三角函数的奇偶性(人教A版)(含答案)
最新人教A版高中数学必修一课件:3.2.2 奇偶性
[方法技巧] 巧用奇函数、偶函数的图象求解问题
(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称. (2)求解:根据奇函数、偶函数图象的对称性可以解决诸如求函数值或画出奇 函数、偶函数图象的问题.
题型三 利用函数的奇偶性求解析式
【学透用活】
[典例3] (1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a =________,b=________.
(2)已知函数f(x)=ax2+2x是奇函数,则实数a=________. [解析] (1)因为偶函数的定义域关于原点对称,
(二)基本知能小试
1.判断正误:
(1)f(x)是定义在R上的函数,若f(-1)=f(1),则f(x)一定是偶函数. ( )
(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函
数.
()
(3)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.( )
答案:(1)× (2)× (3)×
D.无法确定
解析:∵奇函数的定义域关于原点对称,∴a-1=0,即a=1.
答案:C
4 . 函 数 f(x) 是 定 义 在 R 上 的 奇 函 数 , 当 x>0 时 , f(x) = - x + 1 , 则 当 x<0 时 , f(x) = ________.
解析:当x<0时,-x>0,则f(-x)=-(-x)+1=x+1=-f(x),所以f(x)=-x
【对点练清】 1.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.
高中数学人教(A)版高一必修第一册 第五章《5.4 三角函数的图形与性质》 练习题
5.4 三角函数的图形与性质5.4.1 正弦函数、余弦函数的图象基础过关练习题组一 正弦函数、余弦函数的图象1、用“五点法”作1cos 2-=x y 在[]π2,0上的图象时,应取的五点为( )A 、()()()120231-021,0,,,,,,,,ππππ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛B 、()()()121-233-1-21,0,,,,,,,,ππππ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛ C 、()()()()()143-3123-1,0,,,,,,,,ππππ D 、()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2-321-2031-361,0,,,,,,,,ππππ 2、函数y=−sinx ,x ∈[23,2-ππ]的简图( ) A 、 B. C. D.3、已知函数()x cos 23+-=x f 的图象经过点⎪⎭⎫⎝⎛b ,3π,则b= 。
4、用“五点法”作函数x y cos 311-=图象的简图。
题组二 正弦、余弦曲线的运用5、使不等式0sin 22≥-x 成立的x 的取值集合是( )A 、⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,43242|ππππ B 、⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,47242|ππππ C 、⎬⎫⎨⎧∈+≤≤Z k k x k x ,25-2|ππππ D 、⎬⎫⎨⎧∈+≤≤+Z k k x k x ,7252|ππππ6、已知集合A=⎭⎬⎫⎩⎨⎧>21cos |αα,B={}παα<<0|,且C B A = ,则C=( ) A 、⎭⎬⎫⎩⎨⎧<<60|παα B 、⎭⎬⎫⎩⎨⎧<<23|παπα C 、⎭⎬⎫⎩⎨⎧<<30|παα D 、⎭⎬⎫⎩⎨⎧<<παπα3|7、函数()x x f 4log =的图象与函数()x x g πsin =的图象的交点个数是( ) A 、2 B 、3 C 、4 D 、5 8、(多选)下列x 的取值范围能使x x sin cos >成立的是( )A 、⎪⎭⎫ ⎝⎛40π,B 、⎪⎭⎫ ⎝⎛454ππ,C 、⎪⎭⎫ ⎝⎛ππ245,D 、⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛4524ππππ,, 9、函数x y cos =,[]π2,0∈x 的图象与直线21-=y 的交点有 个。
人教A版高中数学必修一课件 《三角函数的图象与性质》三角函数(第二课时正、余弦函数的周期性与奇偶性)
三角函数奇偶性的判断 【例 2】 判断下列函数的奇偶性: (1)f(x)=sin-12x+π2; (2)f(x)=lg(1-sin x)-lg(1+sin x); (3)f(x)=1+s1i+n xs-in cxos2x.
16
[思路点拨]
17
[解] (1)显然x∈R,f(x)=cos12x,
A.-12
B.12
C.-
3 2
D.
3 2
24
[思路点拨] (1)先作出选项A,B中函数的图象,化简选项C、D中函 数的解析式,再判断奇偶性、周期性.
(2)先依据f(x+π)=f(x)化简f53π;再依据f(x)是偶函数和x∈0,π2,f(x) =sin x求值.
25
(1)D (2)D [(1)y=cos|2x|是偶函数,y=|sin 2x|是偶函数,y= sinπ2+2x=cos 2x是偶函数,y=cos32π-2x=-sin 2x是奇函数,根据公 式得其最小正周期T=π.
32
[提示] (1)×.因为对任意 x,sin23π+x与 sin x 并不一定相等. (2)×.不是所有的函数都有最小正周期,如函数 f(x)=5 是周期函数, 就不存在最小正周期. (3)×.函数 y= sin x的定义域为{x|2kπ≤x≤2kπ+π,k∈Z},不关于 原点对称,故非奇非偶. [答案] (1)× (2)× (3)×
23
【例3】 (1)下列函数中是奇函数,且最小正周期是π的函数是
() A.y=cos|2x|
B.y=|sin 2x|
C.y=sinπ2+2x
D.y=cos32π-2x
(2)定义在R上的函数f(x)既是偶函数,又是周期函数,若f(x)的最小正
周期为π,且当x∈0,π2时,f(x)=sin x,则f53π等于( )
2022-2023学年人教A版必修第一册 5-4-2 正弦函数、余弦函数的周期性与奇偶性 课件
周期函数 (2) 1-2cosπ2x+4=1-2cosπ2x ―――的―定―义―――→ 周期为4 .
周期函数 (3) 2sin13x+6π-π6=2sin13x-π6 ―――的―定―义―――→ 周期为6π . (4)画出函数图象得出周期.
[解] (1)解法一:∵sin[2(x+π)]+3 =sin(2x+2π)+3=sin 2x+3, ∴由周期函数的定义可知 y=sin 2x+3 的周期为 π. 解法二:y=sin2x+3 的周期为22π=π. (2)解法一:∵1-2cosπ2x+4=1-2cosπ2x+2π=1-2cosπ2x, ∴自变量 x 只需并且至少要增加到 x+4, 函数 y=1-2cosπ2x,x∈R 的值才能重复出现, ∴函数 y=1-2cosπ2x,x∈R 的周期是 4.
3.掌握函数 y=sin性.
精梳理·自主学习固基础
【主题 1】 正、余弦函数的周期 1.函数的周期性 (1)周期函数:对于函数 f(x),如果存在一个_非__零__常__数___T_,使得当 x 取定义域内的每 一个值时,都有_f_(_x+__T__)=__f_(x_)_.这个函数的周期为______T_________. (2)最小正周期:如果在周期函数 f(x)的所有周期中存在一个最小的___正__数___,那么这 个最小___正__数___就叫做 f(x)的_最__小__正__周__期___.
解析:因为函数是以 2 为周期的函数,且 f(3)=6,则 f(5)=f(3+2)=f(3)=6.
5.根据函数奇偶性的定义判断函数 y=lg(cos x)是___偶_____函数.(填“奇”或“偶”)
解析:因为 cos x>0,即 2kπ-π2<x<2kπ+π2,k∈Z,所以定义域关于原点对称, 又 cos(-x)=cos x,所以 lg[cos(-x)]=lg(cos x),即 y=lg(cos x)是偶函数.
新教材人教A版高一数学必修一知识点与题型方法总结 第五章三角函数
新教材人教A版高一数学必修一知识点与题型方法总结第五章三角函数【考纲要求】序号考点课标要求1角与弧度了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。
了解2三角函数的概念和性质①借助单位圆理解三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值。
借助单位圆的对称性,利用定义推导出诱导公式(的正弦、余弦、正切)。
理解②借助图象理解正弦函数、余弦函数在上,正切函数在上的性质。
理解③结合具体实例,了解的实际意义,能借助图象理解的意义,了解参数的变化对函数图象的影响。
理解3同角三角函数的基本关系理解同角三角函数的基本关系:理解4三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦的意义理解②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。
理解③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)掌握5三角函数应用会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型掌握5.1 任意角和弧度制知识点总结5.1 任意角和弧度制1.角的有关概念(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(2)角的表示:如图射线为始边,射线为终边,点为角的顶点,图中角可以记为“角”或“”,也可以简记为“”。
(3)角的分类提示:(1)角的概念的推广重在“旋转”,理解“旋转”二字应明确以下三个方面:①旋转的方向②旋转角的大小③射线未作任何旋转时的位置。
(2)角的范围不再限于2.终边相同的角:一般地,所有与角终边相同的角,连同角在内,可构成一个集合即任一与角终边相同的角,都可以表示成角与整数个周角的和。
3.角的单位制4.弧长公式及扇形面积公式5.常用角之间的换算6.象限角和轴线角(1)象限角:在平面直角坐标系内,使角的顶点与原点重合,角的始边与轴的非负半轴重合,那么角的终边在第几象限,我们就说这个角是第几象限角。
高考数学(人教a版,理科)题库:函数的奇偶性与周期性(含答案)
第3讲 函数的奇偶性与周期性一、选择题1.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ).A .3B .1C .-1D .-3 解析 由f (-0)=-f (0),即f (0)=0.则b =-1,f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ). A .-1 B .0 C .1 D .2 解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B. 答案 B3.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式一定成立的是( ).A .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝ ⎛⎭⎪⎫sin π6<f ⎝ ⎛⎭⎪⎫cos π6D .f (cos 2)>f (sin 2)解析 当x ∈[-1,1]时,x +4∈[3,5],由f (x )=f (x +2)=f (x +4)=2-|x +4-4|=2-|x |,显然当x ∈[-1,0]时,f (x )为增函数;当x ∈[0,1]时,f (x )为减函数,cos 2π3=-12,sin 2π3=32>12,又f⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫32,所以f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3. 答案 A4.已知函数f (x )=⎩⎨⎧1-2-x,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数. 答案 C5.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x-1,则f (-5.5)的值为( )A .2B .-1C .-12 D .1解析 f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D6.设函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误. 答案 C 二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 由题意知,函数f (x )=x 2-|x +a |为偶函数,则f (1)=f (-1),∴1-|1+a |=1-|-1+a |,∴a =0. 答案 08.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.解析 因为y =f (x )+x 2是奇函数,且x =1时,y =2,所以当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. 答案 -19.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.解析 由原函数是奇函数,所以y =f (x )在[-5,5]上的图象关于坐标原点对称,由y =f (x )在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).答案 (-2,0)∪(2,5)10. 设f (x )是偶函数,且当x >0时是单调函数,则满足f (2x )=f ⎝⎛⎭⎪⎫x +1x +4的所有x 之和为________.解析 ∵f (x )是偶函数,f (2x )=f ⎝⎛⎭⎪⎫x +1x +4, ∴f (|2x |)=f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1x +4, 又∵f (x )在(0,+∞)上为单调函数, ∴|2x |=⎪⎪⎪⎪⎪⎪x +1x +4, 即2x =x +1x +4或2x =-x +1x +4, 整理得2x 2+7x -1=0或2x 2+9x +1=0,设方程2x 2+7x -1=0的两根为x 1,x 2,方程2x 2+9x +1=0的两根为x 3,x 4.则(x1+x2)+(x3+x4)=-72+⎝⎛⎭⎪⎫-92=-8.答案-8三、解答题11.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y =1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.解析(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f(2 012)+f(2 013)=f(0)+f(1)=1.14.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=12x,求使f(x)=-12在[0,2 014]上的所有x的个数.(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解当0≤x≤1时,f(x)=12x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=12(-x)=-12x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-12x,即f(x)=12x.故f(x)=12x(-1≤x≤1).又设1<x<3,则-1<x-2<1,∴f(x-2)=12(x-2).又∵f(x)是以4为周期的周期函数∴f(x-2)=f(x+2)=-f(x),∴-f(x)=12(x-2),∴f (x )=-12(x -2)(1<x <3). ∴f (x )=⎩⎪⎨⎪⎧12x ,-1≤x ≤1,-12(x -2),1<x <3.由f (x )=-12,解得x =-1. ∵f (x )是以4为周期的周期函数, ∴f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2 014,则14≤n ≤2 0154. 又∵n ∈Z ,∴1≤n ≤503(n ∈Z ), ∴在[0,2 014]上共有503个x 使f (x )=-12.。
人教A版必修第一册 3-2-2 第2课时 函数奇偶性的应用(习题课) 课件(25张)
又f(x)为偶函数,g(x)为奇函数,
所以f(x)-g(x)=x2-x-2,②
联立①②可得f(x)=x2-2,g(x)=x.
[例3] 偶函数f(x)的定义域为R,当x∈(-∞,0)时,f(x)单调递增,则f(-π),
f(2),f(3)的大小关系是(
)
A.f(-π)>f(2)>f(3)
B.f(-π)>f(3)>f(2)
C.f(-π)<f(2)<f(3)
D.f(-π)<f(3)<f(2)
解析:因为f(x)是定义域为R的偶函数,当x∈(-∞,0)时,f(x)单调递增,
解析:(2)定义在R上的奇函数f(x)在区间(-∞,0)上单调递增,且f(3)=0,
则f(x)在(0,+∞)上单调递增,
且f(-3)=-f(3)=0,
由f(x)>0得,-3<x<0或x>3.故选C.
当堂检测
1.偶函数y=f(x)在区间[0,4]上单调递减,则有(
A
A.f(-1)>f(2)>f(-3)
所以函数的图象关于原点对称,且关于 x=1 对称,
( )-( )
当 x1,x2∈[0,1],且 x1≠x2 时,
f(-2)=0,
其大致图象如图所示,
-
>0,即函数在[0,1]上单调递增,f(2)=f(0)=
< ≤ , - ≤ < ,
则当-3≤x≤1 时,不等式 xf(x)>0 可转化为
意分类讨论.
针对训练 4:(1)设 f(x)是定义在(-1,1)上的偶函数,且 f(x)在[0,1)上单调递减,f(- )=1,
专题33 三角函数的单调性、奇偶性、对称性与周期性题2021高中数学必做黄金100题(解析版
一.题源探究·黄金母题
(求函数 的单调递增区间.
【解析】设 ,函数 的单调递增区间为 .由 ,得 .易知 .
【试题来源】人教版A版必修4第39页例5.
【母题评析】本题考查三角函数单调区间的求法,是历年来高考的一个常考点.
【思路方法】限定区间上三角函数单调区间的求法:先用整体思想求
【技能方法】解决三角函数的单调性有关的问题,要结合函数的图象及其性质。
考向6已知三角函数的奇偶性、对称性或周期求参数的值
已知函数 ( , ),其图像与直线 相邻两个交点的距离为 ,若 对于任意的 恒成立,则 的取值范围是()
A. B. C. D.
【答案】C
【解析】令 ,可得 ,
∵函数 ( , )的图像与直线 相邻两个交点的距离为 ,
∴函数 的图象与直线 相邻两个交点的距离为 ,
∴函数 的周期为 ,故 ,∴ .∴ .
由题意得“ 对于任意的 恒成立”等价于“ 对于任意的 恒成立”.∵ ,∴ ,
∴ ,∴ .
故结合所给选项可得C正确.选C.
【技能方法】本题难度较大,解题时根据题意得 在 上的取值范围是 的子集去处理,由此通过不等式可得 的范围,结合选项得解.
④将 的图象向右平移 个单位可得到图像 .
【答案】①②③
【解析】对于 ,
令 ,求得f(x)=−1,为函数的最小值,故它的图象C关于直线 对称故①正确.
令x= ,求得f(x)=0,可得它的图象C关于点( ,0)对称,故②正确.
令 ,可得 ,故函数f(x)在区间 是增函数,故③正确,
由 的图象向右平移 个单位长度可以得到 故排除④,
【考试方向】这类试题在考查题型上,通常以选择题或填空题或解答题的形式出现,难度中等.
高中数学 三角函数正弦函数余弦函数的周期性与奇偶性讲义 新人教A版必修一第一册
第1课时正弦函数、余弦函数的周期性与奇偶性知识点一周期函数1.周期函数状元随笔关于最小正周期(1)并不是所有的周期函数都有最小正周期,如常数函数f(x)=C,对于任意非零常数T,都有f(x+T)=f(x),即任意常数T都是函数的周期,因此没有最小正周期.(2)对于函数y=A sin(ωx+φ)+B,y=A cos(ωx+φ)+B,可以利用公式T=2π|ω|求最小正周期.知识点二正弦函数、余弦函数的周期性和奇偶性状元随笔关于正、余弦函数的奇偶性(1)正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲线关于原点(0,0)对称,余弦曲线关于y轴对称.(2)正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.提醒:诱导公式三是正弦函数、余弦函数的奇偶性的另一种表示形式.[教材解难]1.教材P202思考函数的周期性与解析式中x的系数有关.2.教材P202思考知道了一个函数的周期性和奇偶性能更容易画出函数的图象,从而得到函数的性质. [基础自测]1.下列函数中,周期为π2的是( )A .y =sin x 2B .y =sin 2xC .y =cos x4D .y =cos 4x解析:对于A ,T =2π12=4π,对于B ,T =2π2=π,对于C ,T =2π14=8π,对于D ,T =2π4=π2.答案:D2.函数f (x )=sin(-x )的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:由于x ∈R ,且f (-x )=sin x =-sin(-x )=-f (x ),所以f (x )为奇函数,故选A.答案:A3.下列函数中是偶函数的是( ) A .y =sin 2x B .y =-sin x C .y =sin|x | D .y =sin x +1解析:A 、B 是奇函数,D 是非奇非偶函数,C 符合f (-x )=sin|-x |=sin|x |=f (x ),∴y =sin|x |是偶函数.答案:C 4.函数y =sin ⎝⎛⎭⎪⎫π2-x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线x =π2对称解析:因为y =sin ⎝ ⎛⎭⎪⎫π2-x =cos x , 又因为cos(-x )=cos x ,为偶函数,所以根据余弦函数的图象和性质可知其图象关于y 轴对称. 答案:B题型一 求三角函数的周期[教材P 201例2] 例1 求下列函数的周期: (1)y =3sin x ,x ∈R ; (2)y =cos 2x ,x ∈R ;(3)y =2sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .【解析】 (1)∀x ∈R ,有3sin(x +2π)=3sin x . 由周期函数的定义可知,原函数的周期为2π.(2)令z =2x ,由x ∈R 得z ∈R ,且y =cos z 的周期为2π,即cos(z +2π)=cos z ,于是cos(2x +2π)=cos 2x ,所以cos 2(x +π)=cos 2x ,x ∈R .由周期函数的定义可知,原函数的周期为π.(3)令z =12x -π6,由x ∈R 得z ∈R ,且y =2sin z 的周期为2π,即2sin(z +2π)=2sinz ,于是2sin ⎝ ⎛⎭⎪⎫12x -π6+2π=2sin ⎝ ⎛⎭⎪⎫12x -π6,所以2sin ⎣⎢⎡⎦⎥⎤12(x +4π)-π6=2sin ⎝ ⎛⎭⎪⎫12x -π6.由周期函数的定义可知,原函数的周期为4π.状元随笔 通常可以利用三角函数的周期性,通过代数变形,得出等式f(x +T)=f(x)而求出相应的周期.对于(2),应从余弦函数的周期性出发,通过代数变形得出cos 2(x +T)=cos 2x ,x∈R ; 对于(3),应从正弦函数的周期性出发,通过代数变形得出sin ⎣⎢⎡⎦⎥⎤12(x +T )-π6=sin ⎝ ⎛⎭⎪⎫12x -π6,x ∈R .教材反思求函数周期的方法(1)定义法:紧扣周期函数的定义,寻求对任意实数x 都满足f (x +T )=f (x )的非零常数T .该方法主要适用于抽象函数.(2)公式法:对形如y =A sin(ωx +φ)和y =A cos(ωx +φ)(其中A ,ω,φ是常数,且A ≠0,ω>0),可利用T =2πω来求.(3)图象法:可画出函数的图象,借助于图象判断函数的周期,特别是对于含绝对值的函数一般采用此法.跟踪训练1 (1)下列函数中,不是周期函数的是( ) A.y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x |(2)函数y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的周期为________. 解析:(1)画出y =sin|x |的图象,易知y =sin|x |不是周期函数.(2)方法一 因为2sin ⎝ ⎛⎭⎪⎫x 3-π6+2π=2sin ⎝ ⎛⎭⎪⎫x 3-π6, 即2sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π6=2sin ⎝ ⎛⎭⎪⎫x 3-π6. 所以y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的最小正周期是6π.方法二 函数的周期T =2π|ω|=2π13=6π.答案:(1)D (2)6π(1)作出函数的图象,根据周期的定义判断.(2)利用周期的定义,需要满足f(x +T)=f(x) ;也可利用公式T =2π|ω|计算周期.题型二 正、余弦函数的奇偶性问题[经典例题] 例2 判断下列函数的奇偶性. (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2; (2)f (x )=sin(cos x ).【解析】 (1)函数的定义域为R .且f (x )=cos ⎝ ⎛⎭⎪⎫π2+2x =-sin 2x .因为f (-x )=-sin(-2x )=sin 2x =-f (x ),所以函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2是奇函数.(2)函数的定义域为R .且f (-x )=sin[cos(-x )]=sin(cos x )=f (x ), 所以函数f (x )=sin(cos x )是偶函数.先用诱导公式化简,再利用定义法判断函数的奇偶性.方法归纳利用定义判断函数奇偶性的三个步骤注意:若函数f (x )的定义域不关于原点对称,无论f (-x )与f (x )有何关系,f (x )仍然是非奇非偶函数.跟踪训练2 判断下列函数的奇偶性: (1)f (x )=|sin x |+cos x ; (2)f (x )=1-cos x +cos x -1. 解析:(1)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数. (2)由1-cos x ≥0且cos x -1≥0,得cos x =1,从而x =2k π,k ∈Z ,此时f (x )=0,故该函数既是奇函数又是偶函数. (1)利用定义法判断函数的奇偶性.(2)由偶次根式被开方数大于等于0求出cos x 的值以及x 的值,最后判断函数的奇偶性.题型三 三角函数的奇偶性与周期性的综合应用[经典例题]例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.【解析】 因为f (x )的最小正周期是π, 所以f ⎝⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3, 因为f (x )是R 上的偶函数, 所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.利用周期性 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫53π-2π=f ⎝ ⎛⎭⎪⎫-π3,再利用奇偶性f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3,最后代入求值.方法归纳三角函数周期性与奇偶性的解题策略(1)探求三角函数的周期,常用方法是公式法,即将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再利用公式求解.(2)判断函数y =A sin(ωx +φ)或y =A cos(ωx +φ)是否具备奇偶性,关键是看它能否通过诱导公式转化为y =A sin ωx (A ω≠0)或y =A cos ωx (A ω≠0)其中的一个.跟踪训练3 若本例中函数的最小正周期变为π2,其他条件不变,求f ⎝ ⎛⎭⎪⎫-176π的值.解析:因为f (x )的最小正周期是π2,所以f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫-6×π2+π6=f ⎝ ⎛⎭⎪⎫π6=sin π6=12利用周期性f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6=f ⎝ ⎛⎭⎪⎫π6代入求值.课时作业 34一、选择题1.函数y =-5cos(3x +1)的最小正周期为( ) A.π3B .3π C.2π3 D.3π2解析:该函数的最小正周期T =2πω=2π3.答案:C2.函数f (x )=2sin 2x 的奇偶性为( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数解析:因为f (x )的定义域是R ,且f (-x )=2sin 2(-x )=-2sin 2x =-f (x ), 所以函数f (x )为奇函数. 答案:A3.函数f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-2 010x +1 005π=-sin ⎝ ⎛⎭⎪⎫π2-2 010x =-cos 2 010x , f (x )定义域为R ,且f (-x )=-cos(-2 010x )=-cos 2010x =f (x ), 所以函数f (x )为偶函数. 答案:B4.函数f (x )=x sin ⎝⎛⎭⎪⎫π2-x ( )A .是奇函数B .是非奇非偶函数C .是偶函数D .既是奇函数又是偶函数解析:由题,得函数f (x )的定义域为R ,关于原点对称,又f (x )=x sin ⎝⎛⎭⎪⎫π2-x =x cosx ,所以f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),所以函数f (x )为奇函数.答案:A 二、填空题5.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.解析:x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数.答案:奇6.函数y =cos (1-x )π2的最小正周期是________.解析:∵y =cos ⎝ ⎛⎭⎪⎫-π2x +π2,∴T =2ππ2=2π×2π=4.答案:47.函数f (x )是以2为周期的函数,且f (2)=3,则f (8)=________. 解析:∵f (x )的周期为2, ∴f (x +2)=f (x ),∴f (8)=f (2+3×2)=f (2)=3.答案:3 三、解答题8.求下列函数的最小正周期: (1)y =cos ⎝ ⎛⎭⎪⎫-2x +π6;(2)y =|sin x 2|. 解析:(1)利用公式T =2π|ω|,可得函数y =cos ⎝⎛⎭⎪⎫-2x +π6的最小正周期为T =2π|-2|=π. (2)易知函数y =sin x 2的最小正周期为T =2π12=4π,而函数y =⎪⎪⎪⎪⎪⎪sin x 2的图象是由函数y =sin x 2的图象将在x 轴下方部分翻折到上方后得到的,此时函数周期减半,即y =⎪⎪⎪⎪⎪⎪sin x 2的最小正周期为2π.9.判断下列函数的奇偶性. (1)f (x )=3cos 2x ;(2)f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2;(3)f (x )=x ·cos x . 解析:(1)因为x ∈R ,f (-x )=3cos(-2x )=3cos 2x =f (x ),所以f (x )=3cos 2x 是偶函数. (2)因为x ∈R ,f (x )=sin ⎝⎛⎭⎪⎫3x 4+3π2=-cos 3x 4,所以f (-x )=-cos 3(-x )4=-cos 3x 4=f (x ),所以函数f (x )=sin ⎝ ⎛⎭⎪⎫3x 4+3π2是偶函数.(3)因为x ∈R ,f (-x )=-x ·cos(-x )=-x ·cos x =-f (x ), 所以f (x )=x cos x 是奇函数. [尖子生题库]10.已知函数y =12cos x +12|cos x |.(1)画出函数的图象;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.解析:(1)y =12cos x +12|cos x |=⎩⎪⎨⎪⎧cos x ,x ∈⎝⎛⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),0,x ∈⎝ ⎛⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ),函数图象如图所示.(2)由图象知这个函数是周期函数,且最小正周期是2π.。
最新人教A版高中数学必修一课件:5.4.2 第一课时 正弦函数、余弦函数的周期性与奇偶性
(3)由11-+ssiinn
x>0, x>0,
得-1<sin x<1,
解得定义域为xx∈R
且x≠kπ+π2
,k∈Z ,
∴f(x)的定义域关于原点对称.
又∵f(x)=lg(1-sin x)-lg(1+sin x),
∴f(-x)=lg[1-sin(-x)]-lg[1+sin(-x)]
=lg(1+sin x)-lg(1-sin x)=-f(x),∴f(x)为奇函数.
(二)基本知能小试 1.判断正误
(1)若 sin23π+π6=sinπ6,则23π是函数 y=sin x 的一个周期. (2)所有的周期函数都有最小正周期. (3)函数 y= sin x是奇函数.
答案:(1)× (2)× (3)×
() () ()
2.函数 y=2cos2x+π2是 A.周期为 π 的奇函数 C.周期为 2π 的奇函数
二、应用性——强调学以致用
2.[好题共享——选自人教B版新教材]若弹簧振子相对平衡位置的位移x(单位: cm)与时间t(单位:s)之间的函数关系如图所示.
(1)求该函数的周期;
A.-12
1 B.2
C.-
3 2
3 D. 2
()
[解析] (1)y=cos|2x|是偶函数,y=|sin 2x|是偶函数,y=sinπ2+2x=cos 2x 是偶函数,y=cos32π-2x=-sin 2x 是奇函数,根据公式得其最小正周期 T=π.
(2)f53π=f53π-π=f23π
=f23π-π=f-π3=fπ3=sinπ3=
由图象可知 T=π.
[方法技巧] 求三角函数最小正周期的常用方法
(1)公式法:将函数化为 y=Asin(ωx+φ)+B 或 y=Acos(ωx+φ)+B 的形式, 再利用 T=|2ωπ|求得.
2023新教材高中数学正余弦函数的周期性奇偶性课件新人教A版必修第一册
12.求下列函数的周期: (1)y=2sin12x+π6,x∈R; (2)y=1-2cosπ2x,x∈R; (3)y=|sinx|,x∈R.
解 (1)∵2sin12x+4π+π6=2sin12x+6π+2π=2sin12x+π6,∴自变量 x 只需并且至少要增加到 x+4π,
函数 y=2sin12x+π6,x∈R 的值才能重复出现,
知周期 T=π2;选项 C,周期 T=21π=8π;选项 D,周期 T=24π=2π.故选 BD. 4
9.f(x)=cosωx-π6 的最小正周期为π5,其中 ω>0,则 ω=________.
答案 10 解析 ∵T=2ωπ=π5,∴ω=10.
10.已知函数 f(x)的定义域为 R,最小正周期是32π,当 x∈-π2,π时,
答案 A
解析 分别作出函数 y=|cosx|与 y=sin|x|的图象,观察可得,y=|cosx| 是周期函数,y=sin|x|不是周期函数.故选 A.
8.(多选)下列函数中,周期为π2的是(
)
A.y=sin2x B.y=|sin2x|
C.y=cos4x D.y=cos4x
答案 BD
解析 选项 A,周期 T=21π=4π;选项 B,作出函数 y=|sin2x|的图象易 2
解析 根据周期函数的定义,任意非零有理数都是 f(x)的周期.
2.(多选)下列是定义在 R 上的四个函数图象的一部分,其中是周期函 数的是( )
答案 ABC
解析 显然 D 中函数图象不是经过相同单位长度,图象重复出现.而 A, C 中每经过一个单位长度,图象重复出现.B 中图象每经过 2 个单位长度, 图象重复出现.所以 A,B,C 中函数是周期函数,D 中函数不是周期函数.故 选 ABC.
数学人教A版必修第一册3.2.2奇偶性
g(x) 1 x
1.请你仔细视察这两个函数图像,他们又有什么共同特征? 2.请你完成下列函数值对应表。 3.你能仿照偶函数定义叙述奇函数定义么?
x -3 -2 -1 0 1 2 3
f (x) x -3 -2 -1 0 1 2 3
x -3 -2 -1 0 1 2 3 g(x) 1 -1/3 -1/2 -1 / 1 1/2 1/3
教学重难点
重点:函数奇偶性的概念和函数图像的特征。
难点:利用函数奇偶性的概念和图像的对称性,证明或 判断函数的奇偶性。
且
函数 f (x) 是偶函数
图像关于 对称
且
函数 f (x) 是奇函数
图像关于 对称
2.奇偶性判断步骤
一看二找三判断
作业
本节课后练习 85页1.2.题
谢谢观看
教学内容
函数的奇偶性是函数的重要性质。 一方面,函数的奇偶性是函数概念的深化,它把自变量 取相反数时函数值间的关系定量的联系在一起,反应在 图象上为:偶函数的图象关于y轴对称,奇函数的图象关 于坐标原点成中心对称。这样,从数与形两个角度对函 数的奇偶性进行定量和定性的分析。另一方面,函数的 奇偶性又是后续研究指数函数、对数函数、幂函数、三 角函数等内容的基础,在研究各种具体函数的性质、解 决各种问题中都有广泛的应用。因此,本节课有着承上 启下的作用
偶函数定义:
一般地,设函数 f (x) 的定义域为 I ,如
果x I ,都有 x I,且f (x) f (x)
那么函数 f (x) 就叫做偶函数.
新课讲授 f (x) x2 1
它们还是 偶函数么?
g
(
x)
100 11 x
2
偶函数
2020年人教A版高中数学必修第一册5.4 三角函数的性质(解析版)
5.4 三角函数性质运用一五点画图【例1】(1)在[0,2π]内用五点法作出y=-sin x-1的简图. (2)画出函数y=1+cos x,x∈[0,2π]的图象.【答案】见解析【解析】(1)①按五个关键点列表②描点并用光滑曲线连接可得其图像,如图所示.(2)①列表如下:②描点:③连线:用光滑的曲线依次连接各点,即得所求的图象.【触类旁通】1.用“五点法”作函数y =-2cos x +3(0≤x ≤2π)的简图. 【答案】见解析【解析】由条件列表如下:描点、连线得出函数y =-2cos x +3(0≤x ≤2π)的图象如图所示.2.画出函数y =3+2cos x 的简图.【思路总结】五点法画图作形如y =a sin x +b (或y =a cos x +b ),x ∈[0,2π]的图象时,可用“五点法”作图,其步骤是:①列表,取x =0、π2、π、3π2、2π;②描点;③用光滑曲线连成图.【答案】见解析【解析】(1)列表,如下表所示x 0 π2 π 3π2 2π y =cos x 1 0 -1 01 y =3+2cos x53135(2)3.y =|sin x |,x ∈[0,4π]【解析】首先用“五点法”作出函数y =sin x ,x ∈[0,4π]的简图,再将该简图在x 轴下方的部分翻折到x 轴的上方,即得到y =|sin x |,x ∈[0,4π]的简图,如图所示.运用二 周期【例2-1】求下列函数的周期.(1)y =2sin 2x ;(2)y =cos ⎝ ⎛⎭⎪⎫12x +π6.【答案】(1)π (2)4π【解析】(1)方法一 因为2sin(2x +2π)=2sin 2x ,即2sin 2(x +π)=2sin 2x . 由周期函数的定义,可知原函数的周期为π.方法二 T =2π2=π.(2)方法一 因为cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +π6+2π=cos ⎝ ⎛⎭⎪⎫12x +π6,即cos ⎣⎢⎡⎦⎥⎤12x +4π+π6=cos ⎝ ⎛⎭⎪⎫12x +π6.由周期函数的定义,可知原函数的周期为4π. 方法二 T =2π12=4π【例2-2】下列函数中,不是周期函数的是( )A.y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x | 【答案】D【解析】画出y =sin|x |的图象,易知y =sin|x |不是周期函数 【触类旁通】1.(2019·平罗中学高一期中(文))函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .4πB .2πC .πD .2π【答案】C【解析】因为2sin 26y x π⎛⎫=+⎪⎝⎭,所以其最小正周期为22T ππ==,故选C. 2.(2019·云南高二期末)函数 ()2sin 36f x x π⎛⎫=- ⎪⎝⎭的最小正周期为__________. 【答案】23π【解析】由题得函数的最小正周期22|-3|3T ππ==.故答案为:23π运用三 正余弦函数曲线的运用【例3】根据正弦曲线求满足sin x ≥-32在[0,2π]上的x 的取值范围. 【解析】 在同一坐标系内作出函数y =sin x 与y =-32的图象,如图所示.观察在一个闭区间[0,2π]内的情形,满足sin x ≥-32的x ∈⎣⎢⎡⎦⎥⎤0,43π∪⎣⎢⎡⎦⎥⎤53π,2π,所以满足sin x ≥-32在[0,2π]上的x 的范围是{x 0≤x ≤43π或5π3≤x ≤2π}.或⎣⎢⎡⎦⎥⎤0,43π∪⎣⎢⎡⎦⎥⎤53π,2π【触类旁通】1.不等式sin x >0,x ∈[0,2π]的解集为( )A .[0,π]B .(0,π) C.⎣⎢⎡⎦⎥⎤π2,3π2 D.⎝ ⎛⎭⎪⎫π2,3π2【答案】B【解析】由y =sin x 在[0,2π]的图象可得.2.直线y =12与函数y =sin x ,x ∈[0,2π]的交点坐标是________.【答案】⎝ ⎛⎭⎪⎫π6,12,⎝ ⎛⎭⎪⎫56π,12【解析】令sin x =12,则x =2k π+π6或x =2k π+56π,又∵x ∈[0,2π],故x =π6或56π.3.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 【答案】见解析【解析】函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π3≤x ≤5π6或7π6≤x ≤5π3 运用四 奇偶性【例4】(1)下列函数不是奇函数的是 A .y =sin xB .y =sin 2xC .y =sin x +2D .y =12sin x(2)(2019·陕西高一期末)若函数()[]()3cos 0,223x f x πϕϕπ+⎛⎫=+∈ ⎪⎝⎭的图像关于y 轴对称,则ϕ=( ) A .34π B .32π C .23π D .43π【答案】(1)C (2)B【解析】当x =π2时,y =sin π2+2=3,当x =-π2时,y =sin(-π2)+2=1,∴函数y =sin x +2是非奇非偶函数.(2)∵函数f (x )=cos (323x πϕ++)=sin 3x ϕ+ (φ∈[0,2π])的图象关于y 轴对称,∴,32k k Z ϕππ=+∈,由题知 φ32π=,故选:B . 【触类旁通】 1. 判断函数的奇偶性 (1)f (x )=|sin x |+cos x ; (2)f (x )=1-cos x +cos x -1.【答案】(1)偶函数(2)既是奇函数又是偶函数【解析】(1)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数.(2)由1-cos x ≥0且cos x -1≥0,得cos x =1,从而x =2k π,k ∈Z ,此时f (x )=0,故该函数既是奇函数又是偶函数. 2.函数f (x )=sin ⎝⎛⎭⎪⎫2 0112π-2 010x 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 【答案】B 【解析】f(x)=sin ⎝⎛⎭⎪⎫2 0112π-2 010x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-2 010x +1 005π=-sin ⎝ ⎛⎭⎪⎫π2-2 010x =-cos 2 010x ,f(x)定义域为R ,且f(-x)=-cos(-2 010x)=-cos 2 010x =f(x),所以函数f(x)为偶函数.答案:B 3.下列函数中是奇函数,且最小正周期是π的函数是( )A .y =cos|2x |B .y =|sin x |C .y =sin ⎝ ⎛⎭⎪⎫π2+2xD .y =cos ⎝ ⎛⎭⎪⎫3π2-2x 【答案】D【解析】y =cos|2x |是偶函数;y =|sin x |是偶函数;y =sin ⎝⎛⎭⎪⎫π2+2x =cos 2x 是偶函数;y =cos ⎝⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,且其最小正周期T =π.4.(2019·榆林市第二中学高一期末)已知(0,)ϕπ∈,若函数()cos(2)f x x ϕ=+为奇函数,则ϕ=______. 【答案】2π【解析】若函数()cos(2)f x x ϕ=+为奇函数,则(0)0f =,即cos 0ϕ=,解得2k πϕπ=+,又因为(0,)ϕπ∈,所以2ϕπ=运用五 单调性【例5】(1)函数f (x )=sin ⎝⎛⎭⎪⎫x +π6的一个递减区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2B .[-π,0]C.⎣⎢⎡⎦⎥⎤-23π,23πD.⎣⎢⎡⎦⎥⎤π3,4π3(2)求函数y =2sin ⎝ ⎛⎭⎪⎫π3-2x 的单调递增区间.【答案】见解析【解析】 (1)由π3≤x ≤43π,可得π2≤x +π6≤32π.所以⎣⎢⎡⎦⎥⎤π3,4π3是函数的一个减区间.(2)由y =2sin ⎝ ⎛⎭⎪⎫π3-2x ,得y =-2sin ⎝ ⎛⎭⎪⎫2x -π3.∴要求函数y =2sin ⎝⎛⎭⎪⎫π3-2x 的单调递增区间,只需求出函数y =2sin ⎝⎛⎭⎪⎫2x -π3的单调递减区间.令π2+2kπ≤2x -π3≤3π2+2k π,k ∈Z ,解之得5π12+k π≤x ≤11π12+k π,k ∈Z.∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤5π12+k π,11π12+k π(k ∈Z).【触类旁通】1.函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是________.【答案】⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z) 【解析】因为-π+2k π≤2x -π3≤2k π,k ∈Z.所以k π-π3≤x ≤k π+π6,k ∈Z.2.(2019·内蒙古高一月考)函数2sin 2([,0])6y x x ππ⎛⎫=+∈- ⎪⎝⎭的单调递减区间是________. 【答案】5,63ππ⎡⎤--⎢⎥⎣⎦ 【解析】正弦函数sin y u =的单调递减区间为()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 由()3222262k x k k Z πππππ+≤+≤+∈,得()263k x k k Z ππππ+≤≤+∈,记()2,63A k k k Z ππππ⎡⎤=++∈⎢⎥⎣⎦,则[]5,0,63Aπππ⎡⎤-=--⎢⎥⎣⎦, 故答案为:5,63ππ⎡⎤--⎢⎥⎣⎦. 运用六 对称性【例6】(1)函数y =sin 522x π⎛⎫+⎪⎝⎭的一个对称中心是( ) A .,08π⎛⎫⎪⎝⎭B .,04π⎛⎫⎪⎝⎭ C .,03π⎛⎫-⎪⎝⎭D .3,08π⎛⎫⎪⎝⎭(2)(2019·天水市第一中学高一期末(理))函数3cos 253y x π⎛⎫=-+ ⎪⎝⎭图象的一个对称中心和一条对称轴可以是() A .5,012π⎛⎫⎪⎝⎭,23x π=B .5,512π⎛⎫⎪⎝⎭,23x π=C .2,03π⎛⎫⎪⎝⎭,512x π=D .2,53π⎛⎫⎪⎝⎭,512x π=(3)(2019·上海市控江中学高一期末)已知ϕ是常数,如果函数()5cos 2y x ϕ=-+的图像关于点4,03π⎛⎫ ⎪⎝⎭中心对称,那么ϕ的最小值为( ) A .3πB .4π C .6π D .2π【答案】(1)B (2)B (3)C 【解析】(1)y =sin 522x π⎛⎫+⎪⎝⎭=cos2x ,可令2x=2k ππ+,可得x=42k ππ+,k Z ∈, 可得函数的对称中心(42k ππ+,0),结合选项可得,当k=0时,选项B 正确,故选B. (2)由题意,函数3cos 253y x π⎛⎫=-+ ⎪⎝⎭的性质,令2,3x k k Z ππ-=∈,解得,26k x k Z ππ=+∈, 当1k =时,23x π=,即函数的一条对称轴的方程为23x π=, 令2,32x k k Z πππ-=+∈,解得5,212k x k Z ππ=+∈, 当0k =时,512x π=,即函数的一个对称中心为5(,5)12π,故选:B . (3)由于函数()5cos 2y x ϕ=-+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,则45cos 203πϕ⎛⎫-⨯+= ⎪⎝⎭, ()4232k k Z ππϕπ∴⨯+=+∈,则()136k k Z ϕππ=-∈, 因此,当2k =时,ϕ取得最小值6π,故选:C. 【触类旁通】1.(2019·西藏高一期末)函数()cos()(0)3f x x πωω=->的图像关于直线2x π=对称,则ω的最小值为() A .13B .12C .23D .1【答案】C【解析】()cos()(0)3f x x πωω=-> 对称轴为:22(0)3233x k k k πππωπωπωω-=⇒-=⇒=+>当0k =时,ω有最小值为23故答案选C2.“4πϕ=-”是“函数()cos(3)f x x ϕ=-的图象关于直线4x π=对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】当4πϕ=-时, ()cos 34f x x π⎛⎫=+⎪⎝⎭, 若4x π=时 3cos cos 1444f ππππ⎛⎫⎛⎫=+==-⎪ ⎪⎝⎭⎝⎭,故: 4x π=是对称轴,排除:B,D 函数()cos(3)f x x ϕ=-对称轴若是4x π=,则33,()44k k k z ππϕπϕπ-==-∈则,故排除:C ,答案选A3.(2019·湖南高一期末)函数f(x)=3cos (4x +5π6)图像的一个对称中心是( )A.(π12,0) B.(π6,0)C.(π3,0)D.(5π6,0)【答案】B【解析】由题得4x +5π6=kπ+π2,k ∈Z ,所以x =kπ4−π12(k ∈Z),所以f(x)=3cos (4x +5π6)图像的对称中心是(kπ4−π12,0)(k ∈Z). 当k=1时,函数的对称中心为(π6,0).故选:B运用七 最值(值域)【例7】求下列函数的值域:(1)y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2;(2)y =2sin 2x +2sin x -12,x ∈⎣⎢⎡⎦⎥⎤π6,5π6.【答案】(1)⎣⎢⎡⎦⎥⎤-12,32(2)⎣⎢⎡⎦⎥⎤1,72【解析】(1)由y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈0,π2可得x +π6∈⎣⎢⎡⎦⎥⎤π6,2π3,函数y =cos x 在区间⎣⎢⎡⎦⎥⎤π6,2π3上单调递减,所以函数的值域为⎣⎢⎡⎦⎥⎤-12,32.(2)令t =sin x ,∴y =2t 2+2t -12=2⎝ ⎛⎭⎪⎫t +122-1.∵x ∈⎣⎢⎡⎦⎥⎤π6,5π6,∴12≤sin x ≤1,即12≤t ≤1,∴1≤y ≤72,∴函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,72.【触类旁通】1.函数y =2-sin x 的最大值及取最大值时x 的值为( ) A .y max =3,x =-π2 B .y max =1,x =π2+2k π(k ∈Z)C .y max =3,x =-π2+2k π(k ∈Z)D .y max =3,x =π2+2k π(k ∈Z)【答案】C【解析】x =-π2+2k π(k ∈Z)时,y =sin x 有最小值-1,函数y =2-sin x 有最大值3.2.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________.【答案】-22【解析】当0≤x ≤π2时,-π4≤2x -π4≤3π4,因为函数y =sin x 在⎝⎛⎭⎪⎫0,3π4上的函数值恒为正数,在⎝ ⎛⎭⎪⎫-π4,0上的函数值恒为负数,且在⎝ ⎛⎭⎪⎫-π4,0上为增函数,所以函数f (x )的最小值为f (0)=-22.3(2019·榆林市第二中学高一期末)函数2cos sin 1y x x =+-的值域为( ) A .11,44⎡⎤-⎢⎥⎣⎦B .10,4⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .11,4⎡⎤-⎢⎥⎣⎦【答案】C【解析】222111sin sin 1sin sin sin 24y x x x x x ⎛⎫=-+-=-+=--+ ⎪⎝⎭,[]sin 1,1x ∈-, 当1sin 2x =时,函数y 取得最大值为14,当sin 1x =-时,函数y 取得最大值为2-, 所以函数的值域为12,4⎡⎤-⎢⎥⎣⎦,故选C运用八 比较函数值的大小【例8】不求值,比较下列各组中两个三角函数值的大小: (1)sin 14°与sin 156°; (2)cos 515°与cos 530°.【答案】(1)sin14°<sin156°(2)cos515°>cos530° 【解析】利用三角函数单调性比较.(1)∵sin156°=sin(180°-24°)=sin24°.∵-90°<14°<24°<90°,∵y =sin x 在[-90°,90°]上是增函数, ∴sin14°<sin24°,即sin14°<sin156°. (2)cos 515°=cos(515°-360°)=cos155°, cos 530°=cos(530°-360°)=cos170°,∵90°<155°<170°<180°而y =cos x 在[90°,180°]上是减函数. ∴cos155°>cos170°即cos515°>cos530°. 【触类旁通】不求值,比较下列各组中两个三角函数值的大小(1)sin ⎝ ⎛⎭⎪⎫-376π与sin 493π;(2)cos 870°与sin 980°. 【答案】见解析【解析】(1)sin ⎝ ⎛⎭⎪⎫-376π=sin ⎝ ⎛⎭⎪⎫-6π-π6=sin ⎝ ⎛⎭⎪⎫-π6,sin 493π=sin ⎝ ⎛⎭⎪⎫16π+π3=sin π3,因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,所以sin ⎝ ⎛⎭⎪⎫-π6<sin π3,即sin ⎝ ⎛⎭⎪⎫-376π<sin 493π.(2)cos 870°=cos(720°+150°)=cos 150°,sin 980°=sin(720°+260°)=sin 260°=sin(90°+170°)=cos 170°,因为0°<150°<170°<180°,所以cos 150°>cos 170°,即cos 870°>sin 980°.运用九 正切函数性质【例9】(1)求函数y =lg(3-tan x )的定义域 。
新人教A版新教材学高中数学必修第一册第三章函数概念与性质奇偶性函数奇偶性的概念教案
考点学习目标核心素养函数奇偶性的判断结合具体函数,了解函数奇偶性的含义,掌握判断函数奇偶性的方法数学抽象,逻辑推理奇、偶函数的图象了解函数奇偶性与函数图象对称性之间的关系直观想象奇、偶函数的应用会利用函数的奇偶性解决简单问题数学运算问题导学预习教材P82—P84,并思考以下问题:1.奇函数与偶函数的定义是什么?2.奇、偶函数的定义域有什么特点?3.奇、偶函数的图象有什么特征?1.偶函数(1)定义:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有—x∈I,且f(—x)=f(x),那么函数f(x)就叫做偶函数.(2)图象特征:图象关于y轴对称.2.奇函数(1)定义:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有—x∈I,且f(—x)=—f(x),那么函数f(x)就叫做奇函数.(2)图象特征:图象关于原点对称.■名师点拨(1)奇、偶函数定义域的特点由于f(x)和f(—x)须同时有意义,所以奇、偶函数的定义域关于原点对称.(2)奇、偶函数的对应关系的特点1奇函数有f(—x)=—f(x)⇔f(—x)+f(x)=0⇔错误!=—1(f(x)≠0);2偶函数有f(—x)=f(x)⇔f(—x)—f(x)=0⇔错误!=1(f(x)≠0).(3)函数奇偶性的三个关注点1若奇函数在原点处有定义,则必有f(0)=0.有时可以用这个结论来否定一个函数为奇函数;2既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈I,其中定义域I是关于原点对称的非空集合;3函数根据奇偶性可分为奇函数、偶函数、既奇又偶函数、非奇非偶函数.判断正误(正确的打“√”,错误的打“×”)(1)奇、偶函数的定义域都关于原点对称.()(2)函数f(x)=x2的图象关于原点对称.()(3)对于定义在R上的函数f(x),若f(—1)=—f(1),则函数f(x)一定是奇函数.()(4)若f(x)是定义在R上的奇函数,则f(—x)+f(x)=0.()答案:(1)√(2)×(3)×(4)√下列函数为奇函数的是()A.y=|x|B.y=3—xC.y=错误!D.y=—x2+14解析:选C.A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数,故选C.若函数y=f(x),x∈[—2,a]是偶函数,则a的值为()A.—2B.2C.0D.不能确定解析:选B.因为偶函数的定义域关于原点对称,所以—2+a=0,所以a=2.下列图象表示的函数是奇函数的是________,是偶函数的是________.(填序号)解析:13关于y轴对称是偶函数,24关于原点对称是奇函数.答案:2413若f(x)是定义在R上的奇函数,f(3)=2,则f(—3)=________,f(0)=________.解析:因为f(x)是定义在R上的奇函数,所以f(—3)=—f(3)=—2,f(0)=0.答案:—20函数奇偶性的判断判断下列函数的奇偶性:(1)f(x)=|x+1|—|x—1|;(2)f(x)=错误!+错误!;(3)f(x)=错误!;(4)f(x)=错误!【解】(1)因为x∈R,所以—x∈R,又因为f(—x)=|—x+1|—|—x—1|=|x—1|—|x+1|=—(|x+1|—|x—1|)=—f(x),所以f(x)为奇函数.(2)因为函数f(x)的定义域为{—1,1},关于原点对称,且f(x)=0,所以f(—x)=—f(x),f(—x)=f(x),所以f(x)既是奇函数又是偶函数.(3)f(x)的定义域为[—1,0)∪(0,1].即有—1≤x≤1且x≠0,则—1≤—x≤1,且—x≠0,又因为f(—x)=错误!=—错误!=—f(x).所以f(x)为奇函数.(4)f(x)的定义域是(—∞,0)∪(0,+∞),关于原点对称.当x>0时,—x<0,f(—x)=1—(—x)=1+x=f(x);当x<0时,—x>0,f(—x)=1+(—x)=1—x=f(x).综上可知,对于x∈(—∞,0)∪(0,+∞),都有f(—x)=f(x),所以f(x)为偶函数.错误!判断函数奇偶性的两种方法(1)定义法(2)图象法[注意] 对于分段函数奇偶性的判断,应分段讨论,要注意根据x的范围取相应的函数解析式.1.给定四个函数:1y=x3+错误!;2y=错误!(x>0);3y=x3+1;4y=错误!.其中是奇函数的有()A.1个B.2个C.3个D.4个解析:选B.1函数的定义域为R,f(x)=x3+错误!,f(—x)=—(x3+错误!)=—f(x),则函数f(x)是奇函数;2函数的定义域关于原点不对称,则函数f(x)为非奇非偶函数;3函数的定义域为R,f(0)=0+1=1≠0,则函数f(x)为非奇非偶函数;4函数的定义域为(—∞,0)∪(0,+∞),f(—x)=错误!=—错误!=—f(x),则函数f(x)是奇函数.2.如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)解析:选B.因为f(x)是奇函数,所以f(—x)=—f(x).对于A,g(—x)=—x+f(—x)=—x—f(x)=—g(x),所以y=x+f(x)是奇函数.对于B,g(—x)=—xf(—x)=xf(x)=g(x),所以y=xf(x)是偶函数.对于C,g(—x)=(—x)2+f(—x)=x2—f(x),所以y=x2+f(x)为非奇非偶函数.对于D,g(—x)=(—x)2f(—x)=—x2f(x)=—g(x),所以y=x2f(x)是奇函数.奇、偶函数的图象已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f (x)在y轴左侧的图象,如图所示.(1)请补出完整函数y=f(x)的图象;(2)根据图象写出函数y=f(x)的递增区间;(3)根据图象写出使f(x)<0的x的取值集合.【解】(1)由题意作出函数图象如图:(2)据图可知,单调递增区间为(—1,0),(1,+∞).(3)据图可知,使f(x)<0的x的取值集合为(—2,0)∪(0,2).1.(变问法)本例条件下,y取何值时,有四个不同的x值与之对应?解:结合图象可知,满足条件的y的取值范围是(—1,0).2.(变条件)若将本例中的“偶函数”改为“奇函数”,其他条件不变,如何解答本题?解:(1)由题意作出函数图象如图所示:(2)据图可知,单调递增区间为(—1,1).(3)据图可知,使f(x)<0的x的取值集合为(—2,0)∪(2,+∞).错误!巧用奇偶性作函数图象的步骤(1)确定函数的奇偶性.(2)作出函数在[0,+∞)(或(—∞,0])上对应的图象.(3)根据奇(偶)函数关于原点(y轴)对称得出在(—∞,0](或[0,+∞))上对应的函数图象.[注意] 作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称点为(—x0,—y0),关于y轴的对称点为(—x0,y0).已知函数y=f(x)是偶函数,且图象与x轴有四个交点,则方程f(x)=0的所有实根之和是()A.4B.2C.1D.0解析:选D.因为f(x)是偶函数,且图象与x轴有四个交点,所以这四个交点每组两个关于y轴一定是对称的,故所有实根之和为0.利用函数的奇偶性求参数(1)若函数f(x)=ax2+bx+3a+b是偶函数,且定义域为[a—1,2a],则a=________,b=________.(2)若已知函数f(x)=错误!是定义在(—1,1)上的奇函数,且f错误!=错误!,求函数f(x)的解析式.【解】(1)因为偶函数的定义域关于原点对称,所以a—1=—2a,解得a=错误!.又函数f(x)=错误!x2+bx+b+1为二次函数,结合偶函数图象的特点,易得b=0.故填错误!和0.(2)因为f(x)是定义在(—1,1)上的奇函数,所以f(0)=0,即错误!=0,所以b=0.又因为f错误!=错误!=错误!,所以a=1,所以f(x)=错误!.错误!利用奇偶性求参数的常见类型及策略(1)定义域含参数:奇、偶函数f(x)的定义域为[a,b],根据定义域关于原点对称,利用a+b =0求参数.(2)解析式含参数:根据f(—x)=—f(x)或f(—x)=f(x)列式,比较系数即可求解.1.若f(x)=(ax+1)(x—a)为偶函数,且函数y=f(x)在x∈(0,+∞)上单调递增,则实数a的值为()A.±1B.—1C.1D.0解析:选C.因为f(x)=(ax+1)(x—a)=ax2+(1—a2)x—a为偶函数,所以1—a2=0.所以a=±1.当a=1时,f(x)=x2—1,在(0,+∞)上单调递增,满足条件;当a=—1时,f(x)=—x 2+1,在(0,+∞)上单调递减,不满足.2.已知函数f(x)=错误!是奇函数,则a=________.解析:因为f(x)为奇函数,所以f(—1)+f(1)=0,即(a—1)+(—1+1)=0,故a=1.答案:11.下列函数是偶函数的是()A.y=xB.y=2x2—3C.y=错误!D.y=x2,x∈(—1,1]解析:选B.对于A,定义域为R,f(—x)=—x=—f(x),是奇函数;对于B,定义域为R,满足f(x)=f(—x),是偶函数;对于C和D,定义域不关于原点对称,则不是偶函数.2.函数f(x)=错误!—x的图象关于()A.y轴对称B.直线y=—x对称C.坐标原点对称D.直线y=x对称解析:选C.函数f(x)=错误!—x是奇函数,其图象关于坐标原点对称.3.已知函数f(x)为R上的奇函数,且当x>0时,f(x)=x2+错误!,则f(—1)=________.解析:当x>0时,f(x)=x2+错误!,所以f(1)=1+1=2.又f(x)为奇函数,所以f(—1)=—2.答案:—24.根据题中函数的奇偶性及所给部分图象,作出函数在y轴另一侧的图象,并解决问题:(1)如图1是奇函数y=f(x)的部分图象,求f(—4)·f(—2);(2)如图2是偶函数y=f(x)的部分图象,比较f(1)与f(3)的大小.解:(1)作出函数在y轴另一侧的图象,如图所示,观察图象可知f(—4)=—f(4)=—2,f(—2)=—f(2)=—1,所以f(—4)·f(—2)=(—2)×(—1)=2.(2)作出函数在y轴另一侧的图象,如图所示.观察图象可知f(1)=f(—1),f(3)=f(—3),f(—1)<f(—3),所以f(1)<f(3).[A 基础达标]1.下列函数为奇函数的是()A.y=x2+2B.y=x,x∈(0,1]C.y=x3+x D.y=x3+1解析:选C.对于A,f(—x)=(—x)2+2=x2+2=f(x),即f(x)为偶函数;对于B,定义域不关于原点对称,故f(x)既不是奇函数也不是偶函数;对于C,定义域为R,且f(—x)=(—x)3+(—x)=—(x3+x)=—f(x),故f(x)为奇函数;对于D,f(—x)=—x3+1≠f(x)且f(—x)≠—f(x),故f(x)既不是奇函数,也不是偶函数.2.若函数f(x)=(m—1)x2+(m—2)x+(m2—7m+12)为偶函数,则m的值是()A.1B.2C.3D.4解析:选B.因为函数f(x)=(m—1)x2+(m—2)x+(m2—7m+12)为偶函数,所以f(—x)=f(x),即(m—1)x2+(m—2)x+(m2—7m+12)=(m—1)x2+(—m+2)x+(m2—7m +12),即m—2=—m+2,解得m=2.3.设f(x)是定义在R上的一个函数,则函数F(x)=f(x)—f(—x)在R上一定()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数解析:选A.F(—x)=f(—x)—f(x)=—[f(x)—f(—x)]=—F(x),符合奇函数的定义.4.如图,给出奇函数y=f(x)的局部图象,则f(—2)+f(—1)的值为()A.—2B.2C.1D.0解析:选A.由题图知f(1)=错误!,f(2)=错误!,又f(x)为奇函数,所以f(—2)+f(—1)=—f(2)—f(1)=—错误!—错误!=—2.故选A.5.如果函数y=错误!是奇函数,则f(x)=________.解析:设x<0,则—x>0,所以2×(—x)—3=—2x—3.又原函数为奇函数,所以f(x)=—(—2x—3)=2x+3.答案:2x+36.已知函数f(x)=ax3+bx+错误!+5,满足f(—3)=2,则f(3)的值为________.解析:因为f(x)=ax3+bx+错误!+5,所以f(—x)=—ax3—bx—错误!+5,即f(x)+f(—x)=10.所以f(—3)+f(3)=10,又f(—3)=2,所以f(3)=8.答案:87.判断下列函数的奇偶性:(1)f(x)=3,x∈R;(2)f(x)=5x4—4x2+7,x∈[—3,3];(3)f(x)=错误!解:(1)因为f(—x)=3=f(x),所以函数f(x)是偶函数.(2)因为x∈[—3,3],f(—x)=5(—x)4—4(—x)2+7=5x4—4x2+7=f(x),所以函数f(x)是偶函数.(3)当x>0时,f(x)=1—x2,此时—x<0,所以f(—x)=(—x)2—1=x2—1,所以f(—x)=—f(x);当x<0时,f(x)=x2—1,此时—x>0,f(—x)=1—(—x)2=1—x2,所以f(—x)=—f(x);当x=0时,f(—0)=—f(0)=0.综上,对x∈R,总有f(—x)=—f(x),所以函数f(x)为R上的奇函数.8.定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)补全f(x)的图象;(2)解不等式xf(x)>0.解:(1)描出点(1,1),(2,0)关于原点的对称点(—1,—1),(—2,0),则可得f(x)的图象如图所示.(2)结合函数f(x)的图象,可知不等式xf(x)>0的解集是(—2,0)∪(0,2).[B 能力提升]9.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C.依题意得对任意x∈R,都有f(—x)=—f(x),g(—x)=g(x),因此,f(—x)·g (—x)=—f(x)·g(x)=—[f(x)·g(x)],f(x)g(x)是奇函数,A错;|f(—x)|·g(—x)=|—f (x)|·g(x)=|f(x)|·g(x),|f(x)|·g(x)是偶函数,B错;f(—x)·|g(—x)|=—f(x)·|g(x)|=—[f(x)|g(x)|],f(x)·|g(x)|是奇函数,C正确;|f(—x)·g(—x)|=|—f(x)g(x)|=|f (x)g(x)|,|f(x)g(x)|是偶函数,D错.故选C.10.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)—g(x)=x3+x2+1,则f(1)+g(1)=()A.—3B.—1C.1D.3解析:选C.因为f(x)—g(x)=x3+x2+1,所以f(—x)—g(—x)=—x3+x2+1,又由题意可知f(—x)=f(x),g(—x)=—g(x),所以f(x)+g(x)=—x3+x2+1,则f(1)+g(1)=1,故选C.11.已知奇函数f(x)=错误!(1)求实数m的值,并画出y=f(x)的图象;(2)若函数f(x)在区间[—1,a—2]上单调递增,试确定a的取值范围.解:(1)当x<0时,—x>0,f(—x)=—(—x)2+2(—x)=—x2—2x.又f(x)为奇函数,所以f(—x)=—f(x)=—x2—2x,所以f(x)=x2+2x,所以m=2.y=f(x)的图象如图所示.(2)由(1)知f(x)=错误!由图象可知,f(x)在[—1,1]上单调递增,要使f(x)在[—1,a—2]上单调递增,只需错误!解得1<a≤3.12.设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有错误!>0.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(1+m)+f(3—2m)≥0,求实数m的取值范围.解:(1)因为a>b,所以a—b>0,由题意得错误!>0,所以f(a)+f(—b)>0.又f(x)是定义在R上的奇函数,所以f(—b)=—f(b),所以f(a)—f(b)>0,即f(a)>f(b).(2)由(1)知f(x)为R上的单调递增函数,因为f(1+m)+f(3—2m)≥0,所以f(1+m)≥—f(3—2m),即f(1+m)≥f(2m—3),所以1+m≥2m—3,所以m≤4.所以实数m的取值范围为(—∞,4].[C 拓展探究]13.已知f(x)是定义在R上的函数,设g(x)=错误!,h(x)=错误!.(1)试判断g(x)与h(x)的奇偶性;(2)试判断g(x),h(x)与f(x)的关系;(3)由此你能猜想出什么样的结论?解:(1)因为g(—x)=错误!=g(x),h(—x)=错误!=—h(x),所以g(x)是偶函数,h (x)是奇函数.(2)g(x)+h(x)=错误!+错误!=f(x).(3)如果一个函数的定义域关于原点对称,那么这个函数就一定可以表示为一个奇函数与一个偶函数的和.。
人教A版新课标高中数学必修4第一章《三角函数》综合练习题(含答案)
第一章《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为()A .3πcmB .23πcmC .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是( )A .3π,2-,4πB .3π,2,12πC .6π,2,12πD .6π,2,4π4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( ) A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( )A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-C .233D .233-11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章《三角函数》综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB 二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]216、13k << 17. 解析:(1)sin (tan )1()sin cos (tan )cos f ααααααα-==---;(2)若31sin()23πα-=-,则有1cos 3α=-,所以()f α=3。
高考数学复习 三角函数的单调性、奇偶性、周期性 新人教A版
返回
延伸·拓展
5.设f(x)是(-∞,+∞)上的函数,且f(x+2)=-f(x)对任意x∈R 成立.若x∈[-1,1]时,f(x)=x3; ①求x∈[1,5]时,f(x)的解析式; ②求f(-5)的值
【解题回顾】若要求求出x∈R时,f(x)的解析式,又该怎样 做?
编辑课件
返回
误解分析
1.判断三角函数的奇偶性,若不先关注定义域是否关于原 点对称,常常会得出错误的结论
φ=kπ/2+π/4,k∈Z
编辑课件
返回
能力·思维·方法
1.判断下列函数的奇偶性:
(1)ysinxcoxt 1coxs
( 2 ) y ls g x i n 1 s2 i xn
(3)y1sinxcoxs 1sinxcoxs
【解题回顾】判断函数的奇偶性时,有些学生往往只注 意:f(-x)=-f(x),或f(-x)=f(x).而不考虑该函数定义域是否 关于原点对称,这是造成解题错误的重要原因.
编辑课件
4.已知函数f(x)=log(1/2)(sinx-cosx), (1)求它的定义域和值域; (2)求它的单调区间; (3)判定它的奇偶性; (4)判定它的周期性,若是周期函数,求出它的最小正周期
【解题回顾】函数的单调性, 复合函数的增减性,可按增减为减、增增为增、减减为增 的法则判断.
编辑课件
3.已知函数f(x)=asin(πx+α)+bcos(πx+β)+4,当f(2001)=5时,
f(2002)=( ) B
(A)1
(B)3
(C)5
(D)7
编辑课件
4.函数y=2sin2x+sin2x是( D ) (A)以2π为周期的奇函数 (B)以2π为周期的非奇非偶函数 (C)以π为周期的奇函数 (D)以π为周期的非奇非偶函数
3.2.2 奇偶性 教学设计(1)
3.2.2 奇偶性本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章第三节;函数奇偶性是研究函数的一个重要策略,因此成为函数的重要性质之一,它的研究也为今后幂函数、三角函数的性质等后续内容的深入起着铺垫的作用;奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。
A.使学生了解奇函数、偶函数的定义;[XB、使学生了解奇函数、偶函数图象的对称性;C、使学生会用定义判断函数的奇偶性。
D.培养学生判断、推理的能力,加强化归转化能力的训练。
1.教学重点:奇函数、偶函数的定义,判断函数的奇偶性;2.教学难点:用定义判断函数的奇偶性。
多媒体1.观察函数()f x x =和1()f x x=的图象,并完成下面的两个函数值对应表,你能发现这两个函数有什么共同特征吗?【答案】图象关于x 轴对称。
2、奇函数定义: 一般地,如果对于函数f(x)的定义域内任意一个x ,都有()()f x f x -=-,那么函数f(x)就叫做奇函数.奇函数的图象特征:奇函数的图象关于原点对称,反之,一个函数的图象关于原点对称,那么它是奇函数.注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称).③具有奇偶性的函数的图象的特征:偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.例1:判断下列函数的奇偶性: (1)4()f x x = (2)5()f x x = (3)1()f x x x =+(4)21()f x x = 应用函数奇偶性定义说明四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)【解析】解析步骤见教材总结:利用定义判断函数奇偶性的步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 3.思考:(1)判断函数3()f x x x =+的奇偶性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的奇偶性(人教A版)
一、单选题(共15道,每道6分)
1.下列函数中是偶函数的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
2.下列函数中是奇函数的是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
3.下列函数中是偶函数的是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
4.函数,( )
A.是奇函数
B.是偶函数
C.既不是奇函数也不是偶函数
D.既是奇函数又是偶函数
答案:C
解题思路:
试题难度:三颗星知识点:余弦函数的奇偶性
5.函数( )
A.是奇函数
B.是偶函数
C.既不是奇函数也不是偶函数
D.既是奇函数又是偶函数
答案:B
解题思路:
试题难度:三颗星知识点:余弦函数的奇偶性
6.函数( )
A.是奇函数
B.是偶函数
C.既不是奇函数也不是偶函数
D.既是奇函数又是偶函数
答案:C
解题思路:
试题难度:三颗星知识点:正切函数的奇偶性
7.函数( )
A.是奇函数
B.是偶函数
C.既不是奇函数又不是偶函数
D.既是奇函数又是偶函数
答案:A
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
8.已知函数,,则( )
A.与都是奇函数
B.和都是偶函数
C.是奇函数,是偶函数
D.是偶函数,是奇函数
答案:A
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
9.已知函数,,则( )
A.与都是奇函数
B.和都是偶函数
C.是奇函数,是偶函数
D.是偶函数,是奇函数
答案:C
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
10.已知,,则( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:正弦函数的奇偶性
11.已知,满足,则的值为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
12.已知函数,,且,若,,则( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:三角函数的奇偶性
13.已知函数是上的奇函数,且当时,,则当时,的表达式为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:函数奇偶性的性质
14.已知函数是上的偶函数,当时,,则的单调递增区间是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:正弦函数的奇偶性
15.已知函数,则,,的大小顺序是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:余弦函数的单调性
第11页共11页。