⎢⎥⎣⎦,则函数()h xC .当2πθ=时,函数()g x 与()h x 的图象关于x 轴对称D .当2πθ=时,函数()()g x h x -的最小值为039.如图所示,位于东海某岛的雷达观测站A ,发现其北偏东45︒方向,距离的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北(045)θθ︒<<︒方向的C 处,且4cos .5θ=已知A ,C 之间的距离为10海里,则该货船的速度大小为( )A ./小时B ./小时C ./小时D ./小时40.中,角的对边分别为,且满足,则A .B .C .D .41.已知1tan 2α=,且3,2παπ⎛⎫∈ ⎪⎝⎭,则cos 2πα⎛⎫-= ⎪⎝⎭A .BCD . 42.要得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移2π个单位长度 B .向右平移2π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度43.把函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭)图象向左平移4π个单位后所得图象与y 轴距最近的称轴方程为 A .x 3π=B .x -6π= C .x -24π= D .11x 24π=44.已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)△(54π,32π)B .(0,4π)△(54π,32π)C .(2π,34π)△(74π,2π)D .(2π,34π)△(π,32π)45.已知点()00,P x y 是圆22:124390C x y x y ++++=上的一点,记点P 到x 轴距离为1d ,到原点O 的距离为2d ,则当212d d +取最小值时,x y =( ) A .167B .187C .227D .24746.函数()f x 的图象如图所示,则()f x 的解析式可能为( )A .3π()2cos(2)110f x x =+- B .3π()1cos(2)10f x x =-+C .π()1sin 25f x x ⎛⎫=+- ⎪⎝⎭D .π()1sin 25f x x ⎛⎫=-- ⎪⎝⎭47.把函数sin 2y x =的图象沿着x 轴向左平移6π个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数()y f x =的图象,对于函数()y f x =有以下四个判断:(1)该函数的解析式为2sin 26y x π⎛⎫=+ ⎪⎝⎭;(2)该函数图象关于点,03π⎛⎫⎪⎝⎭对称;(3)该函数在06,π⎡⎤⎢⎥⎣⎦上是增函数;(4)若函数()y f x a =+在0,2π⎡⎤⎢⎥⎣⎦a =其中正确的判断有( ) A .1个 B .2个C .3个D .4个二、填空题48.已知角α与180α︒-的顶点均在原点,始边均在x 轴的非负半轴上,终边相同,且450720α︒<<︒,则α=__________.(用角度表示)49.已知cos 4a π⎛⎫+ ⎪⎝⎭=13,0<α<2π,则sin 4a π⎛⎫+ ⎪⎝⎭=________.50.已知 tan 02παα⎫=<<⎪⎝⎭,则α=___________. 51.用“五点法”画2sin(2)3y x π=+在一个周期内的简图时,所描的五个点分别是(,0)6π-,(,2)12π,(,0)3π,7(,2)12π-,_______.52.如果角θ始边为x 轴的正半轴,终边经过点(,那么tan θ=______. 53.计算:10cos3π=________.54.在ABC 中,已知22,3BC AC B π==,那么ABC 的面积是______. 55.已知函数()2sin cos 4f x x x π⎛⎫=+ ⎪⎝⎭,给出以下四个命题:△函数()f x 的最小正周期为2π;△函数()f x 的图象的一个对称中心是82π⎛- ⎝⎭;△函数()f x 在,04π⎛⎫- ⎪⎝⎭上为减函数;△若()()12f x f x =,则()1211Z 4x x k k ππ+=+∈或()1222Z x x k k π-=∈.其中真命题的序号是__________.(请写出所有真命题的序号) 56.已知()()4sin cos cos sin 5αβαβαα---=,β是第三象限角,则sin 4πβ⎛⎫+ ⎪⎝⎭的值___________.57.已知sincos22θθ+=cos2θ=______. 58.如果1cos 5α=-,且α是第三象限的角,那么cos 2πα⎛⎫+= ⎪⎝⎭______.59.函数tan()34y x ππ=+的对称中心是__________.60.若18090α-︒<<-︒,且()1cos 753α︒+=,则()cos 15α︒-=__________.61.已知1sin cos 2αα+=-,则tan cot αα+=__________62.已知1tan 3α= ,则sin 2α= ________.63.已知角α的终边经过点(3,4)P ,则tan α=____________ 64.y cos 25sin x x =+的最小值为________________.65.若角α的终边经过点()P y ,且sin (0)y y α=≠,则cos α=______.66.设a >0,角α的终边经过点P (﹣3a ,4a ),那么sinα+2cosα的值等于______. 67.已知tan 2α,则3sin 2cos 5sin 4cos αααα-=+__________.68.函数sin 22y x x =的图象可由函数sin 22y x x =的图象至少向右平移_______个长度单位得到.69.已知函数()sin2f x x x =,给出下列四个结论:△函数()f x 的最小正周期是π;△函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是减函数;△函数()f x 的图像关于点,03π⎛⎫⎪⎝⎭对称;△函数()f x 的图像可由函数2sin2y x =的图像向左平移3π个单位得到;其中正确结论是_________________.70.设f(x)=kx -|sin x | (x >0,k >0),若f(x)恰有2个零点,记较大的零点为t ,则2(1)sin 2t tt+= ____71.计算:23456coscoscos cos cos cos 777777ππππππ+++++=__________.72.若2tan 3α=-,则sin(2)4πα+=____________.73.已知3ππ4αβ⎛⎫∈ ⎪⎝⎭,,,()4cos 5αβ+=,π5cos 413α⎛⎫-=- ⎪⎝⎭,所以πcos 4β⎛⎫+= ⎪⎝⎭_____74.已知集合{}22(,)(cos )(sin )4,0P x y x y θθθπ=-+-=≤≤∣.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论:△“水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为; △在集合P 中任取一点M ,则M 到原点的距离的最大值为4;△阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则||3CD =+△白色“水滴”图形的面积是116π 其中正确的有___________.75.设0a ≥____________.76.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像过点(0,B ,且在ππ,183⎛⎫ ⎪⎝⎭上单调,同时()f x 的图像向左平移π个单位长度后与原来的图像重合,当124π2π,,33x x ⎛⎫∈-- ⎪⎝⎭,且12x x ≠时,()()12f x f x =,则()12f x x +=__________.77.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角4B π=且4sin 4sin sin 4sin a A c C ac B b B +=+,则ABC 的面积的最大值为_____________.三、解答题78.设函数()sin(2)2sin cos 3f x x x x π=++.(1)求函数()f x 的单调递增区间; (2)若[,]123x ππ∈-,求函数()f x 的最大值和最小值. 79.若角α的终边与60︒角的终边关于直线y x =对称,且360360α-︒<<︒,求角α的值. 80.已知函数()()21cos ,1sin2.2f x xg x x ==+(1)设0x x =是函数()y f x =的图象的一条对称轴,求()02g x 的值; (2)求函数()()(),0,4h x f x g x x π⎡⎤=+∈⎢⎥⎣⎦的值域.81.已知()()()()()3sin 3cos 2sin 2cos sin f παππαααπαπα⎛⎫---+ ⎪⎝⎭=----. (1)化简()f α; (2)若313πα=-,求()f α的值. 82.如图,一艘船以32.2nmile/h 的速度向正北航行,在A 处看灯塔S 在船的北偏东20°方向上,30min 后航行到B 处,在B 处看灯塔S 在船的北偏东60°方向上,求灯塔S 到B 处的距离(精确到0.1nmile ,参考数据:sin 200.342︒≈,sin 400.643︒≈).83.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若ABC且sin cos 0a C A =. (1)求a ;(2)若b c +=ABC 的面积.84.已知函数()()()sin 0,f x x ωϕωϕπ=+><图象经过点,112π⎛⎫- ⎪⎝⎭,7,112π⎛⎫⎪⎝⎭,且在区间7,1212ππ⎛⎫ ⎪⎝⎭上单调递增. (1)求函数()f x 的解析式;(2)当,6x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.85.若向量(3sin ,sin )a x x ωω=,(cos sin )b x x ωω=,,其中0>ω.记函数1()2f x a b =⋅-,若函数()f x 的图象上相邻两个对称轴之间的距离是2π. (1)求()f x 的表达式;(2)设ABC 三内角A 、B 、C 的对应边分别为a 、b 、c ,若3a b +=,c =()1f C =,求ABC 的面积.86.已知ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,)cos sin 0a c B b C --=. (1)求角C 的大小;(2)若2c =,AB 边上的中线CD ABC 的周长. 87.如图4,在平面四边形中,,(1)求的值;(2)求的长88.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若1cos 3A =,3c b =,且△ABC 的面积ABCS=(1)求边,b c ;(2)求边a 并判断△ABC 的形状.89.已知函数2()cos cos 1f x x x x =+. (1)求函数()f x 的单调递增区间;(2)若5()6f θ=,2(,)33ππθ∈,求sin 2θ的值. 90.如图,某圆形海域上有四个小岛,小岛A 与小岛B 相距为5nmile ,小岛A 与小岛C相距为,小岛B 与小岛C 相距为2nmile ,CAD ∠为钝角,且sin CAD ∠=(1)求小岛A ,B ,C 围成的三角形的面积; (2)求小岛A 与小岛D 之间的距离.91.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且222a c b ac +-=. (1)求B ;(2)若cos sin a C c A b +=,b =a .92.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若cos b A c= (1)证明:ABC ∆是直角三角形: (2)BM 平分角B 交AC 于点M ,且1BM=,6c =,求cos ABM ∠.93.为迎接冬奥会,石家庄准备进行城市绿化升级,在矩形街心广场ABCD 中,如图,其中400m AB =,300m BC =,现将在其内部挖掘一个三角形空地DPQ 进行盆景造型设计,其中点P 在BC 边上,点Q 在AB 边上,要求3PDQ π∠=.(1)若100m AQ CP ==,判断DPQ 是否符合要求,并说明理由; (2)设CDP θ∠=,写出DPQ 面积的S 关于θ的表达式,并求S 的最小值.94.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,sin A =B 2A =,b 4=. (1)求a 的值;(2)若D 为BC 中点,求AD 的长.95.已知函数()cos cos )f x x x x =+,x ∈R .(1)求函数()f x 的单调递增区间;(2)设0t >,关于x 的函数()2tx g x f ⎛⎫= ⎪⎝⎭在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值为12-,求实数t 的取值范围.96.函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的部分图象如图所示.(1)求()f x 的解析式; (2)求()f x 的单调递增区间; (3)先将()f x 的图象向右平移3π个单位长度,再将图象上所有点的纵坐标扩大到原来的2倍得到函数()g x 的图象,求()g x 在区间[]2ππ,上的值域.97.已知函数()2cos 2cos 1f x x x x =+-. (1)求6f π⎛⎫⎪⎝⎭的值及()f x 的最小正周期;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值.参考答案:1.B 【解析】 【分析】由题可知3i e 对应在复平面的点为()cos3,sin3,由32ππ<<可判断cos3和sin3的正负,进而得到答案. 【详解】由题,3i e cos3isin3=+,其对应点为()cos3,sin3, 因为32ππ<<知,cos30<,sin30>,所以点()cos3,sin3在第二象限, 故选:B 2.B 【解析】 【分析】先利用余弦的二倍角公式化简()f x ,再利用余弦函数的周期公式即可求解. 【详解】因为()()22222()cos 3sin 1cos sin 12sin f x x x x x x =-+=-+-cos2cos22cos2x x x =+=,所以最小正周期2ππ2T ==, 故选:B. 3.C 【解析】 【分析】根据角θ与角θ-的终边关于x 轴对称即可得解. 【详解】解:因为角θ与角θ-的终边关于x 轴对称,所以角α与角β的终边一定也关于x 轴对称. 故选:C 4.C【解析】结合诱导公式化简即可 【详解】()sin 480sin 360120sin120︒=︒+︒=︒=故选:C 【点睛】本题考查三角函数值的化简,属于基础题 5.A 【解析】 【详解】与60︒角终边相同的角为:60360k,k Z ︒+︒∈. 当k 1=-时,即为-300°. 故选A. 6.A 【解析】 【分析】由题设,画平面示意图,利用三角形内边角关系,列方程求塔高即可. 【详解】如图,O 、A 分别为塔底、塔顶,C 为飞机位置,△300,30,60OB BCA BCO =∠=︒∠=︒, 若设OA x =,则300AB x =-,有tan tan AB OBBCA BCO =∠∠,=200x =.故选:A. 7.B 【解析】 【分析】由余弦定理列方程即可求解. 【详解】由余弦定理得222cos 2a c b B ac +-=,即211722c c+--=,整理得260c c +-=,解得2c =.故选:B. 8.C 【解析】 【分析】根据坐标变换求解即可得答案. 【详解】为了得到函数2cos ,y x x R =∈的图像,只需把cos ,y x x R =∈图像上所有点的横坐标不变,纵坐标伸长为原来的2倍. 故选:C 9.B 【解析】 【分析】由37515360-=-︒-︒︒结合弧度制求解即可. 【详解】△37515360-=-︒-︒︒,△π3752πrad 12⎛⎫-︒=-- ⎪⎝⎭故选:B 10.B 【解析】根据题中条件,先由诱导公式,得到sin 20a ︒=,再根据诱导公式化简所求式子即可. 【详解】因为sin160a ︒=,所以()sin 18020sin 20a ︒-︒=︒=,而()()cos340cos 36020cos 20cos 20︒=︒-︒=-︒=︒= 故选:B. 11.A 【解析】 【分析】由题意得242sin cos 25αα∴=-,由,04πα⎛⎫∈- ⎪⎝⎭,可得sin cos αα+=,代入即可求值得解. 【详解】 24sin 225α=-, 242sin cos 25αα∴=-, ,04πα⎛⎫∈- ⎪⎝⎭,cos sin 0αα∴+>,1sin cos 5αα∴+=. 故选:A 【点睛】本题考查同角三角函数关系式,常用公式2(sin cos )12sin cos 1sin 2x x x x x +=+=+,属于基础题. 12.A 【解析】 【分析】利用两角差的正切公式求出tan tan 44ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,再利用二倍角公式以及同角三角函数的基本关系即可求解. 【详解】△1tan 42πα⎛⎫+= ⎪⎝⎭,△1tan tan 11442tan tan 1443111tan tan 244ππαππααππα⎛⎫+-- ⎪⎡⎤⎛⎫⎝⎭=+-===- ⎪⎢⎥⎛⎫⎝⎭⎣⎦+⨯++ ⎪⎝⎭, 则222sin 2cos 2sin cos cos 2tan 11cos 22cos 2αααααααα---==+ 1115tan 2326α=-=--=-.故选:A 【点睛】本题以三角正切函数值为依托,考查了正切的两角差公式和倍角公式的运用,此题以考生最熟悉的知识呈现,面向考生,试题注重基础,针对性强,同时考查了考生的运算求解能力及逻辑推理能力,属于基础题. 13.A 【解析】 【详解】试题分析:因为函数的最大值取不到2,所以b a T -<,即02b a π<-<.故A 正确. 考点:三角函数的图像,值域. 14.C 【解析】 【分析】利用辅助角公式将函数化简,再根据余弦函数、正弦函数的性质判断即可; 【详解】解:曲线21:C y x x ==关于y 轴对称,故A 错误;曲线2:sin 2cos 224C y x x x π⎛⎫=+=+ ⎪⎝⎭,令242x k πππ+=+,解得82k x ππ=+,Z k ∈,即曲线2C 的对称轴方程为82k x ππ=+,Z k ∈,则4x π=不是曲线2C 的一条对称轴,故B 错误;曲线1:222C y x x π⎛⎫==+ ⎪⎝⎭向右平移8π个单位长度得到24i 28n 2y x x πππ⎡⎤⎛⎫⎛⎫=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即得到曲线2C ,故C 正确.将曲线2C 向左平移4π个单位长度得到42242i 4n 24y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦++,故D 错误;故选:C 15.D 【解析】 【分析】首先判断函数的奇偶性,排除选项,再根据特殊区间,2x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <判断选项.【详解】3xy =是偶函数,sin 2y x =是奇函数,()3sin 2xf x x =是奇函数,函数图象关于原点对称,故排除A,B02f ⎛⎫= ⎪⎝⎭π ,当(,)2x ππ∈时,30x y =>,sin 20y x =<3sin 20xy x ∴=<,排除C.故选D . 【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项. 16.C 【解析】 【分析】先根据题意以及余弦定理求出ab ,再根据三角形面积公式即可求解. 【详解】解:2222()525c a b a ab b =-+=-++, 即22225a b c ab +-=-,由余弦定理得:222251cos 3222a b c ab ab ab π+--===, 解得:5ab =,则ABC的面积为:11sin 522ab C =⨯=故选:C. 17.B 【解析】 【分析】根据题意,先由余弦定理,得到28cos 8b A b +=,求出sin A积公式,得到1sin 2ABCSbc A ==,根据三角形的性质,确定b 的范围,进而可求出三角形面积的最值. 【详解】因为b =,2c =,所以222221482cos 248b c b a b A bc b b++-+===,所以sin A =因此1sin 2ABCSbc A == 由三角形性质可得:a b c b a c +>⎧⎨-<⎩,即22b b +>⎨⎪<⎪⎩,解得:44b -<+又44-<+因此当224b =,即b =ABC的面积最大,为ABCS ==. 故选:B. 【点睛】本题主要考查求三角形面积的最值问题,熟记余弦定理,以及三角形面积公式即可,属于常考题型. 18.B 【解析】 【详解】试题分析:由sin()sin 0sin 0θπθθ+=-⇒,cos()cos 0cos 0θπθθ-=->⇒<,由sin 0{cos 0θθ><可知θ是第二象限角,选B.考点:诱导公式及三角函数在各个象限的符号. 19.C 【解析】 【详解】 试题分析:42x ππ<<,cos sin x x ∴<,cos sin 0x x ∴-<,()22213cos sin cos sin 2sin cos 1284x x x x x x -=+-⋅=-⨯=,cos sin x x ∴-=C 正确. 考点:1同角三角函数基本关系式;2正弦函数余弦函数比较大小问题. 20.C 【解析】 【分析】根据同角的三角函数关系式中的平方和关系,结合两角和的正弦公式、正弦定理进行求解即可. 【详解】因为A ,C 是ABC ∆的内角,所以,(0,)A C π∈. 因为4cos 5A =,5cos 13C=,所以3sin 5A ==,12sin 13C ===,因此有:3541263sin sin()sin()sin cos cos sin 51351365B AC A C A C A C π=--=+=+=⨯+⨯=,由正弦定理可知:121363sin sin 13565a b b b A B =⇒=⇒=. 故选:C 【点睛】本题考查了正弦定理的应用,考查了同角的三角函数关系式、两角和的正弦公式的应用,考查了数学运算能力.21.D 【解析】 【详解】 略 22.B 【解析】 【分析】将sin cos θθ+=2sin cos θθ,再求出()2sin cos θθ-,即可得到sin cos θθ-,最后根据θ的范围,即可得解;【详解】解:因为sin cos θθ+=()2sin co 1s 5θθ+=,所以221sin 2sin cos cos 5θθθθ++=,所以42sin cos 5θθ=-,所以()2229sin cos sin 2sin cos cos 5θθθθθθ-=-+=,所以sin cos θθ-=θ为第四象限角,所以sin 0θ<,cos 0θ>,所以sin cos θθ-= 故选:B 23.C 【解析】根据数列的递推关系求出前三项即为三角形边长,根据余弦定理求出从小到大第二大的角,即可求得最大角与最小角之和. 【详解】由题:数列{}n a 中,()*1153n n a a a n n N +==-+∈,,所以12357,8a a a ===,,作为三角形三边长, 由余弦定理:边长为7的边所对角的余弦值为25644912582+-=⨯⨯,角的大小为60°,所以最大角与最小角之和为120°. 故选:C 【点睛】此题考查根据递推关系求数列中的项,根据余弦定理求三角形的角的大小,涉及三角形三内角和的关系进行转化. 24.A 【解析】 【分析】根据函数图象的平移变换,即可求解. 【详解】将函数()π2sin()36x f x +=的图象向左平移 π4个单位,得到函数()πππ2sin +2sin 312634x x f x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭=,再向下平移1个单位,得到函数()π2sin +134x g x ⎛⎫=- ⎪⎝⎭的图象,则解析式为()π2sin +134x g x ⎛⎫=- ⎪⎝⎭.故选:A . 25.D 【解析】 【分析】根据题意画出图形,在ABC 中利用余弦定理建立方程求解即得. 【详解】如图,ABC 中,依题意,30ABC ∠=,,3AC AB x BC ===,由余弦定理2222cos AC AB BC AB BC ABC =+-⋅∠得,222323cos30x x =+-⋅,即260x -+=,解得x =x =所以x 的值是 故选:D 26.D 【解析】 【分析】根据三角形ABC 的边和角,利用正弦定理,即可求解. 【详解】由题意可知,60ABC ∠=︒,45A ∠=︒,75C ∠=︒,50AB =海里,由正弦定理可得sin sin AB ACC ABC=∠,所以(25AC =海里. 故选:D 27.A 【解析】 【分析】由题意可得46km AC =,16.28ACB ∠=︒,132.57BAC ∠=︒,然后在ABC 中利用正弦定理求解即可 【详解】如图所示,由题意可得46km AC =,16.28ACB ∠=︒,132.57BAC ∠=︒, 由正弦定理可得sin sin BC ACA B =,即46sin132.57sin31.15BC =︒︒, 解得4646sin132.570.7465.46sin31.150..52BC =⋅︒≈⨯≈︒.故选:A28.C 【解析】 【分析】根据已知中的函数解析式,先分析函数的奇偶性和单调性,进而根据函数的性质和定义域,将不等式2(2)(4)0f a f a -+->化为2(2)(4)f a f a ->-,解不等式组即可求解. 【详解】解:因为函数3y x =和函数sin y x =均为奇函数,且在[1,1]-上均为增函数, 所以函数3()sin f x x x =+是奇函数,且在[1,1]-为增函数, 由2(2)(4)0f a f a -+->, 得2(2)(4)f a f a ->-, 所以2224121141a a a a ⎧->-⎪-≤-≤⎨⎪-≤-≤⎩,解得2a <≤2a ∈(. 故选:C. 29.A 【解析】 【分析】设,AB x =则BC =,利用正弦定理即得解. 【详解】解:设,AB x =则BC . 由题得53412CBD ππππ∠=--=.51sinsin()12642πππ=+==在△BCD20x ∴=. 所以塔高20m. 故选:A 30.A 【解析】 【分析】先计算出tan α的值,然后构造齐次式,将分子分母同除以2cos α即可计算出结果. 【详解】因为tan()74πα+=,所以tan 171tan A A +=-,所以3tan 4α=,又222222314cos 4sin cos 14tan 644cos 2sin 2sin cos tan 125314ααααααααα+⨯+++====++⎛⎫+ ⎪⎝⎭,所以264cos 2sin 225αα+=. 故选:A. 【点睛】本题考查两角和的正切公式与同角三角函数的基本关系的综合应用,难度一般.已知tan α,求解22sin cos m n αα+的值,可变形为求解222222sin cos tan sin cos tan 1m n m nαααααα++=++的结果;求解sin cos sin cos n n n n a b c d αααα++的值,可变形为求解tan tan n n a b c dαα++的结果.31.D 【解析】 【详解】 由sin α+cos α=得(sin α+cos α)2=1+2sin αcos α=2,即2sin αcos α=1,又因为α△(0,π),则当cos α=0时,sin α=1,不符合题意,所以cos α≠0,所以==1,解得tan α=1,故选D. 32.D 【解析】 【详解】分析:利用诱导公式,()y Asin x ωϕ=+的图象变换规律,得到答案详解:222sin 236y sin x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦要得到函数22y sin x =的图象,只需要将函数223y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度即可故选D点睛:本题考查了三角函数图像的性质,根据图像的平移来确定结果,掌握由sin y x =图像到()y Asin x ωϕ=+图像的变换过程. 33.B【分析】先根据函数的部分图象和性质求出f (x )解析式,再根据图象的变换规律求得g (x ),最后根据余弦函数性质得出结论. 【详解】因为函数f (x )=A cos (ωx +φ)的图象的一个最高点为(312π-,),与之相邻的一个对称中心为06π⎛⎫⎪⎝⎭,, 所以A =3,46T π=-(12π-)4π=;所以T =π所以ω=2;所以f (x )=3cos (2x +φ); 又因为f (12π-)=3cos[(2×(12π-)+φ]=3,所以6π-+φ=K π;△0<φ<π; △φ6π=,△f (x )=3cos (2x 6π+); 因为将f (x )的图象向右平移6π个单位长度得到函数g (x )的图象, 所以g (x )=3cos[2(x 6π-)6π+]=3cos (2x 6π-);是非奇非偶函数;令﹣π+2k π≤2x 6π-≤2k π,所以512π-+k π≤x ≤k π12+π,k △z ; 当k =0时,g (x )的一个单调递增区间为:51212ππ⎡⎤-⎢⎥⎣⎦,;令2x 6π-=k π2π+, 解得x 23k ππ=+,k △z , △函数g (x )在[0,2π]上只有一个零点. 故选:B .本题主要考查由三角函数部分图象求解析式,图象变换以及三角函数的性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 34.A 【解析】 【分析】对4sin 2cos 1,2sin 4cos A B B A +=+=再相加得出30C ︒=或150︒,再由三角函数的性质验证150C ︒=,即可得出答案. 【详解】4sin 2cos 1,2sin 4cos A B B A +=+=2216sin 16sin cos 4cos 1A A B B ∴++=△224sin 16sin cos 16cos 27B B A A ∴++=△△+△得2016sin()28A B ++=即1sin()sin()sin 2A B C C π+=-==()0,180C ︒︒∈ 30C ︒∴=或150︒当150C ︒=时,则030,030A B ︒︒︒︒<<<<12sin 212B ∴<⨯=,4cos 4A <2sin 4cos 5B A ∴+<5∴<150C ︒∴=不满足题意故选:A 【点睛】本题主要考查了两角和的正弦公式,平方关系,三角函数的性质,属于中档题. 35.A 【解析】 【分析】由三角函数的性质可知()2cos f x x =在R 上的最大值为2,最小值2-,且相邻的最大值与最小值之间的水平距离为π,结合充分、必要条件的定义即可判定. 【详解】由于()2cos f x x =在R 上的最大值为2,最小值2-,且相邻的最大值与最小值之间的水平距离为半个周期,即π,所以若存在[]12,,x x m n ∈使得()()124f x f x -=,则必有πn m -≥,但反之不成立,比如2π2,33m n π=-=时,4=>π3n m π-,但()f x 在[],m n 上的最大值为2,最小值为1-,[]12,,x x m n ∈时()()12f x f x -的最大值为3,不可能等于4,△“存在[]12,,x x m n ∈使得()()124f x f x -=”是“πn m -≥”的充分不必要条件, 故选:A. 【点睛】本题考查充分不必要条件的判定,涉及三角函数的性质,属基础题,关键是认真审题,理解存在性命题的意义,掌握三角函数的性质和充分、必要条件的意义. 36.C 【解析】 【分析】利用三角恒等变换的应用化简已知恒等式可得(22sin 4sin 0A A -+=,解方程即可求出sin A ,进而求出角A ,由三角形的重心的性质可得()13AP AB AC =+,两边同时平方结合平面向量的数量积的运算即可得到24cos 240c c A +⋅-=,分类讨论求出边c ,进而求出结果. 【详解】因为(()cos 24sin 1A B C ++=,所以(212sin 4sin 1A A -+=,因此(22sin 4sin 0A A -+=,解得sin A =或sin 2A =, 又因为()0,A π∈,则(]sin 0,1A ∈,所以sin A =,因此3A π=或23A π=,又因为点P 是ABC 的重心,所以()13AP AB AC =+,因此()22212cos 9AP AB AC AB AC A =++⋅⋅, 即()22212cos 9AP AB AC AB AC A =++⋅⋅,又因为AP =2b =,所以()228144cos 99c c A =++⋅,即24cos 240c c A +⋅-=,当3A π=时,22240c c +-=,因为0c >,所以4c =,此时214162242a =+-⨯⨯⨯,所以a =当23A π=时,22240c c --=,因为0c >,所以6c =,此时214362262a ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,所以a =综上:a =a = 故选:C. 37.A 【解析】 【分析】直接利用三角函数图象的“伸缩变换”与“平移变换”法则求解即可. 【详解】把函数3y sin x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),得到23y sin x π⎛⎫=+ ⎪⎝⎭的图象,再将23y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位,所得图象对应的函数为22333y sin x sin x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选A.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.38.C 【解析】 【分析】利用图象的变换规律,可求出函数()g x 与()h x 的的解析式, 再由三角函数的性质逐项判断即可. 【详解】将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍, 纵坐标不变,得到函数()sin 2g x x =的图象,再把()g x 图象上所有点向左平移()0θθ>个单位长度,得到函数 ()sin()h x x θ=+的图象 ,当6πθ=时,()sin(2),3h x x π=+ 当12x π=时,()sin(2)112123h πππ=⨯+=,则12x π=为函数()h x 图象的对称轴,故 A 错误;当6πθ=时,()sin(2)3h x x π=+,若0,,4x π⎡⎤∈⎢⎥⎣⎦52,,336x πππ⎡⎤+∈⎢⎥⎣⎦则1sin(2),132x π⎡⎤+∈⎢⎥⎣⎦故()h x 的最大值为 1,故B 错误; 当2πθ=时,函数()sin 2g x x =与()sin 2h x x =-的图象关于x 轴对称,故C 正确; 当2πθ=时,()()2sin 2g x h x x -=最小值为 -2 , 故D 错误. 故选:C. 39.A 【解析】 【分析】根据所给条件求出cos BAC ∠,再借助余弦定理即可作答. 【详解】因4cos 5θ=,则3sin 5θ=,由题意得45BAC θ∠=︒-, 即()43cos cos 4555BAC θ⎛⎫∠=︒-=+= ⎪⎝⎭, 在ABC中,AB =10AC =,由余弦定理2222BC AB AC AB ACcos BAC =+-⋅∠得:即22210210340BC =+-⋅=,解得BC = 设船速为x,则12x =x =所以货船的速度大小为/小时. 故选:A 40.C 【解析】 【详解】 设,则,则,故选C.考点:正弦定理与余弦定理. 41.A 【解析】 【详解】2222221sin tan 14sin 1sin cos tan 1514αααααα====+++,由于角为第三象限角,故sin α=πcos sin 2αα⎛⎫-== ⎪⎝⎭. 42.C 【解析】 【分析】先将函数()f x 的化为正弦型函数,在将函数()f x 的解析式表示为()()sin 23f x x πϕ⎡⎤=++⎢⎥⎣⎦,并结合ϕ的符号与绝对值确定平移的方向与长度.【详解】由诱导公式可得()cos 2sin 2sin 232343f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因此,只需在将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位长度,即可得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,故选C .【点睛】在考查两个三角函数平移的过程中,需注意以下两个问题; △两个函数的名称一定要一致;△左右平移法则中的“左加右减”指的是在自变量x 上变化了多少. 43.B 【解析】 【分析】先求出把函数()f x 的图象向左平移4π个单位后所得图象对应的解析式,然后求出该图象对应函数的对称轴,最后结合四个选项进行判断即可. 【详解】把函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭)图象向左平移4π个单位后所得图象对应的解析式为sin 2?cos 2433y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由2,k Z 3x k ππ+=∈,得对称轴方程为,k Z 62k x ππ=-+∈.当0k =时,可得对称轴为6x π=-,此时对称轴离y 轴距最近. 故选B . 【点睛】本题考查三角函数图象的平移变换以及函数图象对称轴的求法,对于图象的平移变换,解题时要注意平移只是对自变量x 而言的,同时要注意平移的单位的大小;在求图象的对称轴方程时,将4x π+看作一个整体进行求解,属于基础题.44.C【解析】 【分析】由点P 的横坐标大于0且纵坐标小于0解三角不等式求解α的范围. 【详解】△点P (sinα+cosα,tanα)在第四象限,△00sin cos tan ><ααα+⎧⎨⎩, 由sinα+cosα=(α4π+), 得2kπ<α4<π+2kπ+π,k△Z ,即2kπ4π-<α<2kπ34π+π,k△Z . 由tanα<0,得kπ2π+<α<kπ+π,k△Z . △α△(2π,34π)△(74π,2π).故选C . 【点睛】本题考查了三角函数的符号,考查了三角不等式的解法,是基础题. 45.D 【解析】 【分析】利用圆的参数方程,表示出212d d +并求最值,利用三角函数求出0x y . 【详解】22:124390C x y x y ++++=化为标准方程:22(6)(2)1x y +++=,点()00,P x y 是圆上一点,不妨设006sin 2cos x ty t =-+⎧⎨=-+⎩(t 为参数),则22212(6sin )(2cos )(2cos )d d t t t +=-++-+--+(12sin 5cos )43t t =-++)43t ϕ=++ 13sin()43t ϕ=-++其中5tan 12ϕ= 当2t πϕ+=时,212sin()1,t d d ϕ+=+可取得最小值30此时001266sin 6cos 221352cos 2sin 7213x t y t ϕϕ-+-+-+====-+-+-+ 故选:D 【点睛】关键点点睛:根据圆的方程,可设点()00,P x y 满足006sin 2cos x t y t=-+⎧⎨=-+⎩,代入212d d +化简求最值,是解决本题的关键,属于中档题. 46.D 【解析】 【分析】由函数图象知,,A T B ,利用周期公式即可解得ω,又πf ⎛⎫= ⎪⎝⎭7020,解得ϕ,即可得出函数()f x 的解析式. 【详解】设函数()()sin f x A x B ωϕ=++,则 由图可知,A B =-=11,πππT =-=7420104,解得πT =, 所以2π=πT ω=,解得2=ω,将点π,⎛⎫⎪⎝⎭7020代入函数()()sin 21f x x ϕ=-++中,即7π7π()sin 2102020f ϕ⎛⎫=-⨯++= ⎪⎝⎭,解得ππ,k k Z ϕ=-∈25当0k =时,π5ϕ=-. ()f x 的解析式为:π()1sin 25f x x ⎛⎫=-- ⎪⎝⎭.故选:D.47.B 【解析】 【分析】利用正弦型函数的图象变换规律求得函数()y f x =的解析式,然后利用正弦函数的基本性质可得出结论. 【详解】把函数sin 2y x =的图象沿着x 轴向左平移6π个单位,可得sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,再把纵坐标伸长到原来的2倍(横坐标不变)后得到函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象,对于函数()2sin 23x y f x π=⎛⎫=+ ⎪⎝⎭,故(1)错误;由于当3x π=时,()0f x =,故该函数图象关于点,03π⎛⎫⎪⎝⎭对称,故(2)正确;在06,π⎡⎤⎢⎥⎣⎦上,22,333x πππ⎡⎤+∈⎢⎥⎣⎦,故函数()y f x =该函数在0,2π⎡⎤⎢⎥⎣⎦上不是增函数,故(3)错误;在0,2π⎡⎤⎢⎥⎣⎦上,42,333x πππ⎡⎤+∈⎢⎥⎣⎦,故当4233x ππ+=时,函数()y f x a =+在06,π⎡⎤⎢⎥⎣⎦上取得最小值为a =a ∴=4)正确,故选:B. 【点睛】本题主要考查正弦型三角函数图象变换,同时也考查了正弦型函数基本性质的判断,考查推理能力,属于中等题. 48.630° 【解析】 【分析】根据题目条件得到(180)360,k Z k αα=-+⋅︒︒∈,求出()2190,k k Z α=+⋅︒∈,列出不等式组,求出3,630k α==︒. 【详解】由题意得,(180)360,k Z k αα=-+⋅︒︒∈, 即()2190,k k Z α=+⋅︒∈,。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

三角函数练习题100题(Word版,含解析)

三角函数练习题100题(Word版,含解析)

三角函数习题100题练兵(1-20题为三角函数的基本概念及基本公式,包括同角三角函数关系,诱导公式等,21-40题三角函数的图象与性质,41-55题为三角恒等变形,56-70为三角函数基本关系及角度制与弧度制等,包括象限角弧长与扇形面积公式等,71-90题为三角函数的综合应用,91-100为高考真题。

其中1-55为选择题,56-70为填空题,71-100为解答题。

)1.函数且的图象恒过点,且点在角的终边上,则A. B. C. D.【解答】解:函数且的图象恒过定点,角的终边经过点,,,.故选B2.已知角的终边上有一点,则A. B. C. D.【解答】解:角的终边上有一点,,则.故选C.3.若,且,则角的终边位于A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:,则角的终边位于一二象限,由,角的终边位于二四象限,角的终边位于第二象限.故选择.4.已知是第二象限角,为其终边上一点且,则的值A. B. C. D.【解答】解:是第二象限角,为其终边上一点且,,解得,,.故选A.5.已知角的终边过点,且,则的值为A. B. C. D.【解答】解:由题意,角的终边过点,可得,,,所以,解得,故选A.6.若点在角的终边上,则A. B. C. D.【解析】解:点在角的终边上,,则,,.故选B.7.在平面直角坐标系中,,点位于第一象限,且与轴的正半轴的夹角为,则向量的坐标是A. B. C. D.【解答】解:设,则,,故故选C.8.的大小关系为A. B. C. D.【解答】解:,,,,.故选C.9.已知角的终边上有一点,则的值为A. B. C. D.【解答】解:根据三角函数的定义可知,根据诱导公式和同角三角函数关系式可知,故选A.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角的终边过点,,且,则A. B. C. D.【解答】解:因为角的终边过点,所以是第一象限角,所以,,因为,,所以为第一象限角,,所以,所以,故选:.11.若角的终边经过点,则A. B. C. D.【解答】解:由题意,,,因为的正负不确定,则正负不确定.故选C.12.下列结论中错误的是A.B.若是第二象限角,则为第一象限或第三象限角C.若角的终边过点,则D.若扇形的周长为,半径为,则其圆心角的大小为弧度【解答】解:.,故A正确;B.因为为第二象限角,,所以,当为偶数时,为第一象限的角,当为奇数时,为第三象限角,故B正确;C.当时,,此时,故C错误;D.若扇形的周长为,半径为,则弧长为,其圆心角的大小为弧度,故正确.故选C.13.我国古代数学家赵爽利用弦图巧妙地证明了勾股定理,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形如图如果内部小正方形的内切圆面积为,外部大正方形的外接圆半径为,直角三角形中较大的锐角为,那么A. B. C. D.【解答】解:因为内部小正方形的内切圆面积为,所以内部小正方形的内切圆的半径为,所以内部小正方形的边长为,外部大正方形的外接圆半径为,所以大正方形的边长为,设大直角三角形中长直角边为,斜边为,则,则,所以,所以大直角三角形中短直角边为,所以,,则.故选D.14.己知是第四象限角,化简为A. B. C. D.【解答】解:是第四象限角,故,又,,则.故选B.15.函数的最小正周期为A. B. C. D.【解答】解:,所以的最小正周期.故选C.16.函数的值域是A. B. C. D.【解答】解:,令,,则,,由二次函数的性质可得函数在上单调递减,在上单调递增,当时取的最小值,其最小值为,当时取得最大值,其最大值为.故函数的值域为.故选B.17.已知,,且,,则A. B. C. D.【解答】解:由题可知,,,所以,所以,又,所以,所以,当时,.因为,所以,不符合题意,当时,同理可得,故选:.18.已知,则的值为A. B. C. D.【解答】解:因为,所以,所以,所以,所以.故选A.19.在中,角、、的对边分别是、、,若,则的最小值为A. B. C. D.【解答】解:,由正弦定理化简得:,整理得:,,;则.当且仅当时等号成立,可得的最小值为.故选:.20.若的内角满足,则的值为.A. B. C. D.【解答】解:因为为的内角,且,所以为锐角,所以.所以,所以,即.所以.故选A.21.已知函数给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上的所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是A.①B.①③C.②③D.①②③【解答】解:因为,①由周期公式可得,的最小正周期,故①正确;②,不是的最大值,故②错误;③根据函数图象的平移法则可得,函数的图象上的所有点向左平移个单位长度,可得到函数的图象,故③正确.故选:.22.将函数的图象先向右平移个单位长度,再将该图象上各点的横坐标缩短到原来的一半纵坐标不变,然后将所得图象上各点的纵坐标伸长到原来的倍横坐标不变,得函数的图象,则解析式是A. B.C. D.【解答】解:由题意函数的图象上各点向右平移个单位长度,得到新函数解析式为,再把所得函数的图象上各点横坐标缩短为原来的一半,得到新函数解析式为,再把所得函数的图象上各点纵坐标伸长为原来的倍,得到新函数解析式为.故选A.23.如图函数的图象与轴交于点,在轴右侧距轴最近的最高点,则不等式的解集是A.,B.,C.,D.,【解答】解:由在轴右边到轴最近的最高点坐标为,可得.再根据的图象与轴交于点,可得,结合,.由五点法作图可得,求得,不等式,即,,,求得,,故选:.24.函数的图像的一条对称轴是A. B. C. D.【解答】解:令,解得,函数图象的对称轴方程为,时,得为函数图象的一条对称轴.故选C25.已知函数,若相邻两个极值点的距离为,且当时,取得最小值,将的图象向左平移个单位,得到一个偶函数图象,则满足题意的的最小正值为A. B. C. D.【解答】解:函数,所以,,相邻两个极值点的横坐标之差为,所以,所以,又,所以,当时,取得最小值,所以,,而,所以,所以,将的图象向左平移个单位得为偶函数,所以,,即.所以的最小正值为.故选A.26.函数的定义域为A. B.C. D.【解答】解:根据对数的真数大于零,得,可知:当时,,故函数的定义域为.故选A.27.设函数若是偶函数,则A. B. C. D.【解答】解:,因为为偶函数,所以当时,则,,所以,,又,所以.故选B.28.函数的部分图像如图所示,则A. B. C. D.【解答】解:由题意,因为,所以,,由时,可得,所以,结合选项可得函数解析式为.故选A.29.已知函数,给出下列命题:①,都有成立;②存在常数恒有成立;③的最大值为;④在上是增函数.以上命题中正确的为A.①②③④B.②③C.①②③D.①②④【解答】解:对于①,,,①正确;对于②,,由,即存在常数恒有成立,②正确;对于③,,令,,则设,,令,得,可知函数在上单调递减,在上单调递增,在上单调递减,且,,则的最大值为,③错误;对于④,当时,,所以在上为增函数,④正确.综上知,正确的命题序号是①②④.故选:.30.已知,,直线和是函数图象的两条相邻的对称轴,则A. B. C. D.【解答】解:由题意得最小正周期,,即,直线是图象的对称轴,,又,,故选A.31.已知函数向左平移半个周期得的图象,若在上的值域为,则的取值范围是A. B. C. D.【解答】解:函数向左平移半个周期得的图象,由,可得,由于在上的值域为,即函数的最小值为,最大值为,则,得.综上,的取值范围是.故选D.32.若,则实数的取值范围是A. B. C. D.解:,,,.,,.33.如图,过点的直线与函数的图象交于,两点,则等于A. B. C. D.【解答】解:过点的直线与函数的图象交于,两点,根据三角函数的对称性得出;,,,,.是的中点,,.故选B.34.已知函数,若函数恰有个零点,,,,且,为实数,则的取值范围为A. B. C. D.解:画出函数的图象,如图:结合图象可知要使函数有个零点,则,因为,所以,所以,因为,所以,且,可设,其中,所以,所以,所以的取值范围是.故选A.35.函数的部分图象如图所示,现将此图象向左平移个单位长度得到函数的图象,则函数的解析式为A. B. C. D.【解答】解:根据函数的部分图象,则:,,所以:,解得:,当时,,即:解得:,,因为,当时,,故:,现将函数图象上的所有点向左平移个单位长度得到:函数的图象.故选C.36.已知曲线:,:,则下面结论正确的是A.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【解答】解:把上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数图象,再把得到的曲线向左平移个单位长度,得到函数的图象,即曲线,故选D.37.设,则函数的取值范围是A. B. C. D.【解答】解:,因为,所以,所以故选A.38.人的心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为标准值设某人的血压满足函数式,其中为血压单位:,为时间单位:,则下列说法正确的是A.收缩压和舒张压均高于相应的标准值B.收缩压和舒张压均低于相应的标准值C.收缩压高于标准值、舒张压低于标准值D.收缩压低于标准值、舒张压高于标准值【解答】解:某人的血压满足函数式,其中为血压单位:,为时间单位:则此人收缩压;舒张压,所以此人的收缩压高于标准值、舒张压低于标准值.故选C.39.设函数,下述四个结论:①的图象的一条对称轴方程为;②是奇函数;③将的图象向左平移个单位长度可得到函数的图象;④在区间上单调递增.其中所有正确结论的编号是A.①②B.②③C.①③D.②③④【解答】解:由题意.对①,的对称轴为,即,故是的对称轴故①正确;对②,,故为偶函数,故②错误;对③,将的图象向左平移个单位长度得到故③正确;对④,当时,,因为是的减区间,故④错误.综上可得①③正确.故选C.40.如图,某港口一天时到时的水深变化曲线近似满足函数,据此可知,这段时间水深单位:的最大值为A. B. C. D.【解答】解:由图象知.因为,所以,解得,所以这段时间水深的最大值是.故选C.41.若,且,则等于A. B. C. D.【解答】解:,,则,又,,则.故选:.42.若,则A. B. C. D.【解答】解:,且,,,两边同时平方得,解得或舍去,,故选B.43.,,则的值为.A. B. C. D.【解答】解:,,,,.故选:.44.若,均为锐角,,,则A. B. C.或 D.【解答】解:为锐角,,,且,,且,,,.45.在中,已知,那么的内角,之间的关系是A. B. C. D.关系不确定【解答】解:由正弦定理,即,所以,即,所以,则,所以.故选B.46.设,,则A. B. C. D.【解答】解:根据二倍角公式可得,解得,由,可得,所以,故选A.47.设,,且,则下列结论中正确的是A. B. C. D.【解答】解:,因为,所以.故选A.48.已知是锐角,若,则A. B. C. D.【解答】解:已知是锐角,,若,,则.故选A.49.化简的值等于A. B. C. D.【解答】解:,,.故选A.50.已知,,则的值为A. B. C. D.【解答】解:,,由得..故选B.51.已知函数,若函数在上单调递减,则实数的取值范围是A. B. C. D.【解答】解:函数,由函数在上单调递减,且,得解得,又,,实数的取值范围是.故选A.52.函数的最大值为A. B. C. D.【解答】解:函数,其中,函数的最大值为,故选C.53.计算:等于A. B. C. D.【解答】解:,,.故选A.54.在中,角,,的对边分别为,,,已知,,则的值为A. B. C. D.【解答】解:,,即,即,,由正弦定理可得,又,所以由余弦定理可得,故选D.55.函数取最大值时,A. B. C. D.【解答】解:,其中由确定.由与得.若,则,,,此时.所以,最大值时,,,.故选.56.已知点在第一象限,且在区间内,那么的取值范围是___________.【解答】解:由题意可知,,,借助于三角函数线可得角的取值范围为.故答案为.57.已知角的终边经过点,则实数的值是【解答】解:设,由于正切函数周期为,则,又终边经过点,所以,解得,故答案为.58.在平面直角坐标系中,角的顶点是,始边是轴的非负半轴,,若点是角终边上的一点,则的值是____.【解答】解:因为点是角终边上的一点,所以,由,,则在第一象限,又,所以.故答案为.59.已知,,则____________.【解答】解:,,,,.故答案为.60.已知角的终边与单位圆交于点,则的值为__________.【解答】解:由题意可得,则.故答案为.61.若扇形的圆心角为,半径为,则扇形的面积为__________.【解答】解:因为,所以扇形面积公式.故答案为.62.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.【解答】解:由于,若,,则.63.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,为圆孔及轮廓圆弧所在圆的圆心,是圆弧与直线的切点,是圆弧与直线的切点,四边形为矩形,,垂足为,,到直线和的距离均为,圆孔半径为,则图中阴影部分的面积为___________.【解答】解:设上面的大圆弧的半径为,连接,过作交于,交于,交于,过作于,记扇形的面积为,由题中的长度关系易知,同理,又,可得为等腰直角三角形,可得,,,,,解得,,故答案为.64.已知相互啮合的两个齿轮,大轮有齿,小轮有齿.当小轮转动两周时,大轮转动的角度为______________写正数值:如果小轮的转速为转分,大轮的半径为,则大轮周上一点每秒转过的弧长为______________.【解答】解:因为大轮有齿,小轮有齿,当小轮转动两周时,大轮转动的角为,如果小轮的转速为转分,则每秒的转速为转秒,由于大轮的半径为,那么大轮周上一点每转过的弧长是.故答案为.65.终边在直线上的所有角的集合是____________.【解答】解:由终边相同的角的定义,终边落在射线的角的集合为,终边落在射线的角的集合为:,终边落在直线的角的集合为:.故答案为.66.已知直四棱柱的棱长均为,以为球心,为半径的球面与侧面的交线长为________.【解答】解:如图:取的中点为,的中点为,的中点为,因为,直四棱柱的棱长均为,所以为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为.67.用弧度制表示终边落在如图所示阴影部分内的角的集合是_________________________.【解答】解:由题意,得与终边相同的角可表示为,与终边相同的角可表示为,故角的集合是,故答案为.68.给出下列命题:第二象限角大于第一象限角三角形的内角是第一象限角或第二象限角不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关若,则与的终边相同若,则是第二或第三象限的角.其中正确的命题是填序号【解答】解:①是第二象限角,是第一象限角,但,①错误;②三角形内角有的直角,但它不是象限角,不属于任何象限,②错误;③角的度量是角所在扇形中它所对的弧长与相应半径的比值,与扇形半径无关,③正确④与的正弦值相等,但它们终边关于轴对称,④错误;⑤余弦值小于零,的终边在第二或第三象限或非正半轴上,⑤错误.故答案为③69.已知扇形的圆心角为,周长为,则扇形的面积为______ .解:设扇形的半径为,圆心角为,弧长,此扇形的周长为,,解得:,则扇形的面积为.故答案为.70.地球的北纬线中国段被誉为中国最美风景走廊,东起舟山东经,西至普兰东经,“英雄城市”武汉东经也在其中,假设地球是一个半径为的标准球体,某旅行者从武汉出发,以离普兰不远的冷布岗日峰东经为目的地,沿纬度线前行,则该行程的路程为__________用含的代数式表示【解答】解:地球半径为,所以北纬的纬度圈半径为,因为武汉和冷布岗日峰的经度分别为东经和东经,相差,即,所以两地在北纬的纬线长是.故答案为.71.如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.求的值;若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.【参考答案】解:因为锐角的终边与单位圆交于点,且点的纵坐标是,所以由任意角的三角函数的定义可知.从而.,.因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以,从而.72.如图,有一块扇形草地,已知半径为,,现要在其中圈出一块矩形场地作为儿童乐园使用,其中点、在弧上,且线段平行于线段若点为弧的一个三等分点,求矩形的面积;当在何处时,矩形的面积最大?最大值为多少?【参考答案】解:如图,作于点,交线段于点,连接、,,,,,,设,则,,,,,,即时,,此时在弧的四等分点处.73.如图,圆的半径为,,为圆上的两个定点,且,为优弧的中点,设,在右侧为优弧不含端点上的两个不同的动点,且,记,四边形的面积为.求关于的函数关系;求的最大值及此时的大小.解:如下图所示:圆的半径为,,为圆上的两个定点,且,,到的距离,若,则,到的距离,故令则,,的图象是开口朝上,且以直线为对称的抛物线,故当,即时,取最大值.74.如图,在中,,,为,,所对的边,于,且.求证:;若,求的值.【参考答案】证明:,,,,,在直角三角形中,,在直角三角形中,,则,即,,,由此即得证.解:,,,则,由知,,故的值为.75.已知角的终边经过点.求的值;求的值.【参考答案】解:Ⅰ因为角终边经过点,设,,则,所以,,..Ⅱ.76.已知向量,.当时,求的值;若,且,求的值.【参考答案】解:首先,.当时,.由知,.因为,得,所以.所以.77.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于、两点,已知、的横坐标分别为求的值;求的值.【参考答案】解:由已知得,,,因为为锐角,故,从而,同理可得,因此,,所以,,又,,,得.78.已知化简若是第二象限角,且,求的值.【参考答案】解:.是第二象限角,且,,是第二象限角,.79.如图,某市拟在长为的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定.求,的值和,两点间的距离;应如何设计,才能使折线段最长?【参考答案】解:因为图象的最高点为,所以,由图象知的最小正周期,又,所以,所以,所以,,故,两点间的距离为,综上,的值为,的值为,,两点间的距离为;在中,设,因为,故,由正弦定理得,所以,.设折线段的长度为,则,所以的最大值是,此时的值为.故当时,折线段最长.80.已知函数.Ⅰ求的最小正周期;Ⅱ求在区间上的最大值和最小值.【参考答案】解:Ⅰ,所以的最小正周期为.Ⅱ因为,所以.于是,当,即时,取得最大值;当,即时,取得最小值.81.已知函数求函数的最小正周期;若函数对任意,有,求函数在上的值域.【参考答案】解:,的最小正周期;函数对任意,有,,当时,则,则,即,解得.综上所述,函数在上的值域为:.82.已知向量,.当时,求的值;设函数,且,求的最大值以及对应的的值.【参考答案】解:因为,所以,因为否则与矛盾,所以,所以;,因为,所以,所以当,即时,函数的最大值为.83.已知函数.求的值;从①;②这两个条件中任选一个,作为题目的已知条件,求函数在上的最小值,并直接写出函数的一个周期.【参考答案】解:Ⅰ由函数,则;Ⅱ选择条件①,则的一个周期为;由;,因为,所以;所以,所以;当,即时,在取得最小值为.选择条件②,则的一个周期为;由;因为,所以;所以当,即时,在取得最小值为.,,84.已知函数.求函数的最小正周期和单调递增区间;若存在满足,求实数的取值范围.【参考答案】解:,函数的最小正周期.由,得,的单调递增区间为.当时,可得:,令.所以若存在,满足,则实数的取值范围为.85.已知函数.求函数的单调减区间;将函数的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求在上的值域.【参考答案】解:函数,当,解得:,因此,函数的单调减区间为;将函数的图象向左平移个单位,得的图象,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,,,故的值域为.86.函数的部分图象如图所示.求的解析式;设,求函数在上的最大值,并确定此时的值.【参考答案】解:由图知,,则,,,,,,,,的解析式为;由可知:,,,,当即时,.87.已知函数的一系列对应值如下表:根据表格提供的数据求函数的一个解析式.根据的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.【参考答案】解:设的最小正周期为,则,由,得.又由解得令,即,解得,.函数的最小正周期为,且,.令.,,的图像如图.在上有两个不同的解时,,方程在时恰有两个不同的解,则,即实数的取值范围是.88.已知函数的部分图象如图所示.求函数的解析式;求函数在区间上的最大值和最小值.【参考答案】解:由题意可知,,,得,解得.,即,,,所以,故;当时,,得;当时,即有时,函数取得最小值;当时,即有时,函数取得最大值.故,;89.已知函数.求的值;当时,不等式恒成立,求实数的取值范围.【参考答案】解:Ⅰ,.Ⅱ,..由不等式恒成立,得,解得.实数的取值范围为.90.设函数,.已知,函数是偶函数,求的值;求函数的值域.【参考答案】解:由,得,为偶函数,,,或,,,,,函数的值域为:.高考真题91.(2016山东)设.求的单调递增区间;把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,再把得到的图象向左平移个单位,得到函数的图象,求的值.【参考答案】解:由,由,得,所以的单调递增区间是.由知,把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,得到的图象,再把得到的图象向左平移个单位,得到的图象,即.所以.92.(2020安徽)在平面四边形中,,,,.求;若,求.解:,,,.由正弦定理得:,即,,,,.,,,.93.(2105重庆)已知函数求的最小正周期和最大值;讨论在上的单调性.【参考答案】解:.所以的最小正周期,当时,最大值为.当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为94.(2020上海)已知.求的值求的值.【解答】解:原式原式.95.(2017山东)设函数,其中,已知.Ⅰ求;Ⅱ将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.解:Ⅰ函数,又,,,解得,又,Ⅱ由Ⅰ知,,,将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,得到函数的图象;再将得到的图象向左平移个单位,得到的图象,函数当时,,,当时,取得最小值是.96(2019上海)已知等差数列的公差,数列满足,集合.若,求集合;若,求使得集合恰好有两个元素;若集合恰好有三个元素:,是不超过的正整数,求的所有可能的值.【参考答案】解:等差数列的公差,数列满足,集合.当,集合,数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.①当时,,数列为常数列,仅有个元素,显然不符合条件;②当时,,,数列的周期为,中有个元素,显然不符合条件;③当时,,集合,情况满足,符合题意.④当时,,,,,或者,,当时,集合,符合条件.⑤当时,,,,,或者,,因为,取,,集合满足题意.⑥当时,,,所以,,或者,,,取,,,满足题意.⑦当时,,,所以,,或者,,,故取,,,,当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,,,,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,不是整数,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有或者,,或者,此时,均不是整数,不符合题意.综上,,,,.97.(2017全国)已知集合是满足下列性质的函数的全体:存在非零常数,对任意,有成立.函数是否属于集合?说明理由;设函数,且的图象与的图象有公共点,证明:;若函数,求实数的取值范围.【参考答案】解:对于非零常数,,.因为对任意,不能恒成立,所以;因为函数且的图象与函数的图象有公共点,所以方程组:有解,消去得,显然不是方程的解,所以存在非零常数,使.于是对于有故;当时,,显然.当时,因为,所以存在非零常数,对任意,有成立,即.因为,且,所以,,。

专题04 三角函数与解三角形学霸必刷100题(解析版)

 专题04  三角函数与解三角形学霸必刷100题(解析版)

三角函数与解三角形学霸必刷100题1.已知函数()sin()(>0)6f x x πωω=+在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈使得0()1f x =,则ω的取值范围为( )A .11[,]52B .21[,]52C .14[,]55D .24[,]55【答案】B【解析】函数()sin()(>0)6f x x πωω=+在区间52[,]63ππ-上单调递增, 所以52[,][2,2],663622k k k Z ππππππωωππ-++⊆-++∈, 得:22362526620,k k k Z πππωππππωπω⎧+≤+⎪⎪⎪-+≤-+⎨⎪>∈⎪⎪⎩,即13241250,k k k Z ωωω⎧≤+⎪⎪⎪≤-⎨⎪>∈⎪⎪⎩经检验仅有0k =时有:102ω<≤.5[0,]6x π∈时,5[,]6666x ππππωω+∈+, 由题意得:552662ππππω≤+<,解得:21455ω≤<. 综上:2152ω≤≤.故选:B.2.已知函数()sin f x a x x =-的一条对称轴为π6x =-,12()()0f x f x +=,且函数()f x 在12(,)x x 上具有单调性,则12||x x +的最小值为 A .2π3B .π3C .π6D .4π3【答案】A【解析】由题,()sin f x a x x =-)x θ+,θ为辅助角, 因为对称轴为π6x =-,所以1()362f a π-=--即132a --=解得2a =所以()4sin()3f x x π=-又因为()f x 在()12,x x 上具有单调性,且()()120f x f x +=, 所以12,x x 两点必须关于正弦函数的对称中心对称, 即12122333()22x x x x k k z ππππ-+-+-==∈所以1222()3x x k k z ππ+=+∈ 当0k =时,12x x +取最小为2π3故选A3.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()SA C b c+=-,则1tan 2tan()C B C +-的最小值为( )AB .2C .1D.【答案】A【解析】因为222sin()SA C b c +=-,即222sin S B b c=-, 所以22sin sin ac BB b c =-,因为sin 0B ≠,所以22b c ac =+,由余弦定理2222cos b a c ac B =+-, 可得2cos a c B c -=,再由正弦定理得sin 2sin cos sin A C B C -=,因为sin 2sin cos sin()2sin cos sin()A C B B C C B B C -=+-=-, 所以sin()sin B C C -=,所以B C C -=或B C C π-+=, 得2B C =或B π=(舍去).因为ABC ∆是锐角三角形,所以02022032C C C ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,得64C ππ<<,即tan C ∈,所以11tan tan 22tan()2tan C C B C C+=+≥-,当且仅当2tan 2C =,取等号.故选:A 4.边长为2的等边ABC ∆和有一内角为30的直角1ABC ∆所在半平面构成60︒的二面角,则下列不可能是线段1CC 的取值的是( ) A .30 B .10C .102D .103【答案】D【解析】(1) 当1130,90C AB C BA ∠=∠=时,空间位置关系如下图所示:过C 作CE AB ∥,且EB AB ⊥则1C BE ∠即为二面角1C AB C --的平面角 所以160C BE ∠= 由题意可知132333C B AB ==,332BE BC ==在1C BE ∆中,由余弦定理可知22211112cos C E C B BE C B BE C BE =+-⨯∠ 代入可得2142373236033C E =+-= 而190C EC ∠=所以2211730133C C C E CE =+=+=(2)当1130,90AC B C BA ∠=∠=时,空间位置关系如下图所示:过C 作CF AB ∥,且FB AB ⊥则1C BF ∠即为二面角1C AB C --的平面角 所以160C BF ∠=由题意可知1323C B AB ==,33BF BC == 在1C BF ∆中,由余弦定理可知22211112cos C F C B BF C B BF C BF =+-⨯∠ 代入可得211232233cos609C F =+-⨯⨯= 而190C FC ∠=所以22119110C C C F CF =+=+=(3) 当1130,90C AB AC B ∠=∠=时,空间位置关系如下图所示:过1C 作1C G AB ⊥交AB 于G .过C 作CH AB ∥,且GH AB ⊥ 则1C GH ∠即为二面角1C AB C --的平面角 所以160C GH ∠= 由题意可知111,2C B AB ==1133C G B ==,33GH BC ==1142CH AB ==在1C GH ∆中,由余弦定理可知22211112cos C H C G GH C G GH C GH =+-⨯∠代入可得21393260424C H =+-⨯=所以12C C===综上可知,线段1CC的取值为3和2,在四个选项中,不能取的值为3故选:D5.函数()()()2sin 0,0fx x ωϕωϕπ=+><<,8f π⎛⎫= ⎪⎝⎭02f ⎛⎫= ⎪⎝⎭π,且()f x 在()0,π上单调,则下列说法正确的是() A .12ω=B .82f π⎛⎫-= ⎪⎝⎭C .函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递增D .函数()y f x =的图象关于点3,04π⎛⎫⎪⎝⎭对称 【答案】C【解析】由题意得函数()f x 的最小正周期为2T πω=,∵()f x 在()0,π上单调,∴2T ππω=≥,解得01ω<≤. ∵8f π⎛⎫=⎪⎝⎭02f π⎛⎫= ⎪⎝⎭, ∴3842ωππϕωπϕπ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2323ωπϕ⎧=⎪⎪⎨⎪=⎪⎩,∴22()2sin 33f x x π⎛⎫=+ ⎪⎝⎭.对于选项A ,显然不正确.对于选项B ,227()2sin 2sin 838312f ππππ⎛⎫-=-⨯+== ⎪⎝⎭,故B 不正确.对于选项C ,当2x ππ-≤≤-时,220333x ππ≤+≤,所以函数()f x 单调递增,故C 正确. 对于选项D ,32327()2sin 2sin 043436f ππππ⎛⎫=⨯+=≠ ⎪⎝⎭,所以点3,04π⎛⎫⎪⎝⎭不是函数()f x 图象的对称中心,故D 不正确.综上选C . 6.已知函数 f (x ) = 1sin()+062x πωω-(),且 11(),()22f f αβ=-=.若 α − β 的最小值为34π,则函数的单调递增区间为( ) A .2,2,2k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .3,3,2k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦ C .52,2,2k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .53,3,2k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】B【解析】解:函数1()sin()(0)62f x x πωω=-+>,且()12f α=-,1()2f β=,11()sin()622f παωα∴=-+=-,可得1262k ππωαπ-=-,1k Z ∈,解得:123k ππαω-=,1k Z ∈;11()sin()622f πβωβ=-+=,可得26k πωβπ-=,2k Z ∈,解得:26k ππβω+=,2k Z ∈;||αβ-的最小值为34π, 12122132|||||2|24k k k k πππππαβωω--∴-==--,1k Z ∈,2k Z ∈,可解得:1241|2|32k k ω--,1k Z ∈,2k Z ∈, 取11k =.22k =,可得23ω=; 21()sin()362f x x π∴=-+,由2222362k x k πππππ--+,k Z ∈, 解得332k x k ππππ-+,k Z ∈;∴函数()f x 的单调递增区间为:[32k ππ-,3]k ππ+,k Z ∈.故选:B .7.如图,ABC 中,ACB ∠为钝角,10AC =,6BC =,过点B 向ACB ∠的角平分线引垂线交于点P ,若62AP =,则ABP △的面积为( )A .4B .2C .6D .43【答案】B【解析】设,CP x ACP BCP θ=∠=∠=,则在三角形BCP 中,cos 6CP xBC θ== 在三角形ACP 中,由余弦定理可知2222cos AP CP CA CP CA θ=+-⨯ 代入可得(22262102106xx x =+-⨯⨯化简可得212x =,解得23x =所以3cos 63x θ==,则236sin 13θ⎛⎫=-= ⎪ ⎪⎝⎭由二倍角公式可得3622sin sin 223ACB θ∠===由三角形面积公式可得1122sin 210620222ACB S CA CB θ∆=⨯⨯⨯=⨯⨯=116sin 102310222ACP S CA CP θ∆=⨯⨯⨯=⨯⨯=116sin 62362223BCP S CB CP θ∆=⨯⨯⨯=⨯⨯=则2021026242ABP ABC ACP BCP S S S S ∆∆∆∆=--==故选:B8.某港口某天0时至24时的水深y (米)随时间x (时)变化曲线近似满足如下函数模型0.5sin 3.246y x πωπ⎛⎫=++ ⎪⎝⎭(0>ω).若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( ) A .16时 B .17时C .18时D .19时【答案】D【解析】解:由题意可知,0x =时,0.5sin 0 3.24 3.496y πωπ⎛⎫=⨯++= ⎪⎝⎭,由五点法作图可知:如果当16x =时,函数取得最小值可得:51662ππωπ+=,可得748ω=, 此时函数70.5sin 3.24486y x ππ⎛⎫=++ ⎪⎝⎭,函数的周期为:296147748T ππ==≈, 该港口在该天0时至24时内,有且只有3个时刻水深为3米,满足,如果当19x =时,函数取得最小值可得:51962ππωπ+=,可得757ω=,此时函数70.5sin 3.24576y x ππ⎛⎫=++ ⎪⎝⎭,函数的周期为:21147757T ππ==, 24x =时,70.5sin 24 3.243576y ππ⎛⎫=⨯++> ⎪⎝⎭,如图:该港口在该天0时至24时内,有且只有3个时刻水深为3米,不满足, 故选:D .9.如图,矩形ABCD 中,1AB =,3BC =,F 是线段BC 上一点且满足1BF =,E 是线段FC 上一动点,把ABE △沿AE 折起得到1AB E △,使得平面1⊥B AC 平面ADC ,分别记1B A ,1B E 与平面ADC 所成角为α,β,平面1B AE 与平面ADC 所成锐角为θ,则:( )⇒A .θαβ>>B .θβα>>C .αθβ>>D .βθα>>【答案】A 【解析】如图,过B 作BO AC ⊥,在Rt ABC 中,由13AB BC ==,,可得2AC =.由等积法可得3BO =,则12AO =平面1⊥B AC 平面ADC ,且1B O AC ⊥,可得1B O ⊥平面ABCD∴ 11tan 3B OB AO AOαα∠==,=. 画出底面ABCD 平面图:在BOF ,由余弦定理可得:2222cos OF OB BF OB BF OBF =+-⋅⋅∠22233121cos 60OF ︒=+-⋅⎝⎭ ∴ 2723OF -=214OA=,故OF OA>,结合图像可知:OE OF>∴OE OF OA>>,可得:OE OA>11tanB OB EOEOββ∠==,,1tanB OAOα=∴可得tan tanαβ>┄①过O作OG AE⊥,垂足为G,连接1B G,则1∠B GO为平面1B AE与平面ADC所成的锐角θ.O到AB的距离14BC=,由底面图像可知:144BO CG=<∴1tan2B OOGθ=>=,即tan tanθα>┄②由①②可得: tan tan tanθαβ>>,,θαβ都是锐角,根据正切函数单调性可知: θαβ>>故选:A.10.已知A是函数()sin2018cos201863f x x xππ⎛⎫⎛⎫=++-⎪ ⎪⎝⎭⎝⎭的最大值,若存在实数12,x x使得对任意实数x 总有12()()()f x f x f x≤≤成立,则12||A x x⋅-的最小值为A.π2018B.π1009C.2π1009D.π4036【答案】B【解析】()2018cos201863f x sin x xππ⎛⎫⎛⎫=++-⎪ ⎪⎝⎭⎝⎭112014cos2018cos2018201822x x x x=++2018cos2018x x=+220186sin xπ⎛⎫=+⎪⎝⎭,()max 2A f x ∴==,周期220181009T ππ==, 又存在实数12,x x ,对任意实数x 总有()()()12f x f x f x ≤≤成立,()()()()21max min 2,2f x f x f x f x ∴====-,12A x x ⋅-的最小值为121009A T π⨯=,故选B.11.如图,已知函数()sin()(0,||)2f x x πωϕωϕ=+><的图象与坐标轴交于点1,,(,0)2-A B C ,直线BC交()f x 的图象于另一点D ,O 是ABD ∆的重心.则ACD ∆的外接圆的半径为A .2B 57C 57D .8【答案】B【解析】∵O 是ABD ∆的重心,1,02C ⎛⎫-⎪⎝⎭, ∴21OA OC ==,∴点A 的坐标为()1,0, ∴函数()f x 的最小正周期为3T 232=⨯=,∴23πω=,∴()2sin 3f x x πϕ⎛⎫=+⎪⎝⎭. 由题意得121sin sin 02323f ππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又2πϕ<,∴3πϕ=,∴()2sin 33f x x ππ⎛⎫=+ ⎪⎝⎭,令0x =得()30sin 32f π==, ∴点B 的坐标为30,2⎛ ⎝⎭,∴tan 3BCO ∠=3BCO π∠=,∴23ACD π∠=. 又点1,02C ⎛⎫-⎪⎝⎭是BD 的中点,∴点D 的坐标为31,⎛- ⎝⎭,∴AD ==. 设ACD ∆的外接圆的半径为R,则222sin sin 3AD R ACD π∠===,∴R =.故选B . 12.关于函数()cos sin f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 的最大值为2; ③()f x 在[],ππ-有3个零点;④()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增. 其中所有正确结论的编号是( ) A .①② B .①③C .②④D .①④【答案】D【解析】对于命题①,函数()y f x =的定义域为R ,关于原点对称,且()()cos sin f x x x -=-+-()cos sin cos sin x x x x f x =+-=+=,该函数的为偶函数,命题①正确;对于命题②,当函数()y f x =取最大值时,cos 0x ≥,则()2222k x k k Z ππππ-≤≤+∈.当()222k x k k Z πππ-≤≤∈时,()cos sin 4x x x f x π⎛⎫=-=+ ⎪⎝⎭,此时,()22444k x k k Z πππππ-≤+≤+∈,当()24x k k Z ππ+=∈,函数()y f x =.当()222k x k k Z πππ<≤+∈时,()cos sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,此时,()32244k x k k Z ππππ+<≤+∈,当()242x k k Z πππ+=+∈,函数()y f x =. 所以,函数()y f x =,命题②错误;对于命题③,当0x π-≤≤时,令()cos sin 0f x x x =-=,则tan 1x =,此时34x π=-; 当0x π<≤时,令()cos sin 0f x x x =+=,则tan 1x =-,此时34x π=.所以,函数()y f x =在区间[],ππ-上有且只有两个零点,命题③错误;对于命题④,当04x π<<时,()cos sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,则442x πππ<+<.所以,函数()y f x =在区间0,4π⎛⎫⎪⎝⎭上单调递增,命题④错误.因此,正确的命题序号为①④.故选D.13.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的一条对称轴为3x π=,一个对称中心为5,06π⎛⎫⎪⎝⎭,且在3,25ππ⎛⎫⎪⎝⎭上单调,则ω的最大值( ) A .5B .6C .7D .8【答案】C【解析】由于函数()()()2sin 0f x x ωϕω=+>的一条对称轴为3x π=,一个对称中心为5,06π⎛⎫⎪⎝⎭,所以12πππ325ππ6k k ωϕωϕ⎧+=+⎪⎪⎨⎪+=⎪⎩,两式相减并化简得()2121k k ω=--为奇数,排除B,D 选项.由于()f x 在3,25ππ⎛⎫ ⎪⎝⎭上单调,所以π3πππ25210T ω=≥-=,所以10ω≤.当9ω=时,由1πππ32k ωϕ+=+得()115ππ2k k Z ϕ=-∈,由于π2ϕ<,故9ω=时不合题意. 当7ω=时,由1πππ32k ωϕ+=+得()1111ππ6k k Z ϕ=-∈,由于π2ϕ<,所以取12k =,π6ϕ=,此时()π2sin 76f x x ⎛⎫=+ ⎪⎝⎭.由272262k x k πππππ-≤+≤+,解得222721721k k x ππππ-≤≤+,令2k =得1013,2121x ππ⎡⎤∈⎢⎥⎣⎦为()f x 的递增区间,满足31013,,252121ππππ⎛⎫⎡⎤⊆ ⎪⎢⎥⎝⎭⎣⎦.所以ω的最大值为7.故选:C. 14.已知长方形的四个顶点是()0,0A ,()2,0B ,()2,1C ,()0,1D ,一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的1P 后,依次反射到CD ,DA 和AB 上的2P ,3P ,和4P (入射角等于反射角).设4P 的坐标是(),0x ,若12x <<,则tan θ的取值范围是( )A .13,55⎛⎫⎪⎝⎭B .11,52⎛⎫ ⎪⎝⎭C .21,52⎛⎫⎪⎝⎭D .13,25⎛⎫⎪⎝⎭【答案】C【解析】设1PB a =,10PP B θ∠=,则11CP a =-,123243PP C P P D AP P θ∠=∠=∠= 所以10tan PB a P B θ==,又1221tan CP a a CP CP θ-===,所以2111a CP a a-==-; 而32tan P D P D θ=312(1)P D a =--a = 所以31(3)31P D a a a=-=-;又34tan AP AP θ=41(31)a AP --=a = 所以423AP a =-,根据题设412AP <<,即2132a <-< 所以2512a <<,即21tan 52θ<<,故选:C15.在ΔABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =c ,且满足sin 1cos sin cos B BA A-=.若点O 是ΔABC 外一点,∠AOB =θ(0θπ<<),OA =2,OB =4,则平面四边形OACB 面积的最大值( ) A.2+B.4+C.6+D.8+【答案】D 【解析】 因为sin 1cos sin cos B BA A-=,可得()sin sin cos cos sin sin sin A B A B A A B C =+=+=,所以a c =又b c =,所以ΔABC 为等边三角形.在OAB 中,22224224cos 2016cos AB θθ=+-⨯⨯⨯=- ,)213sin 602016cos 24ABCSAB θθ==-=.124sin4sin 2OABSθθ=⨯⨯=, 所以4sin 8sin 3OACB ABCOABS SSπθθθ⎛⎫=+=+=- ⎪⎝⎭,因为0θπ<<,所以当56πθ=时,平面四边形OACB面积的最大,最大值为8+. 故选:D .16.已知ABC 的三边a ,b ,c 满足:333a b c +=,则此三角形是( ) A .锐角三角形 B .钝角三角形C .直角三角形D .等腰直角三角形【答案】A【解析】333a b c +=可知,∠C 为三角形ABC 中的最大角,且331a b c c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以01a c <<,01b c << 亦即32a a c c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,32b bc c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<将两式相加得:22331a b a b c c c c ⎛⎫⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+> 所以∠C 为锐角,三角形ABC 为锐角三角形,故选:A17.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设△ABC 的面积为S,若222c a b S --=b a 的取值范围为( ) A .(0,+∞) B .(1,+∞)C.(0D.)+∞【答案】A【解析】由2223c a b S --=,得2221sin 32a b c ab C +-=- ,所以2222a b c C ab +-=,所以cos 3C C =-,所以tan C =又0C π<<,所以23C π=, 所以sin()sin cos cos sin )sin 333sin sin sin A A A b B a A A A πππ--===1sin 122sin 2tan 2A AA A -==-, 因为03A π<<,所以0tan A <<所以13tan A >,所以33102b a >⨯-=,所以b a 的取值范围为(0,)+∞.故选:A18.已知腰长为2的等腰直角ΔABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值为( )A .24162-B .24162+C .48322-D .48322+【答案】C【解析】以,CA CB 为,x y 轴建立平面直角坐标系,则(0,0),(2,0),(0,2),(1,1)C A B M ,设(,)P x y ,则(2,),(,2)PA x y PB x y =--=--,(,),(1,1)PC x y PM x y =--=--,(2)(2)PA PB x x y y ⋅=----2222x x y y =-+-,PC PM ⋅=22(1)(1)x x y y x x y y ----=-+-,∵2PC =,∴224x y +=,设2cos ,2sin x y θθ==,则2cos 2sin 22)4x y πθθθ+=+=+,∴2222x y -+≤()()4PA PB PC PM ⋅+⋅⋅2(4224)(4)2(4)x y x y x y =--+--=+-,∴22x y +=()()4PA PB PC PM ⋅+⋅⋅取得最小值22(224)482=-故选:C 。

三角函数计算题100道

三角函数计算题100道

三角函数计算题100道三角函数是高中数学中重要的一部分,在学习中需要掌握多种计算方法以应对不同的题型。

下面给出100道三角函数计算题供大家练习。

1. sin(30°)=?2. cos(45°)=?3. tan(60°)=?4. cot(30°)=?5. sec(45°)=?6. csc(60°)=?7. sin(-45°)=?8. cos(-60°)=?9. tan(-30°)=?10. cot(-45°)=?11. sec(-60°)=?12. csc(-30°)=?13. sin(120°)=?14. cos(150°)=?15. tan(135°)=?16. cot(120°)=?17. sec(150°)=?18. csc(135°)=?19. sin(240°)=?20. cos(225°)=?21. tan(210°)=?22. cot(240°)=?23. sec(225°)=?24. csc(210°)=?25. sin(360°)=?26. cos(0°)=?27. tan(180°)=?28. cot(360°)=?29. sec(0°)=?30. csc(180°)=?31. sin(45°+30°)=?32. cos(60°-45°)=?33. tan(60°+45°)=?34. cot(135°-60°)=?35. sec(120°+45°)=?36. csc(120°-30°)=?37. sin(3π/4)=?38. cos(5π/6)=?39. tan(π/3)=?40. cot(π/6)=?41. sec(11π/6)=?42. csc(4π/3)=?43. sin(π/4)=?44. cos(π/6)=?45. tan(π/6)=?46. cot(π/4)=?47. sec(2π/3)=?48. csc(5π/4)=?49. sin(5π/6)=?50. cos(5π/3)=?51. sin(2x)=1/2,x=?52. cos(3x)=-1/2,x=?53. tan(4x)=1,x=?54. cot(5x)=-1/2,x=?55. sec(6x)=-2,x=?56. csc(7x)=2,x=?57. sin^2x+cos^2x=?58. tan^2x+1=?59. cot^2x+1=?60. sec^2x-1=?61. sin2x=2sinxcosx,证明:62. cos2x=cos^2x-sin^2x,证明:63. tan2x=2tanx/(1-tan^2x),证明:64. cot2x=(cot^2x-1)/2cotx,证明:65. sec2x=(1+sinx)/(1-sinx),证明:66. csc2x=(1-cosx)/(1+cosx),证明:67. sin(x+y)=sinxcosy+cosxsiny,证明:68. cos(x+y)=cosxcosy-sinxsiny,证明:69. tan(x+y)=(tanx+tany)/(1-tanxtany),证明:70. cot(x+y)=(cotxcoty-1)/(cotx+coty),证明:71. sin(x-y)=sinxcosy-cosxsiny,证明:72. cos(x-y)=cosxcosy+sinxsiny,证明:73. tan(x-y)=(tanx-tany)/(1+tanxtany),证明:74. cot(x-y)=(cotxcoty+1)/(coty-cotx),证明:75. sin3x=3sinx-4sin^3x,证明:76. cos3x=4cos^3x-3cosx,证明:77. tan3x=(3tanx-tan^3x)/(1-3tan^2x),证明:78. cot3x=(3cotx+cot^3x)/(3cot^2x-1),证明:79. sin4x=2sin2xcos2x,证明:80. cos4x=cos^4x-sin^4x,证明:81. sin^2(x+y)=(1-cos2x)/2+(1-cos2y)/2+2sinxcosysin(y-x)/2,证明:82. cos^2(x-y)=(1+cos2x)/2+(1+cos2y)/2-2sinxsinycos(x+y)/2,证明:83. sin(x+y+z)=sinxcosycosz+sinycoszcosx+sinzcosxcosy-sinxsiny*cosz-siny*sinz*cosx-sinzsinx*cosy,证明:84. cos(x+y+z)=cosxcosycosz-sinxsiny*cosz-sinysinz*cosx-sinzsinx*cosy,证明:85. tan(x+y+z)=(tanx+tany+tanz-tanxtanytanx+tanxtanztany)/(1-tanxtany-tanytanz-tanxtanztanx-tanytanztanx), 证明:86. sin3xsin4xsin5x=(-1/16)sin2xsin7x,证明:87. cos3xcos4xcos5x=(1/16)(cos2x+1)(cos7x+1),证明:88. sinx-sin3x+sin5x-…+sin(2n-1)x=[sin(nx)/sin(x/2)]cos[(n-1)x+(n-3)x+…+(1)x],当n为奇数时,证明:89. cosx-cos3x+cos5x-…+cos(2n-1)x=[sin(nx)/sin(x/2)]sin[(n-1)x+(n-3)x+…+(1)x],当n为奇数时,证明:90. sin^8x+cos^8x=(1/2)(1+cos^8(2x)),证明:91. sec^2(θ)-tan^2(θ)=1,证明:92. sin^2(α)+sin^2(β)=2sin^2((α+β)/2)cos^2((α-β)/2),证明:93. tanx=(1+cos2x)/sin2x,证明:94. cotx=(1-cos2x)/sin2x,证明:95. sec^4(x)/2+tan^4(x)/2=sec^2(x)tan^2(x),证明:96. cos2x=2cos^2x-1=1-2sin^2x,证明:97. sin(A+B+C)-sinAcosBcosC-sinBcosCcosA-sinCcosAcosB=0,证明:98. cos(A+B+C)-cosAcosBcosC+sinAsinC+sinBsinC=0,证明:99. tan(A+B)+tan(A+B)tanAtanB=tanA+tanB,证明:100. cot(A+B)-cot(A+C)=-2csc2AtanB/2tanC/2,证明:以上就是100道关于三角函数的计算题,练习这些题目可以帮助大家更好的掌握三角函数的相关知识。

三角函数大题专项(含答案)

三角函数大题专项(含答案)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x =2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y =2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

高考数学三角函数与解三角真题训练100题含参考答案

高考数学三角函数与解三角真题训练100题含参考答案
(1)求 的解析式;
(2)求 在 上的单调增区间.
89.已知函数f(x)=2sin ωx cos ωx+ cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
90.已知向量 , , .
(1)求函数 的最小正周期及 取得最大值时对应的 的值;
(2)在锐角三角形 中,角 、 、 的对边为 、 、 ,若 , ,求三角形 面积的最大值并说明此时该三角形的形状.
A.90°B.60°C.45°D.30°
39.已知函数 的部分图像如图所示,将 图像上所有点的横坐标缩小到原来的 (纵坐标不变),所得图像对应的函数 解析式为()
A. B.
C. D.
40.函数 在 的图象大致为()
A. B.
C. D.
41.已知 , ,则 的值为
A. B. C. D.
42.已知 中,角 , , 所对的边分别为 , , .已知 , , 的面积 ,则 的外接圆的直径为()
19.如图,在扇形OAB中, ,半径OA=2,在 上取一点M,连接OM,过M点分别向线段OA,OB作垂线,垂足分别为E,F,得到一个四边形MEOF.设 ,则四边形MEOF的面积为()
A. B.
C. D.
20.设 , , 为同一平面内具有相同起点的任意三个非零向量,且满足 与 不共线,
, ,则 的值一定等于()
55.在 中, , , ,则 ________.
56.在锐角 中, , , 分别为角 , , 的对边,且 , ,则 面积的取值范围为______.
57.用列举法写出 __________.
58.在△ABC中,∠B=75°,∠C=60°,c=1,则最小边的边长为______________________ .

新高中数学三角函数与解三角形多选题100含解析

新高中数学三角函数与解三角形多选题100含解析

新高中数学三角函数与解三角形多选题100含解析一、三角函数与解三角形多选题1.在ABC 中,下列说法正确的是( )A .若AB >,则sin sin A B > B .存在ABC 满足cos cos 0A B +≤ C .若sin cos A B <,则ABC 为钝角三角形D .若2C π>,则22sin sin sin C A B >+【答案】ACD 【分析】A 项,根据大角对大边定理和正弦定理可判断;B 项,由A B π+<和余弦函数在()0,π递减可判断;C 项,显然2A π≠,分02A π<<和2A π>两种情况讨论,结合余弦函数的单调性可判断;D 项,根据2A B π+<和正弦函数的单调性得出0sin cos A B <<和0sin cos B A <<,再由放缩法可判断. 【详解】解:对于A 选项,若A B >,则a b >,则2sin 2sin R A R B >,即sin sin A B >,故A 选项正确;对于B 选项,由A B π+<,则A B π<-,且(),0,A B ππ-∈,cos y x =在()0,π上递减,于是cos cos A B >-,即cos cos 0A B +>,故B 选项错误﹔ 对于C 选项,由sin cos A B <,得cos cos 2A B π⎛⎫-< ⎪⎝⎭,cos y x =在()0,π上递减, 此时:若02A π<<,则2A B π->,则2A B π+<,于是2C π>; 若2A π>,则cos cos 2A B π⎛⎫-< ⎪⎝⎭,则2A B π->, 于是2A B π>+,故C 选项正确;对于D 选项,由2C π>,则2A B π+<,则022A B ππ<<-<,sin y x =在0,2π⎛⎫⎪⎝⎭递增,于是sin sin 2A B π⎛⎫<- ⎪⎝⎭, 即0sin cos A B <<,同理0sin cos B A <<, 此时,22sin sin()sin cos cos sin sin sin sin sin sin sin C A B A B A B A A B B A B=+=+>⋅+⋅=+所以D 选项正确. 故选:ACD 【点睛】关键点点睛:正余弦函数的单调性,正弦定理的边角互化,大边对大角定理以及大角对大边定理,不等式的放缩等等,综合使用以上知识点是解决此类题的关键.2.设函数()2sin sin 2cos2f x x x =++,给出下列四个结论:则正确结论的序号为( ) A .()20f >B .()f x 在53,2ππ⎛⎫--⎪⎝⎭上单调递增 C .()f x 的值域为[]12cos2,32cos2-++ D .()f x 在[]0,2π上的所有零点之和为4π 【答案】ABD 【分析】由()23sin 22cos2f =+,结合3224ππ<<,可判定A 正确;作出函数2sin sin y x x =+的图象,可得函数()f x 的值域及单调性,可判定B 正确,C 不正确;结合函数的图象,可得()f x 在[]0,2π上的所有零点之和,可判定D 正确. 【详解】由题意,函数()2sin sin 2cos2f x x x =++, 可得()22sin 2sin 22cos23sin 22cos2f =++=+ 因为3224ππ<<,所以sin 2cos20>->,所以()20f >,所以A 正确; 由3sin ,222sin sin ,sin ,222x k x k y x x k Z x k x k πππππππ≤≤+⎧=+=∈⎨-+≤≤+⎩,作出函数2sin sin y x x =+的图象,如图所示, 可得函数()f x 是以2π为周期的周期函数,由函数2sin sin y x x =+的图象可知,函数()f x 在3(,)2ππ上单调递增, 又由()f x 是以2π为周期的周期函数,可得函数()f x 在5(3,)2ππ--上单调递增, 所以B 是正确的;由由函数2sin sin y x x =+的图象可知,函数()f x 的值域为[2cos 2,32cos 2]+, 所以C 不正确; 又由2223ππ<<,所以1cos 202-<<,则02cos21<-<,令()0f x =,可得2sin sin 2cos2x x +=-,由图象可知,函数()f x 在[]0,2π上的所有零点之和为4π,所以D 正确. 故选:ABD.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查转化思想,以及数形结合思想的应用,以及推理与运算能力,属于中档试题.3.函数()sin()f x x ωϕ=+的部分图像如图中实线所示,图中的M 、N 是圆C 与()f x 图像的两个交点,其中M 在y 轴上,C 是()f x 图像与x 轴的交点,则下列说法中正确的是( )A .函数()y f x =的一个周期为56B .函数()f x 的图像关于点4,03成中心对称C .函数()f x 在11,26⎛⎫-- ⎪⎝⎭上单调递增 D .圆C 的面积为3136π【答案】BD 【分析】根据图象,结合三角函数的对称性、周期性、值域以及圆的中心对称性,可得,,C M N 的坐标,进而可得()f x 的最小正周期、对称中心、单调减区间,及圆的半径,故可判断选项的正误. 【详解】由图知:1(,0)3C ,(0,)2M ,2(,)32N , ∴()f x 中111()2362T =--=,即1T =;对称中心为1,0,23k k Z ⎛⎫+∈ ⎪⎝⎭;单调减区间为17,,1212k k k Z ⎡⎤++∈⎢⎥⎣⎦;圆的半径r ==,则圆的面积为3136π; 综上,知:AC 错误,而BD 正确. 故选:BD. 【点睛】本题考查了三角函数的性质,结合了圆的中心对称性质判断三角函数的周期、对称中心、单调区间及求圆的面积,属于难题.4.设函数()2sin 1xf x x x π=-+,则( )A .()43f x ≤B .()5f x x ≤C .曲线()y f x =存在对称轴D .曲线()y f x =存在对称中心【答案】ABC 【分析】 通过()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭可发现函数()y f x =具有对称轴及最大值,再利用函数对称中心的特点去分析()y f x =是否具有对称中心,再将()5f x x ≤化为32sin 555x x x x π≤-+,通过数形结合判断是否成立.【详解】函数解析式可化为:()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭,因为函数sin y x =π的图象关于直线12x =对称,且函数21324y x ⎛⎫=-+ ⎪⎝⎭的图象也关于直线12x =对称,故曲线()y f x =也关于直线12x =对称,选项C 正确; 当12x =时,函数sin y x =π取得最大值1,此时21324y x ⎛⎫=-+ ⎪⎝⎭取得最小值34,故()14334f x≤=,选项A正确;若()5f x x≤,则32sin555x x x xπ≤-+,令()32555g x x x x=-+,则()()221510553210g x x x x x'=-+=-+>恒成立,则()g x在R上递增,又()00g=,所以当0x<时,()00g<;当0x >时,()0g x>;作出sin xπ和32555x x x-+的图象如图所示:由图象可知32sin555x x x xπ≤-+成立,即()5f x x≤,选项B正确;对于D选项,若存在一点(),a b使得()f x关于点(),a b对称,则()()2f a x f a x b-++=,通过分析发现()()f a x f a x-++不可能为常数,故选项D错误.故选:ABC.【点睛】本题考查函数的综合应用,涉及函数的单调性与最值、对称轴于对称中心、函数与不等式等知识点,难度较大. 对于复杂函数问题一定要化繁为简,利用熟悉的函数模型去分析,再综合考虑,注意数形结合、合理变形转化.5.ABC中,2BC=,BC边上的中线2AD=,则下列说法正确的有()A.AB AC→→⋅为定值B.2210AC AB+=C.co415s A<<D.BAD∠的最大值为30【答案】ABD【分析】A利用向量的加减法及向量的数量积公式运算即可,B根据余弦定理及角的互补运算即可求值,C利用余弦定理及基本不等式求出cos A范围即可,D根据余弦定理及基本不等式求出cos BAD∠的最小值即可.【详解】对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 4442c c BAD c c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又cos 2BAD ∠≥,所以BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.6.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则下列说法正确的是( )A .存在ϕ,使得()f x 是偶函数B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【分析】 根据3()8f x f π⎛⎫≤⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案.【详解】08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误;当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确;故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力.7.已知函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭,则下列结论正确的是( ) A .函数()f x 的初相为6π-B .若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则(0,2]ω∈ C .若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则ω可以为12D .将函数()f x 的图象向左平移一个单位得到的新函数是偶函数,则ω可以为2023 【答案】AB 【分析】根据选项条件一一判断即可得结果. 【详解】A 选项:函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭的初相为6π-,正确; B 选项:若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则2266k ππωππ-+≤-,2362k πωπππ-≤+,k Z ∈,所以21226k k ω-+≤≤+,k Z ∈,又因为0ω<,则02ω<≤,正确;C 选项:若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则,26k k Z πωππ-=∈,所以12,3k k Z ω=+∈故ω不可以为12,错误; D 选项:将函数()f x 的图象向左平移一个单位得到()12sin 6f x x πωω⎛⎫+=+- ⎪⎝⎭是偶函数,则,62k k Z ππωπ-=+∈,所以2,3k k Z πωπ=+∈故ω不是整数,则ω不可以为2023,错误; 故选:AB 【点睛】掌握三角函数图象与性质是解题的关键.8.如图,已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象与x 轴交于点A ,B ,若7OB OA =,图象的一个最高点42,33D ⎛⎫⎪⎝⎭,则下列说法正确的是( )A .4πϕ=-B .()f x 的最小正周期为4C .()f x 一个单调增区间为24,33⎛⎫-⎪⎝⎭D .()f x 图象的一个对称中心为5,03⎛⎫- ⎪⎝⎭【答案】BCD 【分析】先利用7OB OA =设0OA x =,得到点A 处坐标,结合周期公式解得选项A 错误,再利用最高点42,33D ⎛⎫ ⎪⎝⎭解出0x 得到周期,求得解析式,并利用代入验证法判断单调区间和对称中心,即判断选项BCD 正确. 【详解】由7OB OA =,设0OA x =,则07OB x =,06AB x =,选项A 中,点A ()0,0x 处,()0sin 0x ωϕ+=,则00x ωϕ+=,即0x ϕω=-,0612262T x AB ϕπωω-==⋅==,解得6πϕ=-,A 错误; 选项B 中,依题意0004343D x x x x =+==,得013x =,故1,03A ⎛⎫⎪⎝⎭, 最小正周期414433T ⎛⎫=-=⎪⎝⎭,B 正确; 选项C 中,由24T πω==,得2πω=,结合最高点42,33D ⎛⎫⎪⎝⎭,知43A =,即()4sin 326f x x ππ⎛⎫=- ⎪⎝⎭,当24,33x ⎛⎫∈- ⎪⎝⎭时,,2622x ππππ⎛⎫-∈- ⎪⎝⎭,故24,33⎛⎫- ⎪⎝⎭是()f x 的一个单调增区间,C 正确;选项D 中,53x =-时()5454sin sin 0332363f πππ⎡⎤⎛⎫⎛⎫-=⨯--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故5,03⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,D 正确.故选:BCD. 【点睛】 思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.9.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈ ⎪⎝⎭ C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确;对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确; 对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确. 故选:AC【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.10.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示,则下列正确的是( )A .2()2sin 23f x x π⎛⎫=+ ⎪⎝⎭ B .(2021)1f π=C .函数|()|y f x =为偶函数D .,066x f x f x ππ⎛⎫⎛⎫∀∈++-= ⎪ ⎪⎝⎭⎝⎭R 【答案】AD【分析】 先利用图象得到2A =,T π=,求得2ω=,再结合12x π=-时取得最大值求得ϕ,得到解析式,再利用解析式,结合奇偶性、对称性对选项逐一判断即可.【详解】由图象可知,2A =,5212122T πππ=+=,即2T ππω==,2ω=, 由12x π=-时,()2sin 2212f x =πϕ⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦,得22,122=k k Z ππϕπ⎛⎫⨯-++∈ ⎪⎝⎭, 即22,3=k k Z πϕπ+∈,而0ϕπ<<,故2=3πϕ,故2()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,A 正确; 22(2021)2sin 22021=2sin 33f ππππ⎛⎫=⨯+ ⎪⎝⎭B 错误; 由2()2sin 23y f x x π⎛⎫==+ ⎪⎝⎭知,222sin 2=2sin 233x x ππ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭不是恒成立,故函数|()|y f x =不是偶函数,故C 错误; 由6x π=时,22sin 22sin 0663f =ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,故06π⎛⎫ ⎪⎝⎭,是2()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的对称中心,故,066x f x f x ππ⎛⎫⎛⎫∀∈++-= ⎪ ⎪⎝⎭⎝⎭R ,故D 正确. 故选:AD.【点睛】方法点睛:三角函数模型()sin()f x A x b ωϕ=++求解析式时,先通过图象看最值求A ,b ,再利用特殊点(对称点、对称轴等)得到周期,求ω,最后利用五点特殊点求初相ϕ即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ) 求角 C 的值; ( ) 若 c 2 ,且 ABC 为锐角三角形,求 a b 的取值范围.
第 4 页 共 96 页
12. ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 2 cos C (a cos B b cos A) c .
( ) 求C ; ( ) 若 c 7 , ABC 的面积为 3 3 ,求 ABC 的周长. 2
51
最新最全数学高考全国卷必刷题目: 三角函数解答题题库 共 100 条大题(后附答案)
一.解答题(共 100 题) 1. ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 2 cos C (a cos B b cos A) c .
( ) 求C ; ( ) 若 c 7 , ABC 的面积为 3 3 ,求 ABC 的周长. 2
(2017 天津) 16. 在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c .已知 (13分) a sin A 4b sin B,ac 5 (a 2 b 2 c 2 ) . ( ) 求 cos A 的值; ( ) 求 sin( 2 B A) 的值.
第 3 页 共 96 页
9. 在 ABC 中,角 A 、 B 、 C 所对的边为 a 、 b 、 c ,且满足
cos 2 A cos 2 B 2 cos( A ) cos( A ) . 6 6 ( ) 求角 B 的值; ( ) 若 b 3 a ,求 2a c 的取值范围.
13.已知 a , b , c 分别是 ABC 的三个内角 A , B , C 的三条对边,且 c 2 a 2 b 2 ab .
( ) 求角 C 的大小; ( ) 求 cos A cos B 的最大值.
14.已知 是 ABC 的一个内角,且 sin cos
( ) 求 sin A 的值; ( ) 若B
, ABC 的面积为 9,求 a 的值. 4
8.在 ABC 中, a , b , c 分别是内角 A , B , C 的对边,且 (a c) 2 b 2 3ac .
( ) 求角 B 的大小; ( ) 若 b 2 ,且 sin B sin(C A) 2 sin 2 A ,求 ABC 的面积.
( ) 判断 ABC 的形状; ( ) 求 sin - cos 的值.
1 , 5
第 5 页 共 96 页
15.已知 ABC 的内角 A , B , C 的对边分别为 a , b , c ,且满足
sin 2 A sin 2 B sin 2 C sin A sin B . ( ) 求角 C ; ( ) 若 c 2 6 , ABC 的中线 CD 2 ,求 ABC 面积 S 的值.
3. 在 ABC 中,内角 A , B , C 的对边分别为 a , b , c ,已知 sin2
( ) 求角 A 的大小; ( ) 若 b c 2 ,求 a 的取值范围.

4. 在 ABC 中, a , b , c 分别是角 A , B , C 的对边,且满足
( ) 求 sin 2 A sin 2 B 的值; sin 2 C


10.在 ABC 中,内角 A , B , C 的对边分别是 a , b , c ,且
( ) 求角 B 的大小; ( ) 点 D 满足
sin C ab . sin A sin B a c
=2
BD 2 BC ,且线段 AD 3 ,求 2a c 的最大值.
11.在 ABC 中, a , b , c 分别是角 A , B , C 的对边,且 (a b c)(a b c) 3ab .
2 c, C 的对边分别为 a , b, (2017 新课标)ABC 的内角 A , 18. 已知 sin( A C ) 8 sin B,
B . 2
( ) 求 cos B ; ( ) 若 a c 6 , ABC 面积为 2 ,求 b .
19.在 ABC 中,角 A , B ,C 所对应的边分别为 a ,b ,c ,且 (2a c) cos B b cos C .() 求 角 B 的大小;
c. C 所对的边分别为 a , b, (2017 天津) 17. 在 ABC 中, 内角 A , 已知 a b,a 5,c 6 , B, sin B 3 . 5
( ) 求 b 和 sin A 的值; ( ) 求 sin( 2 A
) 的值. 4
第 6 页 共 96 页
2. 在 ABC 中, a , b , c 分别是内角 A , B , C 的对边,且 (a c) 2 b 2 3ac
( ) 求角 B 的大小; ( ) 若 b 2 ,且 sin B sin(C A) 2 sin 2 A ,求 A共 96 页
6.在 ABC 中, 角 A ,B ,C 的对边分别为 a ,b ,c , 且 b c ,2 sin B 3 sin A . () 求 cos B 的值;
( ) 若 a 2 ,求 ABC 的面积.
7.在 ABC 中,内角 A 、 B 、 C 所对的边分别是 a 、 b 、 c ,已知 3a sin C c cos A .
b a 4 cos C . a b
( ) 若 tan A 2 tan B ,求 sin A 的值.
5. ABC 的三个角 A , B , C 所对的边分别为 a , b , c , 1
( ) 求角 A 的大小;
tan A 2c . tan B 3b
( ) 若 ABC 为锐角三角形,求函数 y 2 sin 2 B 2 sin B cos C 的取值范围.
相关文档
最新文档