二次函数中的相似三角形
二次函数与相似三角形问题(含答案 完美打印版)
综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。
⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
y xEQ PC B OA 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、B 两点,交y 轴于点C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标;(2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论;(3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式.练习1、已知抛物线2y ax bx c =++经过5330P E ⎫⎪⎪⎝⎭,,,及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么练习2、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D处。
二次函数中相似三角形存在性
相似三角形的存在性(作业)例:在平面直角坐标系中,二次函数图象的顶点坐标为C(4,),且与x轴的两个交点间的距离为6.(1)求二次函数的解析式;(2)在x轴上方的抛物线上,是否存在点Q,使得以Q,A,B为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.第一问:研究背景图形【思路分析】①由顶点坐标C(4,可知对称轴为直线_______,利用两个交点间的距离为6,再结合抛物线的对称性可知A(___,___),B(___,___).②设交点式__________________,再代入坐标__________可求解出解析式__________________.【过程示范】∵顶点坐标为C(4,又∵抛物线与x设抛物线的解析式为将C (4,代入可得,9a =,∴所求解析式为2y x x =. 第二问:整合信息、分析特征、设计方案 【思路分析】相似三角形存在性问题也是在存在性问题的框架下进行的:①分析特征:先研究定点、动点,其中_________为定点,点__为____________________的动点;则________为目标三角形.进一步研究此三角形,发现其中________________;构造辅助线:____________________________,能够计算出∠BAC =_____°,∠ACB =________°;再考虑研究△QAB ,固定线段为______,并且由于点Q 在x 轴上方的抛物线上,所以△QAB 为______(填“钝角”或“直角”)三角形.②画图求解:先考虑点Q 在抛物线对称轴右侧的情况,此时 ∠ABQ 为钝角,要想使△ABC 与△ABQ 相似,则需要∠ABQ =_____°,且_________.求解时,可根据∠ABQ =_____°,AB =BQ =_____来求出Q 点坐标.同理,考虑点Q 在抛物线对称轴左侧时的情况.③结果验证:考虑点Q 还要在抛物线上,将点Q 代入抛物线解析式验证.【过程示范】存在点Q 使得△QAB 与△ABC 相似.由抛物线对称性可知,AC =BC ,过点C 作CD ⊥x 轴于则AD =3,CD在Rt △ACD 中,tan ∠DAC, ∴∠BAC =∠ABC =30°,∠ACB =120°. ①当△ACB ∽△ABQ 时, ∠ABQ =120°且BQ =AB =6. 过点Q 作QE ⊥x 轴,垂足为E , 则在Rt △BQE 中,BQ =6,∠QBE =60°, ∴QE =BQ ·sin60°=6=BE =3, ∴E (10,0),Q 1(10,. 当x =10时,y= ∴点Q 1在抛物线上.②由抛物线的对称性可知,还存在AQ2=AB,此时△Q2AB∽△ACB,点Q2的坐标为(-2,.综上:Q1(10,,Q2(-2,.1.如图,已知抛物线y=x2-1与x轴交于A,B两点,与y轴交于点C,过点A作AP∥CB交抛物线于点P.(1)求A,B,C三点的坐标.(2)在x轴上方的抛物线上是否存在一点M,过点M作MG⊥x轴于点G,使以A,M,G为顶点的三角形与△PCA相似?若存在,请求出点M的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+b与x轴交于点A,B,且点A的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B的坐标.(2)过点B作BD∥CA交抛物线于点D,在x轴上点A的左侧是否存在点P,使以P,A,C为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)P是抛物线上一动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【参考答案】例题示范: 第一问:① x =4,(1,0),(7,0)② y =a (x -1)(x -7),C (4,,2y x x =+ 第二问:①点A ,B ,C ,点Q ,在x 轴上方的抛物线上,△ABC ,CA =CB ,过点C 作CD ⊥AB 于点D ,30,120,AB ,钝角。
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。
这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。
【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。
二次函数几何-动点构造相似三角形(DOC)
二次函数中的动点相似三角形专题:相似三角形 突破口:寻找比例关系以及特殊角 函数中因动点产生的相似三角形问题一般有三个解题途径。
① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程。
例题1、如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。
⑴求抛物线的解析式;⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
例题、解:⑴由题意可设抛物线的解析式为1)2x (a y 2+-= ∵抛物线过原点, ∴1)20(a 02+-= ∴41a -=. 抛物线的解析式为1)2x (41y 2+--=,即x x 41y 2+-=⑵如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB,由1)2x (4102+--=得4x ,0x 21==,∴B(4,0),OB =4. ∴D 点的横坐标为6将x =6代入1)2x (41y 2+--=,得y =-3, ∴D(6,-3);根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB 是平行四边形,此时D 点的坐标为(-2,-3),当OB 为对角线即四边形OCBD 是平行四边形时,D 点即为A 点,此时D 点的坐标为(2,1) ⑶如图2,由抛物线的对称性可知:AO =AB,∠AOB =∠ABO. 若△BOP 与△AOB 相似,必须有∠POB =∠BOA =∠BPO 设OP 交抛物线的对称轴于A′点,显然A′(2,-1) ∴直线OP 的解析式为x 21y -= 由x x 41x 212+-=-, 得6x ,0x 21== .∴P(6,-3)过P 作PE ⊥x 轴,在Rt △BEP 中,BE =2,PE =3, ∴PB =13≠4.∴PB≠OB,∴∠BOP≠∠BPO, ∴△PBO 与△BAO 不相似,同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点. 所以在该抛物线上不存在点P ,使得△BOP 与△AOB 相似.例题2、在直角坐标系中,O 为坐标原点,点A 的坐标为(2,2),点C 是线段OA 上的一个动点(不运动至O ,A 两点),过点C 作CD ⊥x 轴,垂足为D ,以CD 为边在右侧作正方形CDEF. 连接AF 并延长交x 轴的正半轴于点B ,连接OF,设OD =t. ⑴ 求tan ∠FOB 的值;⑵用含t 的代数式表示△OAB 的面积S ;⑶是否存在点C, 使以B ,E ,F 为顶点的三角形与△OFE 相似,若存在,请求出所有满足要求的B 点的坐标;若不存在,请说明理由.(1)作AH ⊥x 轴于H ,交CF 于P ∵A(2,2) ∴AH=OH=2 ∴∠AOB=45° ∴CD=OD=DE=EF=t ∴1tan 22t FOB t ∠== ……………………3分 (2)∵CF ∥OB ∴△ACF ∽△AOB ∴AP CF AH OB = 即22t tOB-= ∴22t OB t =- ∴12(02)22OAB tS OB AH t t∆=⋅=<<- ………………6分 (3)要使△BEF 与△OFE 相似,∵∠FEO=∠FEB=90° ∴只要OE EF EB EF =或OE EF EF EB= 即:2BE t =或12EB t =① 当2BE t =时, 4BO t =, ∴242t t t=- ∴0t =(舍去)或32t = ∴B(6,0) ……………………8分② 当12EB t =时, (ⅰ) 当B 在E 的右侧时,52OB OE EB t =+=, ∴2522t t t =- ∴0t =(舍去)或65t = ∴B(3,0) …………………10分(ⅱ) 当B 在E 的左侧时,如图,32OB OE EB t =-=, ∴2322t t t =- ∴0t =(舍去)或23t = ∴B(1,0) ……………………12分举一反三1.如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .(1)写出点B 的坐标 ;(2)已知点P是二次函数y=-x2+3x图象在y轴右侧..部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点. 若以CD为直角边的△PCD与△OCD相似,则点P的坐标为.。
二次函数与相似三角形
分析: ( 1) 第一步是基础知识,可由学生自己解决,只对个别不会的学生加以
辅导,可以由 B 号学生帮助解决 ( 2) 第二步要判断两个直角三角形相似, 可以证明夹着直角的四条边成
0)、B(0,3)两点,其顶点为 D. (1) 求该抛物线的解析式; (2) △ AOB 与△ BDE 是否相似?如果相似, 请予以证明; 如果不相似, 请 说明理由 .
分析: (1) 加强准确度练习 (2)此题与例题十分相似,尽量让学生自己解决,只对个别不会的
学生加以辅导,可以由 A 号学生帮助解决
六、小结
类似本节这类综合应用题,我们应注意什么问题?要怎样解决问题?
( 1.认真读题,写出所有可得的基本信息; 2.再次确认细节问题,比如点
的位置,字母的取值范围等; 3.划分成几个小的基本问题逐步解决 ;4.仔细
观察结论,想一想有无其它方法或更为简单的方法,为以后解题总结经
验。)
已知抛物线 y=ax2+bx+c 的顶点坐标为 (4,-1),与 y 轴交于点 C(0,3),O 是原
点.
(1)求这条抛物线的解析式;
作业布置
(2)设此抛物线与 x 轴的交点为 A ,B( A 在 B 的左边),问在 y 轴上是否
存在点 P,使以 O,B,P 为顶点的三角形与△ AOC 相似?若存在,请求出点 P
的坐标:若不存在,请说明理由 .
一般形式
例1
与坐标轴交点
顶点坐标 板书设计
相似判定方法
2023年中考数学压轴题专题04 二次函数与相似问题-【含答案】
专题4二次函数与相似问题函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
相似三角形常见的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.判定定理“两边及其夹角法”是常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理“两角法”解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理“三边法”解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.【例1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【例2】.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【例3】.(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y 轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【例4】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.1.(2020秋•兴城市期末)如图,抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E.(1)求抛物线的解析式;(2)如图1,设△ADE的面积为S1,△BCE的面积为S2,当S1=S2+5时,求点D的坐标;(3)如图2,过点C作CF∥x轴,点M是直线CF上的一点,MN⊥CF交抛物线于点N,是否存在以C,M,N为顶点的三角形与△BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由.2.(2020秋•郴州期末)已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由.3.(2020秋•长垣市期末)如图1,抛物线y=x2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,﹣3).(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当△PBC的面积为时,求m 值;(3)如图2,点M是线段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E 两点,是否存在以C,D,E为顶点的三角形与△BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.4.(2021秋•邹城市期末)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.5.(2021秋•攸县期末)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M和点N的坐标;②在抛物线的对称轴上找一点Q,使|AQ﹣BQ|的值最大,请直接写出点Q的坐标;③是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.6.(2022•禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;=S△ABC,直接写出点D (3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA的坐标.7.(2022•祥云县模拟)如图,已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),交y轴于点C(0,3),点M是该抛物线上第一象限内的一个动点,ME垂直x轴于点E,交线段BC于点D,MN∥x轴,交y轴于点N.(1)求抛物线y=ax2+bx+c的表达式;(2)若四边形MNOE是正方形,求该正方形的边长;(3)连结OD,AC,抛物线上是否存在点M,使得以C,O,D为顶点的三角形与△ABC相似,若存在,请求出点M的坐标,若不存在,请说明理由.8.(2022•松江区校级模拟)如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)连接BC,CD,DB,求∠CBD的正切值;(3)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BE,直线BE与对称轴交于点M,在(2)的条件下,点P是抛物线对称轴上的一点,是否存在点P使△CDB和△BMP相似,若存在,求点P坐标,若不存在,请说明理由.9.(2022•平江县一模)如图,抛物线y=ax2+bx+8与x轴交于A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求该抛物线的函数表达式;(2)点P是第一象限内抛物线上的动点,连接PB,PC,设四边形PBOC和△AOC的面积分别为S四边形PBOC ,记S=S四边形PBOC﹣S△AOC,求S最大值点P的坐标及S的最大值;和S△AOC(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△BOC相似?若存在,求点M的坐标;若不存在,请说明理由.10.(2022•莱州市一模)如图①,在平面直角坐标系中,抛物线y=x2+c经过点A(4,3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,﹣2)且垂直于y轴的直线,连接PO.(1)求抛物线的表达式,并求出顶点B的坐标;(2)试证明:经过点O的⊙P与直线l相切;(3)如图②,已知点C的坐标为(1,2),是否存在点P,使得以点P,O及(2)中的切点为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.11.(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB相似,且PC 与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.12.(2022•澄迈县模拟)在平面直角坐标系中,抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t.①在图1中,当﹣3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;③在图3中,若P是y轴左侧该抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.13.(2022•丰南区二模)如图①、②,在平面直角坐标系中,一边长为2的等边三角板CDE恰好与坐标系中的△OAB重合,现将三角板CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C′ED的位置.(1)直接写出C′的坐标,并求经过O、A、C′三点的抛物线的解析式;(2)点P在第四象限的抛物线上,求△C′OP的最大面积;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,抛物线上是否存在一点M,使得△BOF与△AOM相似?若存在,请求出点M的坐标;若不存在,请说明理由.14.(2022•莱芜区三模)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象经过A和点C(0,﹣3).(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第一象限的图象上,点C的对应点E落在直线AB上,直接写出四边形ACED的形状,并求出此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线CD下方抛物线上一个动点,过点P作PF⊥x轴,交CD于点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求出线段FP的长度;若不存在,请说明理由.15.(2022•临清市三模)如图,抛物线y=﹣x2+bx+c的顶点D坐标为(1,4),且与x轴相交于A,B两点(点A在点B的左侧,与y轴相交于点C,点E在x轴上方且在对称轴左侧的抛物线上运动,点F在抛物线上并且和点E关于抛物线的对称轴对称,作矩形EFGH,其中点G,H都在x轴上.(1)求抛物线解析式;(2)设点F横坐标为m,①用含有m的代数式表示点E的横坐标为(直接填空);②当矩形EFGH为正方形时,求点G的坐标;③连接AD,当EG与AD垂直时,求点G的坐标;(3)过顶点D作DM⊥x轴于点M,过点F作FP⊥AD于点P,直接写出△DFP与△DAM相似时,点F 的坐标.16.(2022•成都模拟)如图①,已知抛物线y=﹣(x﹣1)2+k交x轴于A,B两点,交y轴于点C,P是抛物线上的动点,且满足OB=3OA.(1)求抛物线的解析式;(2)若点P在第一象限,直线y=x+b经过点P且与直线BC交于点E,设点P的横坐标为t,当线段PE 的长度随着t的增大而减小时,求t的取值范围;(3)如图②,过点A作BC的平行线m,与抛物线交于另一点D.点P在直线m上方,点Q在线段AD 上,若△CPQ与△AOC相似,且点P与点O是对应点,求点P的坐标.17.(2022•东莞市校级一模)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2kx+2k2+1与x轴的左交点为A,右交点为B,与y轴的交点为C,对称轴为直线l,对于抛物线上的两点(x1,y1),(x2,y2)(x1<k<x2),当x1+x2=2时,y1﹣y2=0恒成立.(1)求该抛物线的解析式;(2)点M是第二象限内直线AC上方的抛物线上的一点,过点M作MN⊥AC于点N,求线段MN的最大值,并求出此时点M的坐标;(3)点P是直线l右侧抛物线上的一点,PQ⊥l于点Q,AP交直线l于点F,是否存在这样的点P,使△PQF与△ACO相似?若存在,请求出点P的坐标,若不存在,请说明理由.18.(2022•碑林区校级模拟)如图,Rt△ABC中,∠ACB=90°,AB=8,AC=4,以AB所在直线为x轴建立平面直角坐标系,若C(0,2).(1)请直接写出A、B的坐标;(2)求经过A、B、C三点的抛物线表达式;(3)l为抛物线对称轴,P是直线l右侧抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△ABC全等,求满足条件的点P,点E的坐标.【例1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若PE∥x轴交AB于点E,求PD+PE的最大值;(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【分析】(1)直接利用待定系数法,即可求出解析式;(2)先求出点C的坐标,然后证明Rt△DPE∽Rt△AOC,再由二次函数的最值性质,求出答案;(3)根据题意,可分为两种情况进行分析:当△AOC∽△APD时;当△AOC∽△DAP时;分别求出两种情况的点的坐标,即可得到答案.【解析】(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)设直线AB的解析式为y=kx+n,把A(0,3)和B(,﹣)代入,,解得,∴直线AB的解析式为y=﹣x+3,当y=0时,﹣x+3=0,解得:x=2,∴C点坐标为(2,0),∵PD⊥x轴,PE∥x轴,∴∠ACO=∠DEP,∴Rt△DPE∽Rt△AOC,∴,∴PE=PD,∴PD+PE=PD,设点P的坐标为(a,﹣a2+2a+3),则D点坐标为(a,﹣a+3),∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣(a﹣)2+,∴PD+PE=﹣(a﹣)2+,∵﹣<0,∴当a=时,PD+PE有最大值为;(3)①当△AOC∽△APD时,∵PD⊥x轴,∠DPA=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D点坐标为(,1).【例2】(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)令x=0和翻折的性质可得C(0,2),令y=0可得点A、B的坐标,利用待定系数法即可求出图象W的解析式;(2)利用数形结合找出当y=﹣x+b经过点C或者y=﹣x+b与y=x2﹣x﹣2相切时,直线y=﹣x+b与新图象恰好有三个不同的交点,①当直线y=﹣x+b经过点C(0,2)时,利用一次函数图象上点的坐标特征,即可求出b值;②当y=﹣x+b与y=x2﹣x﹣2相切时,联立一次函数解析式和抛物线解析式,利用根的判别式Δ=0,即可求出b值.综上即可得出结论;(3)先确定△BOC是等腰直角三角形,分三种情况:∠CNM=90°或∠MCN=90°,分别画图可得结论.【解析】(1)当x=0时,y=﹣2,∴C(0,2),当y=0时,x2﹣x﹣2=0,(x﹣2)(x+1)=0,∴x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),设图象W的解析式为:y=a(x+1)(x﹣2),把C(0,2)代入得:﹣2a=2,∴a=﹣1,∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,﹣x+b=﹣x2+x+2,x2﹣2x+b﹣2=0,Δ=(﹣2)2﹣4×1×(b﹣2)=0,∴b=3,综上,b的值是2或3;(3)∵OB=OC=2,∠BOC=90°,∴△BOC是等腰直角三角形,如图2,CN∥OB,△CNM∽△BOC,∵PN∥y轴,∴P(1,0);如图3,CN∥OB,△CNM∽△BOC,当y=2时,x2﹣x﹣2=2,x2﹣x﹣4=0,∴x1=,x2=,∴P(,0);如图4,当∠MCN=90°时,△OBC∽△CMN,∴CN的解析式为:y=x+2,∴x+2=x2﹣x﹣2,∴x1=1+,x2=1﹣(舍),∴P(1+,0),综上,点P的坐标为(1,0)或(,0)或(1+,0).【例3】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【分析】(1)由y=﹣x2+3x+4可得A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,可知四边形CC'QP是平行四边形,及得CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,而B,Q,C'共线,故此时CP+PQ+BQ最小,最小值为BC'+PQ的值,由勾股定理可得BC'=5,即得CP+PQ+BQ最小值为6;(3)由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),知BN=,QN=t,PM=,CM=|t﹣3|,①当=时,=,可解得Q(,)或(,);②当=时,=,得Q(,).【解析】(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:∵CC'=PQ,CC'∥PQ,∴四边形CC'QP是平行四边形,∴CP=C'Q,∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,∵B,Q,C'共线,∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,∵C(0,4),CC'=PQ=1,∴C'(0,3),∵B(4,0),∴BC'==5,∴BC'+PQ=5+1=6,∴CP+PQ+BQ最小值为6;(3)如图:由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),∵B(4,0),C(0,4);∴BN=,QN=t,PM=,CM=|t﹣3|,∵∠CMP=∠QNB=90°,∴△CPM和△QBN相似,只需=或=,①当=时,=,解得t=或t=,∴Q(,)或(,);②当=时,=,解得t=或t=(舍去),∴Q(,),综上所述,Q的坐标是(,)或(,)或(,).【例4】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【分析】(1)把点B(2,0)代入y=﹣2x2+bx+c中,再由对称轴是直线x=列方程,两个方程组成方程组可解答;(2)当△POD是等边三角形时,点P在OD的垂直平分线上,所以作OD的垂直平分线与抛物线的交点即为点P,计算OD≠PD,可知△POD不可能是等边三角形;(3)分种情况:①当PC∥x轴时,△CPM∽△BHM时,根据PH的长列方程可解答;②②如图3,△PCM ∽△BHM,过点P作PE⊥y轴于E,证明△PEC∽△COB,可得结论.【解析】(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)△POD不可能是等边三角形,理由如下:如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,∵C(0,4),D是OD的中点,∴E(0,1),当y=1时,﹣2x2+2x+4=1,2x2﹣2x﹣3=0,解得:x1=,x2=(舍),∴P(,1),∴OD≠PD,∴△POD不可能是等边三角形;(3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).1.(2020秋•兴城市期末)如图,抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,与y轴交于点C,D为第一象限抛物线上的动点,连接AC,BC,DA,DB,DB与AC相交于点E.(1)求抛物线的解析式;(2)如图1,设△ADE的面积为S1,△BCE的面积为S2,当S1=S2+5时,求点D的坐标;(3)如图2,过点C作CF∥x轴,点M是直线CF上的一点,MN⊥CF交抛物线于点N,是否存在以C,M,N为顶点的三角形与△BCO相似?若存在,请直接写出点M的坐标,若不存在,请说明理由.【分析】(1)运用待定系数法将A(4,0),B(﹣1,0)代入y=ax2+bx+4,解方程组即可求得答案;(2)根据题意,当S1=S2+5,即S△ABD=S△ABC+5,设D(x,y),表示出△ABD和△ABC的面积,列方程求解即可;(3)分情况讨论,列出三角形相似的三种情况,画出相应图形,设M(m,4),则N(m,﹣m2+3m+4),运用相似三角形性质,建立方程求解即可.【解析】(1)∵抛物线y=ax2+bx+4经过A(4,0),B(﹣1,0)两点,∴,解得:,∴y=﹣x2+3x+4;(2)∵抛物线y=﹣x2+3x+4与y轴交于点C,令x=0,则y=4,∴C(0,4),∵S1=S2+5,∴S1+S△AEB=S2+S△AEB+5,=S△ABC+5,即S△ABD∵A(4,0),B(﹣1,0),∴AB=5,设D(x,y),∴×5×y=×5×4+5,∴y=6,∴﹣x2+3x+4=6,解得:x1=1,x2=2,∴D1(1,6),D2(2,6);(3)设M(m,4),则N(m,﹣m2+3m+4),①如图2,△BOC∽△NMC,则=,∴=,解得:m=0(舍去),m=,经检验,m=是原方程的解,∴M(,4);②如图3,△BOC∽△CMN,则=,∴=,解得:m=0(舍去),m=﹣1,经检验,m=﹣1是原方程的解,∴M(﹣1,4);③如图4,△BOC∽△NMC,则=,∴=,解得:m=0(舍去),m=,经检验,m=是原方程的解,∴M(,4);④如图5,△BOC∽△CMN,则=,∴=,解得:m=0(舍去),m=7,经检验,m=7是原方程的解,∴M(7,4);综上所述,点M的坐标为(,4)或(﹣1,4)或(,4)或(7,4).2.(2020秋•郴州期末)已知抛物线y=x2﹣3x+与x轴交于A,B两点(点A在点B的左边).(1)求A,B两点的坐标;(2)如图1,若点D是抛物线上在第四象限的点,连接DA并延长,交y轴于点P,过点D作DE⊥x轴于点E.当△APO与△ADE的面积比为=时.求点D的坐标;(3)如图2,抛物线与y轴相交于点F.若点Q是线段OF上的动点,过点Q作与x轴平行的直线交抛物线于M,N两点(点M在点N的左边).请问是否存在以Q,A,M为顶点的三角形与△QNA相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)在抛物线解析式中,令y=0则可求得A、B的坐标;(2)证明△AOP∽△AED,根据相似三角形面积的比等于对应边的比的平方列比例式可得AE=2,从而得点D的横坐标为3,代入抛物线的解析式可得点D的坐标;(3)如图2所示,若以Q,A,M为顶点的三角形与△QNA相似,有两种情况,但是∠QAM与∠QAN不可能相等,所以最后只存在一种情况:△AQM∽△NQA,列比例式可得结论.【解析】(1)当y=0时,x2﹣3x+=0,解得:x1=1,x2=5,∴A(1,0),B(5,0);(2)∵DE⊥x轴,∴∠AED=90°,∴∠AOP=∠AED=90°,∵∠OAP=∠DAE,∴△AOP∽△AED,∴==,∴=,∵OA=1,∴AE=2,∴OE=3,当x=3时,y=﹣3×3+=﹣2,∴D(3,﹣2);(3)如图2,设Q(0,m),当x=0时,y=,∴F(0,),∵点Q是线段OF上的动点,∴0≤m≤,当y=m时,x2﹣3x+=m,x2﹣6x+5﹣2m=0,x=3,∴x1=3+,x2=3﹣,∴QM=3﹣,QN=3+,在Rt△AOQ中,由勾股定理得:AQ=,∵∠AQM=∠AQN,∴当△AQM和△AQN相似只存在一种情况:△AQM∽△NQA,∴,∴AQ2=NQ•QM,即1+m2=(3+)(3﹣),解得:m1=﹣1+,m2=﹣1﹣(舍),∴Q(0,﹣1+).3.(2020秋•长垣市期末)如图1,抛物线y=x2+bx+c与x轴、y轴分别交于点B(6,0)和点C(0,﹣3).(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,其横坐标为m,连接PB、PC,当△PBC的面积为时,求m 值;(3)如图2,点M是线段OB上的一个动点,过点M作x轴的垂线l分别与直线BC和抛物线交于D,E 两点,是否存在以C,D,E为顶点的三角形与△BDM相似,若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出该抛物线的函数关系式;(2)根据点P是直线BC下方抛物线上一动点,其横坐标为m,表示PH的长,根据三角形的面积列方程解出即可得出结论;(3)先根据两三角形相似判断出∠CED=∠BMD=90°或∠DCE=∠DMB=90°,进而分两种情况讨论即可得出结论.【解析】(1)把点B(6,0)和点C(0,﹣3)代入得:,解得:,∴抛物线的解析式为;(2)设直线BC的解析式为:y=ax+n,由点B(6,0)和C(0,﹣3)得:,解得:,∴直线BC的解析式为,如图1,过点P作y轴的平行线交BC于点H,∵点P的坐标为(m,),PH∥y轴,∴点H的坐标为(m,),∴PH=y H﹣y P=﹣()=﹣,x B﹣x C=6﹣0=6,=PH×6=(﹣)×6=﹣=,∵S△PBC解得:m1=1,m2=5,∴m值为1或5;(3)如图2,∵∠CDE=∠BDM,△CDE与△BDM相似,∴∠CED=∠BMD=90°或∠DCE=∠DMB=90°,设M(x,0),①当∠CED=∠BDM=90°,∴CE∥AB,∵C(0,﹣3),∴点E的纵坐标为﹣3,∵点E在抛物线上,∴x2﹣x﹣3=﹣3.∴x=0(舍)或x=5,∴M(5,0);②当∠DCE=∠DMB=90°,∵OB=6,OC=3,∴BC==3,由(2)知直线BC的关系式为y=x﹣3,∴OM=x,BM=6﹣x,DM=3﹣x,由(2)同理得ED=﹣+3x,∵DM∥OC,∴,即,∴CD=,∴BD=BC﹣CD=﹣x,∵△ECD∽△BMD,∴,即=,∴=x(3﹣x)2,x(6﹣x)(1﹣x)=0,x1=0(舍),x2=6(舍),x3=1,∴M(1,0);综上所述:点M的坐标为(5,0)或(1,0).4.(2021秋•邹城市期末)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.【分析】(1)将抛物线配方后可得顶点A的坐标,将抛物线和一次函数的解析式联立方程组,解出可得B 和C的坐标;(2)先根据两点的距离计算AB、BC、AC的长,根据勾股定理的逆定理可得:∠ABC=90°,最后根据两边的比相等且夹角为90度得两三角形相似;(3)存在,设M(x,0),则P(x,x2+2x),表示OM=|x|,PM=|x2+2x|,分两种情况:有=或=,根据比例式代入可得对应x的值,计算点P的坐标即可.【解答】(1)解:y=x2+2x=(x+1)2﹣1,∴顶点A(﹣1,﹣1);由,解得:或∴B(﹣2,0),C(1,3);(2)证明:∵A(﹣1,﹣1),B(﹣2,0),C(1,3),∴AB==,BC==3,AC==2,∴AB2+BC2=AC2,==,∴∠ABC=90°,∵OD=1,CD=3,∴=,∴,∠ABC=∠ODC=90°,∴△ODC∽△ABC;(3)存在这样的P点,设M(x,0),则P(x,x2+2x),∴OM=|x|,PM=|x2+2x|,当以O,P,M为顶点的三角形与△ABC相似时,有=或=,由(2)知:AB=,CB=3,①当=时,则=,当P在第二象限时,x<0,x2+2x>0,∴,解得:x1=0(舍),x2=﹣,当P在第三象限时,x<0,x2+2x<0,∴=,解得:x1=0(舍),x2=﹣,②当=时,则=3,同理代入可得:x=﹣5或x=1(舍),综上所述,存在这样的点P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).5.(2021秋•攸县期末)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M和点N的坐标;②在抛物线的对称轴上找一点Q,使|AQ﹣BQ|的值最大,请直接写出点Q的坐标;③是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【分析】(1)①函数的对称轴为:x=﹣=,故点M(,),即可求解;②设抛物线与x轴左侧的交点为R(﹣1,0),则点A与R关于抛物线的对称轴对称,连接RB并延长交抛物线的对称轴于点Q,则点Q为所求,即可求解;③四边形MNPD为菱形,首先PD=MN,即(﹣2x2+2x+4)﹣(﹣2x+4)=,解得:x=或(舍去),故点P(,1),而PN==≠MN,即可求解;(2)分∠DBP为直角、∠BDP为直角两种情况,分别求解即可.【解析】(1)①函数的对称轴为:x=﹣=,故点M(,),当x=时,y=﹣2x+4=3,故点N(,3);②设抛物线与x轴左侧的交点为R(﹣1,0),则点A与R关于抛物线的对称轴对称,连接RB并延长交抛物线的对称轴于点Q,则点Q为所求,将R、B的坐标代入一次函数表达式:y=kx+b并解得:直线RB的表达式为:y=4x+4,当x=时,y=6,故点Q(,6);③不存在,理由:设点P(x,﹣2x+4),则点D(x,﹣2x2+2x+4),MN=﹣3=,四边形MNPD为菱形,首先PD=MN,即(﹣2x2+2x+4)﹣(﹣2x+4)=,解得:x=或(舍去),故点P(,1),而PN==≠MN,故不存在点P,使四边形MNPD为菱形;(2)当点P的横坐标为1时,则其坐标为:(1,2),此时点A、B的坐标分别为:(2,0)、(0,4),①当∠DBP为直角时,以B、P、D为顶点的三角形与△AOB相似,则∠BAO=∠BDP=α,tan∠BAO==2=tanα,则sinα=,PA=,PB=AB﹣PA=2﹣=,则PD==,故点D(1,);②当∠BDP为直角时,以B、P、D为顶点的三角形与△AOB相似,则BD∥x轴,则点B、D关于抛物线的对称轴对称,故点D(1,4),综上,点D的坐标为:(1,4)或(1,),将点A、B、D的坐标代入抛物线表达式:y=ax2+bx+c并解得:y=﹣2x2+2x+4或y=﹣x2+3x+4.6.(2022•禹城市模拟)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线在第一象限上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M 为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;=S△ABC,直接写出点D (3)若抛物线上有一点D(点D位于直线AC的上方且不与点B重合)使得S△DCA的坐标.。
初中数学中考复习——二次函数相似三角形
AD AB
1 3
,AE=2cm,
1.如图,△ABC中,AB>AC,D、E两点 分别在边AC,AB上,且DE与BC 不平行. 请填上一个你认为合适的条件,使
△ADE∽△ABC:∠1=∠B 或∠2=∠C .
2.如图,下列条件不能判断△ADB∽△ABC 的是( D )
A.∠ABD=∠ACB B.AB2=AD﹒AC C.∠ADB=∠ABC D. AD DB
ABE =CBE
Q BC CD ,CDE CBE ABE 又Q AEB CED ,VAEB : VCED
(2)解 :Q BC 4, CD 4
QVቤተ መጻሕፍቲ ባይዱEB : VCED
CE CD 即CE 4
AE AB
12
CE 2
5.如图,D是△ABC 的AB边上一点,连结
DC,且 AC2 AB • ,AD△ADC与△ACB
(一)平行线分线段成比例定理
1.两条直线被一组平行线所截,所得的 对应线段 成比例 .
2.平行于三角形一边的直线截其他两边
(或两边的延长线),所得的对应线段 _成__比__例__.
如图,AB∥CD∥EF,AF与BE相交于
点G,且AG=2,GD=1,DF=5,求
BC CE
的值=_3_:_5_____.
Rt△DCE的面积为S3,则S1 = S2+S3(用
“>”、“=”、“<”填空);
(2)写出图中的三对相似三角形,并选择其中一
对进行证明.
解:(2)图中的三对相似三角形 △BCD∽△CFB △BCD∽△DEC △DEC∽△CFB
证明:∵四边形ABCD、BFED是矩形 ∴∠F=∠BCD,BD∥EF
∴∠DBC=∠BCF ∴△BCD∽△CFB
初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案
中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。
二次函数综合(动点)问题——相似三角形存在问题培优教案(横版)
考点/易错点2
相似三角形的性质: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。 (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4)相似三角形的周长比等于相似比。 (5)相似三角形的面积比等于相似比的平方。
考点/易错点 3 相似三角形模型探究与解题技巧: 1、课堂导入题解 如图,在平面直角坐标系中有两点 A(4,0)、B(0,2),如果点 C 在 x 轴上(C 与 A 不重合),当 点 C 的坐标为_________________时,使得由点 B、O、C 组成的三角形与△AOB 相似(至少找出两个满 足条件的点的坐标).
解:∵点 C 在 x 轴上,∴点 C 的纵坐标是 0,且当∠BOC=90°时,由点 B、O、C 组成的三角形与△AOB 相似,即∠BOC 应该与∠BOA=90°对应,
①当△AOB∽△COB,即 OC 与 OA 相对应时,则 OC=OA=4,C(-4,0); ②当△AOB∽△BOC,即 OC 与 OB 对应,则 OC=1,C(-1,0)或者(1,0). 故答案可以是:(-1,0);(1,0). 解析:分类讨论:①当△AOB∽△COB 时,求点 C 的坐标;②当△AOB∽△BOC 时,求点 C 的坐标; 如果非直角三角形也要分类讨论,对应边不一样就得到不同的结果。
图象
开口 对称轴 顶点坐标 最值
a>0
a<0
当 x=
时,y 有最
当 x= 值是
是
时,y 有最 值
增 在对称轴左侧 y 随 x 的增大而
减 在对称轴右侧 y 随 x 的增大而
性
y 随 x 的增大而 y 随 x 的增大而
(二)梯形的性质:一组对边平行,另一组对边不平行的四边形; 直角梯形的性质:有两个角是直角的梯形; 等腰梯形:两底角相等,两顶角相等,两腰相等,对角线相等的梯形。
【中考数学几何模型】第二十五节:二次函数三角形相似存在性问题
中考数学几何模型第二十五节:二次函数三角形相似存在性问题448.二次函数三角形相似存在性问题(初三)x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,B0=3A0=3,过点B的直如图,抛物线y=3+36线与y轴正半轴和抛物线的交点分别为C,D,BC=3CD(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.449.二次函数线段最大值三角形相似存在性问题(初三),D 如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=20B,与y轴交于点C,连接BC,抛物线对称轴为直线x=12为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点0,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.450.二次函数铅垂定理面积最大值三角形形似存在性(初三)如图,已知抛物线y=ax2+bx+6经过两点A(―1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90∘,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.451.二次函数三角形面积定值三角形相似存在性问题(初三)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(―2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;S△ABC时,求点P的坐标;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=35(3)点N是对称轴1右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.452.二次函数平行四边形存在性三角形相似存在性问题(初三)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(―1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线1分别交抛物线和线段BC于点P和点F,动直线1在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线1移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线1移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.453.二次函数三角形相似存在性问题(初三)已知抛物线y =ax 2+bx +3与x 轴分别交于A(―3,0),B(1,0)两点,与y 轴交于点C .(1)求抛物线的表达式及顶点D 的坐标;(2)点F 是线段AD 上一个动点.①如图1,设k =AFAD ,当k 为何值时,CF =12AD ?②如图2,以A,F,0为顶点的三角形是否与△ABC 相似?若相似,求出点F 的坐标;若不相似,请说明理由.454.二次函数三角形相似存在性问题(初三)如图1,直线y =―12x +b 与抛物线y =ax 2交于A,B 两点,与y 轴于点C ,其中点A 的坐标为(―4,8).(1)求a,b 的值;(2)将点A 绕点C 逆时针旋转90∘得到点D .①试说明点D 在抛物线上;②如图2,将直线AB 向下平移,交抛物线于E,F 两点(点E 在点F 的左侧),点G 在线段OC 上.若△GEF ∼△DBA (点G,E,F 分别与点D,B,A 对应),求点G 的坐标.455.二次函数三角形存在性问题面积倍分动点问题(初三)如图,已知抛物线y =ax 2+bx(a ≠0)过点A(3,―3)和点B(33,0).过点A 作直线AC//x 轴,交y 轴于点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A,D,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得S △AOC =13S △ACQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.答案448.【解】(1)∵BO=3AO=3,∴点B(3,0),点A(-1,0),∴抛物线解析式为:y =3+36(x +1)(x -3)=3+36x 2-3+33x -3+32,∴b =-3+33,c =-3+32;(2)如图1,过点D 作DE ⊥AB 于E,∴CO//DE,∴BCCD =BOOE ,∵BC =3CD,BO =3,∴3=3OE,∴OE =3,∴点D 横坐标为-3,∴点D 坐标为(-3,3+1),设直线BD 的函数解析式为:y =kx +m,把点B(3,0),D(-3,3+1)代入得:{3+1=-3k +m0=3k +m ,解得:{k =-33m =3,∴直线BD 的函数解析式为y =-33x +3;(3)∵点B(3,0),点A(-1,0),点D(-3,3+1),∴AB =4,AD =22,BD =23+2,对称轴为直线x =1,∵直线BD:y =-33x +3与y 轴交于点C,∴点C(0,3),∴OC =3,∵tan ∠CBO =COBO =33,∴∠CBO =30∘,如图1,过点A 作AF ⊥BD 于F,∴AF =12AB =2,BF =3AF =23,BD =2DE =23+2∴DF =BD -BF =23+2-23=2,∴DF =AF,∴∠ADB =45∘,设对称轴与x 轴的交点为N,即点N (1,0),BN =3-1=2,现在分两种情况讨论:第一种情况:若∠CBO =∠PBO =30∘,如图3:∴BN =3PN =2,BP =2PN,∴PN =233,BP =433,(1)当△BAD ∽△BPQ,∴BP BA=BQBD ,∴BQ =2+233,∴点Q1(1-233,0);(2)当△BAD ∽△BQP,∴BPBD=BQAB ,∴BQ =4-433,∴点Q2(-1+433,0);第二种情况:若∠PBO =∠ADB =45∘,如图3:∴BN =PN =2,BP =2BN =22,(3).当△DAB ∽△BPQ,∴BP AD=BQBD ,∴2222=BQ23+2,∴BQ =23+2,∴点Q3(1-23,0);(4).当△BAD ∽△PQB,∴BPBD=BQAD ,∴2223+2=BQ22,∴BQ ==23-2,∴点Q4(5-23,0);综上所述:满足条件的点Q 的坐标为(1-233,0)或(-1+433,0)或(1-23,0)或(5-23,0).449.【解】(1).设OB =t,则OA =2t,则点A 、B 的坐标分别为(2t,0)、(-t,0),则x =12=12(2t -t),解得:t =1,故点A 、B 的坐标分别为(2,0)、(-1,0),则抛物线的表达式为:y =a(x -2)(x +1)=ax 2+bx +2,解得:a =-1,b =1,故抛物线的表达式为:y =-x 2+x +2;(2).对于y =-x 2+x +2,令x =0,则y =2,故点C(0,2),由点A 、C 的坐标得,直线AC 的表达式为:y =-x +2,设点D 的横坐标为m,则点D (m,-m 2+m +2),则点F(m,-m +2),则DF =-m 2+m +2-(-m +2)=-m 2+2m,∵-1<0,故DF 有最大值,DF 最大时m =1,∴点D(1,2);(3)存在,理由如下:点D (m,-m 2+m +2)(m >0),则OE =m,DE =-m 2+m +2,以点O,D,E 为顶点的三角形与△BOC 相似,则DEOE =OBOC 或DEOE =OCOB ,即DOOE =12或DOOE =2,即-m 2+m +2m=12或-m 2+m +2m=2,解得:m =1或-2(舍去)或1+334或1-334(舍去),经检验m =1或1+334是方程的解,且符合题意,故m =1或1+334.450.【解】(1)将A(-1,0)、B(3,0)代入y =ax 2+bx +6,得:{a -b +6=09a +3b +6=0,解得:{a =-2b =4,∴抛物线的解析式为y =-2x 2+4x +6.(2)过点P 作PF ⊥x 轴,交BC 于点F,如图1所示.当x =0时,y =-2x 2+4x +6=6,∴点C 的坐标为(0,6).设直线BC 的解析式为y =kx +c,将B(3,0)、C(0,6)代入y =kx +c,得:{3k +c =0c =6,解得:{k =-2c =6,∴直线BC 的解析式为y =-2x +6.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴点P 的坐标为(m,-2m 2+4m +6),则点F 的坐标为(m,-2m +6),∴PF =-2m 2+4m +6-(-2m +6)=-2m 2+6m,∴S =12PF ⋅OB =-3m 2+9m =-3(m -32)2+274,∴当m =32时,△PBC 面积取最大值,最大值为274.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴0<m <3.综上所述,S 关于m 的函数表达式为:S =-3m 2+9m(0<m <3),S 的最大值为274.(3)存在点M 、点N 使得∠CMN =90∘,且△CMN 与△OBC 相似.第一种情况:如图2,∠CMN =90∘,当点M 位于点C 上方,过点M 作MD ⊥y 轴于点D,∵∠CDM =∠CMN =90∘,∠DCM =∠NCM,∴△MCD ∼△NCM,若△CMN 与△OBC 相似,则△MCD 与△OBC 相似,设M (a,-2a 2+4a +6),C(0,6),∴DC =-2a 2+4a,DM =a,当DMCD =OBOC =36=12时,△COB ∽△CDM ∽△CMN,∴a-2a 2+4a =12,解得,a =1,∴M(1,8),此时ND =12DM =12,∴N (0,172),当CDDM =OBOC =12时,△COB ∼△MDC ∼△NMC,∴-2a 2+4a a=12,解得a =74,∴M (74,558),∴DN =2DM =72此时N (0,838).第二种情况:如图3,当点M 位于点C 的下方,过点M 作ME ⊥y 轴于点E,设M (a,-2a 2+4a +6),C(0,6),∴EC =2a 2-4a,EM =a,同理可得:2a 2-4aa =12或2a 2-4aa=2,△CMN 与△OBC 相似,解得a =94或a =3,∴M (94,398)或M(3,0),此时N 点坐标为(0,38)或(0,-32).综合以上得,存在M(1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M(3,0),N (0,-32),使得∠CMN =90∘,且△CMN 与△OBC 相似.451.【解】(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (-2,0)和点B(8,0),∴{4a -2b +8=064a +8b +8=0,解得{a =-12b =3.∴拋物线解析式为:y =-12x 2+3x +8;(2)当x =0时,y =8,∴C(0,8),∴直线BC 解析式为:y =-x +8,∵S △ABC =12AB ×OC =12×10×8=40,∴S △PBC =35S △ABC =24,如图1,过点P 作PG ⊥x 轴,交x 轴于点G,交BC 于点F,设p (x,-12x 2+3x +8),∴F(x,-x +8),∴PF =-12x 2+4x,∵S △PBC =12×PF ×OB =24,∴12×(-12x 2+4x )×8=24,∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)存在,理由如下:∵C(0,8),B(8,0),∠COB =90∘,∴△OBC 为等腰直角三角形,易知拋物线的对称轴为x =3,∴点E 的横坐标为3,又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E(3,5),设M(3,m),N (n,-12n 2+3n +8),(1)如图2,当MN =EM,∠EMN =90∘,△NME ∽△COB,则{m -5=n -3-12n 2+3n +8=m ,解得{n =6m =8或{n =-2m =0(舍去),∴此时点M 的坐标为(3,8),(2)如图3,当ME =EN,∠MEN =90∘时,△MEN ∼△COB,则{m -5=n -3-12n 2+3n +8=5,解得:{m =5+15n =3+15或{m =5-15n =3-15(舍去),∴此时点M 的坐标为(3,5+15);(3)如图4,当MN =EN,∠MNE =90∘时,此时△MNE 与△COB 相似,此时的点M 与点E 关于(1)的结果(3,8)对称,设M(3,m),则m -8=8-5,解得m =11,∴M(3,11);此时点M 的坐标为(3,11);故在射线ED 上存在点M,使得以点M,N,E 为顶点的三角形与△OBC 相似,点M 的坐标为:(3,8)或(3,5+15)或(3,11).452.【解】(1)将点A(-1,0),B(4,0),代入y =ax 2+bx +4,得:{0=a -b +40=16a +4b +4,解得:{a =-1b =3,∴次函数的表达式为:y =-x 2+3x +4,当x =0时,y =4,∴C(0,4),设BC 所在直线的表达式为:y =mx +n,将C(0,4)、B(4,0)代入y =mx +n,得:{4=n o =4m +n ,解得:{m =-1n =4,∴BC所在直线的表达式为:y=-x+4;(2)∵DE⊥x轴,PF⊥x轴,∴DE//PF,只要DE=PF,四边形DEFP即为平行四边形,∵y=-x2+3x+4=-(x-32)2+254,∴点D的坐标为:(32,254),将x=32代入y=-x+4,即y=-32+4=52,∴点E的坐标为:(32,52),∴DE=254-52=154,设点P的横坐标为t,则P的坐标为:(t,-t2+3t+4),F的坐标为:(t,-t+4),∴PF=-t2+3t+4-(-t+4)=-t2+4t,由DE=PF得:-t2+4t=154,解得:t1=32(不合题意舍去),t2=52,当t=52时,-t2+3t+4=-(52)2+3×52+4=214,∴点P的坐标为(52,214);(3)存在,理由如下:如下图,连接CD,连接CP:由(2)得:PF//DE,∴∠CED=∠CFP,又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有∠PCF=∠CDE时,△PCF∼△CDE,∴PFCE =CFDE,∵C(0,4),E(32,52),∴CE=322,由(2)得:DE=154,PF=-t2+4t,F的坐标为:(t,-t+4),∴CF=2t,∴-t2+4t322=2t154,∵t≠0,∴154(-t+4)=3,解得:t =165,当t =165时,-t 2+3t +4=-(165)2+3×165+4=8425,∴点P 的坐标为:(165,8425).453.【解】(1)∵抛物线y =ax 2+bx +3过点A(-3,0),B(1,0),∴{9a -3b +3=0a +b +3=0,解得:{a =-1b =-2,∴拋物线解析式为y =-x 2-2x +3;∵y =-x 2-2x +3=-(x +1)2+4∴顶点D 的坐标为(-1,4);(2)①∵在Rt △AOC 中,OA =3,OC =3,∴AC 2=OA 2+OC 2=18∵D(-1,4),C(0,3),A(-3,0),∴CD 2=12+12=2∴AD 2=22+42=20∴AC 2+CD 2=AD 2∴△ACD 为直角三角形,且∠ACD =90∘.求得直线AD 的解析式为y =2x +6,设F(m,2m +6),∵CF =12AD,∴(2m +6-3)2+m 2=(5)2,解得m =-2或m =-25(舍去),∴F(-2,2),∴F 为AD 的中点,∴AFAD=12,∴k =12.②在Rt △ACD 中,tan ∠CAD =DC AC =232=13,在Rt △OBC 中,tan ∠OCB =OBOC =13,∴∠CAD =∠OCB,∵OA =OC∴∠OAC =∠OCA =45∘,∴∠FAO =∠ACB,若以A,F,O 为顶点的三角形与△ABC 相似,则可分两种情况考虑:第一种情况:当∠AOF =∠ABC 时,△AOF ∼△CBA,∴OF//BC,设直线BC 的解析式为y =kx +b,∴{k +b =0b =3,解得:{k =-3b =3,∴直线BC 的解析式为y =-3x +3,∴直线OF 的解析式为y =-3x,设直线AD 的解析式为y =mx +n,∴{-k +b =4-3k +b =0,解得:{k =2b =6,∴直线AD 的解析式为y =2x +6,联立方程组,并解得:x =-65:,y =185∴F (-65,185).第二种情况:当∠AOF =∠CAB =45∘时,△AOF ∼△CAB,∵∠CAB =45∘,∴OF ⊥AC,即OF 是∠AOC 的角平分线,∴直线OF 的解析式为y =-x,∴联立得:{y =-xy =2x +6,解得:{x =-2y =2,∴F(-2,2).综合以上可得F 点的坐标为F (-65,185)或(-2,2).454.【解】(1)由题意,得{-12×(-4)+b =8(-4)2×a =8,解得{a =12b =6.(2)①如图,分别过点A,D 作AM ⊥y 轴于点M,DN ⊥y 轴于点N.由(1)可知,直线AB 的解析式为y =-12x +6,∴C(0,6),∵∠AMC =∠DNC =∠ACD =90∘,∴∠ACM +∠DCN =90∘,∠DCN +∠CDN =90∘,∴∠ACM =∠CDN∵CA =CD,∴△AMC ≅△CND(SAS)∴AN =AM =4,DN =CM =2,∴D(-2,2),当x =-2时,y =12×22=2,∴点D 在抛物线y =12x 2上.②由{y =-12x +6y =12x 2,解得{x =-4y =8或{x =3y =92,∴点B 的坐标为(3,92),∴直线AD 的解析式为y =-3x -4,直线BD 的解析式为y =12x +3,设E (t,12t 2),∴直线EF 的解析式为y =-12x +12t 2+12t,由{y =-12x +12t 2+12t y =12x 2,解得{y =t y =12t 2或{x =-t -1y =12(t +1)2,∴F (-t -1,12(t +1)2),∵△GEF ∼△DBA,EF//AB,由题意可知,EG//DB,GF//AD,∴直线EG 的解析式为y =12x +12t 2-12t,直线FG 的解析式为y =-3x +12(t +1)2-3(t +1),联立,解得:{x =-37t -57y =12t 2-57t -514,∴G (-37t -57,12t 2-57t -514),令-37t -57=0,解得t =-53,∴G (0,209)455.【解】(1)把A(3,-3)和点B(33,0)代入拋物线得:{3a +3b =-327a +33b =0,解得:a =12,b =-332,则抛物线解析式为y =12x 2-332x;(2)存在,分两种情况讨论:第一种情况:当P 在直线AD 上方时,设P 坐标为(x,12x 2-332x ),则有AD =x -3,PD =12x 2-332x +3,①当△OCA ∽△ADP 时,OCAD =CADP ,即3x -3=312x 2-332x +3,整理得:3x 2-93x +18=23x -6,即3x 2-113x +24=0,解得:x =833或x =3(舍去),此时P(833,-43);②.当△OCA ∽△PDA 时,OCPD =CAAD ,即312x 2-332x +3=3x-3,整理得:3x 2-9x +63=6x -63,即x 2-53x +12=0,解得:x =43或x =3(舍去),此时P(43,6);当点P(0,0)时,也满足△OCA ∽△PDA;第二种情况,当P 在直线AD 下方时,同理可得:P 的坐标为(433,-103),综上所述,P 的坐标为(833,-43)或(43,6)或(433,-103)或(0,0);(3)在Rt △AOC 中,OC =3,AC =3,根据勾股定理得:OA =23,∵12OC ⋅AC =12OA ⋅h,∴h =32,∵S △AOC =13S △AOQ =332,∴△AOQ 边OA 上的高为∴S =12×PM ×OA =12(-x 2-3x )×392,过O 作OM ⊥OA,截取OM =92,过M 作MN//=-32(x +32)2+278.当x =-32时,S 最大=278,OA,交y 轴于点N,如下图所示:在Rt △OMN 中,ON =2OM =9,即N(0,9),过M 作MH ⊥x 轴,在Rt △OMH 中,MH =12OM =94,OH =32OM =934,即M (934,94),设直线MN 解析式为y =kx +9,把M(934,94)代入得:94=934k +9,即k =-3,即y =-3x +9,联立得:{y =-3x +9y =12x 2-332x,解得:{x =33y =0或{x =-23y =15,即Q(33,0)(此时与B 点重合)或(-23,15),则拋物线上存在点Q,使得S △AOC =13S △AOQ ,此时点Q 的坐标为(33,0)或(-23,15).。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
二次函数中的三角形相似
二次函数中的三角形相似三角形相似是中学数学重要数学工具之一,是我们必须掌握的内容,学习了二次函数后,与三角形相似相结合的题型成为了中考的热点,下面给大家列举一下相关的题型。
一、 求关系式型例1、 如图1所示,在边长为a 的正方形ABCD 的BC 边上任取一点E ,作EF ⊥AE ,交CD 于点F ,如果BE=x ,CF=y ,那么x 与y 的函数关系式 为()A 、21y x x a =-+B 、2x y x a =-C 、2x y x a =-+D 、2x y x a=+ 分析:欲求x 与y 的函数关系式,发现它们分别处在Rt ΔABE 和Rt ΔECF 中,由EF ⊥AE ,易求Rt ΔABE 和Rt ΔECF 相似,根据对应边比例关系即可求出。
解:在正方形ABCD 中,∠B=∠C=90º,∵EF ⊥AE ,∴∠AEB+∠CEF=90º,又∵∠AEB+∠BAE=90º,∴∠CEF=∠BAE∴Rt ΔABE ∽ Rt ΔECF ,AB BE EC CF =,a x a x y =-,∴21y x x a=-+,选A. 例2、 如图2所示,等腰Rt ΔABC 的斜边AB 所在的直线上有点E 、F ,且∠E+∠F=45º,AE=3,设AB=x,BF=y ,则y 关于x 的函数关系式为 。
分析:由等腰Rt ΔABC 及∠E+∠F=45º,利用外角的 知识,易得∠E=∠BCF ,∠ECA=∠F ,从而证得ΔEAC ∽ ΔCBF ,根据对应边比例关系即可求出。
解:在等腰Rt ΔABC 中,AB=x ,得∠CAB=∠ABC=45º,AC BC x ==,又因为∠CAB=∠E+∠ECA ,∠E+∠F=45º,得∠ECA=∠F ,同理可得∠E=∠BCF ,所以,ΔEAC ∽ ΔCBF ,EA AC CB BF =22y=,∴216y x =. 二、 求面积最大型例3、如图3所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m 长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长为xm , ⑴要使鸡场面积最大,鸡场的长应为多少?⑵如果中间有n (n 是大于1的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多少? 分析:长方形的长为xm ,则可以把它的宽表示出来,再根据长方形的面积公式得出关系式,C D E y F 图1C EA B F图2 图3根据最大值去求出即可。
中考数学二次函数存在性问题 及参考答案
中考数学二次函数存在性问(Wen)题 及参考答案一、二次函数中相似三(San)角形的存在性问题 1.如图,把抛(Pao)物线向左(Zuo)平移(Yi)1个(Ge)单位,再向下平移(Yi)4个单位,得(De)到抛物线2y x =.所得抛物线与2y x =轴交于A ,B 两点(点A 在点B 的左边),与2y x =轴交于点C ,顶点为D.(1)写出2y x =的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM 2y x =x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存(Cun)在性问题3.如图,抛物(Wu)线2y x =与(Yu)双曲线2y x =相(Xiang)交于点(Dian)A ,B .已(Yi)知点(Dian)B 的坐标(Biao)为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥2y x =轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3).(1)求抛物线的解析式;(3分)(2)点(Dian)M 为(Wei)y 轴上(Shang)任意一点,当点M 到(Dao)A 、B 两点的距离之和为最小时(Shi),求此时点M 的(De)坐标;(2分(Fen))(3)在(Zai)第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分)(4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,请说明理由。
专题07 二次函数背景下的三角形相似(全等)(解析版)
备战2019年中考数学压轴题之二次函数专题07 二次函数背景下的三角形相似(全等)【方法综述】三角形全等是三角形相似的特殊情况。
三角形的全等和相似是综合题中的常见要素,解答时注意应用全等三角形和相似的判定方法。
另外,注意题目中“”与全等表述、“”和相似表述的区别。
全等和相似的符号,标志着三角形全等(相似)的对应点的一、一对应关系。
解答时,对于确定的对应边角可以直接利用于解题。
而全等、相似的语言表述,标志着对应点之间的组合关系,解答时,要进行对应边的分类讨论。
【典例示范】类型一例1:(陕西省渭南市大荔县中考数学三模试题)如图,已知抛物线与x轴交于A、B两点,其中点A的坐标为,抛物线的顶点为P.求b的值,并求出点P、B的坐标;在x轴下方的抛物线上是否存在点M,使≌?如果存在,请直接写出点M的坐标;如果不存在,试说明理由.【答案】存在,【解析】抛物线经过,,解得:,抛物线的表达式为.,点P的坐标为令得:,解得或,的坐标为.存在,点如图:过点P作轴,垂足为C,连接AP、BP,作的平分线,交PB与点N,交抛物线与点M,连接PM、BM.,,,,,,是等边三角形,,.,,.在和中,,≌.存在这样的点M,使得≌.,,点N是PB的中点,设直线AM的解析式为,将点A和点N的坐标代入得:,解得:,直线AM的解析式为.将代入抛物线的解析式得:,解得:或舍去,当时,,点M的坐标为针对训练1.(2018年九年级数学北师大版下册:第二章检测卷)如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的解析式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE.若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1) y=12x2-3x-8;(2)点F的坐标为(3+17,-4)或(3-17,-4).【解析】(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴4280 {36688a ba b--+--==解得1 {23 ab-==∴抛物线的函数表达式为y=12x2−3x−8;∵y=12x2−3x−8=12(x −3)2−252,∴抛物线的对称轴为直线x=3.又抛物线与x轴交于A,B两点,点A 的坐标为(-2,0).∴点B的坐标为(8,0),设直线L的函数表达式为y=kx.∵点D(6,-8)在直线L上,∴6k=-8,解得k=-43,∴直线L的函数表达式为y=-43x,∵点E为直线L和抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为-43×3=-4,∴点E的坐标为(3,-4);(2)抛物线上存在点F,使△FOE≌△FCE.∵OE=CE=5,∴FO=FC,∴点F在OC的垂直平分线上,此时点F的纵坐标为-4,∴12x2-3x-8=-4,解得x=3±17,∴点F的坐标为(3-17,-4)或(3+17,-4).2.(河南省濮阳市2018届九年级中考数学二模试题)如图,一次函数与坐标轴分别交于A,B两点,抛物线经过点A,B,点P从点B出发,以每秒2个单位长度的速度沿射线BA运动,点Q从点A出发,以每秒1个单位长度的速度沿射线AO运动,两点同时出发,运动时间为t秒.求此抛物线的表达式;求当为等腰三角形时,所有满足条件的t的值;点P在线段AB上运动,请直接写出t为何值时,的面积达到最大?此时,在抛物线上是否存在一点T,使得≌?若存在,请直接写出点T的坐标;若不存在,请说明理由.【答案】(1);(2)当为等腰三角形时,t的值为、或或4;(3)点T的坐标为.【解析】把代入中,得.把代入中,得.,把,分别代入中,得,,抛物线的表达式为,,由勾股定理,得,.运动t秒后,,.为等腰三角形,有,,三种情况,当时,过点Q作于点D.在中,,,.解得;当时,若点P在x轴上方的直线AB上,,,,解得;若点P在x轴下方的直线AB上,,,解得:;当时,过点P作于点E.则,在中,,.解得:综上所述,当为等腰三角形时,t的值为、或或4.过点P作于点F,延长FP交抛物线与点T.为底边AQ上的高.,,..当时,的面积最大此时点P为AB的中点,且.连接OP,则,点,点T的横坐标为,将代入抛物线的解析式得:..在中,由勾股定理可知:,.≌.点T的坐标为.类型二全等三角形的存在性探究例2.(四川省眉山市洪雅县2018届九年级中考适应性考)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.【答案】(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).【解析】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴抛物线解析式为:y=-x2-x+3;(2)①存在点D,使得△APQ和△CDO全等,当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,则点N为AC中点.∴DN时△ABC的中位线,∵DN=DM=BC=,∴OM=DM-OD=∴点M(,0)针对训练1.如图,在平面直角坐标系中,以点M(2,0)为圆心的⊙M与y轴相切于原点O,过点B(﹣2,0)作⊙M的切线,切点为C,抛物线经过点B和点M.(1)求这条抛物线解析式;(2)求点C的坐标,并判断点C是否在(1)中抛物线上;(3)动点P从原点O出发,沿y轴负半轴以每秒1个单位长的速度向下运动,当运动t秒时到达点Q处.此时△BOQ与△MCB 全等,求t的值.【答案】(1)y=﹣x2+;(2)点C在(1)的抛物线上;(3)t=2.【解析】(1)将点M(2,0)、B(﹣2,0)代入y x2+bx+c中,得:解得:∴抛物线的解析式:y x2.(2)连接MC,则MC⊥BC;过点C作CD⊥x轴于D,如图,在Rt△BCM中,CD⊥BM,CM=2,BM=4,则:DM1,CD,OD=OM﹣DM=1,∴C(1,).当x=1时,y x2,所以点C在(1)的抛物线上.(3)△BCM和△BOQ中,OB=CM=2,∠BOQ=∠BCM=90°,若两三角形全等,则:OQ=BC,∴当t=2时,△MCB和△BOQ全等.2.(广西田阳县实验中学2019届九年级中考一)如图所示,抛物线(m>0)的顶点为A,直线与轴的交点为点B.(1)求出抛物线的对称轴及顶点A的坐标(用含的代数式表示);(2)证明点A在直线上,并求∠OAB的度数;(3)动点Q在抛物线对称轴上,问:抛物线上是否存在点P,使以点P、Q、A为顶点的三角形与△OAB全等?若存在,求出的值,并写出所有符合上述条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线的对称轴为直线,顶点A的坐标为(,0);(2)∠OAB=30°;(3)存在,①=时,P(0,-),P(,-);②=时,P(,-3),P(3+,-3);③=2时,P(,-3),P(,-3);④=时,P(,-),P(,-).【解析】(1)对称轴:x=m;顶点:A(m,0).(2)将x=m代入函数y=x-m,得y=×m-m=0∴点A(m,0)在直线l上.当x=0时,y=-m,∴B(0,-m)tan∠OAB=,∴∠OAB=30度.(3)以点P、Q、A为顶点的三角形与△OAB全等共有以下四种情况:①当∠AQP=90°,PQ=m,AQ=m时,如图1,此时点P在y轴上,与点B重合,其坐标为(0,-m),代入抛物线y=-(x-m)2得-m=-3m2,∵m>0,∴m=这时有P1(0,-)其关于对称轴的对称点P2(,- )也满足条件.②当∠AQP=90°,PQ=m,AQ=m时点P坐标为(m-m,-m),代入抛物线y=-(x-m)2得m=m2,∵m>0,∴m=这时有P3(3-,-3)还有关于对称轴的对称点P4(3+,-3).③当∠APQ=90°,AP=m,PQ=m时点P坐标为(m,−m),代入抛物线y=-(x-m)2得m=m2,∵m>0,∴m=2这时有P5(,-3)还有关于对称轴的对称点P6(3,-3).④当∠APQ=90°,AP=m,PQ=m时点P坐标为(m,−m),代入抛物线y=-(x-m)2得m=m2,∵m>0,∴m=这时有P7(,-)还有关于对称轴对称的点P8(,-).所以当m=时,有点P1(0,-),P2(,-);当m=时,有点P3(3-,-3),P4(3+,-3);当m=2时,有点P5(,-3),P6(3,-3);当m=时,有点P7(,-),P8(,-).3.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x 轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R 为顶点的三角形与△AMG全等,求直线PR的解析式.【答案】(1)y2=-x2+x-;(2)存在;(3)y=﹣x+或y=﹣.【解析】(1)由已知,c=,将B(1,0)代入,得:a﹣=0,解得a=﹣,抛物线解析式为y1=x2-x+,∵抛物线y1平移后得到y2,且顶点为B(1,0),∴y2=﹣(x﹣1)2,即y2=-x2+x-;(2)存在,如图1:抛物线y2的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,),过点T作TE⊥y轴于E,则TC2=TE2+CE2=12+()2=t2﹣t+,TA2=TB2+AB2=(1+3)2+t2=t2+16,AC2=,当TC=AC时,t2﹣t+=,解得:t1=,t2=;当TA=AC时,t2+16=,无解;当TA=TC时,t2﹣t+=t2+16,解得t3=﹣;当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形;(3)如图2:设P(m,),则Q(m,),∵Q、R关于x=1对称∴R(2﹣m,),①当点P在直线l左侧时,PQ=1﹣m,QR=2﹣2m,∵△PQR与△AMG全等,∴当PQ=GM且QR=AM时,m=0,∴P(0,),即点P、C重合,∴R(2,﹣),由此求直线PR解析式为y=﹣x+,当PQ=AM且QR=GM时,无解;②当点P在直线l右侧时,同理:PQ=m﹣1,QR=2m﹣2,则P(2,﹣),R(0,﹣),PQ解析式为:y=﹣;∴PR解析式为:y=﹣x+或y=﹣.类型三确定的相似三角形条件的判定应用例3:(重庆市九龙坡区西彭三中2019届九年级(上)期末)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)点P在线段AB上运动的过程中,是否存在点Q,使得△BOD∽△QBM?若存在,求出点Q的坐标;若不存在,请说明理由.(3)已知点F(0,),点P在x轴上运动,试求当m为何值时以D、M、Q、F为顶点的四边形是平行四边形.【答案】(1)y=﹣x2+x+2;(2)存在,点Q的坐标为(3,2);(3)m=﹣1或m=3或m=1+或1﹣时,四边形DMQF是平行四边形.【解析】(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如图所示:∵当△BOD∽△QBM时,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,∴,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);(3)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当|﹣m2+m+4|=时,四边形DMQF是平行四边形,解得:m=﹣1或m=3或m=1+或1﹣即m=﹣1或m=3或m=1+或1﹣时,四边形DMQF是平行四边形.针对训练1.(湖南省长沙一中2018届九年级(下)段考)如图1,一次函数y=﹣x+3的图象交x轴于点A,交y轴于点D,抛物线y =ax2+bx+c(a≠0)的顶点为C,其图象过A、D两点,并与x轴交于另一个点B(B点在A点左侧),若;(1)求此抛物线的解析式;(2)连结AC、BD,问在x轴上是否存在一个动点Q,使A、C、Q三点构成的三角形与△ABD相似.如果存在,求出Q 点坐标;如果不存在,请说明理由.(3)如图2,若点P是抛物线上一动点,且在直线AD下方,(点P不与点A、点D重合),过点P作y轴的平行线l与直线AD交于点M,点N在直线AD上,且满足△MPN∽△ABD,求△MPN面积的最大值.【答案】(1)y=x2﹣4x+3;(2)见解析;(3)△MPN的面积的最大值为:.【解析】(1)当x=0时,y=﹣x+3=3,则D(3,0);当y=0时,﹣x+3=0,解得x=3,则A(3,0),∵OD=OA,∴△OAD为等腰直角三角形,∴AD=3,∵,∴AB=2,∴B(1,0),设抛物线解析式为y=a(x﹣1)(x﹣3),把D(0,3)代入得a•(﹣1)•(﹣3)=3,解得a=1,∴抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3;(2)作CH⊥x轴,如图1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴C(2,﹣1)∴AH=CH=1,∴△ACH为等腰直角三角形,∴∠CAH=45°,AC=,∵△OAD为等腰直角三角形,∴∠DAO=45°,∵∠CAQ=∠DAB,∴当时,△AQC∽△ADB,即,解得AQ=3,此时Q(0,0);当时,△AQC∽△ABD,即,解得AQ=,此时Q(,0);综上所述,Q点的坐标为(0,0)或(,0);(3)作PE⊥AD于E,如图2,∵△MPN∽△ABD,∴,∴MN=MP,设P(x,x2﹣4x+3),则M(x,﹣x+3),∴MP=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,当x=时,MP有最大值,∴MN的最大值为=,∵∠PME=45°,∴PE=PM,∴PE的最大值为×=,∴△MPN的面积的最大值为××=.2.(浙江省嘉兴市海宁新仓中学2019届九年级上学期数学第一次月考)如图,抛物线y=ax2+bx+c过原点O、点A (2,﹣4)、点B (3,﹣3),与x轴交于点C,直线AB交x轴于点D,交y轴于点E.(1)求抛物线的函数表达式和顶点坐标;(2)直线AF⊥x轴,垂足为点F,AF上取一点G,使△GBA∽△AOD,求此时点G的坐标;(3)过直线AF左侧的抛物线上点M作直线AB的垂线,垂足为点N,若∠BMN=∠OAF,求直线BM的函数表达式.【答案】(1)y=x2-4x;(2,-4);(2)G(2,);(3)y=或y=-3x+6.【解析】(1)解:将原点O(0,0)、点A (2,﹣4)、点B (3,﹣3),分别代入y=ax2+bx+c,得,解得,∴y=x2-4x= ,∴顶点为(2,-4).(2)解:设直线AB为y=kx+b,由点A(2,-4),B(3,-3),得解得,∴直线AB为y=x-6.当y=0时,x=6,∴点D(6,0).∵点A(2,-4),D(6,0),B(3,-3),∴OA= ,OD=6,AD= ,AF=4,OF=2,DF=4,AB= ,∴DF=AF,又∵AF⊥x轴,∴∠AD0=∠DAF=45°,∵△GBA∽△AOD,∴,∴,解得,∴FG=AF-AG=4- ,∴点G(2,).(3)解:如图1,∵∠BMN=∠OAF,,∴∠MBN=∠AOF,设直线BM与AF交于点H,∵∠ABH=∠AOD,∠HAB=∠ADO,∴∴,则,解得AH= ,∴H(2,).设直线BM为y=kx+b,∵将点B、G的坐标代入得,解得.∴直线BM的解析式为y= ;如图2,BD=AD-AB= .∵∠BMN=∠OAF,∠GDB=∠ODA,∴△HBD∽△AOD.∴,即,解得DH=4.∴点H的坐标为(2,0).设直线BM的解析式为y=kx+b.∵将点B和点G的坐标代入得:,解得k=-3,b=6.∴直线BM的解析式为y=-3x+6.综上所述,直线MB的解析式为y= 或y=-3x+6.3.(江西省景德镇市2018届九年级第二次质检)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线系数”.(1)任意抛物线都有“抛物线三角形”是______(填“真”或“假”)命题;(2)若一条抛物线系数为[1,0,-2],则其“抛物线三角形”的面积为________;(3)若一条抛物线系数为[-1,2b,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;(4)在(3)的前提下,该抛物线的顶点为A,与x轴交于O,B两点,在抛物线上是否存在一点P,过P作PQ⊥x轴于点Q,使得△BPQ∽△OAB,如果存在,求出P点坐标,如果不存在,请说明理由.【答案】(1)假;(2);(3)y=-x2+2x 或y=-x2-2x;(4)P(1,1)或P(-1,-3)或P(1,-3)或(-1,1).【解析】(1)当△>0时,抛物线与x轴有两个交点,此时抛物线才有“抛物线三角形”,故此命题为假命题;(2)由题意得:,令y=0,得:x=,∴S==;(3)依题意:y=-x2+2bx,它与x轴交于点(0,0)和(2b,0);当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形.∵y=-x2+2bx=,∴顶点为(b,b2),由直角三角形斜边上的中线等于斜边的一半得到:,∴,解得:b=0(舍去)或b=±1,∴y=-x2+2x 或y=-x2-2x.(4)①当抛物线为y=-x2+2x 时.∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2+2a),∴Q((a,0),则|-a2+2a|=|2-a|,即.∵a-2≠0,∴,∴a=±1,∴P(1,1)或(-1,-3).②当抛物线为y=-x2-2x 时.∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2-2a),∴Q((a,0),则|-a2-2a|=|2+a|,即.∵a+2≠0,∴,∴a=±1,∴P(1,-3,)或(-1,1).综上所述:P(1,1)或P(-1,-3)或P(1,-3,)或(-1,1).类型四相似三角形存在性探究例4. (江苏省苏州市张家港市)如图,直线与轴交于点,与轴交于点,抛物线经过点.(1)求抛物线的解析式,(2)已知点是抛物线上的一个动点,并且点在第二象限内,过动点作轴于点,交线段于点.①如图1,过作轴于点,交抛物线于两点(点位于点的左侧),连接,当线段的长度最短时,求点的坐标,②如图2,连接,若以为顶点的三角形与相似,求的面积.【答案】(1) ;(2) ①点的坐标为,点的坐标为,点的坐标为;②【解析】(1)把代入得,由,得,(2) ①由题意可知,四边形是矩形,所以.由(1)可知,当时,最短,即最短,此时点是的中点,所以,,点的坐标为,将代入得,,点的坐标为,将代入得,,解得,,点的坐标为,点的坐标为②当时(如图2),则、关于抛物线的对称轴对称,的坐标为,点的坐标为,,当时(如图3),则是等腰直角三角形,,过点作于点,设点的坐标为,,,,解得,.针对训练1.(贵州黔东南州锦屏县敦寨中学2018-2019学年度九年级(上)期末数学试卷)如图,在平面直角坐标系中,直线y=-x+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)点A的坐标为.(2)求这条抛物线所对应的函数表达式.(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.【答案】(1)(4,0)(2)y=﹣x2+x+2(3),(4)﹣1或﹣或【解析】(1)在y=-x+2中,令y=0,则x=4,∴A(4,0);故答案为:(4,0);(2)∵在y=-x+2中,令x=0,则y=2,∴B(0,2),把A(4,0),B(0,2)代入y=﹣x2+bx+c,得b=,∴这条抛物线所对应的函数表达式为y=﹣x2+x+2;(3)∵P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),∵且∠BFE=∠AEP,∴∠BEP=∠APF=90°或∠EBF=∠APF=90°,则有BE⊥PE,∴E点的纵坐标为2,∴解得m=0(舍去)或m=,如图1,过点E作EC⊥y轴于点C,则∠EBC+∠BEC=90°,EC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠EBF=90°,∴∠EBC+∠ABO=90°,∴∠ABO=∠BEC,∴Rt△ECB∽Rt△BOA,∴,∴,解得m=0(舍去)或m=,解得,m=,综上所述,以B、E、F为顶点的三角形与△FPA相似,m的值=,(4)由(1)知,P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),∵E、F、P三点为“共谐点”,∴有F为线段PE的中点、P为线段FE的中点或E为线段PF的中点,当F为线段PE的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=4(三点重合,舍去)或m=;当P为线段FE的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=4(舍去)或m=﹣1;当E为线段FP的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=4(舍去)或m=﹣;综上可知当E、F、P三点成为“共谐点”时m的值为﹣1或﹣或.2.(广东省汕头市龙湖区2019届九年级上学期期末质量检测)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1) y=-x2+x-2;(2)点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).【解析】解:(1)∵该抛物线过点C(0,-2),∴可设该抛物线的解析式为y=ax2+bx-2.将A(4,0),B(1,0)代入,得,解得,∴此抛物线的解析式为.(2)存在,设P点的横坐标为m,则P点的纵坐标为-m2+m-2,当1<m<4时,AM=4-m,PM=-m2+m-2.又∵∠COA=∠PMA=90°,∴①当==时,△APM∽△ACO,即4-m=2(-m2+m-2).解得m1=2,m2=4(舍去),∴P(2,1).②当==时,△APM∽△CAO,即2(4-m)=-m2+m-2.解得m1=4,m2=5(均不合题意,舍去),∴当1<m<4时,P(2,1).类似地可求出当m>4时,P(5,-2).当m<1时,P(-3,-14)或P(0,-2),综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).3.(2018年四川省绵阳市中考数学试卷)如图,已知抛物线过点A(,-3) 和B(3,0),过点A作直线AC//x轴,交y轴与点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1);(2)P点坐标为(4,6)或(,- );(3)Q点坐标(3,0)或(-2,15)【解析】(1)把,和点,代入抛物线得:,解得:,,则抛物线解析式为;(2)当在直线上方时,设坐标为,则有,,当时,,即,整理得:,即,解得:,即或(舍去),此时,;当时,,即,整理得:,即,解得:,即或(舍去),此时,;当点时,也满足;当在直线下方时,同理可得:的坐标为,,综上,的坐标为,或,或,或;(3)在中,,,根据勾股定理得:,,,,边上的高为,过作,截取,过作,交轴于点,如图所示:在中,,即,过作轴,在中,,,即,,设直线解析式为,把坐标代入得:,即,即,联立得:,解得:或,即,或,,则抛物线上存在点,使得,此时点的坐标为,或,.4.(湖南省衡阳市2019届中考数学试卷)如图,已知直线分别交轴、轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC轴于点C,交抛物线于点D.(1)若抛物线的解析式为,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【答案】(1)①②答案见解析(2)存在,或【解析】(1)①如图1,,顶点为的坐标为,,当时,,则点坐标为,;②不存在.理由如下:,设点坐标为,则,,,当时,四边形为平行四边形,即,解得(舍去),,此时点坐标为,,,,平行四边形不为菱形,不存在点,使四边形为菱形;(2)存在.如图2,,,则,当时,,则,,设抛物线的解析式为,把代入得,解得,抛物线的解析式为,当时,,则,,,,当时,,即,解得,此时抛物线解析式为;当时,,即,解得,此时抛物线解析式为;综上所述,满足条件的抛物线的解析式为或.5.(湖北省襄州区2018届九年级上学期)如图,已知抛物线y=ax2+x+c 与x 轴交于A、B 两点,与y 轴交于C 点,且A(2,0)、C(0,﹣4),直线l:y=﹣x﹣4 与x 轴交于点D,点P 是抛物线y=ax2+x+c 上的一动点,过点P 作PE⊥x 轴,垂足为E,交直线l 于点F.(1)试求该抛物线表达式;(2)如图1,若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;(3)如图2,过点P 作PH⊥y 轴,垂足为H,连接AC.①求证:△ACD 是直角三角形;②试问是否存在这样的点P,使得以点P、C、H 为顶点的三角形与△ACD 相似?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.【答案】(1)y=;(2)P 的坐标为(﹣8,﹣4)或(﹣2.5,﹣);(3)①详见解析;②点P 的横坐标为2或﹣5.5 或﹣10.5 或﹣18 时,使得以点P、C、H为顶点的三角形与△ACD 相似.【解析】解:(1)把A(2,0)、C(0,﹣4)代入y=ax2+x+c 中得:,解得:,∴该抛物线表达式为:y=x2+ x﹣4;(2)如图1,设点P 的坐标为(x,x2+x﹣4),则F(x,﹣x﹣4),∵点P在第三象限,∴PF=(﹣x﹣4)﹣(x2+ x﹣4)=﹣﹣x,∵C(0,﹣4),∴OC=4,∵四边形PCOF 是平行四边形,且PF∥OC,∴PF=OC=4,即﹣﹣x=4,2x2+21x+40=0,(x+8)(2x+5)=0,x1=﹣8,x2=﹣2.5,当y=0 时,x2+ x﹣4=0,解得:x1=﹣10,x2=2,∴P 的坐标为(﹣8,﹣4)或(﹣2.5,﹣);(3)①当y=0 时,﹣x﹣4=0,x=﹣8,∴D(﹣8,0),由勾股定理得:DC2=82+42=80,AC2=22+42=20,AD2=102=100,∴AD2=AC2+DC2,∴∠ACD=90°,∴△ACD 是直角三角形;②设点P 的坐标为(x,x2+x﹣4),由①知:∠ACD=90°,∠PHC=90°,AC==2 ,CD==4,∴=如图3,点P 在第一象限,当△ACD∽△PHC 时,则==,∴CH=2PH,∴x2+ x﹣4﹣(﹣4)=2x,解得:x1=0(P 与C 重合,舍去),x2=2,∴此时点P 的横坐标为2;如图4,点P 在第一象限,当△ACD∽△CHP 时,则=,∴PH=2CH,∴﹣x=2[﹣4﹣(x2+x﹣4)],解得:x1=0(舍去),x2=﹣5.5,∴此时点P 的横坐标为﹣5.5;如图5,点P 在第二象限,当△ACD∽△CHP 时,则=,∴PH=2CH,∴﹣x=2[(x2+ x﹣4)﹣(﹣4)],解得:x1=0(舍),x2=﹣10.5,∴此时点P 的横坐标为﹣10.5(P 在直线l 上);如图6,点P 在第二象限,当△ACD∽△PHC 时,则==,∴CH=2PH,∴[(x2+ x﹣4)﹣(﹣4)]=﹣2x,解得:x1=0(舍),x2=﹣18,∴此时点P 的横坐标为﹣18;综上所述,点P 的横坐标为2 或﹣5.5 或﹣10.5 或﹣18 时,使得以点P、C、H为顶点的三角形与△ACD 相似.6.(江西省南昌市2018届九年级中考三模数学)如图,一次函数y=﹣x﹣2的图象与二次函数y=ax2+bx﹣4的图象交于x 轴上一点A,与y 轴交于点B,在x轴上有一动点C.已知二次函数y=ax2+bx﹣4的图象与y轴交于点D,对称轴为直线x =n(n<0),n是方程2x2﹣3x﹣2=0的一个根,连接AD.(1)求二次函数的解析式.(2)当S△ACB=3S△ADB时,求点C的坐标.(3)试判断坐标轴上是否存在这样的点C,使得以点A、B、C组成的三角形与△ADB 相似?若存在,试求出点C的坐标;若不存在,请说明理由.【答案】(1)y=2x2+2x﹣4;(2)点C 的坐标为(4,0)或(﹣8,0);(3)在x 轴上有一点C(﹣4,0)或(﹣6,0),使得以点A、B、C 组成的三角形与△ADB 相似.【解析】(1)在y=-x-2中,令y=0,则x=-2∴A(-2,0).由2x2-3x-2=0,得x1=-,x2=2,∴二次函数y=ax2+bx-4的对称轴为直线x=-,∴,解得,∴二次函数的解析式为:y=2x2+2x-4;(2)∵S△ADB=BD•OA=2,∴S△ACB=3S△ADB=6.∵点C在x轴上,∴S△ACB=AC•OB=×2AC=6,∴AC=6.∵点A的坐标为(-2,0),∴当S△ACB=3S△ADB时,点C的坐标为(4,0)或(-8,0);(3)存在.理由:令x=0,一次函数与y轴的交点为点B(0,-2),∴AB=,∠OAB=∠OBA=45°.∵在△ABD中,∠BAD、∠ADB都不等于45°,∠ABD=180°-45°=135°,∴点C在点A的左边.①AC与BD是对应边时,∵△ADB∽△BCA,∴=1,∴AC=BD=2,∴OC=OA+AC=2+2=4,∴点C的坐标为(-4,0).②当AC与AB是对应边时,∵△ADB∽△CBA∴=,∴AC=AB=×2=4,∴OC=OA+AC=2+4=6,∴点C的坐标为(-6,0).综上所述,在x轴上有一点C(-4,0)或(-6,0),使得以点A、B、C组成的三角形与△ADB相似.7.(人教版九年级上学期第二十二章二次函数单元检测)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点.(1)求这个二次函数y=x2+bx+c的解析式.(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标.(3)如果点P在运动过程中,能使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.【答案】(1)y=x2﹣2x﹣3(2)(2)(,-)(3)P、C、B为顶点的三角形与△AOC相似,此时点P的坐标(1,﹣4)【解析】(1)将B、C点代入函数解析式,得:,解得:,这个二次函数y=x2+bx+c的解析式为y=x2﹣2x﹣3;(2)∵四边形POP′C为菱形,∴OC与PP′互相垂直平分,∴y P,即x2﹣2x﹣3,解得:x1,x2(舍),P();(3)∵∠PBC<90°,∴分两种情况讨论:①如图1,当∠PCB=90°时,过P作PH⊥y轴于点H,BC的解析式为y=x﹣3,CP的解析式为y=﹣x﹣3,设点P的坐标为(m,﹣3﹣m),将点P代入代入y═x2﹣2x﹣3中,解得:m1=0(舍),m2=1,即P(1,﹣4);AO=1,OC=3,CB,CP,此时3,△AOC∽△PCB;②如图2,当∠BPC=90°时,作PH⊥y轴于H,作BD⊥PH于D.∵PC⊥PB,∴△PHC∽△BDP,∴.设点P的坐标为(m,m2﹣2m﹣3),则PH=m,HC=-(m2﹣2m﹣3)-(-3)=-m2+2m,BD=-(m2﹣2m﹣3),PD=3-m,∴,∴,解得:m或(舍去).当m时,m2﹣2m﹣3=.∵△PHC∽△BDP,∴==3,以P、C、B为顶点的三角形与△AOC不相似.综上所述:P、C、B为顶点的三角形与△AOC相似,此时点P的坐标(1,﹣4).8.(江苏省东台市第二联盟2019届九年级12月月考)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.⑴求抛物线的解析式及点C的坐标;⑵求证:△ABC是直角三角形;⑶若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC 相似?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x;C(-1,-3);(2)证明过程略;(3)(,0)或(,0)或(﹣1,0)或(5,0).【解析】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x-1)2+1,又抛物线过原点,∴0=a(0-1)2+1,解得a=-1,∴抛物线解析式为y=-(x-1)2+1,即y=-x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(-1,-3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,-x2+2x),∴ON=|x|,MN=|-x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有或,当时,则有,即|x||-x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|-x+2|=,即-x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当时,则有,即|x||-x+2|=3|x|,∴|-x+2|=3,即-x+2=±3,解得x=5或x=-1,此时N点坐标为(-1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(-1,0)或(5,0).9.(江苏省东台市第二联盟2019届九年级12月月考)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.⑴求抛物线的解析式及点C的坐标;⑵求证:△ABC是直角三角形;⑶若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC 相似?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x;C(-1,-3);(2)证明过程略;(3)(,0)或(,0)或(﹣1,0)或(5,0).【解析】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x-1)2+1,又抛物线过原点,∴0=a(0-1)2+1,解得a=-1,∴抛物线解析式为y=-(x-1)2+1,即y=-x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(-1,-3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,-x2+2x),∴ON=|x|,MN=|-x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有或,当时,则有,即|x||-x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|-x+2|=,即-x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当时,则有,即|x||-x+2|=3|x|,∴|-x+2|=3,即-x+2=±3,解得x=5或x=-1,此时N点坐标为(-1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(-1,0)或(5,0).10.(段考模拟君之2018-2019学年九年级数学上学期期末原创卷A卷)如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.(1)求二次函数的解析式;(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.【答案】(1)抛物线解析式y=x2–x+1;(2)点P坐标为(1,0),(3,0),(,0),(,0);(3)a=或.【解析】(1)∵二次函数y=0.5x2+bx+c的图象过点B(0,1)和C(4,3)两点,∴,解得,∴抛物线解析式y=x2–x+1.(2)设点P坐标为(x,0).∵点P(x,0),点B(0,1),点C(4,3),∴PB==,CP==,BC==2,若∠BCP=90°,则BP2=BC2+CP2.∴x2+1=20+x2–8x+25,∴x=.若∠CBP=90°,则CP2=BC2+BP2.∴x2+1+20=x2–8x+25,∴x=.若∠BPC=90°,则BC2=BP2+CP2.∴x2+1+x2–8x+25=20,∴x1=1,x2=3,综上所述:点P坐标为(1,0),(3,0),(,0),(,0).(3)a=或.∵抛物线解析式y=x2–x+1与x轴交于点D,点E,∴0=x2–x+1,∴x1=1,x2=2,∴点D(1,0).∵点B(0,1),C(4,3),∴直线BC解析式y=x+1.当y=0时,x=–2,∴点A(–2,0).∵点A(–2,0),点B(0,1),点D(1,0),∴AD=3,AB=.设经过t秒,∴AP=2t,AQ=at,若△APQ∽△ADB,∴,即,∴a=,若△APQ∽△ABD,∴,即,∴a=.综上所述:a=或.。
重难点02二次函数中相似三角形问题(原卷版)
重难点02 二次函数中相似三角形问题二次函数背景下的相似三角形考点分析:1.先求函数的解析式,然后在函数的图像上探求符合几何条件的点;2.简单一点的题目,就是用待定系数法直接求函数的解析式;3.复杂一点的题目,先根据图形给定的数量关系,运用数形结合的思想,求得点的坐标,继而用待定系数法求函数解析式;4.还有一种常见题型,解析式中由待定字母,这个字母可以根据题意列出方程组求解;5.当相似时:一般说来,这类题目都由图像上的点转化到三角形中的边长的问题,再由边的数量关系转化到三角形的相似问题;6.考查利用几何定理和性质或者代数方法建立方程求解的方法。
一、单选题1.(2022·浙江绍兴·九年级期末)如图,已知点()16,0A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P ,O 两点的二次函数1y 和过P ,A 两点的二次函数2y 的图象开口均向下,它们的顶点分别为B ,C ,射线OB 与AC 相交于点D ,当10OD AD ==时,这两个二次函数的最大值之和等于( )A .10B .8C .6D .4二、填空题 2.(2022·浙江宁波·九年级期末)已知过点()4,1B 的抛物线21522y x x c =-+与坐标轴交于点A ,C 如图所示,连结AC ,BC ,AB ,第一象限内有一动点M 在抛物线上运动,过点M 作AM MP ⊥交y 轴于点P ,当点P 在点A 上方,且AMP 与ABC 相似时,点M 的坐标为______.三、解答题能力拓展技巧方法3.(2022·浙江丽水·三模)定义:对于抛物线()2240y ax bx c b ac =++->,把它在x 轴下方的部分图形作关于x 轴的轴对称图形,所得的图形称为2y ax bx c =++的“W 型曲线”.如图为242y mx x =-+的“W 型曲线”,与x 轴的交点为A ,B ,与y 轴的交点为C ,与对称轴的交点为P ,有CP x ∥轴.(1)求m 的值.(2)若直线y x n =+与242y mx x =-+的“W 型曲线”有且只有三个公共点,求n 的值.(3)在242y mx x =-+的“W 型曲线”是否存在点Q ,使得1tan 2POQ ∠=,若存在,求点Q 的横坐标;若不存在,说明理由.4.(2022·浙江湖州·中考真题)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⊥AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.5.(2022·浙江金华·二模)如图1,已知等腰ABC ∆中,10,12,AB AC BC AD BC ===⊥,垂足为点D ,动点P 从点A 出发,以1.5个单位每秒速度,沿AB 方向运动,同时,点Q 从点B 出发,以1个单位每秒速度,沿BC 方向运动,当点P 到达点B 时,点Q 即停止运动,设运动时间为t 秒,过点P 作PR AD ⊥,垂足为R ,连结,QR PQ ,作PQR ∆关于QR 的对称MQR ∆.(1)如图2,当PQ AB ⊥时,求PQ 的长度.(2)求PBQ ∆与PQR ∆面积差的最大值.(3)当点M 落在ABC ∆的边上时,求t 的值.6.(2022·浙江宁波·九年级期末)如图1,已知二次函数()2416133y x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 是抛物线的顶点.(1)求点A ,点C 的坐标;(2)如图2,连结AC ,DC ,过点C 作CE AB ∥交抛物线于点E .求证:∠DCE =∠CAO ;(3)如图3,在(2)的条件下,连结BC ,在射线EC 上有点P ,使以点D ,E ,P 为顶点的三角形与△ABC 相似,求EP 的长.7.(2022·浙江湖州·九年级期中)抛物线23y ax bx =++过点A (-1,0),点B (3,0),顶点为C .(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作PEF CAB∠=∠,边EF交x轴于点F,当AF的长度最大时,求点E的坐标.8.(2021·浙江金华·一模)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求抛物线的函数表达式;(2)当△PMN的周长是△AOB周长的35时,求m的值;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为30°,连接E′A、E′B,在平面直角坐标系内找一点Q,使△AOE′∽△BOQ,并求出点Q的坐标.9.(2021·浙江温州·九年级期末)如图,y=ax22ax+a4与x轴负半轴交于A,交y轴于B,过抛物线顶点C作CD y轴,垂足为D,四边形AOCD是平行四边形.(1)求抛物线的对称轴以及二次函数的解析式;(2)作BE x∥轴交抛物线于另一点E,交OC于F,求EF的长;(3)该二次函数图象上有一点G(m,n)若点G到y轴的距离小于2,则n的取值范围为___.10.(2022·浙江·嘉兴一中一模)如图,抛物线y=1-x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与2y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与△OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.11.(2022·浙江金华·一模)如图,把两个全等的Rt AOB 和Rt COD 分别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点()2,4A ,过A 、C 两点的直线分别交x 轴、y 轴于点E 、F ,抛物线2y ax bx c =++经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点G 为抛物线上位于线段OC 所在直线上方部分的一动点,求G 到直线OC 的最大距离和此时点G 的坐标;(3)点P 为线段OC 上一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 的边AM 与边BP 相等?若存在,求出此时点P 的坐标;若不存在,请说明理由.12.(2022·浙江绍兴·九年级期末)在平面直角坐标系xOy 中,如果抛物线()20y ax bx c a =++≠上存在一对点P 和P ',且它们关于坐标原点O 对称,那么我们把点P 和P '叫做这条抛物线的成对点.(1)已知点()2,P m -与P '是抛物线224y x x =--的成对点,求P '的坐标.(2)如图,已知点A 与C 为抛物线22y x x c =--+的成对点,且A 为该抛物线的顶点.①求c 的值.②若这条抛物线的对称轴与x 轴交于点B ,连结AC ,BC ,点D 是射线AB 上一点.如果∠ADC =∠ACB ,求点D 的坐标.13.(2021·浙江·天台县赤城中学一模)如图,抛物线y =ax 2+bx +c 交x 轴于点A ,B ,其中点A (﹣1,0),交y 轴于点C (0,2),对称轴交x 轴于点M (32,0).(1)求抛物线的解析式;(2)作点C关于点M的对称点D,顺次连接A,C,B,D,判断四边形ACBD的形状,并说明理由;(3)在该抛物线的对称轴上是否存在点P,使△BMP与△BAD相似?若存在,求出所有满足条件的P点的坐标;若不存在,请说明理由.14.(2022·浙江金华·九年级期末)已知抛物线:y=ax2﹣6ax﹣16a(a>0)与x轴交点为A,B(A在B的左侧),与y轴交于点C,点G是AC的中点.(1)求点A ,B 的坐标及抛物线的对称轴.(2)直线y =﹣32x 与抛物线交于点M 、N ,且MO =NO ,求抛物线解析式. (3)已知点P 是(2)中抛物线上第四象限内的动点,过点P 作x 轴的垂线交BC 于点E ,交x 轴于点F .若以点C ,P ,E 为顶点的三角形与△AOG 相似,求点P 的坐标.15.(2022·浙江宁波·九年级期末)如图,抛物线213222y x x =--与x 轴交于点A ,B ,与y 轴交于点C .点P 是线段BC 上的动点(点P 不与点B ,C 重合),连结AP 并延长AP 交抛物线于另一点Q ,连结CQ ,BQ ,设点Q 的横坐标为x x .(1)①写出A ,B ,C 的坐标:A ( ),B ( ),C ( );②求证:ABC 是直角三角形;(2)记BCQ △的面积为S ,求S 关于x 的函数表达式;(3)在点P 的运动过程中,PQ AP是否存在最大值?若存在,求出的最大值;若不存在,请说明理由.16.(2021·浙江金华·九年级期末)已知抛物线()()12y x x m m =+-与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,点P 为抛物线上一动点(点P 不与点C 重合).(1)当ABC为直角三角形时,求ABC的面积轴于点Q,求BQ的长.(2)如图,当AP BC∥时,过点P作PQ x(3)当以点A,B,P为顶点的三角形和ABC相似时(不包括两个三角形全等),求m的值.。
二次函数三角形相似解题思路
二次函数三角形相似解题思路
一、二次函数三角形相似的解题思路:
1. 了解二次函数三角形的基本特性:
二次函数三角形是由三个二次函数组成的一个边长相等的三角形的
形状,它的三角形的内角都为60°,而且三角形的每条边都是一个二次
函数,且都相互垂直。
2. 根据二次函数三角形的特性来找出两个三角形之间的相似性:
(1)根据三角形的内角和边长都相等来判断两个三角形是否相似;
(2)根据二次函数的斜率和顶点的特征值来判断两个三角形的形
状是否相似;
(3)根据二次函数三角形的面积特征值来判断两个三角形的面积
是否相似。
3. 根据相似性来解决相关数学问题:
利用二次函数三角形的相似性可以解决多种数学问题,比如:求出
两个三角形之间一定比例的边长;求出一定比例的三角形内角;计算
两个三角形面积的比例等等。
二、解决二次函数三角形相似问题的一般步骤:
1. 画出问题的初始条件图;
2. 找出两个三角形之间的相似性:
(1)根据三角形的内角和边长都相等来判断两个三角形是否相似;
(2)根据二次函数的斜率和顶点的特征值来判断两个三角形的形
状是否相似;
(3)根据二次函数三角形的面积特征值来判断两个三角形的面积
是否相似。
3. 推断出两三角形间的关系;
4. 根据关系给出问题的解答。
2024年九年级数学中考专题:二次函数相似三角形问题 课件
04
方法归纳
四、方法归纳
在平面直角坐标系中,二次函数背景下 当两个三角形相似,求点的坐标,一般 情况下,相似的两个三角形都是特殊的 三角形(常见直角三角形),且有一条 直角边在坐标轴上,或者垂直平行坐标 轴,结合相似三角形模型,对应边成比 例,求出点的坐标即可
05
学以致用
五、学以致用
如图,抛物线经过A(4,0),B(1,0),C(0,−2)三点。 (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以 A,P,M为顶点的三角形与ΔOAC相似?若存在,请求出符合条件的点P的 坐标;若不存在,请说明理由
一、相似三角形
相似三角形判定:(1)两角对应分别相等的两个三角形相似。 (2)三边对应成比例的两个三角形相似。 (3)两边对应成比例且它们的夹角相等的两个三角形 相似。
02
相似三角形模型
(1) A字型(反A型)
二、相似三角形模型
(2)8字型(反8型)
(3)一线三垂直
二
例题讲解
三、例题讲解
抛物线与x轴交于A、B两点,与y轴交于点C,且点A的坐标为(-3,0),顶点D 的坐标为(-1,4) (1)求抛物线的表达式和B、C两点的坐标 (2)连接AD 、 AC 、 CD 、 BC,在y轴上是否存在点M,使得以M 、B 、 C 为顶点的三角形与ΔACD相似?若存在,请求出点M的坐标;若不存在,请 说明理由
中考专题: 二次函数三角形相似问题
目录
01
02
03
04 05
相
相
例
方
学
似
似
题
法
以
三
三
讲
归
2024年九年级数学中考必刷题:二次函数中的相似三角形问题专项特训(含答案)
2024年九年级数学中考必刷题:二次函数中的相似三角形问题专项特训(1)求抛物线的表达式;(2)如图1,直线交轴于点,点为线段下方抛物线上的一点,过点作轴交直线于点,在直线上取点,连接,使得的最大值及此时点的坐标;(3)连接,把原抛物线沿射线方向平移个单位长度,是平移后新抛物线上的一点,过点作垂直轴于点,连接,直接写出所有使得的点的横坐标.(1)求抛物线的表达式;(2)如图1,连接,在y 轴的负半轴是否存在点Q ,使得?若存在,求Q 点的坐标;若不存在,请说明理由.CD x ()2,0D P AC PH y ∥CD H CD Q PQ HQ PQ =524PQ PH -P BC 214y x bx c =++BC 25M MN x N AM AMN ABC ∽ M AC 12OQC OAC ∠∠=(1)如图1,当,时,求的值;(2)如图2,当时,过点作直线的垂线交轴于点,求坐标;(3)如图3,当时,平移直线,使之与抛物线交于两点,点关于轴的对称点为,求证:.4.在平面直角坐标系中,已知抛物线与x 轴分别交于(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接交于点E ,求(3)如图2,连接,过点O 作直线,点P ,Q 分别为直线点,试探究:在第一象限是否存在这样的点P ,Q ,使.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,点,,抛物线1a =1k =b 12a =A l y T T 1k =l C M N ,P y Q MQP NQP ∠=∠xOy 23y ax ax c =-+(1,0)A -AD BC ,AC BC ,l BC ∥PQB CAB ∽()1,2A ()5,0B 22y ax =-(1)求点C 的坐标和直线的表达式;(2)设抛物线分别交边①若与相似,求抛物线表达式;②若是等腰三角形,则a 的值为6.如图,抛物线经过(1)求抛物线的解析式:(2)点为第四象限抛物线上一动点,点横坐标为.①如图1,若时,求的值:②如图2,直线与抛物线交于点,连接(1)求抛物线的解析式;AB 22(0)y ax ax a =->CDB △BOA △OAE △2y x mx n =++C C BC 90ACB ∠=︒t BD E(1)若,.①如图1,求点A 、B 、C 和点P 的坐标;②如图2,当时,求点M 的坐标;(2)若点A 的坐标为,且,当标.(1)求点、、的坐标;(2)连接,抛物线的对称轴、为顶点的三角形与理由.2b =3c =3105MN =,03c ⎛⎫- ⎪⎝⎭PM BC ∥93102AN MN +=A B C BC C D(1)求抛物线的解析式及点C 的坐标;(2)求证:是直角三角形;(3)若点N 为x 轴上的一个动点,过点N 作轴与抛物线交于点M ,则是否存在以为顶点的三角形与相似?若存在,请求出点N的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线的顶点P 在抛物线上.(1)求a 的值;(2)直线与抛物线,分别交于点A ,B ,若的最大值为3,请求出m 的值;(3)Q 是x 轴的正半轴上一点,且的中点M 恰好在抛物线上.试探究:此时无论m 为何负值,在y 轴的负半轴上是否存在定点G ,使总为直角?若存在,请求出点G 的坐标;若不存在,请说明理由.12.如图,二次函数经过点、,点P 是x 轴正半轴上一个动点,过点P 作垂直于x 轴的直线分别交抛物线和直线于点E 和点F .设点P 的横坐标为m .ABC MN x ⊥O M N ,,ABC xOy ()()221:20C y x m m m =--+<22:C y ax =()x t t m =>1C 2C AB PQ 2C PQG ∠2y x bx c =-++()40A ,()02B ,AB(1)求二次函数的表达式;(2)若E 、F 、P 三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求m 的值.(3)点P 在线段上时,若以B 、E 、F 为顶点的三角形与相似,求m 的值.13.如图,已知二次函数的图象经过,两点.(1)求此二次函数的解析式;(2)设二次函数的图象与轴的另一个交点为,它的顶点为,连接,,,.请你判断与是否相似,并说明理由;(3)当时,求此二次函数的最大值和最小值.14.如图,已知抛物线与轴交于两点,与轴交于点,.OA FPA V 2y x bx c =-++()1,0A -()0,3B 2y x bx c =-++x C D AB BC BD CD BCD △OBA △03x ≤≤y 21:3C y ax bx =++x ,A B y C 3OB OC OA ==(1)求抛物线的解析式;(2)如图2,已知点为第一象限内抛物线上的一点,点的坐标为,,求点的坐标;(3)如图3,将抛物线平移到以坐标原点为顶点,记为,点在抛物线上,过点作分别交抛物线于两点,求证:直线过定点,并求出该定点的坐标.15.在平面直角坐标系中,点B 从原点出发以每秒1个单位长度的速度沿x 轴正方向运动.是等腰直角三角形,其中,,点C 在第一象限,过C 作轴,垂足为D ,连接交于E ,设运动时间为秒.(1)证明:≌;(2)当与相似时,求t 的值;(3)在(2)条件下,抛物线m 经过A ,B ,D 三点,请问在抛物线m 上否存在点P ,使得面积与的面积相等?若存在,请求出.1C P 1C Q ()1,045POC OCQ ∠+∠=︒P 1C 2C ()1,1T -2C T TM TN ⊥2C ,M N MN ABC 90ABC ∠=︒()0,2A CD x ⊥AD BC (0)t t >AOB BDC AEC △BED ADP △ABD △参考答案:。
中考数学二次函数与相似三角形有关的问题知识解读
二次函数与相似三角形有关的问题知识解读【专题说明】二次函数与相似三角形是中考数学的压轴题,具有一定的难度,也是中考考频比较高的,本节未同学们提供解题途径,希望能够助同学们轻松解题。
【解题思路】关于函数与相似三角形的问题一般三个解决途径:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形.根据未知三角形中已知边与已知三角形的可能对应边分类讨论;(2)利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解.【典例分析】【典例1】(2019•娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=或﹣,故点Q(,﹣2)或(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,)或(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(﹣,2)或(,)或(,).【变式1-1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【解答】解:(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(3)①当△AOC∽△DP A时,∵PD⊥x轴,∠DP A=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D 点坐标为(,1).【变式1-2】(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).【典例2】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【解答】解:(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).【变式2-1】(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.【解答】解:(1)将A(3,0),点C(0,﹣3)代入y=ax2﹣2x+c,∴,解得,∴y=x2﹣2x﹣3;(2)∵C(0,﹣3),D(1,0),F(1,﹣2),∴CD=,CF=,DF=2,∵E(﹣2,5),A(3,0),∴AE=5,设Q(x,y),①当△CDF∽△QAE时,==,∴==,∴AQ=5,EQ=5,∴,解得或(舍去),∴Q(﹣7,5);②当△CDF∽△AQE时,==,∴==,∴AQ=5,QE=10,∴,解得(舍去)或,∴Q(﹣12,5);③当△CDF∽△EQA时,==,∴==,∴EQ=5,AQ=10,∴,解得或(舍去),∴Q(3,﹣10);④当△CDF∽△QEA时,==,∴==,∴EQ=5,AQ=5,∴,解得或(舍去),∴Q(3,﹣5);综上所述:Q点坐标为(﹣7,5)或(﹣12,5)或(3,﹣10)或(3,﹣5).【变式2-2】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ (点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)如图:由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),∵B(4,0),C(0,4);∴BN=,QN=t,PM=,CM=|t﹣3|,∵∠CMP=∠QNB=90°,∴△CPM和△QBN相似,只需=或=,①当=时,=,解得t=或t=,∴Q(,)或(,);②当=时,=,解得t=或t=(舍去),∴Q(,),综上所述,Q的坐标是(,)或(,)或(,).【变式2-3】(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线ED上,若以点P、Q、E为顶点的三角形与△BOC相似,请直接写出点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(1,0),B(﹣3,0),∴,解得,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴OC=OB=3,即△OBC是等腰直角三角形,∵抛物线的解析式为:y=﹣x2﹣2x+3,∴抛物线对称轴为:x=﹣1,∵EN∥y轴,∴△BEN∽△BCO,∴,∴,∴EN=2,①若△PQE∽△OBC,如图所示,过点P作PH⊥ED垂足为H,∴∠PEH=45°,∴∠PHE=90°,∴∠HPE=∠PEH=45°,∴PH=HE,∴设点P坐标(x,﹣x﹣1+2),∴代入关系式得,﹣x﹣1+2=﹣x2﹣2x+3,整理得,x2+x﹣2=0,解得,x1=﹣2,x2=1(舍),∴点P坐标为(﹣2,3),②若△EPQ∽△OCB,如图所示,设P(x,2),代入关系式得,2=﹣x2﹣2x+3,整理得,x2+2x﹣1=0,解得,(舍),∴点P的坐标为(﹣1﹣,2),综上所述点P的坐标为(﹣1﹣,2)或(﹣2,3)。
二次函数与三角形相似问题
二次函数与三角形相似问题二次函数是初中数学中的重要内容,而三角形相似问题是初中几何中的重点难点。
在解决一些复杂的几何问题时,我们常常需要将二次函数和三角形相似问题结合起来进行思考。
本文将从几个方面探讨二次函数与三角形相似问题的关系和应用。
一、二次函数的解析式与三角形的边长关系在解决与三角形相似的二次函数问题时,我们需要先确定三角形的边长关系。
例如,已知一个直角三角形的两条直角边分别为3和4,那么这个直角三角形的斜边长为5。
如果以这个直角三角形的斜边为底边构造一个新的直角三角形,那么它的另一条直角边就是原来直角三角形的斜边的一半,即2.5。
因此,我们可以得出以下结论:当一个直角三角形的一条直角边与另一个直角三角形的斜边相等时,这两个直角三角形是相似的。
二、二次函数的最大值与最小值与三角形的高线关系在解决与三角形相似的二次函数问题时,我们还需要考虑二次函数的最大值和最小值与三角形的高线的关系。
例如,已知一个抛物线的顶点坐标为(0,2),对称轴为y轴。
如果以这个抛物线的顶点为原点构造一个新的抛物线,那么它的顶点坐标就是原来的顶点坐标加上或减去某个常数c。
因此,我们可以得出以下结论:当一个抛物线的顶点与另一个抛物线的顶点之间的距离等于它们到某个固定点的距离之差时,这两个抛物线是相似的。
三、二次函数的对称性与三角形的对称性关系在解决与三角形相似的二次函数问题时,我们还需要考虑二次函数的对称性和三角形的对称性之间的关系。
例如,已知一个抛物线的对称轴为x=1,如果以这个抛物线的对称轴为中心构造一个新的抛物线,那么它的对称轴就是原来的对称轴加上或减去某个常数d。
因此,我们可以得出以下结论:当一个抛物线的对称轴与另一个抛物线的对称轴之间的距离等于它们到某个固定点的距离之和时,这两个抛物线是相似的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中的相似三角形
例1(2011绵阳):已知抛物线y = x2 -2x +m -1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C’,且与x轴的左半轴交于E点,与y轴交于F点。
如图,请在抛物线C’上求点P,使得△EFP是以EF为直角边的直角三角形.
例1图例1(1)(2)图例1(3)图
例2:如图,抛物线y = ax2 +bx + 1与x轴交于两点A(-1,0)、B(1,0)与y轴交于点C.(1)求抛物线的解析式;
(2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.
例2(1)(2)图例2(3)图
例3:已知,如图,二次函数y = ax2 - 2ax + c(a ≠ 0)的图象与y轴交于点C(0,4),与x 轴交于点A、B,点A的坐标为(4,0).
(1)求该二次函数的关系式并写出它的对称轴和顶点坐标;
(2)点Q是线段AB上的动点,过点Q作QE∥AC交BC于点E,连接CQ,当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标(2,0).问:是否存在这样的直线l.使△ODF是等腰三角形?若存在,请求出点P坐标;若不存在,请说明理由.
思考:在(1)中抛物线的对称轴上是否存在点M,使△BCM是直角三角形?若存在,请直接写出点M坐标;若不存在,请说明理由.
例3(1)(2)图例3(3)图
例3思考。