大学物理试题1.1

合集下载

大学物理课后习题1第一章答案

大学物理课后习题1第一章答案

习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。

(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。

(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。

1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。

答案:10m;5πm。

(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。

答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。

大学物理习题分析与解答

大学物理习题分析与解答

大学物理1 习题分析与解答 第1章 质点运动学习题分析与解答1.1 云室为记录带电粒子轨迹的仪器。

当快速带电粒子射入云室时,在其经过的路径上产生离子,使过饱和蒸气以离子为核心凝结成液滴,从而可采用照相方法记录该带电粒子的轨迹。

若设作直线运动带电粒子的运动方程为: (SI 单位),12C C α、、均为常量,并在粒子进入云室时计时,试描述其运动情况.解:分析 本题为一维直线运动问题,为已知运动学方程求带电粒子其他物理量的问题,属于运动学第一类问题,该类问题可直接应用求导方法处理。

即由带电粒子运动学方程对时间t 求导得到带电粒子的速度、加速度,进一步得到其初、终状态的位置、速度、加速度等运动学信息。

作如图1.1所示一维坐标系,选择计时处为坐标原点,则有Ox图1.1 1.1题用图12222e d e d d e d t tt x C C xv C t v a C vtαααααα---=-∴====-=- (1.1.1) 故带电粒子的初始状态为 2012020200t x C C v C a C v ααα=⇒=-==-=-、、 (1.1.2) 带电粒子的最终状态为 100t x C v a ∞∞∞=∞⇒===、、 (1.1.3) 讨论:(1)由(1.1.1)式知,粒子进入云室后作减速运动,其加速度为速度的一次函数;(2)由(1.1.2)式得到粒子的初始位置、初始速度和初始加速度; (3)由(1.1.3)式得到粒子的终态位置、终态速度和终态加速度;(4)由(1.1.1)式的加速度、速度及初始条件,对时间t 积分可得速度和运动学方程,此类问题属于运动学第二类问题,一般可直接应用积分方法处理。

1.2 将牛顿管抽为真空且垂直于水平地面放置,如图1.2所示自管中O 点向上抛射小球又落至原处用时2t ,球向上运动经h 处又下落至 h 处用时1t 。

现测得1t 、2t 和 h ,试由此确定当地重力加速度的数值.解:分析 本题为匀加速直线运动问题,由该类问题的运动学方程出发即可求解。

大学物理课堂练习答案(1)

大学物理课堂练习答案(1)

1.28m 的楼顶, 花费了 3 s 的时间.在此过程中, 重力的冲 1.29 水平路面上两个点 A 、 B 的距离为 2 m , 某物体重 500 N , 与地面的摩擦系数为 0.2 , 物体由 A 运动至 B. 若物体沿着直线以 3 m/s 的速度运动, 摩擦力做功 Wf = −200 J 运动, 摩擦力做功 Wf = −200 J ; 若物体沿着长度为 4 m 的曲线运动, 摩擦力做功 Wf = −400 J ; 若鱼沿着直线以 5 m/s 的速度运动, 流体阻力
课堂练习答案 February 16, 2014
第一章 质点力学
1.1 找出下列表达式中的错误, 写出正确表达: (1) r=x+y 解答:r = xi + y j (2) v = vx i + vy j 解答:v = vx i + vy j (3) v = vx i + vy j 解答:v = vx i + vy j (4) v = vx i + vy j 解答:v = vx i + vy j

; 在环绕地球
1.25 质 量 为 m 的 物 体 以 初 速 度 v0 ,仰 角 30 斜 上 抛,到 达 最 高 点.在 此 过 程 中,动 量 的 增 量 为 | Δp| = mv0 sin 30◦, 重力的冲量为 |I| = mv0 /2 1.26 光滑的冰面上由两个物体 A, B ,mA = 3 g ,vA = (i + 2j) m/s ,mB = 5 g ,vB = (9i + 2j) m/s , 两 物体碰撞后粘为一体, 其共同速度 v = (6i + 2j) m/s 1.27 直接用手按钉子, 很难将其钉入木头内; 若首先用 5 N 的力挥动锤子 2 s , 则锤子获得的动量大小 为 10 N · s ; 若该运动的锤子敲击钉子, 与钉子之间的相互作用持续 2 ms , 则锤子与钉子之间的作用 . , 重力做功 W = −1000 J , 此物体的重力势能增加量 ΔEp = 1000 J ; 若物体沿着直线以 5 m/s 的速度 力大小为 5 kN 量 |I| = 300 N · s

大学物理学第二版 习题解答

大学物理学第二版 习题解答

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理习题大题答案

大学物理习题大题答案

1.1质点延Ox轴做直线运动加速度a=-kx,k为正的常量,质点在X0处的速度是V0,求质点速度的大小V与坐标X的函数能量守恒:(m*V0^2 / 2)=(m*V^2 / 2)+(m*K*X^2 )F= ma=-mkx 。

上式解得:V=±根号(V0^2-2K*X^2)1.2飞轮半径为0.4m,自静止启动,其角加速度为0.2转每秒,求t=2s时边缘上,各点的速度、法向加速度、切向加速度、合加速度ω=ω0+a'tω0=0,t=2s,a'=0.2 × 2pi弧度/s^2=1.257弧度/s^2ω=a't=1.257弧度/s^2×2s=2.514弧度/s切向速度:v=ωr=0.4mx1.257弧度/s=1m/s法向加速度:a。

=ω^2r=(2.514弧度/s)^2 × 0.4m=2.528m/s^2切向加速度:a''=dv/dt=rdω/dt=ra'=0.4m × 1.257弧度/s^2=0.5m/s^2合加速度:a=√(a''^2+a。

^2)=2.58m/s^2合加速度与法向夹角:Q=arctan(a''/a。

)=11.2°2.2质量为m的子弹以速度v0水平射入沙土中,设子弹所受的阻力与速度成正比,系数为k,1.求子弹射入沙土后速度随时间变化的函数关系式,a = -kv/m = dv/dt dv/v = - k/m dt 两边同时定积分,得到lnv-lnv0 = kt/m v=v0*exp(-k/m * t)2.求子弹射入沙土的最大深度dv/dt=a=f/m=-kv/m v=ds/dt=ds/dv * dv/dt = -ds/dv * kv/m 整理得:kds=-mdv 同时对等号两边积分,得:ks=mv0 =》 s=mv0/k.3.1一颗子弹在枪筒离前进时所受的合力刚好为F=400-4*10的五次方/3*t,子弹从枪口射出时的速率为300m/s。

大学物理规范作业上册答案全

大学物理规范作业上册答案全

a 16 2m / s
2
7
2.一艘行驶的快艇,在发动机关闭后,有一个与它的速
度方向相反的加速度,其大小与它的速度平方成正
比, 后行驶速度与行驶距离的关系。 解: 作一个变量代换
dv kv 2 ,式中k为正常数,求快艇在关闭发动机 dt
dv dv dx dv a kv v dt dx dt dx dv dv 得 : kv 到 kdx v dx
0.5tdt 3J 2 或 v2 5i 2 j , v4 5i 4 j 1 2 2 A Ek m(v4 v2 ) 3 J 2
4
18
2. 竖直悬挂的轻弹簧下端挂一质量为m的物体后弹簧伸 长y0且处于平衡。若以物体的平衡位置为坐标原点,相 应状态为弹性势能和重力势能的零点,则物体在坐标为 y时系统弹性势能与重力势能之和是【 D 】 m gy mgy2 m gy0 m gy2 0 mgy m gy (A) (B) (C) 2 (D) 2 2 y0 2y
m 1 AG dAG L gydy m gL 32 4 L 1 A外 AG mgL 32
0
m dAG gydy L
22
三、计算题 2 1.一质点在力 F 2 y i 3xj (SI)的作用下,从原点0 出发,分别沿折线路径0ab和直线路径0b运动到b点,
小不变,受到向心力作用,力的方向时刻变化
物体运动一周后,速度方向和大小不变,动量
变化量为0,冲量为0
11
二、填空题 1 .一物体质量为10 kg,受到方向不变的力F=30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于 ________;若物体的初速度为10m·-1,方向与力方 s 140kg.m/s 24m/s 向相同,则在t =2s时物体速度的大小等于________。

大学物理习题集(上,含解答)

大学物理习题集(上,含解答)

大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。

海南大学大学物理考试

海南大学大学物理考试

期中测验题库 1.1 路灯距地面高H ,行人高h ,若人以速率u 从路灯正下方背向路灯运动时,求人头顶影子的运动方程(以路灯的正下方为原点)。

1.2 已知质点的运动方程为x=t ,y=2-t 2(SI 制),求(1)运动轨迹;(2)求t=1s 和2s 末的瞬时速度。

1.3 使摆绳与铅直方向成30°,然后从静止放开。

求:(1)从30°-0时重力和张力所作的功;(2)物体最低时的动能和速率;(3)最低位置时的张力.1.4 物体质量为2千克,如果物体由静出发沿直线运动, (1) 当作用在物体上的力F=6x (N)时,求在头2米内,这个力所作的功;(2)若F=6t (N)时,求在头2秒内,这个力所作的功.1.5 质量为3000kg 的重锤于1.5米处自由落到工件上,使工件发生形变,如果作用时间分别为τ=0.1s 秒和τ=0.01s 秒,求工件所受的平均冲力1.6 图1所示。

在光滑水平面上两物体被一轻弹簧连结,m 1=2kg ,m 2=2kg ,若m 2突然受一冲击使其向右以2m/s 的速率移动,问当m 2的速度为分别为0和0.5m/s 向左移动时,m 1的速度为多少?1.7 图2所示,质量为M 、半径为R 的圆盘,可绕一无摩擦的水平轴转动,绳索一端系在圆盘的边缘上,另一端挂一质量为m 的物体,问物体下落h 时,圆盘和物体的速度分别为多少?1.8 人站在可以自由旋转的平台上,两手各执一质量为2kg 的哑铃,两铃相距2米时,平台转速为ω=2πrad/s ,。

当人将哑铃收回使其相距1米时,平台转速增为ω´=3πrad/s ,求人的转动惯量(设人的转动惯量不变)及拉近哑铃时所作的功。

1.9 一飞轮以转速n=103转/分转动,受到制动后均匀减速,经过50秒后静止。

求:(1)角加速度和从开始制动到静止飞轮转过的角位移;(2)制动后25秒时的角速度。

2.1 两个弹簧振子的周期都是0.4s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5s 后,第二个振子才从正方向的端点开始运动,求这两振动的相位差。

大学物理答案

大学物理答案

《大学物理》练习题 No .1 电场强度班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 说明:字母为黑体者表示矢量 选择题1.关于电场强度定义式E = F/q0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q0的大小成反比; (B) 对场中某点,试探电荷受力F 与q0的比值不因q0而变; (C) 试探电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试探电荷q0,则F = 0,从而E = 0.2.如图1.1所示,在坐标(a, 0)处放置一点电荷+q ,在坐标(-a,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x, 0).当x >>a 时,该点场强的大小为:[ D ](A) x q 04πε. (B)204x qπε.(C)302x qa πε (D)30x qaπε.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷 q2 的作用力为f12 ,当放入第三个电荷Q 后,以下说法正确的是[ C ] (A) f12的大小不变,但方向改变, q1所受的总电场力不变; (B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化; f12的大小、方向均发生改变, q1受的总电场力也发生了变化. 填空题1.如图1.4所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离211λλλ+d.2.如图1.5所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E=23220)(21a y qy+πε ,场强最大值的位置在y=a22±.3. 两块“无限大”的带电平行电板,其电荷面密度分别为σ (0>σ)及σ2-,如图1.6所示,试写出各区域的电场强度E。

大学物理期末考试

大学物理期末考试

一.选择题(每题三分,共三十分)1.如图1.1所示,两滑块A 、B ,质量分别为m 1和m 2,与斜面间的摩擦系数分别为μ1和μ2,今将A 、B 粘合在一起,并使它们的底面共面,而构成一个大滑块,则该滑块与斜面间的摩擦系数为(A) (μ1+μ2)/2. (B) μ1μ2/ (μ1+μ2).(C)2μμ1.(D) (μ1m 1+μ2m 2)/(m 1+m 2).2.一特殊的弹簧,弹性力F=-kx 3,k 为倔强系数,x 为形变量.现将弹簧水平放置于光滑的水平面上,一端固定,一端与质量为m 的滑块相连而处于自然状态.今沿弹簧长度方向给滑块一个冲量,使其获得一速度v ,压缩弹簧,则弹簧被压缩的最大长度为(A)m/k v . (B)k/m v .(C) (2mv 2/k )1/4. (D) (4mv/k )1/4.3.一物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变. (A) 它受热时角速度变小,它遇冷时角速度变大. (B) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小. 4. 图1.2(a)为一绳长为l 、质量为m 的单摆.图9.2(b)为一长度为l 、质量为m 能绕水平轴O 自由转动的匀质细棒.现将单摆和细棒同时从与铅直线成θ角度的位置由静止释放,若运动到竖直位置时, 单摆、细棒的角速度分别用ω1、ω2表示,则(A) ω1=ω2/2. (B) ω1=ω2. (C)ω1=2ω2/3.(D) ω1=3/2ω2.5.如图1.3,滑轮、绳子质量忽略不计,忽略一切摩擦阻力,物体A 的质量m 1大于物体B 的质量m 2. 在A 、B 运动过程中弹簧秤的读数是 (A) (m 1+m 2 )g .(B) (m 1-m 2)g .(C)2m 1m 2g/(m 1+m 2).(D)4m 1m 2g/(m 1+m 2).6.一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为6.0kgm 2.如果将双臂收回则系统的转动惯量变为2.0kgm 2.此时系统的转动动能与原来的转动动能之比E k / E k0为(A) 2.(B)2. (C)3.图1.1(a)(b)图1.21.3(D) 3.7.有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度ω0转动,此时有一质量为m的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为(A)Jω 0/(J+mR2) .(B) Jω 0/[(J+m)R2].(C)Jω 0/(mR2) .(D) ω 0.8.有两个半径相同,质量相等的细圆环A和B,A环的质量分布均匀, B环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B, 则(A)J A>J B.(B) J A<J B.(C)J A=J B.(D)不能确定J A、J B哪个大.9.速度为v的子弹,打穿一块木板后速度为零,设木板对子弹的阻力是恒定的.那末,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A)v/2.(B)v/4.(C)v/3.(D) v/2.10.质量为m的铁锤竖直落下,打在木桩上并停下,设打击时间为∆t,打击前铁锤速率为v,则在打击木桩的时间内,铁锤所受平均合外力的大小为(A)mv/∆t-mg.(B)mv/∆t.(C)mv/∆t+mg.(D) 2mv/∆t.二.填空题(每题三分,共三十分)1.一质点沿直线运动,其坐标x与时间t有如下关系:x=A e-βt cosω tA、β、ω皆为常数.(1)任意时刻t质点的加速度a=;(2)质点通过原点的时刻t=.2.如图1.4所示,质点P的质量为2kg,位置矢量为r,速度为v,它受到力F的作用.则三个矢量均在O xy平面内,且r=3.0m,v=4.0m/s,F=2N,则该质点对原点O的角动量L=;作用在质点上的力对原点的力矩M=.3.如图1.5所示,滑块A、重物B和滑轮C的质量分别为m A、m B和m C,滑轮的半径R,滑轮对轴的转动惯图1.4 图1.6量为J=m C R 2/2滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计, 绳与滑轮之间无相对滑动,滑块A 的加速度a =.4.一架轰炸机在俯冲后沿一竖直面内的圆周轨道飞行,如图1.6所示,如果飞机的飞行速率为一恒值v =640km/h ,为使飞机在最低点的加速度不超过重力加速度的7倍(7g ),则此圆周轨道的最小半径R =,若驾驶员的质量为70kg ,在最小圆周轨道的最低点,他的视重(即人对坐椅的压力)N '=.5.一质点沿半径为R 的圆周运动, 在t =0时经过P 点, 此后它的速率v 按v =A+B t (A 、B 为正的已知常量)变化,则质点沿圆周运动一周再经过P 点时的切向加速度a t =, 法向加速度a n =.6.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走, 如图1.7所示.则他的头顶在地上的影子M 点沿地面移动的速度v M =.7.如图1.8,一匀质细杆AB,长为l ,质量为m . A 端挂在一光滑的固定水平轴上, 细杆可以在竖直平面内自由摆动.杆从水平位置由静止释放开始下摆,当下摆θ时,杆的角速度为.8.一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg · m 2,正以角速度ω0匀速转动,现对轮子加一恒定的力矩M =-7.0 m· N,经过时间t =8.0s 时轮子的角速度ω=-ω0,则ω0=.9. 如图1.9所示一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球 (可作质点看待),此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑轴(O 轴)转动,开始时杆与水平成60°角,处于静止状态.无初转速地释放后,杆球这一刚体系统绕O 轴转动,系统绕O 轴的转动惯量J =.释放后,当杆转到水平位置时,刚体受到的合外力矩M =; 角加速度β=. 10.一质点在二恒力的作用下,位移为∆r =3i +8j (SI),在此过程中,动能增量为24J,已知其中一恒力F 1=12i -3j (SI),则另一恒力所作的功为.三.计算题(每题十分,共四十分)1.如图1.10所示,倔强系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接. 推动小球,将弹簧压缩一段距离L 后放开. 假定小球所受的滑动摩擦力大小为F 且恒定不变, 滑动摩擦系数与静摩擦系数可视为相等. 试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.2.质量为M =0.03kg, 长为l =0.2m 的均匀细棒, 在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动. 细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02kg. 开始时,两小物体分别被固定在棒中心的两侧且距中心各为r =0.05m,此系统以n 1=15rev/min 的转速转动. 若将小物体松开后,它们在滑动过程中受到的阻力正比于速度, 已知棒对中心的转动惯量为M l 2/12. 求(1) 当两小物体到达棒端时,系统的角速度是多少? (2) 当两小物体飞离棒端时, 棒的角速度是多少?1.102图1.7图1.8○ 2m ○ mO ·╮ 60° 图1.93.为求一半径R=50cm的飞轮对于通过其中心且与盘面垂直的固定轴的转动惯量,让飞轮轴水平放置,在飞轮边缘上绕以细绳,绳末端悬重物,重物下落带动飞轮转动.当悬挂一质量m1=8kg的重锤,且重锤从高2m处由静止落下时,测得下落时间t1=16s. 再用另一质量m2为4kg 的重锤做同样的测量, 测得下落时间t2=25s,假定摩擦力矩是一个常数,求飞轮的转动惯量.4.飞机降落时的着地速度大小v0=90km/h ,方向与地面平行,飞机与地面间的摩擦系数 =0.10,迎面空气阻力为C x v2,升力为C y v2 (v是飞机在跑道上的滑行速度,C x和C y均为常数),已知飞机的升阻比K=C y/C x=5,求从着地到停止这段时间所滑行的距离(设飞机刚着地时对地面无压力)一.选择题DC BD D C A C A B二.填空题1.A e -βt [(β2-ω 2)cos ω t +2βωsin ω t ] ; (2n+1)π/(2ω) (s) (n=1,2,3,…).2.12k kg·m 2/s; 3k N·m. 3. 2m B g/(2m A +2m B +m C ). 4. 461m, 5.49×103N5. B , (A 2/R )+4πB .6. v M =h 1v/(h 1-h 2)7.l g /sin 3θω=8. 14rad/s..9 3mL 2/4, mgL/2, 2g /(3L ) . 10. 12J三.计算题1.取点O 为坐标原点,向右为x 正向.t =0时,静止于x =-L 的小球开始运动的条件是kL >F由功能原理得小球运动到x 处静止的条件是-F (L+x )=kx 2/2-kL 2/2=k (x -L )(x +L )/2x =L -2F/k使小球继续保持静止的条件是k ⎜x ⎜= k ⎜ L -2F/k ⎜≤FF <kL ≤3F所以F/k <L ≤3F/k2. (1)角动量守恒(M l 2/12+2mr 2)ω1=(M l 2/12+2ml 2)ω2 ω2= (M l 2/12+2mr 2)ω1/(M l 2/12+2ml 2)=0.628rad/s(2)小物体飞离棒端时小物体对棒无冲力,故棒的角速度仍为ω2=0.628rad/s3. 飞轮受绳的张力T 产生的力矩和阻力矩M μ,重锤受绳的张力T 和重力mg .对飞轮和重锤分别用转动定律和牛顿定律列方程,有TR -M μ=J α=Ja/R mg -T=ma h=at 2/2得mgR -M μ=( J/R+mR )2h/t 2当重锤质量分别为m 1和m 2时, 重锤下落时间分别为t 1和t 2 ,于是有m 1gR -M μ=( J/R+m 1R )2h/t 12 m 2gR -M μ=( J/R+m 2R )2h/t 22相减得(m 1-m 2)gR=(2hJ/R )(1/t 12-1/t 22)+(2hR )( m 1/t 12-m 2/t 22) =2hJ (t 22-t 12)/(R t 12t 22)+2hR (m 1t 22-m 2t 12)/( t 12t 22)有J=[(m 1-m 2)gR 2 t 12t 22/[2h (t 22-t 12)]-R 2(m 1t 22-m 2t 12)/(t 22-t 12)=1.06×103kg·m 24. 飞机受力:重力、地面支持力N 、摩擦力f 、阻力与升力, 设飞机质量为m ,有方程:竖直向上N+C y v 2-mg =0水平向前-μN -C x v 2=m d v/d t= m (d v/d x )(d x/d t ) 所以有-μ( mg -C y v 2)-C x v 2=mv d v/d xd x=-mv d v/[μ mg +( C x -μC y ) v 2]x=()]{}⎰-+02d v yxv C C mg v mv μμ=()()mgv C C mg C C m y x y x μμμμ20ln 2-+-因飞机刚着地时对地面无压力,有mg=C y v 02,而K =C y /C x =5,故 C y = mg/v 02C x = mg/ (Kv 02)所以x={ Kv 02/[2g (1-K μ)]}ln[1/(K μ)]=221m。

大学物理教程第章答案张文杰等主编中国农业大学出社

大学物理教程第章答案张文杰等主编中国农业大学出社

1.5沿曲线运动的物体,以下说法哪种正确:()1.1已知某质点的运动方程是r 二3 t i + 4t -4.9t 2 j (SI )。

这个质点的速度dx 和dy 构成无;它的速率v 二吏二dt '答:这个质点的速度 v =3i (4-9.8t) j ;加速度 a =-9.8j ; dr=3dti (4-9.8t)dtj 。

ds= .9 (4-9.8t)2dt ;它的速率 v = 9 (4-9.8t)2 。

1.2在X 、Y 平面上运动的质点,其运动方程为 r =10cos5t i +10sin5t j ,t 时刻答:t 时刻 的速度V 二-50sin5ti 50cos5tj ;速 率 v=50,;加速度a = -2 5 (0c (5ts s i 51j);该质点作匀速圆周运动。

1.3质点沿半径为R 的圆周匀速率运动,每t 秒转一圈,则在2t 时间间隔中,其平均速度大小与平均速率大小分别为()质点的位移,厶r 是位矢大小的增量, s 是同一时间内的路程。

那么(A) r = r (B) r (C);r(D):s = .;r答:(D )V= ____ ;加速度a =;无穷小时间内,它的位移d r 二dx i +dy j 二dr ,=ds ,贝9 ds = 穷小三角形,令dr 的速度V 二;速率v= ;加速度a=;该质点作运动。

(A)t t答: (B )(B)0, t (C)0,0(D)「,01.4质点作曲线运动, r 是质点的位置矢量,r 是位矢的大小, :r 是某时间内(A) 切向加速度必不为零(B) 法向加速度必不为零(C) 由于速度沿切线方向,法向分速度为零,所以法向加速度也必为零(D) 匀速圆周运动的物体是做变加速运动答:(B)、( D1.6某质点沿直线运动,其加速度是a x = 5t -3,那么,下述正确者为:()(A) 根据公式V x二a x t,它的速度是V x =5〃— 3t(B) 不定积分关系V x二a x dt ,可算得这个质点的速度公式为v x」t3 -3t23 2(C) 因为一个导数有无穷多个原函数,按题给条件,无法确定此质点的速度公式答: (C)1.7质量大的物体转动惯量是否一定比质量小的转动惯量大?为什么?答:质量大的物体转动惯量不一定比质量小的转动惯量大。

新编大学物理_习题解答

新编大学物理_习题解答

0第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,MmG r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。

大学物理(第四版)课后习题及答案质点

大学物理(第四版)课后习题及答案质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --⋅-⋅+= 。

求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。

题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=∆x x x(2)由0)s m 6()s m 12(d d 232=⋅-⋅=--t t tx得知质点的换向时刻为s2=P t (t = 0不合题意) 则:m 0.8021=-=∆x x xm 40x 242-=-=∆x x所以,质点在4.0 s 时间间隔内的路程为m 4821=∆+∆=x x s题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。

设0=t 时,0=x 。

试根据已知的图t v -,画出t a -图以及t x -图。

题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2A B A B AB s m 20-⋅=--=t t vv a (匀加速直线运动)0BC =a (匀速直线)2CD CD CD s m 10-⋅-=--=t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图在匀变速直线运动中,有20021at t v x x ++= t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m5.7-10-5.7-4048.75558.760间内,质点是作v = 201s m -⋅的匀速直线运动,其x -t 图是斜率k = 20的一段直线。

题1.3:如图所示,湖中有一小船。

岸上有人用绳跨过定滑轮拉船靠岸。

设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为()i i i r v tr r h h r tt t x t d d 1d d d d d d 2/12222-⎪⎪⎭⎫ ⎝⎛-=-===' 而收绳的速率trv d d -=,且因vt l r -=0,故 ()i v 2/12021-⎪⎪⎭⎫ ⎝⎛---='vt l hv题1.3解2:取图所示的极坐标(r ,θ),则θr r r d d d d d d d d d d e e e e r v tr t r t r t r t θ+=+==' r d d e t r 是船的径向速度,θd d e tr θ是船的横向速度,而trd d 是收绳的速率。

简明大学物理课后习题答案

简明大学物理课后习题答案

简明大学物理答案1.1 一质点在Oxy 平面内运动,运动方程为)SI (53+=t x ,。

(1)以时间t 为变量,写出质点位矢的表达式;(2)求出质点速度分量的表达式,并计算s 4=t 时,质点速度的大小和方向;(3)求出质点加速度分量的表达式,并计算出s 4=t 时,质点加速度的大小和方向。

解:(1))SI (53+=t x ,)SI (432/2-+=t t y质点位矢的表达式为:j t t i t j y i x r )432/()53(2-+++=+=;(2)m/s 3)53(=+==t dt d dt dx v x ,m/s )3()432/(2+=-+==t t t dt d dt dy v ys 4=t ,m/s 3=x v ,m/s 7=y v ,m/s 6.7m/s 5822==+=y x v v v设θ是v 和x v 的夹角,则37tan ==x y v v θ,8.66=θ°; (3)2m/s 0)3(===dt d dt dv a x x ,2m/s 1)3(=+==t dt d dt dv a y ys 4=t ,2m/s 0=x a ,2m/s 1=y a ,222m/s 1=+=y x a a a方向沿y 轴方向。

1.2 质点在Oxy 平面内运动,运动方程为)SI (3t x =,)SI (22t y -=。

(1)写出质点运动的轨道方程;(2)s 2=t 时,质点的位矢、速度和加速度。

解:(1)质点运动方程)SI (3t x =,)SI (22t y -=,质点运动的轨道方程为:9/2)3(222x xy -=-=或2189x y -=;(2)j t i t j y i x r )2()3(2-+=+=,s 2=t 时: j i r 26-=j t i v 23-=,s 2=t 时:j i v43-=j a 2-=,s 2=t 时:j a2-=1.3质点沿直线运动,其坐标x 与时间t 有如下关系:)SI (cos t Ae x tωβ-=(A 和β皆为常量)。

大学物理自测题1(含答案)

大学物理自测题1(含答案)

大学物理 自 测 题 1一、选择题:(共30分)1.某质点的运动方程为x =3t -5t 3+6(SI),则该质点作( ) (A)匀加速直线运动,加速度沿x 轴正方向. (B)匀加速直线运动,加速度沿x 轴负方向. (C)变加速直线运动,加速度沿x 轴正方向. (D)变加速直线运动,加速度沿x 轴负方向. 2.质点作曲线运动,r 表示位矢,s 表示路程,a τ表示切向加速度大小,下列表达式中( ) (1)d v /d t =a ; (2)d r /d t =v ; (3)d s /d t =v; (4)|d v /d t |=a τ.(A)只有(1),(4)是对的. (B)只有(2),(4)是对的. (C)只有(2)是对的. (D)只有(3)是对的.3.某物体的运动规律为d v /d t =-k v 2t ,式中的k 为大于零的常数.当t =0时,初速率为v 0,则速率v 与时间t 的函数关系是( )(A)v =12kt 2+v 0. (B)v =-12kt 2+v 0.(C)1v =kt 22+1v 0. (D)1v =kt 22-1v 0.4.水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如题1.1.1图所示,欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ应满足( )(A)sin θ=μ. (B)cos θ=μ. (C)tan θ=μ. (D)cot θ=μ.题1.1.1图题1.1.2图5.一光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称轴Oc 旋转,如题1.1.2图所示.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为( )(A)13 rad·s -1. (B)17 rad·s -1.(C)10 rad·s -1. (D)18 rad·s -1.6.力F =12t i (SI)作用在质量m =2 kg 的物体上,使物体由原点从静止开始运动,则它在3s 末的动量应为( )(A)-54i kg·m·s -1. (B)54i kg·m·s -1.(C)-27i kg·m·s -1. (D)27i kg·m·s -1.7.质量为m 的小球在向心力作用下,在水平面内作半径为R ,速率为v 的匀速圆周运动,如题1.1.3图所示.小球自A 点逆时针运动到B 点的半圆内,动量的增量应为( )(A)2m v j . (B)-2m v j . (C)2m v i . (D)-2m v i .8.A ,B 两弹簧的倔强系数分别为k A 和k B ,其质量均忽略不计,今将两弹簧连接起来并竖直悬挂,如题1.1.4图所示.当系统静止时,两弹簧的弹性势能E pA 与E pB 之比为( )(A)E pA E pB =k A k B . (B)E pA E pB =k A 2k B 2. (C)E pA E pB =k B k A . (D)E pA E pB =k B 2k A2.题1.1.3图 题1.1.4图题1.1.5图9.如题1.1.5图所示,在光滑平面上有一个运动物体P ,在P 的正前方有一个连有弹簧和挡板M 的静止物体Q ,弹簧和挡板M 的质量均不计,P 与Q 的质量相同.物体P 与Q 碰撞后P 停止,Q 以碰前P 的速度运动.在此碰撞过程中,弹簧压缩量最大的时刻是( )(A)P 的速度正好变为零时. (B)P 与Q 速度相等时.(C)Q 正好开始运动时. (D)Q 正好达到原来P 的速度时. 10.一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量m =12M .若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是( )(A)(2a 0+g )/3. (B)-(3g -a 0). (C)-(2a 0+g )/3. (D)a 0. 二、填空题:(共35分)1.两辆车A 和B ,在笔直的公路上同向行驶,它们从同一起始线上同时出发,并且由出发点开始计时,行驶的距离x (m)与行驶时间t (s)的函数关系式:A 为x A =4t +t 2,B 为x B =2t 2+2t 3.(1)它们刚离开出发点时,行驶在前面的一辆车是________; (2)出发后,两辆车行驶距离相同的时刻是________; (3)出发后,B 车相对A 车速度为零的时刻是________.2.当一列火车以10 m·s -1的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向30°,则雨滴相对于地面的速率是______;相对于列车的速率是________.3.质量为m的小球,用轻绳AB,BC连接,如题1.2.1图所示.剪断绳AB的瞬间,绳BC中的张力比T∶T′=________.4.一质量为30 kg的物体以10 m·s-1的速率水平向东运动,另一质量为20 kg的物体以20 m·s-1的速率水平向北运动.两物体发生完全非弹性碰撞后,它们速度大小v=________;方向为________.5.如题1.2.2图所示一圆锥摆,质量为m的小球在水平面内以角速度ω匀速转动.在小球转动一周的过程中:(1)小球动量增量的大小等于________;(2)小球所受重力的冲量的大小等于________;(3)小球所受绳子拉力的冲量大小等于________.题1.2.1图题1.2.2图6.光滑水平面上有一质量为m的物体,在恒力F作用下由静止开始运动,则在时间t 内,力F做的功为________.设一观察者B相对地面以恒定的速度v0运动,v0的方向与F 方向相反,则他测出力F在同一时间t内做的功为________.7.一冰块由静止开始沿与水平方向成30°倾角的光滑斜屋顶下滑10 m后到达屋檐.若屋檐高出地面10 m.则冰块从脱离屋檐到落地过程中越过的水平距离为________.(忽略空气阻力,g值取10 m·s-2)8.在两个质点组成的系统中,若质点之间只有万有引力作用,且此系统所受外力的矢量和为零,则此系统()(A)动量与机械能一定都守恒.(B)动量与机械能一定都不守恒.(C)动量不一定守恒,机械能一定守恒.(D)动量一定守恒,机械能不一定守恒.三、计算题:(共30分)题1.3.1图1.质量为m的小物体放在质量为M的冰块的弧形斜面上,斜面下端为水平面,如题1.3.1图所示.所有接触面的摩擦力可忽略不计,m从静止滑下落入下面的凹部而相对冰块静止,问冰块可滑多远?2.静水中停着两个质量均为M的小船,当第一只船中的一个质量为m的人以水平速度v(相对于地面)跳上第二只船后,两只船运动的速度各多大?(忽略水对船的阻力)3.有一水平运动的皮带将砂子从一处运到另一处,砂子经一垂直的静止漏斗落到皮带上,皮带以恒定的速率v 水平地运动.忽略机件各部位的摩擦及皮带另一端的其他影响,试问:(1)若每秒钟有质量为ΔM =d M /d t 的砂子落到皮带上,要维持皮带以恒定速率v 运动,需要多大的功率?(2)若ΔM =20 kg·s -1,v =1.5 m·s -1,水平牵引力多大?所需功率多大?4.质量为M 的人,手执一质量为m 的物体,以与地平线成α角的速度v 0向前跳去.当他达到最高点时,将物体以相对于人的速度u 向后平抛出去.试问:由于抛出该物体,此人跳的水平距离增加了多少?(略去空气阻力不计)题1.3.2图5.在质量为M 的物体A 的腔内壁上连接一个倔强系数为k 的轻弹簧,另一质量为m 的小物体B 紧靠着弹簧但不连接,如题1.3.2图所示.开始时有外力作用于B 和A ,使弹簧被压缩了Δx 且处于静止状态,若各接触面均光滑,求撤掉外力后物体A 的反冲速度u 的大小.四、改错题:(5分)质量为m 的物体轻轻地挂在竖直悬挂的轻质弹簧的末端,在物体重力作用下,弹簧被拉长.当物体由y =0达到y 0时,物体所受合力为零.有人认为,这时系统重力势能减少量mgy 0应与弹性势能增量12ky 02相等,于是有y 0=2mg /k .错在哪里?请改正.答案:一、选择题 1.(D)由22d xa dt=得30a t =-,a 是关于t 的函数,则为变加速,沿x 轴负向;选D2.(D)(1)200dv v a n dt Rτ=+(2)0ds v dt τ=(4)dva dt τ=;选D 3.(C)由2dv kv t dt =-得020v tv dv ktdt v =-⎰⎰解出20112kt v v =+选C4.(C)由受力分析知,水平方向的合力为cos cos (sin )cos sin F F N F G F F F Gθμθμθθμθμ=-=--=+-合由Fa m=知,若a 最大,则F 合最大,G μ为常量,cos sin F F θμθ+最大即可 得tan μθ=选C 5.(A)由题图1.1.1受力分析知,小球圆运动半径8r cm = 水平方向:向心力cos F N θ= 竖直方向:sin mg N θ=得cot F mg θ=,又因为2F m r ω=,得13/rad s ω=选A题图1.1.1题图1.1.26.(B)由2121t t Fdt P P =-⎰,带入数据得3212012tidt P mv P =-=⎰,得254Pi =1kg m s -⋅⋅选B 7.(B)动量的增量:212B A A A P P P mv j mv j mv j mv j mv j ∆=-=--=--=-选B 8.(C)静止时,B 弹簧受方向向上的A 弹簧对它的拉力A F 和方向向下的物体对它的拉力B FA B F F =即A A B B k x k x =;两弹簧的弹性势能为212pA A A E k x =,212pB B B E k x = 得22pA A A BpB B B AE k x k E k x k ==选C 9.(B)m碰撞过程中,P 给M 施加力,弹簧压缩,使Q 有加速度a 。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

「大学物理1-1测试题及答案」

「大学物理1-1测试题及答案」

大学物理1-1测试题(第三,四章)一、 简答题(每题5分,共20分)(1) 请写出质点系动量定理的内容(文字及数学形式),并说出系统动量守恒的条件?答:作用于系统的合外力所产生的冲量等于系统动量的增量,00tt Fdt p p =-⎰;系统动量守恒的条件是体系所受合外力为零(如果系统内力远大于外力,也可近似认为其是守恒)。

(2) 什么是保守力?保守力与势能之间有何关系?答:保守力是指做功只与初末位置有关,与质点运动路径无关的力;保守力做功等于体系势能增量的负值(或势能的减小量)。

(3) 简述功能原理(文字及数学形式),并说出系统机械能守恒的条件?答:外力及内部非保守力做功之和等于体系机械能的增量,0ex in nc W W E E +=-,此即功能原理;当外力与内部非保守力做功之和为零时,体系的机械能守恒。

(4) 简述刚体定轴转动的角动量定理(文字及数学形式),并说出系统角动量守恒的条件?答:当刚体做定轴转动时,作用于刚体的合外力矩等于刚体对该定轴的角动量关于时间的变化率,即()dL d J M dt dtω==;角动量守恒的条件是体系所外力矩之和为零。

二、 选择题(每题4分,共20分)(1)对质点系有以下几种说法:①质点系总动量的改变与内力无关;②质点系总动能的改变与内力无关;③质点系机械能的改变与保守内力无关。

下列对上述说法判断正确的是( C )(A)只有①是正确的 (B) ①、②是正确的 (C) ①、③是正确的 (D )②、③是正确的 (2)有两个倾角不同,高度相同,质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的小球从这两个斜面的顶点,由静止开始下滑,则( D ) (A)小球到达斜面底端时的动量相等 (B)小球到达斜面底端时的动能相等(C)小球、斜面、地球组成的系统,机械能不守恒 (D)小球和斜面组成的系统在水平方向上动量守恒(3)关于力矩有以下几种说法,其中正确的是:( B )(A ) 内力矩会改变刚体对某个定轴的动量矩(角动量) (B ) 作用力和反作用力对同一轴的力矩之和必为零 (C ) 角速度的方向一定与外力矩的方向相同(D ) 质量相等、形状和大小不同的两个刚体,在相同力矩作用下,它们的角加速度一定相等(4)一均匀细棒可绕其一端在竖直平面内作无摩擦的定轴转动。

大学物理期末复习题精选(北京邮电大学第4版)

大学物理期末复习题精选(北京邮电大学第4版)

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr (B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)tR t R 2,2 (B) t R2,0 (C) 0,0 (D) 0,2tR[答案:B]1.2填空题(1) 一质点,以1s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m·s -1 ]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

(x 单位为m ,t 单位为s )解:匀变速直线运动即加速度为不等于零的常数时的运动。

加速度又是位移对时间的两阶导数。

于是可得(3)为匀变速直线运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.选择题1.在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断? ( ) (A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g .2.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 ( )(A) θcos mg . (B) θsin mg .(C) θcos mg . (D) θsin mg . 3.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为 ( )(A) R g μ (B)g μ (C) R g μ (D)R g 4.已知水星的半径是地球半径的 0.4倍,质量为地球的0.04倍.设在地球上的重力加速度为g ,则水星表面上的重力加速度为: ( )(A) 0.1 g (B) 0.25 g(C) 2.5 g (D) 4 g5.一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 ( )(A)g l . (B)gl θcos . (C)g l π2. (D)g l θπcos 2 . 6.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足 ( ) (A)Rg s μω≤. (B)R g s 23μω≤. (C)R g s μω3≤. (D)R g s μω2≤. 7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( )(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变a 1 m θθ l ωO R AAO O ′ ω8.光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有 ( )(A) N =0. (B) 0 < N < F .(C) F < N <2F . (D) N > 2F .9.如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数是 ( )(A) .)(21g m m + (B) .)(21g m m -(C) .22121g m m m m + (D) .42121g m m m m + 10.升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A 、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于( )(A) M A g. (B) (M A +M B )g. (C) (M A +M B )(g +a ). (D) (M A +M B )(g -a ).11.一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的? ( )(A) 汽车的加速度是不变的.(B) 汽车的加速度不断减小.(C) 汽车的加速度与它的速度成正比.(D) 汽车的加速度与它的速度成反比.12.如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则 ( )(A) a ′= a (B) a ′> a (C) a ′< a (D) 不能确定. 13.如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为 ( ) (A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ.14.一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率 ( )(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定.15.一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 ( )(A) g . (B)g Mm . (C)g M m M +. (D) g m M m M -+ . m 1m 2F F Am 1Bm 2S m 1m 2 A θmM16.一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为 ( ) (A)Rg . (B)θtg Rg . (C)θθ2sin cos Rg . (D)θctg Rg 17.质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将 ( )(A) 增加.(B) 减少.(C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.18.水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足 ( ) (A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. 19.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 ( )(A) a A =0 , a B =0. (B) a A >0 , a B <0.(C) a A <0 , a B >0. (D) a A <0 , a B =0.20.一光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 ( )(A) 10 rad/s . (B) 13 rad/s . (C) 17 rad/s (D) 18 rad/s . 2.判断题1. 摩擦力总和物体运动的方向相反。

2.斜面上的物体的重力沿与斜面垂直方向的分力等于正压力。

3.杂技演员表演水流星,演员持绳的一端,另一端系水桶,内装水,令桶在铅直面内作圆周运动水不流出,是因为水受重力和向心力,维持水作圆周运动。

4.摩擦力总是阻碍物体间的相对运动。

5.斜面上的物体所受重力可以分解为下滑力和正压力。

6.摩擦力可能与物体运动方向垂直。

7.维持质点作圆周运动的力即向心力。

8.物体只有作匀速直线运动和静止时才有惯性9.把两完全相同的弹簧串联起来,劲度系数为原来的1/2倍。

10.在惯性系测得质点的加速度是由相互作用力产生的,在非惯性系测得质点的加速度是惯性力产生的。

3.填空题α m FθAA F xB ω PC O1.沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为f 0,若外力增至2F ,则此时物体所受静摩擦力为_____________.2.如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =___________________________.3.有两个弹簧,质量忽略不计,原长都是10 cm ,第一个弹簧上端固定,下挂一个质量为m 的物体后,长11 cm ,而第二个弹簧上端固定,下挂一质量为m 的物体后,长13 cm ,现将两弹簧串联,上端固定,下面仍挂一质量为m 的物体,则两弹簧的总长为____________. 4.一物体质量为M ,置于光滑水平地板上.今用一水平力F 通过一质量为m 的绳拉动物体前进,则物体的加速度a =________________. 5.在如图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F的作用下,物体m 1和m 2的加速度为a =______________________.6.如图所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos θ - mg = 0 (1)也有人在沿绳子拉力方向求合力写出T - mg cos θ = 0 (2)显然两式互相矛盾,你认为哪式正确?答: .7.如图,在光滑水平桌面上,有两个物体A 和B 紧靠在一起.它们的质量分别为m A =2 kg ,m B =1 kg .今用一水平力F =3 N 推物体B ,则B 推A 的力等于______________. 8.一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则摆线的张力T =___________________.9.一块水平木板上放一砝码,砝码的质量m =0.2 kg ,手扶木板保持水平,托着砝码使之在竖直平面内做半径R =0.5 m 的匀速率圆周运动,速率v =1 m/s .当砝码与木板一起运动到图示位置时,砝码受到木板的支持力为________________.10.质量m =40 kg 的箱子放在卡车的车厢底板上,已知箱子与底板之间的静摩擦系数为μs =0.40,滑动摩擦系数为μk =0.25,试问当卡车以a = 2 m/s 2的加速度行驶,作用在箱子上的摩擦力的大小f =____________.11.在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用下,物体m 1与m 2的加速度a =______________. 12.如图所示,质量分别为M 和m 的物体用细绳连接,悬挂在定滑轮下, 已知M >m , 不计滑轮质量及一切摩擦,则它们的加速度大小为.13.如图所示,一个小物体A 靠在一辆小车的竖直前壁上,A 和车壁间静摩擦系数是μs ,若要使物体A 不致掉下来,小车的加速度的最小值应为a =_______________. 14.倾角为30°的一个斜面体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑,下滑的加速度为 3.0 m/s 2.若此时斜面体静止AFF m M AB F m 45° m vFm 1T m 2a A M m在桌面上不动,则斜面体与桌面间的静摩擦力f =____________.15.假如地球半径缩短 1%,而它的质量保持不变,则地球表面的重力加速度g 增大的百分比是______________.16.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′=____________________.17.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量m 的小球,小球上下振动时框架始终没有跳起,当框架对地面压力为零的瞬间,小球的加速大小为 . 18.质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体A 的加速度A a=______.19.如图所示,一水平圆盘,半径为r ,边缘放置一质量为m 的物体A ,它与盘的静摩擦系数为μ,圆盘绕中心轴OO '转动,当其角速度ω 小于或 等于 时,物A 不致于飞出. 20.质量相等的两物体A 和B ,分别固定在弹簧的两端,竖直放在光滑水平面C 上,如图所示.弹簧的质量与物体A 、B 的质量相比,可以忽略不计.若把支持面C 迅速移走,则在移开的一瞬间,B 的加速度的大小a B =_______. 4.计算题1.如图所示,质量为m 的摆球A 悬挂在车架上.求在下述各种情况下,摆线与竖直方向的夹角α和线中的张力T.(1)小车沿水平方向作匀速运动; (2)小车沿水平方向作加速度为a 的运动. 2.月球质量是地球质量的1/81,直径为地球直径的3/11,计算一个质量为65 kg 的人在月球上所受的月球引力大小.3.在水平桌面上有两个物体A 和B ,它们的质量分别为m 1=1.0 kg ,m 2=2.0 kg ,它们与桌面间的滑动摩擦系数μ=0.5,现在A 上施加一个与水平成36.9°角的指向斜下方的力F ,恰好使A 和B 作匀速直线运动,求所施力的大小和物体A 与B 间的相互作用力的大小. ( cos 36.9°=0.8 ) 4.如图所示,质量为m 的钢球A 沿着中心在O 、半径为R 的光滑半圆形槽下滑.当A 滑到图示的位置时,其速率为v ,钢球中心与O 的连线OA 和竖直方向成θ角,求这时钢球对槽的压力和钢球的切向加速度. 5.如图,质量分别为m 1和m 2的两只球,用弹簧连在一起,且以长为L 1的线拴在轴O 上,m 1与m 2均以角速度ω绕轴在光滑水平面上作匀速圆周运动.当两球之间的距离为L 2时,将线烧断.试求线被烧断的瞬间两球的加速度a 1和a 2.(弹簧和线的质量忽略不计)Ox A B C m 1 m 2 m 3AαB A F 36.9°μm vORA θL 2 L 1 ωm 1 m 2 O6.如图,绳CO 与竖直方向成30°角,O 为一定滑轮,物体A 与B 用跨过定滑轮的细绳相连,处于平衡状态.已知B 的质量为10 kg ,地面对B 的支持力为80 N .若不考虑滑轮的大小求:(1) 物体A 的质量. (2) 物体B 与地面的摩擦力. (3) 绳CO 的拉力. (取g =10 m/s 2)7.水平转台上放置一质量M =2 kg 的小物块,物块与转台间的静摩擦系数μs =0.2,一条光滑的绳子一端系在物块上,另一端则由转台中心处的小孔穿下并悬一质量m =0.8 kg 的物块.转台以角速度ω=4π rad/s 绕竖直中心轴转动,求:转台上面的物块与转台相对静止时,物块转动半径的最大值r max 和最小值r min . 8.质量为m 的物体系于长度为R 的绳子的一个端点上,在竖直平面内绕绳子另一端点(固定)作圆周运动.设t时刻物体瞬时速度的大小为v ,绳子与竖直向上的方向成θ角,如图所示.(1) 求t时刻绳中的张力T 和物体的切向加速度a t ;(2) 说明在物体运动过程中a t 的大小和方向如何变化?9.公路的转弯处是一半径为 200 m 的圆形弧线,其内外坡度是按车速60 km/h 设计的,此时轮胎不受路面左右方向的力.雪后公路上结冰,若汽车以40 km/h 的速度行驶,问车胎与路面间的摩擦系数至少多大,才能保证汽车在转弯时不至滑出公路? 10.表面光滑的直圆锥体,顶角为2θ,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计.今使小球在圆锥面上以角速度ω 绕OH 轴匀速转动,求 (1) 锥面对小球的支持力N 和细绳的张力T ;(2) 当ω增大到某一值ωc 时小球将离开锥面,这时ωc 及T 又各是多少?C O A B 30°αO /1T x y 2T 30°g m A 1T g m B x f N y 1T α(b)(a)1T (c)B 1/1T T = m O R θ v m O R θ v T g m P = N mg θR H θl O。

相关文档
最新文档