一阶偏微分方程求解方法

合集下载

一阶偏微分方程的解法和特解

一阶偏微分方程的解法和特解

一阶偏微分方程的解法和特解在数学领域中,一阶偏微分方程是一种常见的数学模型,广泛应用于物理、工程和经济等领域。

解一阶偏微分方程的方法主要包括分离变量法、变换法和常数变易法等。

本文将介绍这些解法,并且通过实例来说明如何找到一阶偏微分方程的特解。

一、分离变量法分离变量法是解一阶偏微分方程最常用的方法之一。

它的基本思想是将方程中的未知函数表示为两个独立变量的乘积,然后将方程两边同时除以未知函数的乘积,使方程能够分离成两个只含有一个变量的方程。

具体步骤如下:1. 假设所给方程为F(x,y,y')=0,其中y'表示y关于x的导数。

2. 将方程中的未知函数表示为 y(x)=X(x)Y(y),其中X和Y是只含有x和y的函数。

3. 将y(x)和y'(x)代入方程 F(x,y,y')=0,并将等式整理得到X(x)Y'(y)= - X'(x)Y(y)。

4. 分离变量并整理,得到两个只含有一个变量的方程 X'(x)/X(x)= - Y'(y)/Y(y)。

5. 分别对两个方程进行积分,得到X(x)和Y(y)的表达式。

6. 将X(x)和Y(y)的表达式代回 y(x)=X(x)Y(y) 中,即得到方程的通解。

二、变换法变换法是解一阶偏微分方程的另一种常用方法。

它的基本思想是通过合适的变量变换,将原方程转化为一个更容易求解的方程。

主要的变换方法有线性变换、齐次变换和伯努利变换等。

下面以线性变换为例来说明解法:1. 假设所给方程为F(x,y,y')=0,其中y'表示y关于x的导数。

2. 进行变量变换 y = ux + v,其中u和v是待定的常数。

3. 将y和y'分别代入方程 F(x,y,y')=0,得到关于x、u和v的方程。

4. 选取适当的u和v的值,使得方程可以化简为容易解的形式。

5. 求解化简后的方程,得到u和v的表达式。

6. 将u和v的表达式代入 y = ux + v 中,即得到方程的通解。

第七章一阶线性偏微分方程

第七章一阶线性偏微分方程

Ψ ϕ1(x1, · · · , xn), · · · , ϕn−1(x1, · · · , xn)
= 常数
xj =ψj (xn)
(2) µ0dx + µ1dy1 + · · · + µndyn是某个函数ϕ的全微分,则ϕ = c就是方程的一个首次积 分。
【例1】 求方程组
的通积分。 【例2】 解方程组
dx xz
=
dy yz
=
dz xy
dx x
=
dy y
=
z
+
dz x2 + y2 + z2
7.2.4 一阶齐次线性偏微分方程的求解
7.2 一阶线性偏微分方程的求解
7.2.1 首次积分
定义 7.1 含有n个未知函数的一阶常微分方程组


dy1 dx
dy2 dx
= f1(x, y1, y2, · · · , yn), = f2(x, y1, y2, · · · , yn),

x2,
·
·
·
,
xn)
∂u ∂xi
=
0
(7.3)
则称其为一阶线性齐次偏微分方程。 4. 非线性偏微分方程 不是线性的偏微分方程为非线性偏微分方程。 5. 拟线性偏微分方程 若非线性偏微分方程关于其最高阶偏导数是线性的,则称它是拟线性偏微分方程。 本章讨论如下的一阶拟线性偏微分方程
n j=1
bj
(x1,பைடு நூலகம்
7.2 一阶线性偏微分方程的求解
5
7.2.3 利用首次积分求解常微分方程组
定义 7.2 称 方 程 组(7.5)的n个 互 相 独 立 的 首 次 积 分 全 体ϕj(x, y1, · · · , yn) = cj,j = 1, 2, · · · , n为方程组(7.5)的通积分。

2. 一阶偏微分方程

2. 一阶偏微分方程

§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程()()0,,,,,,211211=∂∂++∂∂n n n n x ux x x a x u x x x a (1)式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x ux u t u u x x x t F()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2) 称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c 就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) ) 是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni ini x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2.非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n in i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R tun i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()ux x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 === 为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0 都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x u p p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂==若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i ,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂y b b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bV a V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解.2︒ 如0=∂∂=∂∂=∂∂=∂∂y bx b y a x a ,即回到完全解.3︒ 当0/,0/≡∂∂≡∂∂b V a V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uF p x F t p p Fp t u p F t x i i i ni ii i i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或up x p up x p p Fp up x p xp x n n n ni iinn ∂+∂-==∂+∂-=∂∂=∂==∂=∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组 ()()F x y z p q G x y z p q a ,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解. 例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为z Fqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数) 可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为nn n ni iiinn n x f p x f p p f p zp f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1) 称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yPx Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足zUR y U Q x U P ∂∂=∂∂=∂∂=,, 从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c 所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P x z发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数.[特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-ji ji txa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线.[狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量.作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tn j i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i(k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关.(ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c )).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B t u A x v D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统.考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且图14.3()()()()()()()()v u t x u tx vv u t x u x t v v u t x v tx u v u t x v xtu,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A u t D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂tx v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.。

偏微分方程的解法

偏微分方程的解法

偏微分方程的解法偏微分方程(Partial Differential Equations,简称PDEs)是数学中的一个重要分支,它描述了多变量函数的偏导数之间的关系。

这些方程在自然科学、工程应用和社会科学等领域都发挥着重要作用。

解决偏微分方程是一个复杂而有挑战性的过程,需要运用多种数学方法和工具来求解。

在本文中,我将为您介绍几种常见的偏微分方程的解法,并提供一些示例以帮助您更好地理解。

以下是本文的主要内容:1. 一阶线性偏微分方程的解法1.1 分离变量法1.2 特征线方法2. 二阶线性偏微分方程的解法2.1 分离变量法2.2 特征值法2.3 Green函数法3. 非线性偏微分方程的解法3.1 平移法3.2 线性叠加法3.3 变换法4. 数值方法解偏微分方程4.1 有限差分法4.2 有限元法4.3 谱方法5. 偏微分方程的应用领域5.1 热传导方程5.2 波动方程5.3 扩散方程在解一阶线性偏微分方程时,我们可以使用分离变量法或特征线方法。

分离变量法的基本思路是将方程中的变量分离,然后通过积分的方式求解每个分离后的常微分方程,最后再将结果合并。

特征线方法则是将方程中的变量替换为新的变量,使得方程中的导数项消失,从而简化求解过程。

对于二阶线性偏微分方程,分离变量法、特征值法和Green函数法是常用的解法。

分离变量法的核心思想与一阶线性偏微分方程相似,将方程中的变量分离并得到常微分方程,然后进行求解。

特征值法则利用特征值和特征函数的性质来求解方程,适用于带有齐次边界条件的问题。

Green函数法则通过引入Green函数来求解方程,其特点是适用于非齐次边界条件的情况。

非线性偏微分方程的解法则更加复杂,常用的方法有平移法、线性叠加法和变换法。

这些方法需要根据具体问题的特点选择合适的变换和求解技巧,具有一定的灵活性和创造性。

除了上述解析解法,数值方法也是解偏微分方程的重要手段。

常用的数值方法包括有限差分法、有限元法和谱方法等。

一阶偏微分方程求解方法

一阶偏微分方程求解方法

加权余量法
在求解场域内,偏微分方程的真解为 ,近似解为 它由一组简单函数
ψi 的线性组合表达,表达中有待定系数 Ci 即:
近似解
问题的自 由度
n
Ci i i 1
简单函数,一般选用 简单形式的函数,一 旦选定就是已知的了
待定系数是真 正的求解目标
3.电磁场位函数偏微分方程的数值求解方法-加权余量法

2
w*j
(

n
(2)) d

wj (2 q) d
1 w*j ((1) g) d
2
w*j
(

n

h)
d
n
其中近似解: Ci i ,理论上尝试函数可任意选,
i 1
但适当的选取(作限制)可简化计算,
常常选取 i,使得 =g,则第一类边界条件自动满足
如选取加权函数:w

j

w*j,则上式被大大简化
由于近似解在1类边界 上常数,所以此项为0
选取特殊加权函数后,两 项和为0
第二类边界条件也消失了,说 明已经自动满足了
5. 加权余量法求解一般化方法的进一步优化
令加权余数为0即可得到求解原微分方程的一组代数方程:
Fj(R) wj d wjq d 2 wjh d 0
例1.两极电容板内部电场分布问题: 根据问题特点将3维问题简化为2维, 进一步简化为1维。 该问题是静态电场问题, 偏微分方程和边界条件:
2 0 0 0; d 10;
3. 加权余量法--例
加权余量法求解: 1.选取尝试函数、构造近似解:
理论上任意选取, 操作中越简单越好

高等数学中的偏微分方程方法

高等数学中的偏微分方程方法

高等数学中的偏微分方程方法偏微分方程是数学中的一类非常重要的方程。

它们广泛应用于物理、工程和其他领域中,如热传导、电路等等。

因此,研究偏微分方程的方法和技巧尤为重要。

在高等数学中,有许多关于偏微分方程的方法,下面我们来介绍其中的几种。

1. 分离变量法分离变量法是解偏微分方程的一种常用方法。

这种方法的基本思想是假设解可以表示为形式为x、y、z等变量的函数之积的形式,然后通过代入相关偏微分方程中去求解出每个变量的解,最终将这些解组合起来得到总体解。

以拉普拉斯方程为例,其定义如下:$\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0$假设解为$u(x,y,z)=X(x)Y(y)Z(z)$,则可以得到:$\frac{1}{X}\frac{\partial^2 X}{\partialx^2}+\frac{1}{Y}\frac{\partial^2 Y}{\partialy^2}+\frac{1}{Z}\frac{\partial^2 Z}{\partial z^2}=0$由于等式左边是一个只关于x的函数与一个只关于y的函数之和,所以这个等式必须等于常数k。

因此,我们可以得到:$\frac{1}{X}\frac{\partial^2 X}{\partial x^2}=k_1$,$\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2}=k_2$,$\frac{1}{Z}\frac{\partial^2 Z}{\partial z^2}=k_3$然后我们可以对每一个方程分别求解得到:$X(x)=Ae^{\sqrt{k_1}x}+Be^{-\sqrt{k_1}x}$,$Y(y)=Ce^{\sqrt{k_2}y}+De^{-\sqrt{k_2}y}$,$Z(z)=Ee^{\sqrt{k_3}z}+Fe^{-\sqrt{k_3}z}$最终得到的总体解形式为:$u=\sum_{n=1}^{\infty} C_ne^{(-\sqrt{k_1^2+k_2^2+k_3^2})r}sin(n_1x)sin(n_2y)sin(n_3z)$2. 特征线法特征线法是一种常用于解决一阶偏微分方程的方法。

1.3一阶线性偏微分方程的通解法

1.3一阶线性偏微分方程的通解法

1.3 一阶线性偏微分方程的通解法1.3.1 (3),1.3.2 (3),1.3.3(2)通解法:对某些偏微分方程,通过积分先求出通解,再由定解条件定出特解的解法。

1.3.1 两个自变量的一阶线性偏微分方程(,)(,)(,)(,)0.1(,),(,),(,),(,)D (,),(,)u ua x yb x yc x y u f x y x y a x y b x y c x y f x y a x y b x y ∂∂++=∂∂()其中,为平面区域上的连续函数,且不同时为0.1D (,)0,(,)0,(,)(,)(,)(,)(,)(,)(,)(,)=exp -exp ()0.3(,)(,)(,)()a x y b x y u c x y f x y u y b x y b x y x c x y c x y f x y u x y dy dy dy g x b x y b x y b x y g x C ≡≠∂+=∂⎡⎤⎛⎞⎛⎞+⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦∫∫∫若在上,则(0.2)可看做含参数的常微,其通解.(其中,为任意函数。

)D (,)(,)0,=,)(,)(,)(,)0(,)a x y b x y x y x y xyJ x y xyξϕηψϕϕϕψϕψψψ≠⎧⎨=⎩∂∂∂∂∂==≠∂∂∂∂∂若在上,则方程(0.2)不能直接积分求解。

试作变量代换((0.4)要求其雅可比行列式(保证新变量的独立性)利用链式法则++(,)=((,,(,)(,.=,)(,)(,)=0u u u u u ux x x y y y u x y u u x y u u u a b a b cu f xy x y x y a x y b x y x y ϕψϕψξηξηξηξηξηϕϕψψξηξϕϕϕ∂∂∂∂∂∂∂∂∂∂==∂∂∂∂∂∂∂∂∂∂=⎛⎞⎛⎞∂∂∂∂∂∂++++=⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∂∂+∂∂,的方程(0.1)变成)))的新方程(0.5)若取(是一阶齐次线性偏微分方程(0.6)的解,则新(,(,)u a b cu f xy u u ψψηηξη⎛⎞∂∂∂++=⎜⎟∂∂∂⎝⎠方程(0.5)成为(0.2)型的方程,(0.7)对积分即可求出其通解),代回原自变量即得通解。

一阶偏微分方程求解方法

一阶偏微分方程求解方法

VS
举例2
求解一阶偏微分方程时,遇到边界条件为 y'(0)=1,y'(1)=2的情况,可以通过有限差 分法进行处理。
感谢您的观看
THANKS
03
3. 求解参数方程
通过求解参数方程,得到 (t = x^2/2 + C) ,其中 (C) 是常数。
02
2. 建立参数方程
根据参数 (t) 的定义,建立参数方 程 (u'(x) = x + t) 。
04
4. 求得原方程的解
将 (t) 关于 (x) 的表达式代入原方 程,得到原方程的解 (u(x) = x^2/2 + C) 。
04 参数法
适用条件
适用于具有特定形式的一阶偏微分方程,如形如 (u'(x) = f(x, u(x))) 的方程。
适用于已知函数 (f(x, u)) 的情况,且在某些特定点上,方程的解 (u(x)) 可以表示为参数 (x) 的函数。
求解步骤
1. 确定参数
选择一个参数 (t) ,使得方程的解 (u(x)) 可以表示为 (t) 的函数。
乘积或商。
03 偏微分方程中的未知函数可以表示为某种周期函 数的乘积或商。
求解步骤
01
1. 将偏微分方程中的未知函数表示为多个函数的乘积
或商。
02 2. 将每个函数分别求解,得到每个函数的解。
03
3. 将所有函数的解组合起来,得到偏微分方程的解。
举例说明
考虑一阶偏微分方程 $$ frac{partial u}{partial x} + u = f(x) $$ 其中 $u = u(x)$ 是未知函数,$f(x)$ 是已知函数。
(e^{int f(x) dx} y' = f(x) e^{int f(x) dx})

第三章 一阶偏微分方程

第三章 一阶偏微分方程

(r)
➢ 处理含间断问题的原则:分段求解
第三章一阶偏微分方程——追赶现象
例1 含有激波的追赶问题
间断条件
h, q 1 h2
2
dxs dt
1 2
hl2
1 2
hr2
hl hr
1 2
(hl
hr )
初值
t / h0 xs
第三章一阶偏微分方程——追赶现象
➢ 图象
h
t=0
h0
t</h0
t=/h0
通解
g1(x, y,u) k1, g2 (x, y,u) k2
初始曲线限制
F(k1, k2 ) 0
解曲面
F(g1(x, y,u), g2 (x, y,u)) 0
第三章一阶偏微分方程——特征线法
➢ 例2.3
特征方程 通解 解曲面 由初值 得解
u u 1
x y
( 为常数)
dy , du 1
kc
dx
v
dt
1
(1
NK
Kc)2
第三章一阶偏微分方程——追赶现象

dt (c n)l (c n)r 1 nl nr
cl cr
➢ 特征线光滑解
dc k c dx v
c
c0
exp(
k v
x)
(x xs )
第三章一阶偏微分方程——追赶现象
➢ 原因:形成强间断——激波,微分方程失效
问题:补充间断面上的关系
第三章一阶偏微分方程——追赶现象
3。激波间断关系
q r
t x
l, ql
dxs/dt
r, qr
0
xl
xs
xr

偏微分方程解析解

偏微分方程解析解

偏微分方程解析解偏微分方程(Partial Differential Equation,简称PDE)是数学中研究最广泛的领域之一,它涉及到物理、工程、金融等众多领域中的实际问题。

解析解是指通过解析方法得到的能够精确描述偏微分方程解的解析表达式。

本文将介绍偏微分方程解析解的求解方法,并通过一些具体的例子进行说明。

一、一阶线性偏微分方程1.1 一维线性传热方程考虑一维线性传热方程:$$\frac{{\partial u}}{{\partial t}} = k\frac{{\partial^2 u}}{{\partialx^2}}$$其中,$u(t,x)$表示时间$t$和空间$x$上的温度分布,$k$为传热系数。

为了求解这个方程,我们引入一个新的变量,令$v(t,x) = u(t,x) -F(x)$,其中$F(x)$是由于边界条件所确定的函数。

将$v(t,x)$代入上面的方程得到:$$\frac{{\partial v}}{{\partial t}} = k\frac{{\partial^2 v}}{{\partialx^2}}$$接下来,我们可以使用分离变量法求解这个二阶偏微分方程。

假设$v(t,x)$可以表示为$v(t,x) = T(t)X(x)$的形式,则将这个表达式代入上面的方程中,得到:$$\frac{{T'(t)}}{{T(t)}} = k\frac{{X''(x)}}{{X(x)}}$$由于左边是关于$t$的表达式,右边是关于$x$的表达式,它们只能等于一个常数,即:$$\frac{{T'(t)}}{{T(t)}} = \frac{{X''(x)}}{{X(x)}} = -\lambda^2$$其中,$\lambda$是常数。

对于关于$x$的方程,我们可以得到:$$X''(x) + \lambda^2 X(x) = 0$$这是一个常微分方程,可以求解出$X(x)$的形式。

matlab求解最简单的一阶偏微分方程

matlab求解最简单的一阶偏微分方程

matlab求解最简单的一阶偏微分方程一阶偏微分方程是指关于未知函数及其偏导数的方程,其中最简单的类型是一阶线性偏微分方程。

一阶线性偏微分方程是指未知函数及其偏导数之线性组合的方程。

在本文中,我们将介绍如何使用MATLAB求解最简单的一阶线性偏微分方程。

首先,我们考虑一维空间中的一阶线性偏微分方程。

形式为:a(x)u_x + b(x)u = f(x),其中u(x)是未知函数,u_x是u对x的偏导数,a(x)和b(x)是给定函数,f(x)是已知函数。

在MATLAB中,求解一阶线性偏微分方程涉及两个步骤:离散化和求解。

离散化是将一维空间离散为一系列格点,通过给定的差分格式将方程离散化为代数方程组。

求解是求解离散化的代数方程组,得到未知函数在格点上的值,进而得到整个区域上的解。

下面我们将详细介绍这两个步骤。

1.离散化:离散化的目的是将连续的变量离散化为有限个格点。

我们可以通过网格方法来实现离散化。

常用的网格方法有有限差分法、有限元法和特征线法。

其中,最简单的是有限差分法。

有限差分法将区域离散化为一系列的格点,并在每个格点处进行逼近。

具体来说,我们可以考虑使用中心差分来逼近一阶导数,例如使用二阶中心差分可以得到:u_x ≈ (u(i+1) - u(i-1))/(2*dx),其中,u(i)表示在第i个格点上的未知函数值,dx是网格的大小。

将这个逼近代入原方程,我们可以得到在每个格点上的代数方程。

例如,对于第i个格点,方程被离散为:a(i)*(u(i+1) - u(i-1))/(2*dx) + b(i)*u(i) = f(i),其中,a(i)和b(i)分别是在第i个格点上的给定函数,f(i)是已知函数。

2.求解:离散化后,我们可以将方程转化为代数方程组,从而可以使用MATLAB中的线性方程求解函数来求解。

具体来说,我们可以将代数方程组表示为矩阵形式:Au = b,其中,A是系数矩阵,u是未知函数在格点上的值构成的向量,b 是已知函数在格点上的值构成的向量。

一阶偏微分方程组求解

一阶偏微分方程组求解

一阶偏微分方程组求解
摘要:
一、一阶偏微分方程组的概念与基本概念
二、一阶偏微分方程组的求解方法
三、一阶偏微分方程组的应用实例
正文:
一、一阶偏微分方程组的概念与基本概念
一阶偏微分方程组是指包含一组一阶偏导数的方程组。

其中,偏导数是指函数关于某个变量的导数。

一阶偏微分方程组广泛应用于物理、工程和经济等多个领域。

二、一阶偏微分方程组的求解方法
求解一阶偏微分方程组的方法有很多,其中最常用的方法是以下几种:
1.变量代换法:通过引入一个新的变量,将原方程组中的偏导数关系式转化为关于新变量的普通导数关系式,从而简化问题。

2.分离变量法:将方程组中的每个方程看作一个关于某个变量的微分方程,分别求解,最后通过边界条件确定各个变量的值。

3.积分法:对于某些特殊的一阶偏微分方程组,可以通过积分的方法求解。

4.待定系数法:对于某些具有特定形式的一阶偏微分方程组,可以通过设待定系数的方式求解。

三、一阶偏微分方程组的应用实例
一阶偏微分方程组在实际问题中有广泛应用,例如:
1.在物理学中,一阶偏微分方程组可以用来描述电磁波在介质中的传播过程。

2.在经济学中,一阶偏微分方程组可以用来描述商品价格、货币供应量等经济变量之间的关系。

3.在工程领域,一阶偏微分方程组可以用来描述管道中流体的流动过程、电路中电流电压的关系等。

总之,一阶偏微分方程组是偏微分方程中的一种基本类型,其求解方法多样,应用领域广泛。

一阶偏微分方程求解方法

一阶偏微分方程求解方法

一阶偏微分方程求解方法1.分离变量法分离变量法是求解一阶偏微分方程最常用的方法之一、其基本思想是将方程中的未知函数和它的偏导数按照自变量的不同分离开来,并进行变量代换。

具体步骤如下:(1)将方程中未知函数和它的偏导数的项分开;(2)将方程两边关于自变量进行积分,得到两个方程;(3)对两个方程求解得到未知函数的表达式;(4)将求得的表达式代入原方程,验证解的正确性。

2.齐次化方法齐次化方法是一种将一阶偏微分方程化为齐次方程进行求解的方法。

齐次方程是指方程中所有项的次数相同。

具体步骤如下:(1)将方程中未知函数和它的偏导数项分开;(2)引入新的变量进行变量代换;(3)将方程化为齐次方程;(4)对齐次方程进行求解,得到未知函数的表达式;(5)将求得的表达式代入原方程,验证解的正确性。

3.特征线方法特征线方法是一种适用于一些特殊类型的一阶偏微分方程求解的方法。

该方法基于特征线方程,即根据一阶偏微分方程的各项系数的关系,构造一组特征函数,然后通过特征函数的线性组合来求解原方程。

具体步骤如下:(1)确定方程的类型;(2)构造特征线方程,并求解特征线方程;(3)根据特征线方程的解,构造特解表达式;(4)将特解表达式代入原方程,验证解的正确性。

4.变换方法变换方法是一种通过引入新的变量进行变量代换的方法。

通过选择适当的变换,可以将原方程化为形式简单的方程,从而更容易求解。

常用的变换方法有线性变换、对称变换、相似变换等。

具体步骤如下:(1)引入新的变量,将原方程变换为新的一阶偏微分方程;(2)对新方程进行求解,得到新方程的解;(3)通过反变换将新方程的解转换为原方程的解。

除了以上介绍的方法,还有一些特殊的一阶偏微分方程可以通过直接积分、变量分离、换元等方法进行求解。

在实际应用中,根据具体的问题和方程的特点,选择合适的方法进行求解。

同时,在求解过程中需要注意验证解的正确性,以确保得到的解是原方程的解。

一阶偏微分方程教程

一阶偏微分方程教程

一阶偏微分方程教程一、基本概念偏微分方程是指含有多个变量的、涉及未知函数及其偏导数的方程。

一阶偏微分方程是指未知函数的最高阶导数出现在一阶的偏微分方程。

通常用变量x、y表示自变量,用u表示未知函数。

一般形式的一阶偏微分方程为:F(x,y,u,u_x,u_y)=0其中,u_x和u_y分别表示u对x和y的偏导数。

二、解法解一阶偏微分方程的方法主要有特征线法、分离变量法和变换法。

1.特征线法:对于形如P(x,y)u_x+Q(x,y)u_y=R(x,y)的一阶偏微分方程,通过假设u=M(x,y)使得PdM=QdN,解得一条特征线,然后再由特征线的参数表示来求解原偏微分方程。

2.分离变量法:对于形如F(x,y,u)u_x+G(x,y,u)u_y=H(x,y,u)的一阶偏微分方程,可以将原方程化简为两个单变量的常微分方程,再分别求解。

3.变换法:通过引入新的变量或者函数进行变量替换,将原方程转化为另一种形式,使得新形式的方程具有更易求解的性质。

三、应用1.热传导方程:热传导方程描述了物体内部温度分布随时间的变化规律。

它是一个偏微分方程,通过求解热传导方程,可以分析物体的温度变化,从而设计合适的散热装置。

2.波动方程:波动方程描述了机械波在介质中的传播规律。

通过求解波动方程,可以研究地震波、声波等的传播特性,为地震预测和声学设计提供理论基础。

3.稳定性分析:稳定性分析是工程和经济学中一个重要的问题,通过求解偏微分方程,可以研究系统的稳定性,并优化系统的运行。

总结:一阶偏微分方程是数学中重要的研究对象,本教程介绍了一阶偏微分方程的基本概念、解法和应用。

掌握解一阶偏微分方程的方法,对于研究自然界的现象和优化工程设计具有重要意义。

最后,希望读者通过学习本教程可以深入了解一阶偏微分方程,并能够独立解决相关问题。

2一阶偏微分方程的求解方法

2一阶偏微分方程的求解方法

1)
(6.23)
由假设(6.18), f j (x1, x2,, xn) 在某区域 D 内处处不同时为零, 这意
味着上述以 f j (x1, x2,, xn) ( j 1, 2,, n )为变量的线性方程组在区 域 D 内有非零解, 所以其系数行列式在区域 D 内必为零, 即
u x1
(u, u1 ,, un 1 ) (x1, x2,, xn )
(6.20 )
通过这 n 1个独立的首次积分, 我们可以获得偏微分方程(6.17)
的通解结构.
.
例6.6 试求偏微分方程 u u 0 的通解.
x y
解: 作自变量变换
x
y
1 (t 2 1 (t
s) s)
Байду номын сангаас
2

u u x u y 1 (u u ) 0 s x s y s 2 x y
6.24
其中 (,) 是任意的二元连续可微函数. 确定某函数关系 0 使得(6.24)满足初始条件 u |z1 xy, 我们有
0 ( x y , 2 y ) xy.
令 x y, 2 y. 解之得
x ( 1)2, y 12.
2
4
故可确定
0 为
0 (
,)
xy
1 (
4
1)2 2.
2
回代通解内可得满足满足初始条件的解:
例6.7 求解偏微分方程
(x y) u (x y) u 0,
x
y
其中 x2 y2 0.
解: 特征方程为
dx dy , xy xy
它有一个首次积分:
x2
y2
arctan y
ex
C.

一阶偏微分方程求解

一阶偏微分方程求解

一阶偏微分方程求解偏微分方程是数学分析领域中的重要内容,对于研究各种现象和物理规律具有重要意义。

在数学中,一阶偏微分方程是指方程中只包含到一阶偏导数的方程。

解一阶偏微分方程的方法有很多,下面将介绍其中几种常见的方法。

一、分离变量法分离变量法是解一阶偏微分方程常用的方法之一。

它的基本思想是将方程中的未知函数按变量分离,然后对两边进行积分,从而得到原方程的解。

示例一:考虑一维热传导方程$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$其中,$u(x, t)$ 是未知函数,$\alpha$ 是常数。

我们假设 $u(x, t)$ 可以分离变量,即 $u(x, t) = X(x)T(t)$,代入原方程得:$$X(x) \frac{d T(t)}{d t} = \alpha T(t) \frac{d^2 X(x)}{d x^2}$$两边同时除以 $X(x)T(t)$,得到:$$\frac{1}{\alpha T(t)} \frac{d T(t)}{d t} = \frac{1}{X(x)} \frac{d^2X(x)}{d x^2}$$由于方程左边只含有 $t$ 的变量,而右边只含有 $x$ 的变量,所以两边等于一个常数 $k$:$$\frac{1}{\alpha T(t)} \frac{d T(t)}{d t} = k = \frac{1}{X(x)} \frac{d^2 X(x)}{d x^2}$$分别对两边进行积分,得到两个方程:$$\frac{d T(t)}{d t} - k \alpha T(t) = 0 \quad (\text{1})$$$$\frac{d^2 X(x)}{d x^2} - k X(x) = 0 \quad (\text{2})$$再对方程(1)和(2)进行求解,可以得到 $X(x)$ 和 $T(t)$ 的表达式,进而得到一阶偏微分方程的解。

一阶偏微分方程的解法

一阶偏微分方程的解法

一阶偏微分方程的解法偏微分方程是数学里一个广泛应用的领域。

其中,一阶偏微分方程是最为基础的一类,也是最常见的一类偏微分方程。

本文将介绍一阶偏微分方程的解法,希望能够对学习和应用偏微分方程的人们提供一定的帮助。

一、基础概念在介绍一阶偏微分方程的解法之前,我们需要先了解一些基础概念。

偏微分方程中的“偏”表示该方程与多个变量有关,微分方程表示该方程中包含有未知函数的导数项,即该方程描述了一个函数在不同变量下的变化。

一阶偏微分方程中,未知函数的偏导数项最高只有一次,且只涉及到一个变量。

方程中的未知函数只依赖于某一个变量,它的解也只涉及到一个变量。

因此,一阶偏微分方程通常可以写成以下的形式:$$ F(u_x, u_y, u_{xx}, u_{yy}, u_{xy}, x, y) = 0 $$其中,$u_x, u_y, u_{xx}, u_{yy}, u_{xy}$分别表示未知函数在不同变量下的偏导数,$x, y$是独立变量。

为了解决该方程,需要找到一个函数 $u(x,y)$,使得它满足该方程。

二、解法分析接下来,我们将介绍一阶偏微分方程的解法。

我们将着重介绍三种解法,分别是:特征线法、变换法和分离变量法。

1. 特征线法特征线法是一种经典的解法,适用于一些特殊的偏微分方程。

特征线法的基本思路是寻找一些特殊的曲线,这些曲线上的函数值保持不变,可以将函数沿这些曲线推进求解。

以以下方程为例:$$ u_x + u_y = x $$我们可以通过特征线法求解。

我们先假设存在某个变换,将$x,y$变为$\xi,\eta$,使得方程能够写成:$$ u_\xi + u_\eta = 1 $$这时,可以通过对$\xi, \eta$求偏导数,得到:$$ \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} +\frac{\partial u}{\partial \eta}\frac{\partial \eta}{\partial x} $$$$ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi}\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} $$接着,我们可以找到一条特殊的曲线$\xi = \eta$,使得沿着该曲线推进方程不变:$$ \frac{du}{d\xi} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} = 1 $$在这个方程中,$u$ 只与$\xi$有关,因此可以直接求解得到:$$ u = \frac{1}{2}\xi^2 + C $$将$\xi,\eta$变回$x,y$,得到:$$ u = \frac{1}{2}(x-y)^2 + C $$2. 变换法变换法是一种寻求自变量的新变换,使得原方程可以转化为一些已知的方程的方法。

一阶偏微分方程求解

一阶偏微分方程求解

一阶偏微分方程求解一阶偏微分方程通常可以用分离变量法或者特征线法求解。

1. 分离变量法当一阶偏微分方程可以写成 \frac{\partial u}{\partialx}=f(x,y) 的形式(或者 \frac{\partial u}{\partial y}=g(x,y) 的形式),可以使用分离变量法求解。

具体步骤:(1)将方程两边积分,得到 \int\frac{\partial u}{\partial x}dx=\int f(x,y)dx+C(y) (或者 \int\frac{\partial u}{\partial y}dy=\int g(x,y)dy+C(x))。

(2)对方程两边再次积分,得到 u(x,y)=\int\left(\intf(x,y)dx+C(y)\right)dy+D(x) (或者 u(x,y)=\int\left(\intg(x,y)dy+C(x)\right)dx+D(y))。

其中 C(y) 和 D(x) 分别是积分常数,可以通过边界条件确定。

2. 特征线法对于形如 a(x,y)\frac{\partial u}{\partialx}+b(x,y)\frac{\partial u}{\partial y}=c(x,y,u) 的一阶偏微分方程,可以使用特征线法求解。

具体步骤:(1)令\frac{dx}{a(x,y)}=\frac{dy}{b(x,y)}=\frac{du}{c(x,y,u)}=\lamb da,则得到三个方程:\frac{dx}{a(x,y)}=\lambda,\quad\frac{dy}{b(x,y)}=\lambda,\quad \frac{du}{c(x,y,u)}=\lambda (2)根据前两个方程可以求出特征线,即满足\frac{dx}{a(x,y)}=\frac{dy}{b(x,y)} 的曲线。

将\frac{dx}{a(x,y)}=\frac{dy}{b(x,y)}=\frac{du}{c(x,y,u)} 带入原方程,得到 \frac{d u}{\lambda}=c(x,y,u)du,进而可以求出u=u(x,y)。

一阶线性偏微分方程与解法

一阶线性偏微分方程与解法

一阶线性偏微分方程与解法一阶线性偏微分方程是微分方程中的一类重要方程,它具有广泛的应用领域和解法。

本文将介绍一阶线性偏微分方程的基本形式、解法和具体应用。

一、基本形式一阶线性偏微分方程的一般形式可以表示为:\[ a(x,t)\frac{\partial u}{\partial x} + b(x,t)\frac{\partial u}{\partial t} = c(x,t,u) \]其中,\( u = u(x,t) \) 是未知函数, \( a(x,t), b(x,t), c(x,t,u) \) 是给定函数。

二、解法(1)变量可分离法如果方程可以表示为 \( f(x)dx + g(t)dt = 0 \),其中 \( f(x) \) 和 \( g(t) \) 是关于 \( x \) 和 \( t \) 的函数,那么方程可以通过变量可分离法解析地求解。

具体求解方法是分离变量并进行积分:\[ \int f(x)dx + \int g(t)dt = \int 0 \]求出积分后的结果,并将 \( u(x,t) \) 表示出来。

(2)特征线法特征线法适用于方程为线性齐次的情况,即 \( c(x,t,u) = 0 \)。

使用特征线法可以将一阶线性偏微分方程转化为一阶常微分方程。

求解一阶常微分方程后,再通过特征线反解得到原方程的解。

具体求解步骤如下:1. 确定特征曲线的参数方程,通过 \( \frac{dx}{a(x,t)} =\frac{dt}{b(x,t)} \) 可以得到参数方程。

2. 将未知函数按照参数方程表示,得到 \( u = u(\phi) \),其中 \( \phi \) 是参数。

3. 对上式两边求导,得到 \( \frac{du}{d\phi} = \frac{\partialu}{\partial x}\frac{dx}{d\phi} + \frac{\partial u}{\partial t}\frac{dt}{d\phi} \)。

一阶偏微分方程组求解

一阶偏微分方程组求解

一阶偏微分方程组的求解通常依赖于方程组的具体形式。

一般来说,求解一阶偏微分方程组的方法包括分离变量法、特征线法、变换法等。

我将提供一个简单的示例来说明这些方法的应用。

考虑一个二元一阶偏微分方程组:\(\frac{\partial u}{\partial x} = F(x, y)\)\(\frac{\partial u}{\partial y} = G(x, y)\)其中,\(u(x, y)\) 是未知函数,\(F(x, y)\) 和\(G(x, y)\) 是已知函数。

这是一个常见的一阶偏微分方程组。

以下是一些解方程组的方法:1. 分离变量法:首先,将方程组中的偏微分项分离变量,然后积分。

例如,对第一个方程\(\frac{\partial u}{\partial x} = F(x, y)\) 进行积分,可以得到\(u(x, y) = \int F(x, y)dx + C_1(y)\),其中\(C_1(y)\) 是关于\(y\) 的积分常数。

接着,对第二个方程\(\frac{\partial u}{\partial y} = G(x, y)\) 进行积分,可以得到\(u(x, y) = \int G(x, y)dy + C_2(x)\),其中\(C_2(x)\) 是关于\(x\) 的积分常数。

将这两个结果合并,可以得到方程组的解。

2. 特征线法:特征线法是一种常用于解一阶偏微分方程组的方法,它通过引入新的坐标系统来简化方程。

具体的应用取决于方程组的形式和特性。

3. 变换法:变换法涉及将偏微分方程组通过某种变换转化为更容易解的形式。

这通常需要选择合适的变换函数,并进行适当的代换。

需要注意的是,一阶偏微分方程组的求解可能会因方程组的具体形式和边界条件而异。

解这类方程组通常需要一定的数学技巧和分析能力。

如果您具体提供方程组的形式和边界条件,我可以尝试为您提供更具体的解决方案。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


i 1
0 2C2
2 0

3. 加权余量法--例
2.结合问题,写出余数表达式:
:R () ()
2
()= Ci xi=C1x1 C2 x2 i 1
在x 在x

0处:()x0=(C1x1 d处:()x d =(C1 x1
3.电磁场位函数偏微分方程的数值求解方法-加权余量法
加权余量法
在求解场域内,偏微分方程的真解为 ,近似解为 它由一组简单函数
ψi 的线性组合表达,表达中有待定系数 Ci 即:
近似解
问题的自 由度
n
Ci i i 1
简单函数,一般选用 简单形式的函数,一 旦选定就是已知的了
C2x2 ) C2x2 )
x0 xd
在x 在x

0处:()x0=0 d处:()x d =10
3. 加权余量法--例
3. 加权余数表达式:
Fj(R)


j
R
d



j R
d,j
1,2
j 1时,得到一个代数方程:
F1(R)
3.电磁场位函数偏微分方程的数值求解方法-加权余量法
由此构建加权量法的目标函数:
关于函数是函数, 称为:泛函数,或
泛函
Fj(R)


jRdFra bibliotek
j R
d,
令 Fj(R) 0 则余数最小, 趋于
上述过程中,已经将偏微分方程转化为j个代数方程组,便于计算机求解。
3. 加权余量法--例
3.电磁场位函数偏微分方程的数值求解方法-加权余量法
当余数小于要求的精度时,就可以认为近似解就是偏微分方程的解。 要减少余数,我们可以通过寻求适当的待定系数来实现。 为有效表达减小余数的效果,还选取适当的加权函数,以使余数和该加
权函数的积分为0。--“加权余量法”的来由。
设加权函数为:wj ; w*j
i xi (i 1,2)
n
2
Ci i Ci xi C11 C2 2 C1x1 C2 x2
i 1
i 1
2.结合问题,写出余数表达式:
: R 2 2
2 2 ( 2 Ci xi ) 2 (C1x1) 2 (C2 x2 )
3. 加权余量法--例
3. 加权余数表达式:
j 2时,又得到一个代数方程:
F2(R)


2 R
d



2 R
d

d 0
x2
( 2C2
)d

| x0 x2 ((C1x1 C2 x2 ) x0 0) d
| xd x2 ((C1x1 C2 x2 ) xd 10) d
3.电磁场位函数偏微分方程的数值求解方法-加权余量法
加权余数的定义:
目标函数:
wj R d w*j R d, j 1,2,....
加权函数的选取方法很多:如点重合、子域重合、最小二乘法、迦辽金法。 效果较好的、运用较多的是迦辽金法:
wj=w*j= j
即:迦辽金法选取尝试函数本身为加权函数
例1.两极电容板内部电场分布问题: 根据问题特点将3维问题简化为2维, 进一步简化为1维。 该问题是静态电场问题, 偏微分方程和边界条件:
2 0 0 0; d 10;
3. 加权余量法--例
加权余量法求解: 1.选取尝试函数、构造近似解:
理论上任意选取, 操作中越简单越好
待定系数是真 正的求解目标
3.电磁场位函数偏微分方程的数值求解方法-加权余量法
加权余量法就是一种定义近似解与真解之间误差(即余数),并设 法使其最小的方法。
加权余量法误差(即余数)的定义:
问题的自 由度
边场界域上内:: RR()2
2 ()
注意:一般余数并不表示近似解与真解间的差(场域内),加权余量法 的采用拉普拉斯算子作用后的差别(即余数),来代表近似解接近 偏微分方程真解的程度。
3. 用适当的算法使得该目标函数最小化――最小化的过程就确定了 待定系数,从而也就得到了问题的近似解。
2/4 2.数值求解方法
目标函数最小化的目的:一方面,使得近似解最大程度接近真解;另 一方面,求得构成近似解的待定系数。
数学上,构成目标函数的方法很多,不同的构成方法就形成了不同的 数值解法,电磁场中就常见的是:加权余量法和变分法。
1.偏微分方程求解--有限元法的原理(加权余量法和变分法)
1. 解析法
应用范围有限,适用于理论求解,但有强烈的物理含义(常系数微分方程) 某些复杂问题,很考虑根本找不到解析解
2. 数值法
工程实际中应用广泛,复杂场域问题,但物理含义不很清楚。任何问题总可 以找到数值解(数学方法)
2/4 2.数值求解方法


1R
d



1R
d

d
0 x(2C2 )d
| x0 x((C1x1 C2 x2 ) x0 0) d
| xd x((C1x1 C2 x2 ) xd 10) d
C2d 2 0 (C1d 2 C2d 3 10d ) d 2C1 d 2 (1 d )C2 10d 0
3.电磁场位函数偏微分方程的数值求解方法-加权余量法
电磁场问题总可以用位函数的偏微分方程和相应的边界条件表述

2
A


2A t 2


J

2

2
t 2



1 g(1)

t
2 (2) 2 h(2)
两个偏微分方程形式相同,故以电位方程的求解过程为例。磁位矢 量的方程可以分解到个分量上变为标量方程。
1. 基本思想:
以偏微分方程的近似解来代替其真解,只要近似解与真解足够 接近,就可以近似解作为问题的解,并满足足够的精度。
2. 基本方法:
尝试函数,基 函数,形函数
1. 假设一个近似解,该解一组(形式上)简单函数 ψi 的线性组合来
表示,线性组合的系数就是一组待定系数 Ci
2. 然后建立一种考虑了微分方程和边界条件的关于真解 和近似解 间误差的目标函数 F
相关文档
最新文档