铁矿石选矿试验方案示例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁矿选矿试验案示例
一、某地表赤铁矿试样选矿试验案
拟定试验案的步骤是:
(1)分析该矿性质研究资料,根据矿性质和同类矿产的生产实践经验及其研究成果,初步拟定可供选择的案。
(2)根据有关的针政策,结合当地的具体条件以及委托一的要求,全面考虑,确定主攻案。
(一)矿性质研究资料的分析
1.光谱分析和化学多元素分析该试样的光谱分析结果见表1,化学多元素分析结果见表2。
由光谱分析和化学多元素分析结果看出:矿中主要回收元素是铁,伴生元素含量均未达到综合回收标准,主要有害杂质硫、磷含量都不高,仅二氧化硅含量很高,故仅需考虑除去有害杂质硅。
化学多元素分析表中TFe、SFe、FeO、SiO2、AL2O3、CaO、MgO等项是铁矿必需分析的重要项目,下面分别介绍各项的含义及其目的:
(1)TFe全铁(指金属矿物和非金属矿物中总的含铁量)。该矿全铁含量仅27.40%。属贫铁矿。
(2)SFe可溶铁(指化学分析时能用酸溶的含铁量)。[next]
用TFe减去SFe等于酸不溶铁,常将其看做是硅酸铁的含铁量,并用以代表“不可选铁”量。该矿“不可选铁”含量很低,因而在拟定案时,无需考虑这部分铁的回收问题;选矿指标不好的原因主要不是由于“不可选铁”造成。
事实上,将酸不溶铁看做硅酸铁的含铁量,这种概念还不够确切,原因是铁矿中经常是几种铁矿物共生,各种铁矿物溶于酸中的情况比较复杂,硅酸铁矿物有的溶于酸,有的也不溶于酸,因而具体应用时必须根据具体情况考虑。
(3)FeO氧化亚铁。一般用TFe/FeO(称亚铁比或氧化度)和FeO、TFe的比值(铁矿的磁性率)表示磁铁矿的氧化程度。它们是地质部门划分铁矿床类型的一个重要指标,也是选矿试验拟定案时判断铁矿可选性的一项重要依据。
根据TFe/FeO和FeO/TFe比值大小可将铁矿划分为如下几种类型:
(FeO/TFe)*100(%)>37%TFe/FeO<2.7 原生磁铁矿(青矿)易磁选(FeO/TFe)*100(%)=29-37%TFe/FeO=2.7~3.5 混合矿磁选与其它法联合
(FeO/TFe)*100(%) <29%TFe/FeO>3.5 氧化矿(红矿)磁选困准本实例亚铁比TFe/FeO=8.43,属氧化矿类型,因而较难选。
实践证明,采用上述比值划分矿类型的法,仅适用于铁的工业矿物是磁铁矿或具有不同程度氧化作用的磁铁矿床,矿物成分比较简单。对于矿物成分复杂,含有多种铁矿物的磁铁矿床,矿类型的划分应结合矿床的具体特点并根据试验资料确定。
(4)CaO、MgO、SiO2、AL2O3等是铁矿中主要脉成分。一般用比值(CaO+M gO)/ (SiO2+AL2O3)表示铁矿和铁精矿的酸碱性,它直接决定着今后冶炼炉料的配比。
据(GaO+MgO)/(SiO2+AL2O3)比值大小可将铁矿划分为如下几类:
比值<0.5 为酸性矿冶炼时需配碱性熔剂(灰);
比值=0.5~0.8 为半自熔性矿冶炼时需配部分碱性熔剂或与碱性矿搭配使用;
比值=0.8~1.2 为自熔性矿冶炼时可不配熔剂;
比值>1.2 为碱性矿冶炼时需配酸性熔剂(硅)或与酸性矿搭配使用。
本矿样由于SiO2含量很高,故比值<0.5 ,为酸性矿,冶炼时需配大量的碱性熔剂。因此,我们选矿的任务就是要尽可能地降低硅的含量,减少熔剂的消耗。[next] 综合上述分析资料可知,本试样属于硅高而硫磷等有害杂质含量低的贫铁矿,其亚铁比为8.43.,属氧化矿类型。由于SiO2含量高,为酸性矿,冶炼时需配大量的熔剂。
2. 岩矿鉴定该试样的岩矿鉴定结果介绍如下:
(1)矿物组成该试样所含铁矿物的相对含量列于下表中。
从上表可知铁矿物主要呈赤铁矿存在,其次是磁铁矿和褐铁矿。磁铁矿采用弱磁选易选别,主要要解决赤铁矿和褐铁矿的选矿问题。
脉矿物以英为主,绢云母、绿泥、黑白母、白云母、黄铁矿等次之,并含有一定数量的铁泥质杂质等。含铁脉矿物以绿泥为主,黑云母次之,另含少量黄铁矿。
(2)铁矿物的嵌布粒度特性在显微镜下用直线法测定结果见下表。
测定结果表明,该矿属细粒、微粒嵌布类型,在选别前需细磨。但是,磁铁矿、赤铁矿、褐铁矿等嵌布粒度并不完全一样,其中磁铁矿相对较粗,且较均匀,大部分在-200+20μm围;赤铁矿最细,以-20+2μm粒级居多,大部分不超过50μm,极少数达100μm;褐铁矿介于二者之间。由于主要选别对象是赤铁矿,嵌布又细,故较难选。[n ext]
该矿中的磁铁旷、赤铁矿、褐铁矿之间的嵌镶关系有利于弱磁选。从矿相报告得知:磁铁矿大部分呈磁铁矿--赤铁矿连晶体,约占铁矿物总量中的50%左右。又因地表风化作用,致使部分磁铁矿次生氧化成褐铁矿,并部分呈磁铁矿--褐铁矿连晶产出。磁--赤和磁--褐连晶体具有较强的磁性(比磁铁矿磁性弱,但比赤铁矿和褐铁矿磁性强)。铁矿的这种嵌镶关系对弱磁选是非常有利的因素,但必须控制磨矿细度,防止磁--赤和磁--褐连晶破坏。
岩矿鉴定结果表明:根据试样中磁铁矿含量为14%和磁铁矿--赤铁矿连晶体约占铁矿物总量50%左右的特点,选矿流程中应该具有弱磁选作业。由于主要含铁矿物为赤铁矿,故不可能采用单一磁选流程,必须与其它法联合。
此外,由于地表风化作用比较重,致使含泥较多,必需增加脱泥作业。
(二)试验案的选择
综合上述矿性质研究结果,本试样属高硅、低硫低磷的细微粒嵌布贫赤铁矿类型的单一铁矿。选别此类矿可供选择的案主要有:
(1)直接反浮选,包括阳离子捕收剂反浮选和阴离子捕收剂反浮选;
(2)选择性絮凝--阴离子捕收剂反浮选;
(3)用弱磁选回收强磁性氧化铁矿物,然后用重选法回收弱磁性氧化铁矿物;
(4)弱磁选--正浮选,或正浮选--弱磁选;
(5)弱磁选--强磁选--强磁选精矿重选;
(6)弱磁选--强磁选--强磁选精矿反浮选;
(7)焙烧磁选;
(8)直接还原法。
以上各法中,焙烧磁选法指标最稳定,国已有成熟的生产经验可供参考,但成本较高,特别是燃料消耗量大,而本矿区燃料资源缺乏,因而没有考虑。正浮选案流程简单,但由于本矿样中赤铁矿嵌布粒度太细,效果不好。强磁选的主要缺点是难以获得合格精矿,因而最后选定的主攻案只有三个,即(1)选择性絮凝--反浮选;(2)弱磁--重选(离心机);(3)弱磁--强磁--强磁精矿重选(离心机)。[next]
最初试验结果表明,三个案中以选择性絮凝--反浮选案指标最高,精矿品位超过60%,但所需解决的技术问题也最多———矿需细磨至-38μm;大量废水需净化;药剂来源要解决,并且成本较高。弱磁"重选案成本最低,但指标不好,特别是精矿质量低(平均不超过55%),离心机生产能力低,占地面积大。采用弱磁--强磁--离心机案的好处是,可利用强磁选丢弃一部分尾矿,减少需送离心机处理的矿量,但不能解决精矿质量不高的问题。最后将各案取长补短,综合成弱磁--强磁--离心机,加上选择性絮凝脱泥的案,获得了较好的指标,基本上满足了设计部门的要求,但尚须进一步解决工业细磨、矿泥沉降和回水利用等一系列技术问题。同絮凝反浮选案相比,药剂费用可大大减少,因而生产成本较低。
二、其他类型铁矿选矿试验的主要案
上述实例属于比较简单的铁矿,试验中所遇到的困难主要是由于嵌布细,而物质成分并不复杂,既无在目前条件下可供综合回收的伴生有用元素,有害元素硫、磷等含量也不高,因而流程组合并不很复杂。
多金属铁矿,矿物种类较多,物质组成复杂,为了充分综合利用资源,一般需采用较复杂的流程,举例如下:
1.含铜钴等硫化物的磁铁矿矿根据铁矿物的嵌布粒度和硫化物的含量,可采用如下