第四章图形的初步认识复习题
【四川版】2020中考数学复习试题:第四单元_图形的初步认识与三角形单元测试卷_含答案
单元测试(四) 图形的初步认识与三角形(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.已知∠α=32°,求∠α的补角为( C )A .58°B .68°C .148°D .168° 2.(2016·黔南)下面四个图形中,∠1=∠2一定成立的是( B )3.(2016·重庆)如图,直线a ,b 被直线c 所截,且a∥b,若∠1=55°,则∠2等于( C ) A .35° B .45° C .55° D .125°4.如图,在直角三角形ABC 中,斜边AB 的长为m ,∠B =40°,则直角边BC 的长是( B )A .msin40°B .mcos40°C .mtan40° D.mtan40°5.如图,在△ABC 中,∠A =60°,点D ,E 分别在AC ,AB 上,则∠1+∠2的大小为( B ) A .120° B .240° C .180° D .300°6.(2015·黄冈)如图,在△ABC 中,∠C =90°,∠B =30°,设AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 37.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为( C ) A. 3 B.2 C.3 D.2 38.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE 的周长为( C )A.20 B.12 C.14 D.139.如图,在▱ABCD中,点E在AD上,且AE∶ED=3∶1,CE的延长线与BA的延长线交于点F,则S△AFE∶S 四边形ABCE为( D )A.3∶4 B.4∶3 C.7∶9 D.9∶710.(2016·武汉)平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( A )A.5 B.6 C.7 D.8提示:由点A,B的坐标可得到AB=22,然后分类讨论:①AC=AB;②BC=AB;③CA=CB,确定C点的个数.二、填空题(每小题4分,共24分)11.如图,△A BD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.12.若a,b,c为三角形的三边,且a,b满足a2-9+(b-2)2=0,则第三边c的取值范围是1<c<5.13.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB214.如图,AC ,BD 相交于O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD=75°.15.(2015·巴中)如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH⊥AE 于点H ,并延长交AB 于点F ,连接DH ,则线段DH 的长为1.16.(2016·凉山)如图,四边形ABCD 中,∠BAD =∠ADC=90°,AB =AD =32,CD =22,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为52,则满足条件的点P 有2个.三、解答题(共46分)17.(10分)如图,AC =AE ,∠1=∠2,AB =AD.求证:BC =DE.证明:∵∠1=∠2, ∴∠CAB =∠EAD.在△BAC 和△DAE 中,⎩⎪⎨⎪⎧AC =AE ,∠CAB =∠EAD,AB =AD ,,∴△BAC ≌△DAE(SAS). ∴BC =DE.18.(10分)某校八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC =20 cm ,宽AB =16 cm 的矩形纸片ABCD ,②将纸片沿着直线AE 折叠,点D 恰好落在BC 边上的F 处,…,请你根据①②步骤解答下列问题: (1)找出图中∠FEC 的余角; (2)计算EC 的长.解:(1)∠CFE,∠BAF.(2)设EC =x cm ,则EF =DE =(16-x)cm ,AF =AD =20 cm. 在Rt △ABF 中, BF =AF 2-AB 2=12 cm , FC =BC -BF =20-12=8(cm). 在Rt △EFC 中,EF 2=FC 2+EC 2, ∴(16-x)2=82+x 2,解得x =6. ∴EC 的长为6 cm.19.(12分)(2015·泸州)如图,海中一小岛上有一个观测点A ,某天上午9:00观测到某渔船在观测点A 的西南方向上的B 处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A 的北偏西60°方向上的C 处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)解:过点A 作AP ⊥BC,垂足为P.设AP =x 海里. 在Rt △APC 中,∵∠APC =90°,∠PAC =30°,∴tan ∠PAC =CPAP .∴CP =AP·tan ∠PAC =33x. 在Rt △APB 中,∵∠APB =90°,∠PAB =45°, ∴BP =AP =x.∵PC +BP =BC =30×12,∴33x +x =15,解得x =15(3-3)2. ∴PB =x =15(3-3)2.∴航行时间为:15(3-3)2÷30=3-34(小时).答:该渔船从B 处开始航行3-34小时,离观测点A 的距离最近.20.(14分)(2015·资阳)如图,E ,F 分别是正方形ABCD 的边DC ,CB 上的点,且DE =CF ,以AE 为边作正方形AEHG ,HE 与BC 交于点Q ,连接DF. (1)求证:△ADE≌△DCF;(2)若E 是CD 的中点,求证:Q 为CF 的中点;(3)连接AQ ,设S △CEQ =S 1,S △AED =S 2,S △EAQ =S 3,在(2)的条件下,判断S 1+S 2=S 3是否成立?并说明理由.解:(1)证明:∵四边形ABCD 为正方形, ∴AD =CD ,∠ADE =∠DCF=90°. 又∵DE=CF ,∴△ADE ≌△DCF. (2)证明:易证△ECQ∽△ADE, ∴CQ DE =CE AD . ∵CE AD =DE AD =12, ∴CQ DE =CQ CF =12,即点Q 是CF 的中点. (3)S 1+S 2=S 3成立.理由:∵△ECQ∽△ADE,∴CQ DE =QE AE .∴CQ CE =QEAE .又∵∠C=∠AEQ =90°,∴△AEQ ∽△E CQ. ∴△AEQ ∽△ECQ ∽△ADE.∴S 1S 3=(EQ AQ )2,S 2S 3=(AE AQ)2. ∴S 1S 3+S 2S 3=(EQ AQ )2+(AE AQ )2=EQ 2+AE 2AQ2. ∵EQ 2+AE 2=AQ 2,∴S 1S 3+S 2S 3=1,即S 1+S 2=S 3.。
第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx
2021-2022学年华东师大新版七年级上册数学《第4章图形的初步认识》单元测试卷一. 选择题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A, B, C,。
中的()位置接正方形.2.下列几何体中,是圆锥的为(4.如图所示的物体是一个几何体,从正面看到的图形是(B. C. D.5.如图是一个由4个相同的正方体组成的立体图形,则它的主视图为(A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹9.把14个棱长为1的正方体在地面上堆叠如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A. 21B. 24C. 33D. 3710.如图所示是一个三棱柱,画出它的主视图和左视图均正确的是()主视图左视图二. 填空题11 •如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为12.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为主视方向13.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是.14.若一个棱柱有30条棱,那么该棱柱有个面.15.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).16.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走个小正方体.I上面7正面17.如图所示,在直角三角形中,以其中一条直角边所在的直线为轴旋转一周,得到几何体的体积为.(结果保留TT)18.长方体是一个立体图形,它有个面,条棱,个顶点.19.一个正〃棱柱共有15条棱,一条侧棱的长为5cm, 一条底面边长为3cm,则这个棱柱的侧面积为cnr.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三. 解答题21.画出如图图形的三视图.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm.宽为4cm的长方形,绕它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?24.已知一个直棱柱有8个面,它的底面边长都是5ce侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?25.由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)IF而26.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.图①图②(1) 第1个几何体中只有2个面涂色的小立方体共有 个.第3个几何体中只有2个面涂色的小立方体共有 个.(2) 求出第100个几何体中只有2个面涂色的小立方体的块数.(3) 求出前100个几何体中只有2个面涂色的小立方体的块数的和.27. 如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱, 6个顶点,观察图形,填写下面的空. (1)四棱柱有——个面,_ ___ 条棱,_ __ 个顶点; (2)六棱柱有— —个面,_ ___ 条棱,— __ 个顶点;(3) 由此猜想”棱柱有 个面,条棱,个顶点.三棱柱四棱柱五棱柱六棱柱参考答案与试题解析一.选择题1.解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.2.解:观察可知,C选项图形是圆锥.故选:C.3.解:A、该几何体为四棱柱,不符合题意;3、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.4.解:该几何体是一个圆台,从正面看到的图形是一个等腰梯形,故选C.5.解:根据题干分析可得,从正面看到的图形是| | ..故选:A.6.解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;3、长方体的三视图不相同,故此选项错误;。
七年级数学第四章图形的初步认识(知识点归纳+达标检测)
第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
4、图形的初步认识
2014/1/17 初中一年级(上)第四章图形的初步认识章节练习一、选择题1、右侧图形绕虚线旋转一周,能得到右边图形的是()2、在下面的立体图形中,有六个面的立体图形的个数是()(1)三棱柱;(2)正方体;(3)长方体;(4)圆柱A、 4B、 3C、 2D、 13、正三棱锥的顶点数为V,棱数为E,面数为F,则下列答案正确的是()A、V=4,E=6,F=4B、V=5,E=4,F=7C、V=4,E=4,F=6D、V=4,E=6,F=54、右图所示的工件的主视图是()5、下图所示的是实物图形的三视图,这个实物图形是()6、长方体的主视图,俯视图如右图所示(单位:M),则其左视图的面积是()A、 4M2B、 12M2C、 1M2D、 3M27、下图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A、美B、丽C、广D、安8、右边四个图中,是三棱锥的表面展开图的是()9、下列图形中,能通过折叠围成一个三棱柱的是()10、如右图所示的是一个正方体的表面展开图,这个正方体是()11、下列说法正确的是( )A、圆是多边形B、由三条线段组成的图形叫三角形C、五角星一定是五边形D、十边形是由十条线段围成的封闭图形12、一个六边形可以分割的三角形个数是() A、 4 B、 5 C、 6 D、以上均可13、从一个n边形的同一个顶点出发,分别连接这个顶点与其余的顶点,若把这个多边形分割成6个三角形,则n的值是()A、 6B、 7C、 8D、914、下列说法正确的是() A、线段AB和线段BA表示的是同一条线段 B、射线AB和射线BA表示的是同一条射线C、直线AB和直线BA是两条直线D、若点M在直线AB上,则M也在射线AB上15、若一个角等于它余角的4倍,则这个角是它补角的() A、23B、13C、34D、16二、填空1、由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如下图所示,那么组成该几何体需要的小正方形的个数最小为。
第四章《图形认识初步》综合复习检测卷(四)及答案
第四章《图形认识初步》综合复习检测卷(四)一、选择题(每小题3分,共30分)1.下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等其中正确的有 ( ).(A )2个 (B )3个 (C )4个 (D )5个2.下列图形中是正方体的表面展开图的是 ( ).(A) (B) (C) (D)3.如图1,点C 是线段AB 的中点,点D 线段BC 的中点,下列等式不正确的是( ).(A )CD=AC-DB (B )CD=AD-BC (C )CD=21AB-BD (D )CD=31AB图14.一个物体的从正面、左面、上面三个方向看是下面三个图形,则该物体形状的名称为 ( )(A) 圆柱 (B) 棱柱(C) 圆锥 (D) 球 正面 左面 上面5.下列判断正确的是 ( ). 图2(A )平角是一条直线 (B )凡是直角都相等(C )两个锐角的和一定是锐角 (D )角的大小与两条边的长短有关6.如图3,∠AOB =∠COD =90°,那么∠AOC=∠BOD ,这是根据 ( ).(A)直角都相等 (B) 同角的余角相等(C)同角的补角相等 (D)互为余角的两个角相等图37. 点M 、O 、N 顺次在同一直线上,射线0C 、0D 在直线MN 同侧,且∠MOC=64°,∠DON=46°,北则∠MOC 的平分线与∠DON 的平分线夹角的度数是 ( ).(A )85° (B )105° (C )125° (D )145°8. 某测绘装置上一枚指针原来指向南偏西50°(如图4), 把这枚指针按逆时针方向旋转41周,则结果指针的指向 ( ). (A )南偏东50º (B )西偏北50º(C )南偏东40º (D )南偏东45° 图49.如图5,每个长方体的六个面上分别写着1~6这六个数,并且任意两个相对的面上所写的两个数之和所写的两个数之和都等于7,靠在一起的长方体中,相连接两个面的数字之和等于8,图中打“?”的面上所写的数字是 ( ).(A )3 (B )5 (C )2 (D )110.计算180°-48°39′40″-67°41′35″的值是 ( ). 图5(A )63°38′45″ (B )58°39′40″ (C )64°39′40″ (D )63°78′65″二、填空题(每小题2分,共20分)11.如图6所示的图形绕虚线旋转一周,所围成的几何体是_____.图6 图7 12.如图7是一个正方体纸盒的展开图,在其中的四个正方形内有数字1、2、3和-3,要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两个数互为相反数,则A 处应填_____.13.植树时,只要定出_______个树坑的位置,就能确定同一行树坑所在直线,根据是_______.14.如图8是三个几何体的展开图,请写出这三个立体图形_________ __________ ________图815.某工程队在修筑高速公路时,有时需要将弯曲的道路改直,以缩短路程,这样作的理论依据是________.16.如图9,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_____条线段,_____条射线,_____个小于平角的角.图9 图1017.如果一个角的补角是150°,那么这个角的余角是________.18.乘火车从A站出发,沿途经过3个车站可到达B站,那么在A、B两站之间共有____种不同的票价.19.如图10,将一副三角板叠放在一起,使直角的定顶点重合于点0,则∠AOC+∠DOB=_____.20.在直线l上取A、B、C三点,使得AB=4cm,BC=3cm,如果0是线段AC的中点,则线段OB的长度为_________.三、解答题(1-6每小题6分,7-8分每小题7分)21.观察图11中的几何体,画出从正面、左面、上面三个方向看,得到的平面图形。
[基础知识]第四章图形认识初步复习资料
第四章图形认识初步复习资料[基础知识]一、多姿多彩的图形∵∴°′″∠1.把的各种图形统称为几何图形。
几何图形包括立体图形和平面图形。
各部分不都在同一平面内的图形是图形;如各部分都在同一平面内的图形是图形。
如▲会画出同一个物体从不同方向(正面、上面、侧面)看得的平面图形(视图)[1].▲知道并会画出常见几何体的表面展开图.2.点、线、面、体组成几何图形,点是构成图形的基本元素。
点、线、面、体之间有如图所示的联系:▲知道由常见平面图形经过旋转所得的几何体的形状。
[基础练习]画出下列几何体的三视图正面看上面看左面看二、直线、射线、线段1.直线公理:经过两点有一条直线,一条直线。
简述为:.·两条不同的直线有一个时,就称两条直线相交,这个公共点叫它们的。
·射线和线段都是直线的一部分。
2.直线、射线、线段的记法【如下表示】3.线段的中点:把一条线段分成相等的两条线段的点,叫做线段的中点。
·如图,点M 是线段AB 的中点,则有AM=MB=21AB 或 2AM=2MB=AB 用符号语言表示就是: 因为 点M 是线段AB 的中点 所以 AM=MB=21 ( 或 AM=2=AB)类似的,把线段分成相等的三条线段的点,叫线段的三等分点。
把线段分成相等的n 条线段的点,叫线段的n 等分点。
4.线段公理:两点的所有连线中,线段最短。
简述为:之间,最短。
·两点之间的距离的定义:连接两点之间的,叫做这两点的距离。
▲会结合图形比较线段的大小;会画线段的“和”“差”图。
▲会根据几何作图语句画出符合条件的图形,会用几何语句描述一个图形。
[基础练习]1.写出图中所有线段的大小关系,“和”及“差”。
2.根据下列语句画图①延长线段AB与直线L交于点C.②连接MP.③反向延长PM.④在PC的方向上截取PD=PM.3.判断下列说法是否正确(1)直线AB与直线BA不是同一条直线()(2)用刻度尺量出直线AB的长度()(3)直线没有端点,且可以用直线上任意两个字母来表示()(4)线段AB中间的点叫做线段AB的中点()(5)取线段AB的中点M,则AB-AM=BM ()(6)连接两点间的直线的长度,叫做这两点间的距离()(7)一条射线上只有一个点,一条线段上有两个点()4.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________5.电筒发射出去的光线,给了我们的形象6.如图,四点A 、B 、C 、D 在一直线上,则图中有______条线段,有_______条射线;若AC=12cm ,BD=8cm ,且AD=3BC ,则AB=______,BC=______,CD=____7.已知点A 、B 、C 三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________8.如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,则CD=_____9.C 为线段AB 上的一点,点D 为CB 的中点,若AD=4,求AC+AB 的长。
七年级上册数学第4章图形的初步认识单元练习题(含答案)
第4章图形的初步认识检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F、E. V分别表示正多而体的而数、棱数、顶点数,则有F + V — E = 2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.203.如果Na与N/?是邻补角,且/a> 很那么Z侄的余角是(A.l(Za+Z/?)B.|ZaC.|(Za-Z/?)D.不能确定4.下列四个立体图形中,主视图为圆的是()。
5.将“创建文明城市”六个字分别写在一个正方体的六个而上,这个正方体的平面展开图如所示, 那么在这个正方体中,和“创”相对的字是( A.文B.明C.城6.如图, 已知直线曲、CD 相交于点。
, ZEOC = 110% 则ZBOD 的大小C.45°D.55QD rH第6题图B.35A.25 共5页8. 下列平而图形不能够国成正方体的是(9. 过平面_匕4, B, C 三点中的任意两点作直线,可作()那么线段OB 的长度是( )二、填空题(每小题3分,共24分)11. 如图,直线CD 相交于点。
,OE 平分匕AOD,若ZBOC = 80°,贝ljZAOE = 12. 直线上的点有—个,射线上的点有—个,线段上的点有—个.13. 两条直线相交有 个交点,三条直线相交最多有 个交点,最少有 个交点.14. 如图,OM 平分ZAOB, ON 平分ZCOD.若NMON= 50。
,ZBOC = 10% 则匕4OD = 15 .如图给出的分别有射线、16.下列表面展开图的立体图形的名称分别是:A.1条B.3条C.1条或3条D.无数条10.在直线[上顺次取4、B 、 C 三点,使得= 5 cm, BC = 3 cm.如果。
是线段AC 的中点,A.2 cmB.0.5 cmC.1.5 cmD.l cmA第11题图直线、线段,其中能相交的图形有 个. 第15题图17.如图,C, D是线段上两点,若CB = 4 cm, DB = 7 cm,且D^L AC的中点,贝脂。
人教版数学七年级上册第四章《几何图形初步》 综合复习题
第四章几何图形初步综合复习题一、单选题1.(2022·福建三明·七年级期末)如图,下列图形全部属于柱体的是()A.B.C.D.2.(2022·福建龙岩·七年级期末)下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.3.(2022·福建泉州·七年级期末)在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.(2022·福建宁德·七年级期末)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是()①作射线AM;①在射线AM 上截取2AB a =;①在线段AB 上截取BC b =.A .a b +B .b a -C .2a b +D .2a b -5.(2022·福建莆田·七年级期末)如图,点,C D 在线段AB 上.则下列表述或结论错误的是( )A .若AC BD =,则AD BC =B .AC AD DB BC =+- C .AD AB CD BC =+- D .图中共有线段12条6.(2022·福建南平·七年级期末)如图,线段6,4AB BC ==,点D 是AB 的中点,则线段CD 的长为( )A .3B .5C .7D .87.(2022·福建福州·七年级期末)在同一条直线上按顺序从左到右有P 、Q 、M 、N 四个点,若MN QM PQ -=,则下列结论正确是( )A .Q 是线段PM 的中点B .Q 是线段PN 的中点C .M 是线段QN 的中点D .M 是线段PN 的中点8.(2022·福建泉州·七年级期末)如图,下列说法中错误的是( )A .OA 方向是北偏东30°B .OB 方向是北偏西15°C .OC 方向是南偏西25°D .OD 方向是东南方向9.(2022·福建莆田·七年级期末)如图,按照上北下南,左西右东的规定画出方向十字线,①AOE =m °,①EOF =90°,OM ,ON 分别平分①AOE 和①BOF ,下面说法:①点E 位于点O 北偏西m °的方向上;①点F 位于点O 北偏东m °的方向上;①①MON =135°,其中正确的有( )A.3个B.2个C.1个D.0个∠的余角的度数为()10.(2022·福建泉州·七年级期末)如果52a∠=︒,则aA.38︒B.48︒C.52︒D.128︒二、填空题11.(2022·福建漳州·七年级期末)如图,是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x-y=_____.12.(2022·福建泉州·七年级期末)如图,是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面上,与“祝”相对的面上的汉字是______.13.(2022·福建福州·七年级期末)木工师傅用两根钉子就能将一根细木条固定在墙上了,这其中含有的数学知识是___.14.(2022·福建南平·七年级期末)植树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,这是根据___.(应用所学过的数学知识填空)15.(2022·福建漳州·七年级期末)已知,线段AB=6,点C在直线AB上,AB=3BC,则AC= ___.16.(2022·福建三明·七年级期末)如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分①COD,则①AOD的度数是____度.∠三等分,若图中所有小于平角的角的度17.(2022·福建龙岩·七年级期末)如图,射线OA,OB把POQ∠的度数为_____.数之和是300,则POQ18.(2022·福建泉州·七年级期末)把两块三角板按如图所示那样拼在一起,则①ABC等于___°.三、解答题19.(2022·福建宁德·七年级期末)在如图所示的正方形网格中,每个小正方形中都标有1个有理数,其中4个已经涂上阴影.现要在网格中选择2个空白的小正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体的表面展开图.(1)图1是小明涂成的一个正方体表面展开图,求该表面展开图上6个有理数的和;(2)你能涂出一种与小明涂法不一样的正方体表面展开图吗?请在图2中涂出;(3)若要使涂成的正方体表面展开图上的6个有理数之和最大,应该如何选择?请在图3中涂出.20.(2022·福建龙岩·七年级期末)如图,已知四点A、B、C、D,用圆规和无刻度的直尺,按下列要求与步骤画出图形;(1)画直线AB;(2)画射线CB;(3)延长线段DA 至点E ,使AE=AD (保留作图痕迹).21.(2022·福建泉州·七年级期末)已知A ,B ,C ,D 四点在同一条直线上,点C 是线段AB 的中点.(1)点D 在线段AB 上,且AB =6,13BD BC =,求线段CD 的长度; (2)若点E 是线段AB 上一点,且AE =2BE ,当:2:3AD BD =时,线段CD 与CE 具有怎样的数量关系,请说明理由.22.(2022·福建福州·七年级期末)如图,已知线段10AB =,点C 是AB 的中点,点D 是线段上一点,3AD =.求线段CD 的长.23.(2022·福建厦门·七年级期末)如图,,B C 两点在射线AM 上,AC BC >,在射线BM 上作一点D 使得BD AC BC =-.(1)请用圆规作出点D 的位置;(2)若6cm AD =,求线段AC 的长.24.(2022·福建泉州·七年级期末)如图,在数轴上有A 、B 两点(点B 在点A 的右边),点C 是数轴上不与A 、B 两 点重合的一个动点,点M 、N 分别是线段AC 、BC 的中点.(1)如果点A 表示4-,点B 表示8,则线段AB = ;(2)如果点A 表示数a ,点B 表示数b ,①点C 在线段AB 上运动时,求线段MN 的长度(用含a 和b 的代数式表示);①点C 在点B 右侧运动时,请直接写出线段MN 的长度:___________________(用含a 和b 的代数式表示). 25.(2022·福建福州·七年级期末)如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.26.(2022·福建厦门·七年级期末)如图,对于线段AB 和A OB ''∠,点C 是线段AB 上的任意一点,射线OC '在A OB ''∠内部,如果AC A OC AB A OB ∠=∠'''',则称线段AC 是A OC ''∠的伴随线段,A OC ''∠是线段AC 的伴随角.例如:10,100AB A OB '='=∠︒,若3AC =,则线段AC 的伴随角30A OC ∠=''︒.(1)当8,130AB A OB '='=∠︒时,若65A OC ∠=''︒,试求A OC ''∠的伴随线段AC 的长;(2)如图,对于线段AB 和,6,120A OB AB A OB ''''∠=∠=︒.若点C 是线段AB 上任一点,E ,F 分别是线段,AC BC 的中点,,,A OE A OC A OF ''∠∠'∠'''分别是线段,,AE AC AF 的伴随角,则在点C 从A 运动到B 的过程中(不与A ,B 重合),E OF ''∠的大小是否会发生变化?如果会,请说明理由;如果不会,请求出E OF ''∠的大小.(3)如图,已知AOC ∠是任意锐角,点M ,N 分别是射线,OA OC 上的任意一点,连接MN ,AOC ∠的平分线OD 与线段MN 相交于点Q .对于线段MN 和AOC ∠,线段MP 是AOD ∠的伴随线段,点P 和点Q 能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.27.(2022·福建三明·七年级期末)已知,O 为直线AB 上一点,①DOE =90°.(1)如图1,若①AOC =128°,OD 平分①AOC .①求的①BOD 度数;①请通过计算说明OE 是否平分①BOC .(2)如图2,若①AOD :①DOB =4:5,求①BOE 的度数.28.(2022·福建泉州·七年级期末)时钟上的分针和时针像两个运动员,绕着它们的跑道昼夜不停地运转.以下请你解答有关时钟的问题:(1)分针每分钟转了几度?(2)中午12时整后再经过几分钟,分针与时针所成的钝角会第一次等于121︒?(3)在(2)中所述分针与时针所成的钝角等于121︒后,再经过几分钟两针所成的钝角会第二次等于121︒?参考答案:1.C【解析】解:A 、有一个是三棱锥,故不符合题意;B 、有一个是不规则的多面体,故不符合题意;C 、分别是一个圆柱体、两个四棱柱;D 、有一个是圆台,故不符合题意.故选:C .2.A【解析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.解:A 、是直角梯形绕高旋转形成的圆台,故A 正确;B 、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B 错误;C 、绕直径旋转形成球,故C 错误;D 、绕直角边旋转形成圆锥,故D 错误.故选A.本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.B由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线 故选B .4.D【解析】根据题意作出图形,根据线段的和差进行求解即可解:如图,根据作图可知,AC AB BC =-2a b =-故选D本题考查了尺规作图作线段,线段和差的计算,数形结合是解题的关键.5.D【解析】根据两点间的距离的含义和求法,以及直线、射线和线段的认识,逐项判断即可. 解: A. 因为AD=AC+CD,BC=CD+DB,若AC=BD ,所以可得AC=BD ,此选项说法正确;B. AC AD DB BC =+-,此选项说法正确;C. AD AB CD BC =+-,此选项说法正确;D.由图形可得图中共有线段6条所以,此选项说法错误,故选D.此题主要考查了两点间的距离的含义和求法,以及直线、射线和线段的认识,要熟练掌握.6.C【解析】根据点D是AB的中点,可得BD=3,再由CD=BD+BC,即可求解.解:①AB=6,点D是AB的中点,①BD=3,①BC=4,①CD=BD+BC=3+4=7.故选:C本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系是解题的关键.7.D-=,得出线段之间的关系,逐项进行判断即【解析】根据题意画出图形,根据MN QM PQ可.①PQ不一定等于QM,①Q不一定是线段PM的中点,故A错误;-=,①MN QM PQ=+=,①MN PQ QM PM①PM MN PN+=,①M是线段PN的中点,故B错误,D正确;-=,①MN QM PQ>,①MN QM①M不是线段QN的中点,故C错误.故选:D.本题主要考查了线段之间的关系,根据题意画出图形是解题的关键.8.A试题分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.根据定义就可以解决.解:A、OA方向是北偏东60°,此选项错误;B、OB方向是北偏西15°,此选项正确;C、OC方向是南偏西25°,此选项正确;D、OD方向是东南方向,此选项正确.错误的只有A.故选A.9.B【解析】观察方向图形,根据方向角解答即可.解:①点E位于点O北偏西(90﹣m)°的方向上,原结论错误;①①①AOE+①EOD=90°,①DOF+①EOD=90°,∴①DOF=①AOE=m°,∴点F位于点O北偏东m°的方向上,原结论正确;①①①AOE+①BOF=90°,OM,ON分别平分①AOE和①BOF,①①MOE+①NOF=45°,①∠MON=135°,原结论正确;其中正确的有2个.故选:B.此题考查的知识点是方向角,角平分线的性质,解题关键是明确方向角的意义,熟练运用角平分线和余角的性质推导角的关系.10.A【解析】根据余角的定义,利用90°减去52°即可.a∠的余角=90°-52°=38°.故选A.本题考查求一个数的余角,关键在于牢记余角的定义.11.5【解析】由正方体的表面展开图中的相对面中间一定隔着一个面的特点出发,确定相对面,再求解,x y的值,从而可得答案.解:由正方体的表面展开图可得:3和y相对,2-与x相对,而相对面上所标的两个数互为相反数,3,2,y xx y23235,故答案为:5本题考查的是正方体展开图中相对面上的数字,掌握正方体是立体图形,从相对面的特点进行分析是解本题的关键.12.功【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,即可作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,① “你”与“试”相对,“考”与“成”相对,“祝”与“功”相对,①与“迎祝”相对的面上的汉字是“功”.故答案为:功本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题是解题的关键.13.两点确定一条直线【解析】细木条为一条线段,两根钉子相当于两个点,即可求解.解:细木条代表一条直线,两根钉子相当于两个点,两个点确定,细木条代表的直线就确定了,故答案为:两点确定一条直线此题考查了两点确定一条直线的应用,解题的关键是理解题意,掌握并运用两点确定一条直线的性质.14.两点确定一条直线【解析】根据两点确定一条直线,即可求解.解:根据题意得的:这是根据两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.15.4或8【解析】先求出BC的长,根据点C的位置分别计算可得答案.解:①AB=6,AB=3BC,①BC=2,当点C在线段AB上时,AC=AB-BC=6-2=4;当点C在线段AB延长线上时,AC=AB+BC=6+2=8;故答案为:4或8.此题考查了线段的和差计算,掌握分类思想解决问题是解题的关键,避免漏解的现象.16.135°【解析】本题是有公共定点的两个直角三角形问题,通过图形可知①AOC+①BOC=90°,①BOD+①BOC=90°,同时①AOC+①BOC+①BOD+①BOC=180°,可以通过角平分线性质求解.①OB平分①COD,①①COB=①BOD=45°,①①AOB=90°,①①AOC=45°,①①AOD=135°.故答案为135.本题考查的知识点是角的平分线与对顶角的性质,解题关键是熟记角平分线的性质是将两个角分成相等的两个角.17.90°【解析】先找出所用的角,分别用含字母x的代数式将每个角的度数表示出来,再列方程即可求出x的值,进一步求出①POQ的度数.设①QOB=x,则①BOA=①AOP=x,则①QOA=①BOP=2x,①QOP=3x,①①QOB+①BOA+①AOP+①QOA+①BOP+①QOP=10x=300°,解得:x=30°,①①POQ=3x=90°.故答案为:90°.本题考查了确定角的个数及角的度数的计算,解答本题的关键是根据题意列出方程.18.120解:由图可知①ABC=30°+90°=120°.故答案为:12019.(1)-6(2)见解析(3)见解析【解析】(1)根据有理数加法法则计算即可得答案;(2)根据正方体表面展开图添加即可;(3)根据正方体表面展开图,选择两个数字的和最大的添加即可.(1)-4+2+6+1+(-3)+(-8)=-6,答:该表面展开图上6个有理数的和是-6.(2)根据正方体表面展开图添加如下:(3)根据正方体表面展开图可添加数字如下:-4+4=0,-6+(-8)=-14,-6+4=-2,-6+3=-3,-6+(-1)=-7,3+(-1)=2,①涂成的正方体表面展开图上的6个有理数之和最大,①添加3和-1,如图所示:本题考查有理数加法运算及正方体表面展开图,熟练掌握正方体11种展开图是解题关键.20.(1)见解析(2)见解析(3)见解析【解析】(1)画直线AB,直线向两方无限延伸;(2)画射线CB,C为端点,再沿CB方向延长;(3)画线段DA,延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD.(1)画出直线AB;(2)画出射线CB;(3)延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD(要求保留作图圆弧的痕迹,弧线和点E各画直线),所以,AE为所求作的线段(或表述E为所求作的点),如图所示:本题主要考查了直线、射线、线段,关键是掌握直线向两方无限延伸,射线向一方无限延伸,线段不能向两方无限延伸.21.(1)线段CD的长度为2;(2)5CD=3CE或CD=15CE.理由见解析【解析】(1)根据线段中点的性质求出BC,根据题意计算即可;(2)分两种情况讨论,当点D在线段AB上和点D在BA延长线上时,利用设元的方法,分别表示出AB以及CD、CE的长,即可得到CD与CE的数量关系.(1)解:如图1,①点C是线段AB的中点,AB=6,①BC=12AB=3,①BD=13 BC,①BD=1,①CD=BC-BD=2;(2)解:5CD=3CE或CD=15CE.理由如下:当点D在线段AB上,如图2,设AD =2x ,则BD =3x ,①AB =AD +BD =5x ,①点C 是线段AB 的中点,①AC =12AB =52x , ①CD =AC -AD =12x , ①AE =2BE ,①AE =23AB =103x , CE =AE -AC =56x , ①CD CE =1256x x ,即5CD =3CE ; 当点D 在BA 延长线上时,如图3,设AD =2a ,则BD =3a ,①AB =BD -AD =a ,①点C 是线段AB 的中点,①AC =12AB =12a , ①CD =AC +AD =52a , ①AE =2BE ,①AE =23AB =23a , CE =AE -AC =16a , ①CD CE =5216a a ,即CD =15CE . 综上,5CD =3CE 或CD =15CE .本题考查的是两点间的距离,正确理解线段中点的概念和性质是解题的关键.解第2问注意分类讨论.22.2CD =【解析】根据中点的性质可得AC 的长,再根据线段的和差计算出CD 的长即可. ①10AB =,点C 是AB 的中点 ①1110522AC AB ==⨯= ①5AC =,3AD =①532CD AC AD =-=-=本题考查了中点的定义和线段的和差,熟练掌握相关知识是解题的关键.23.(1)见解析(2)3cm【解析】(1)以C 为圆心,以AC 的长为半径画弧与射线CM 交于点D ,点D 即为所求; (2)根据BD AC BC =-,BD CD BC =-,得到AC CD =,由此即可得到答案.(1)解:如图所示,点D 即为所求;(2)解:①BD AC BC =-,BD CD BC =-,①AC CD =, ①13cm 2AC AD ==. 本题主要考查了尺规作图—作线段,线段的和差计算,熟知相关知识是解题的关键.24.(1)12 (2)①1()2b a -;①1()2MN b a =-【解析】(1)结合数轴根据两点距离求解即可;(2)①由点M 、N 分别是线段AC 、BC 的中点,得AC BC AB b a +==-,进而根据12MN CM CN AB =+=求解即可; ①同理可得12MN CM CN AB =-=. (1) 点A 表示4-,点B 表示8,()8412AB ∴=--=故答案为:12(2)如果点A 表示数a ,点B 表示数b , ①点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,AC BC AB b a +==-, 11()22MN CM CN AB b a ∴=+==-; ①点C 在点B 右侧运动时,设C 点表示的数为c ,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,()()AC BC c a c b b a -=---=-, ()11()22MN AC BC b a ∴=-=- 故答案为:1()2MN b a =-. 本题考查了数轴上两点距离,线段段中点的性质,线段和差的计算,数形结合是解题的关键. 25.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【解析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则①COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可;(3)分别用①COE 及①AOD 的式子表达①COD ,进行列式即可.解:(1)①90DOE ∠=︒,70AOC ∠=︒①907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)①OC 平分AOE ∠,70AOC ∠=︒,①70COE AOC ∠=∠=︒,①90DOE ∠=︒,①907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)①90COD DOE COE COE =∠-∠=︒-∠∠, 70COD AOC AOD AOD =∠-∠=︒-∠∠ ①9070COE AOD ︒-∠=︒-∠①20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.26.(1)AC =4;(2)不会,①E ′OF ′=60°.理由见解析(3)能,理由见解析【解析】(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF =12AB ,再利用伴随角和伴随线段的定义列出等式,可得出结论; (3)由伴随角和伴随线段的定义可得,点P 和点Q 重合时,是MN 的中点,画出图形,测量即可.(1) 解:由伴随角和伴随线段的定义可知,AC A OC AB A OB ∠=∠'''',, ①65181302AC ︒==︒, ①AC =4;(2)解:不会,①E ′OF ′=60°.理由如下:①点E ,F 分别是线段AC ,BC 的中点,①EC =12AC ,CF =12BC , ①EF =12AB =3. ①①A ′OE ′,①A ′OC ′,①A ′OF ′分别是线段AE ,AC ,AF 的伴随角, ①AE A OE AB A OB ∠=∠'''',AC A OC AB A OB ∠=∠'''',AF A OF AB A OB ∠=∠'''', ①EF =AF -AE , ①12EF AF AE A OF A OE E OF AB AB AB A OB A OB A OB ∠∠'''''''''''∠'=-=-==∠∠∠, ①①A ′OB ′=120°,①①E ′OF ′=60°;(3)解:能,理由如下:①OD 是①AOC 的平分线,①①AOD =12①AOC ,①线段MP是①AOD的伴随线段,①12MP AODMN AOC∠==∠.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.本题属于线段和角度中新定义类问题,涉及中点的定义和角平分线的定义,关键是理解伴随角和伴随线段的定义.27.(1)①①BOD=116°;①OE平分①BOC,见解析(2)①BOE=10°.【解析】(1)①根据角平分线的定义求出①AOD的度数,再根据平角的定义求出①BOD的度数;①根据角的和差求出①COE=①DOE-①DOC=90°-64°=26°,①BOE=①BOD-①DOE=116°-90°=26°,根据角平分线的定义即可求解;(2)设①AOD=4x,则①DOB=5x,根据平角的定义列出方程求出x,进一步求出①BOE的度数.(1)解:①①OD平分①AOC,①AOC=128°,①①AOD=①DOC=12①AOC=12×128°=64°,①①BOD=180°-①AOD=180°-64°=116°;①①①DOE=90°,又①①DOC=64°,①①COE=①DOE-①DOC=90°-64°=26°,①①BOD=116°,①DOE=90°,①①BOE=①BOD-①DOE=115°-90°=26°,①①COE=①BOE,即OE平分①BOC;(2)解:若①AOD :①DOB =4:5,设①AOD =4x ,则①DOB =5x ,又①①AOD +①DOB =180°,①4x +5x =180°,①x =20°,①①AOD =4x =80°,①①DOE =90°,①①BOE =180°-80°-90°=10°.本题主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系是解题的关键. 28.(1)6︒(2)22 (3)23611【解析】(1)根据分针一小时转一圈即360°,用360°除以60计算即得;(2)根据分针每分钟转6°,时针每分钟转0.5°,时针与分针转过的角度差是121︒,列方程解答即可;(3)相对于12时整第二次所成的钝角第二次等于121︒时,时针与分针转过的角度差超过180°,这个差与121︒之和是360°.(1)解:①分针一小时转一圈即360°,①分针每分钟转过的角度是:360606︒÷=︒ ,答:分针每分钟转了6度;(2)设中午12时整后再经过x 分钟,分针与时针所成的钝角会第一次等于121°,①时针一小时转动角度为: 3601230︒÷=︒,时分针每分钟转过的角度是:30600.5÷︒=︒ ;①分针与时针所成的钝角会第一次等于121︒,①时针与分针转过的角度差是121︒,①60.5121x x -=,解得:22x =,答:中午12时整后再经过22分钟,分针与时针所成的钝角会第一次等于121°;(3)设经过y 分钟两针所成的钝角会第二次等于121︒,则从12时算起经过(y +22)分钟两针所成的钝角会第二次等于121︒,因为时针与分针转过的角度差超过180°,这个差与121︒之和是360°,故列得方程:6(22)0.5(22)121360y y +-++=,解得:6(22)0.5(22)121360y y +-++=, 解得:23611y =, 答:经过23611分钟两针所成的钝角会第二次等于121︒. 本题通过钟面角考查一元一次方程,掌握时针分针的转动情况,会根据已知条件列方程是解题的关键.选择合适的初始时刻会简化理解和运算难度,起到事半功倍的效果.。
课题 第四章 图形认识初步复习
1西北西南东南东北北西南东课题 第四章 图形认识初步复习(两课时)【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题。
【复习重点】: 线段、射线、直线、角的性质和运用【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。
复习过程1,角的定义1:有 端点的两条 组成的图形叫角。
其中公共端点叫角的 ,两条射线叫角的 .角的两条边是 线。
角的定义2(如图2)角也可以看作 而形成的图形;2、角的度量中常用的角的度量单位有 、 、 ,分别的符号是 、 、 90°-18°25′37〞= ; 37.26°= ° ′ 〞;3、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的 ,类似的还可以将角分成三等分、四等分。
几何语言表达: ∵如图, OC 是∠AOB 的平分线∴∠α= = ∠AOB 或 =2 =2∠β 4、如图:∠AOC=+ ,∠BOC=∠BOD -∠ =∠AOB -∠5、如果两个角的和等于90°(直角),就说这两个角互为 ,通常记∠α的余角是 ;如果两个角的和等于180°(平角),就收这两个角互为 ,通常记∠α的补角是 (用一个式子表示)。
6,补角性质:同角或等角的补角 ,同理,余角性质:同角或等角的余角 。
3.方位角:(1)认识方位:正东、正南、正西、正北、东南、西南、西北、东北。
(2)找方位角:乙地对甲地的方位角 ; 甲地对乙地的方位角21.下列说法正确的是( )A.射线AB 与射线BA 表示同一条射B.连结两点的线段叫做两点之间的距离。
C.平角是一条直线。
D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3; 2.下列判断正确的是( )A .平角是一条直线B .凡是直角都相等C .两个锐角的和一定是锐角D .角的大小与两条边的长短有关 3、下列哪个角不能由一副三角板作出( )A .︒105B . ︒15C .︒175D .︒135 4. 5点整时,时钟上时针与分钟 之间的夹角是〔 〕 A.210° B.30° C.150° D.60° 5.如图,射线OA 表示〔 〕A 、南偏东700B 、北偏东300C 、南偏东300D 、北偏东700 6. 38°41′的余角等于_____,123°59′的补角等于_____; 7.互为余角的两个角之差为35°,则较大角的补角是_____; 8. 45°52′48″=_________度,126.31°=____°____′____″; 25°18′x 3=__________;9.已知:如图,∠AOB=75°∠AOC=15°,OD 是∠BOC 的平分线, 求∠BOD 的度数。
第四章图形认识初步(原卷版)-2020-2021学年七年级数学上册期中期末复习考点强化训练(人教版)
第四章图形认识初步考点强化训练一、几何体的三视图1.下列图形中,不是正方体的展开图的是()A.B.C.D.2.图中几何体从左边看得到的图形是()A.B.C.D.3.下图是由6个大小相同的正方体拼成的几何体,则下列说法正确的是()A.从正面看和从左面看到的图形相同B.从正面看和从上面看到的图形相同C.从上面看和从左面看到的图形相同D.从正面、左面、上面看到的图形都不相同4.一个正方体的每个面都写有一个汉字,其表面展开图如图所示,则在该正方体中,和“知”相对的面上写的汉字是()A.就B.是C.力D.量5.如图是一个正方体展开图,把展开图折叠成正方体后,“行”字一面的相对面上的字是()A.能B.我C.最D.棒6.如图是一个长方体包装盒,则它的平面展开图是A.B.C.D.7.如图是由几个大小相同的小正方体搭成的几何体从不同方向看到的平面图形,则搭成这个几何体的小正方体有()A.3个B.4个C.5个D.6个8.如图,是由7块正方体木块堆成的物体,请说出图(1)、图(2)、图(3)分别是从哪一个方向看得到的.(1)__________ (2)__________(3)__________9.由大小相同的小立方块搭成的几何体如图,请在下图的方格中画出该几何体的俯视图和左视图.10.一个几何体由几个大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.11.用一平面去截下列几何体,其截面可能是三角形的有( )A .4个B .3个C .2个D .1个二、线段的关系与计算12.下列说法错误的是( ) A .两点之间,线段最短B .过两点有且只有一条直线C .延长线段OA 到B ,使AB OA =D .连接两点的线段叫做两点的距离13.如图,C,D 是线段AB 上两点.若CB=4cm,DB=7cm ,且D 是AC 的中点,则AB=, ,A .10cmB .11cmC .12cmD .14cm14.线段1AB =,1C 是AB 的中点,2C 是1C B 的中点,3C 是2C B 的中点,4C 是3C B 的中点,依此类推,线段AC 5的长为( ) A .116B .132C .1516D .313215.如图,B 、C 两点把线段MN 分成三部分,其比为MB :BC :CN =2:3:4,点P 是MN 的中点,PC =2cm ,则MN 的长为()A .30cmB .36cmC .40cmD .48cm16.已知A 、B 、C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那么A 、C 两点间的距离是( ) A .10cmB .8cmC .10cm 或8cmD .以上说法都不对17.如图,线段15AB cm =,点C 在AB 上,23BC AC =,D 为BC 的中点,则线段AD 的长为( )A .10cmB .13cmC .12cmD .9cm18.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下列等式正确的是( )A .CD =AC -DB B .CD =AB -DBC .AD = AC -DBD .AD =AB -BC19.如图,点P 是线段AB 上的点,其中不能说明点P 是线段AB 中点的是( ,A .AB,2APB .AP,BPC .AP,BP,ABD .12BP AB =20.如图,点C 在线段AB 上,8AC cm =,6CB cm =,点M ,N 分别是AC 、BC 的中点,则线段MN 的长为________cm21.已知线段6AB cm =,点C 在直线AB 上,2BC cm =,点D 为线段AC 的中点,则线段DB 的长为 _____________cm .22.已知线段AB=10cm ,点C 是直线AB 上的一点,AC=4cm ,则线段BC 的长度是__________23.如图,已知线段AB =12cm ,点N 在AB 上,NB =2cm ,M 是AB 中点,那么线段MN 的长为_____cm .24.如图,AD =12DB ,BC =4m ,AC =10m ,求线段DC 的长.25.点O 是线段AB 的中点,OB =14cm ,点P 将线段AB 分为两部分,AP :PB =5:2. ①求线段OP 的长.②点M 在线段AB 上,若点M 距离点P 的长度为4cm ,求线段AM 的长.26.如图,点C 是AB 的中点,D,E 分别是线段AC,CB 上的点,且AD,23AC,DE,35AB ,若AB,24 cm ,求线段CE 的长.27.如图,已知B 、C 是线段AD 上两点,且AB ︰BC ︰CD=2︰4︰3,点M 是AC 的中点,若CD=6,求MC 的长.28.如图,线段AB 8=,点C 是线段AB 的中点,点D 是线段BC 的中点.()1求线段AD 的长;()2在线段AC 上有一点E ,1CE BC 3=,求AE 的长. 29.如图,点C 是线段AB 上的一点,延长线段AB 到点D ,使2BD CB =.(1)请依题意补全图形;(2)若9AD =,3AC =,M 是AD 的中点,求线段MB 的长.30.已知线段AB =10cm ,直线AB 上有一点C ,BC =6cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.三、角的度数的计算31.10时整,钟表的时针与分针之间所成的角的度数是( ) A .30°B .60°C .90°D .120°32.已知,AOB =45°,,BOC =30°,则,AOC = . 33.35.15°=_____°_____′_____″;12°15′36″=_____°.34.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC 等于___________四、互余与互补的角的关系与计算35.如图,∠AOB =∠COD =90°,那么∠AOC=∠BOD ,这是根据( )A .直角都相等B .同角的余角相等C .同角的补角相等D .互为余角的两个角相等36.已知A ∠是它的补角的4倍,那么A ∠=( ) A .144︒B .36︒C .90︒D .72︒37.将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )A .B .C .D .38.如图,已知DO ⊥AB 于点O ,CO ⊥OE ,则图中与∠DOE 互余的角有( )个A .1B .2C .3D .439.一个角的余角是5134',这个角的补角是__________. 40.已知,1=30°,则,1的补角等于 . 41.一个角的余角比这个角的12少30°,则这个角的度数是_____. 42.已知∠α=72°36′,则∠α的余角的补角是________度. 43.一个角的补角与它的余角的3倍的差是40°,则这个角为_____. 44. 若,A=62°48′,则,A 的余角= . 45.一个角的余角比它的补角的12少20︒,则这个角是__________ 46.若∠B 的余角为57.12°,则∠B =_____°_____’_____” 47.已知∠A 的余角是∠A 的补角的13,则∠A =________. 五、角平分线及其计算48.如图,BD 平分ABC ∠,BE 把ABC ∠分成2:5的两部分,21DBE ∠=,则ABC ∠的度数( )49.OB 是∠AOC 内部一条射线,OM 是∠AOB 平分线,ON 是∠AOC 平分线,OP 是∠NOA 平分线,OQ 是∠MOA 平分线,则∠POQ∶∶BOC =( )A.1∶2B.1∶3C.2∶5D.1∶450.如图,点A,O,B在同一条直线上,射线OD平分∠AOC,射线OE在∠BOC的内部,且∠COE与∠AOE 的补角相等,若∠AOD=50°,则∠COE的度数为()A.30°B.40°C.50°D.80°51.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD的度数为()A.160°B.110°C.130°D.140°53.如图,OC是∠AOB的平分线,∠BOD=13∠DOC,∠BOD=12°,则∠AOD的度数为( )A.70°B.60°C.50°D.48°54.如图,点O在直线AB上,射线OC平分,DOB,若,COB=35°,则,AOD等于( ).A.35°B.70°C.110°D.145°55.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A.27°40′B.57°40′C.58°20′D.62°20′56.如图4,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2的度数是_______度.六、角的计算57.如图所示,O是直线AB与CD的交点,∠BOM:∠DOM=1:2,∠CON=90°,∠NOM=68°,则∠BOD =_____°.58.如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=_____°.59.如图,直线AB与CD相交于点O,射线OM是∠AOC的平分线,如果∠BOC=110°,那么∠AOM=______°.60.如图,点O在直线AB上,射线OD平分,AOC,若,AOD=20°,则,COB的度数为_____度.61.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD=___度.七、角度综合计算62.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数. 63.直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC=90°,∠1=40°,求∠2与∠3的度数.64.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数. 65.如图,已知OE 是∠AOC 的角平分线,OD 是∠BOC 的角平分线. (1)若∠AOC=120°,∠BOC=30°,求∠DOE 的度数; (2)若∠AOB=90°,∠BOC=α,求∠DOE 的度数.66.如图,直线AB ,CD 相交于点O ,OE 平分BOC ∠,OF OE ⊥ (1)写出与BOF ∠互余的角(2)若57BOF ∠=,求AOD ∠的度数67.如图,已知直线AB 和CD 相交于O 点,90COE ∠=︒,OF 平分AOE ∠,28COF ∠=︒,求BOD ∠的度数.68.如图,直线AB 与CD 相交于点O ,OF 是∠BOD 的平分线,OE ⊥OF , (1)若∠BOE=∠DOF+38°,求∠AOC 的度数;(2)试问∠COE 与∠BOE 之间有怎样的大小关系?请说明理由.69.如图,已知A ,O ,B 三点在同一条直线上,OD 平分∠AOC ,OE 平分∠BOC .(1)若∠BOC=62°,求∠DOE 的度数;(2)若∠BOC=α,求∠DOE 的度数;(3)通过(1)(2)的计算,你能总结出什么结论,直接简写出来,不用说明理由. 70.如图,以点O 为端点按顺时针方向依次作射线OA 、OB 、OC 、OD.(1)若∠AOC 、∠BOD 都是直角,∠BOC =60°,求∠AOB 和∠DOC 的度数. (2)若∠BOD =100°,∠AOC =110°,且∠AOD =∠BOC+70°,求∠COD 的度数. (3)若∠AOC =∠BOD =α,当α为多少度时,∠AOD 和∠BOC 互余?并说明理由. 71.综合与探究:问题情境:如图,已知∠AOB =90°,射线OC 在∠AOB 的外部且0°<∠BOC <180°.OM 是∠AOC 的角平分线,ON 是∠BOC 的角平分线. 特例探究:(1)如图1,①当∠BOC =40°时,∠MON 的度数为 °; ②当∠BOC <90°时,求∠MON 的度数; 猜想拓广:(2)若∠AOB =α(0<α<90°),①当∠AOB +∠BOC <180°时,则∠MON 的度数是 °;(用含α的代数式表示)②当∠AOB +∠BOC >180°时,请在图2中画出图形,并直接写出∠MON 的度数.(用含α的代数式表示) 72.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠, ,1)如图1.若30AOC ∠=︒.求DOE ∠的度数;,2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);,3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.73.如图1,点O 是弹力墙MN 上一点,魔法棒从OM 的位置开始绕点O 向ON 的位置顺时针旋转,当转到ON 位置时,则从ON 位置弹回,继续向OM 位置旋转;当转到OM 位置时,再从OM 的位置弹回,继续转向ON 位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA 0(OA 0在OM 上)开始旋转α至OA 1;第2步,从OA 1开始继续旋转2α至OA 2;第3步,从OA 2开始继续旋转3α至OA 3,….例如:当α=30°时,OA 1,OA 2,OA 3,OA 4的位置如图2所示,其中OA 3恰好落在ON 上,,A 3OA 4=120°; 当α=20°时,OA 1,OA 2,OA 3,OA 4,OA 3的位置如图3所示,中第4步旋转到ON 后弹回,即,A 3ON+,NOA 4=80°,而OA 5恰好与OA 2重合. 解决如下问题:(1)若α=35°,在图4中借助量角器画出OA 2,OA 3,其中,A 3OA 2的度数是 ;(2)若α<30°,且OA4所在的射线平分,A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<30°,且,A2OA4=20°,求对应的α值.74.点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=a,直接写出∠CON的度数(用含a的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM在射线OB上方,另一边ON在直线AB 的下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.11。
第四章图形的初步认识(二)(无答案)
第四章 图形的初步认识(二)班级________姓名_____________一、选择题1.用一副三角板画角,下面的角不能画的是( ) A.15°的角B.135°的角C.145°的角D.150°的角2.∠α的补角是142°,∠β的余角是42°,则∠α与∠β的大小关系是( ) A.∠α>∠β B.∠α<∠βC.∠α=∠βD.不能确 定3.点M 在线段AB 上,下列给出的四个式子中,不能判定点M 是线段AB 中点的是( ).A.AB=2AMB.BM=21ABC.AM=BMD.AM+BM=AB4.平面内有四点,可确定直线的条数是( ). A.1 B.4 C.6 D.1或4或65.在6点10分时,钟表上时针和分针的夹角为( )A.120°B.125°C.130°D.135°6.已知线段AB ,延长AB 到C ,使AC =2BC ,反向延长AB 到D ,使AD =21BC ,那么线段AD是线段AC 的( ) A.31B.41C.51D.72 7.以下画图语句错误的是( )A.连结AB ,得到线段ABB.画点C ,过点C 画直线AB ,得到过点C 的直线ABC.画直线a ,在a 上画两点G 、H ,过H 任画直线b ,则得到G 点在直线a 外、直线b 上D.线段AB 向两端延长,得到直线AB8.如下图,下列关系式中与图不符合的式子是( ) A.AD-CD =AB+BC B.AC-BC =AD-BDC.AC-BC =AC+BDD.AD-AC =BD-BC 9.如果平面上M 、N 两点的距离是17cm ,若在该平面上有一点P 和M 、N 两点的距离之和等于25 cm ,那么下面结论正确的是( )A.P 点在线段MN 上B.P 点在直线MN 外C.P 点在直线MN 上D.P 点可能在直线MN 上,也可能在直线MN外10.互补的两角中,一个角的2倍比另一个角的3倍少10°,这两个角是( )A.104°,66°B.106°,74°C.108°,76°D.110°,70°11.如图,AB ∥CD ∥EF,又AF ∥CG ,图中与∠A(本身不算) 相等的角有( )A.5个B.4个C.3个D.2个12.如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是( ). A.相等 B.互余或互补 C.互补D.相等或互补13.已知α、β是某两条平行线被第三条直线所截得的同旁内角,若∠α=50°,则∠β等于( )度. A.40B.50C.130D.14014.两条直线被第三条直线所截,则( ) A.同位角相等 B .内错角相等 C.同旁内角互补D.以上结论都不对 15.下列说法正确的是( )A.如果线段AB 与线段CD 不相交,则线段AB 与CD 平行B.两条直线被第三条直线所截,同位角相等C.如果直线a 、b 被直线c 所截得的八个角都相等,那么a ∥bD.长方体中每条棱分别平行于三个平面16.如图,若∠1=∠2,则下列结论中正确的个数是( )个. (1)∠3=∠4;(2)AB ∥DC ;(3)AD ∥BC. A.0 B.1C.2D.317.直线l 上有A 、B 、C 三点,直线l 外有一点P ,若PA =5cm,PB=3cm,PC=2cm,那么P点到直线l 的 距离( )A.等于2cmB.小于2cmC.不大于2cmD.大于2cm ,小于第9题图CD EOAB图43cm二、填空题(24分)18.若一个角比它的余角大30°25′,则这个角的度数是 .19.32°44′24″用度来表示为 ,110.32°用度、分、秒表示为 . 20.钟表上从2点10分至2点30分,分针转了 度,时针转了 度.21.在直线l 的同一方向上画AB =3厘米,AC =2厘米,AD =5厘米,在DA 的延长线上画DE =6厘 米,DF =8厘米,那么点A 是 的中点,点C 是 的中点,BD =31 =31,FC AD. 22.因为AB ∥CD ,CD ∥EF ,所以 ∥ . 推理理由( ). 23.如图,直线AB 、CD 相交于点O ,∠1-∠2=50°,则∠2=,∠BOD = .24如下图,FA 是∠CFE 的平分线,若∠1=40°,则∠2= , ∠EFB= . 三、画图25、 如上图,已知线段a 、b ,用直尺和圆规画一条线段,使它等于2a-b. (保留画图痕迹,说明结果)26、一只小虫从点A 出发向北偏西30°方向爬了3cm 到点B ,再从点B 出发向北偏东60°爬了3cm 到点C 。
华师大版七年级上册数学第4章 图形的初步认识含答案(精练)
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是:()A.50 °B.60 °C.80 °D.70 °2、一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.100πB.50πC.20πD.10π3、下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡4、如图是由5个小立方块搭建而成的几何体,它的俯视图是()A. B. C. D.5、如图是一个正方体的展开图,把展开图折叠成正方体后,标有“☆“的一面相对面上的字是()A.神B.奇C.数D.学6、如图,在长方体的数学课本上放有一个圆柱体,则它的主视图为()A. B. C. D.7、如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中截面不可能是长方形的几何体是()A. B. C.D.8、下面如图所示的几何体的俯视图是()A. B. C. D.9、下列结论,其中正确的为()①圆柱由3个面围成,这3个面都是平面②圆锥由2个面围成,这2个面中,1个是平的,1个不是平的③球仅由1个面围成,这1个面是平的④正方体由6个面围成,这6个面都是平的A.①②B.②③C.②④D.③④10、将坐标的正方体展开能得到的图形是()A. B. C. D.11、下列四个图形中,是三棱锥的表面展开图的是()A. B. C. D.12、如图所示,能读出的线段共有()A.8条B.10条C.6条D.以上都错13、已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm 3B.100 cm 3C.92cm 3D.84cm 314、如图是几何体的三视图及相关数据,则下列判断错误的是()A. B. C. D.15、小李同学的座右铭是“态度决定一切“,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“切”相对的字是()A.态B.度C.决D.定二、填空题(共10题,共计30分)16、若一个角等于53°17′,则这个角的余角等于________.17、如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短路程为________ cm.(π取3)18、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.19、如图,该图中不同的线段数共有________条.20、一个人从A点出发向北偏西30° 方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC=________。
华师大版七年级上册数学第4章 图形的初步认识含答案(综合摸底)
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A. B. C.D.2、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在,的位置.若,则等于()A. B. C. D.3、我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A. B. C. D.4、将一副直角三角尺如图装置,若,则的大小为()A. B. C. D.5、用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是()A.15°B.75°C.85°D.105°6、下列说法正确的是()A.同旁内角相等,两直线平行B.两直线平行,同位角互补C.相等的角是对顶角D.等角的余角相等7、若,则的余角为()A.36°B.46°C.126°D.146°8、下面几何体中,主视图与俯视图都是矩形的是()A. B. C. D.9、A、B两点间的距离是()A.连结A、B两点的线段B.连结A、B两点的直线C.连结A、B两点的线段的长度D.连结A、B间的线的长度10、将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅11、如图AB=CD,则AC与BD的大小关系是()A.AC>BDB.AC<BDC.AC=BDD.无法确定12、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A.12B.14C.16D.1813、下列各式中,正确的角度互化是()A.18°18′18″=3.33° B.46°48′=46.48°C.22.25°=22°15′D.28.5°=28°50′14、如图,是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.伟B.人C.的D.梦15、下列说法错误的是()A.长方体、正方体都是棱柱B.六棱柱有六条棱、六个侧面C.三棱柱的侧面是三角形D.球体的三种视图均为同样的图形二、填空题(共10题,共计30分)16、若∠α=35°19′,则∠α的余角的大小为________ .17、如图,圆柱体的高为4cm,底面周长为6cm,小蚂蚁在圆柱表面爬行,从A 点到B点,路线如图所示,则最短路程为________.18、经过任意三点中的两点共可以画出的直线条数是________ 条.19、如图是某个几何体的展开图,写出该几何体的名称________。
华师大版七年级上册数学第4章 图形的初步认识含答案培优
华师大版七年级上册数学第4章图形的初步认识含答案一、单选题(共15题,共计45分)1、下列图形中,哪一个是正方体的展开图()A. B. C. D.2、如图中主三视图对应的三棱柱是()A. B. C. D.3、如图所示的几何体是由一些小正方体组成的,那么从左边看它的图形是()A. B. C. D.4、已知OA⊥OC,且∠AOB∶∠AOC=2∶3,则∠BOC的度数是( )A.30 °B.150°C.30°或150°D.不能确定5、如图,已知点O在直线AB上,,则的余角是( )A. B. C. D.6、如图,,点在上,,若,则()A.70°B.145°C.110°D.140°7、某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字.如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是()A.舍B.我C.其D.谁8、下列说法中,是真命题的有( )A.射线和射线是同一条射线B.两直线平行,同旁内角相等 C.一个角的补角一定大于这个角 D.两点确定一条直线9、如图,已知直线AB,CD相交于点O,OE⊥AB,∠EOC=30°,则∠BOD的度数为()A.60°B.30°C.120°D.150°10、将两个长方体如图放置,则所构成的几何体的左视图可能是( )A. B. C. D.11、在底面为正三角形,且底面周长为的直棱柱上,截去一个底面为正三角形,且底面周长为的直棱柱后(如图所示),所得几何体的俯视图的周长为()A. B. C. D.12、如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2B.3C.4D.513、如图,从点到点有3条路,其中走最近,其数学依据是()A.经过两点有且只有一条直线B.两条直线相交只有一个交点C.两点之间的所有连线中,线段最短D.直线比曲线短14、如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A. B.. C.. D..15、A、B两点间的距离是()A.连结A、B两点的线段B.连结A、B两点的直线C.连结A、B两点的线段的长度D.连结A、B间的线的长度二、填空题(共10题,共计30分)16、已知线段AB=7cm,在线段AB上画线段BC=3cm,则线段AC=________.17、如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是________ .18、下列某种几何体从正面、左面、上面看到的形状图都相同,则这个几何体是________(填写序号)①三棱锥;②圆柱;③球.19、一个几何体的三视图如图所示,则该几何体的表面积为________.(π取3)20、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.21、A、B、C三点在同一条直线上,M、N分别为AB、BC的中点,且AB=60,BC=40,则MN的长为________22、一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为________.23、已知一个几何体的三视图如图所示,这个几何体是________.24、如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于________.25、如图,在直角∠AOB的内部作射线OC,若∠AOC=33°24′17″,则∠BOC =________.三、解答题(共5题,共计25分)26、一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.27、如图,直线AB和EF相交于O,OC平分∠AOB,∠1=65°,试求∠3的度数.28、如图5,在中,,平分,,.求的度数;29、画出下面这个几何体(前后只有两排)的三种视图.30、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.参考答案一、单选题(共15题,共计45分)2、A3、A4、C5、A6、A7、D8、D9、C10、C11、D12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)
第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。
4.几何图形的结构:点、线、面、体组成几何图形。
点是构成图形的基本元素。
4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。
2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。
(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。
简述为,两点确定一条直线。
(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。
(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。
(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。
(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。
(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。
4.线段:直线上两点和它们之间的部分叫做线段。
(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。
(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。
(3)线段的基本性质:两点的所有连线中,线段最短。
人教版七年级数学上册第四章图形认识初步单元测试题
第四单元 《图形认识初步》 单元测试班级 姓名 号数一、填空题 (每题3分,共30分)1、 三棱柱有 条棱, 个顶点, 个面;2、 如图1,若是中点,AB=4,则DB= ;3、 42.79= 度 分 秒;4、 如果∠α=29°35′,那么∠α的余角的度数为 ;5、 如图2,从家A 上学时要走近路到学校B ,最近的路线为 (填序号),理由是 ;6、 如图3,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有 条线段,共有 射线,共有 个角;C BADE F(1)(2)(3)图2图3图5图47.如图4,把书的一角斜折过去,使点A落在E点处,BC为折痕,BD是∠EBM的平分线,则∠CBD=8.如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC= ;9.2:35时钟面上时针与分针的夹角为;10.经过平面内四点中的任意两点画直线,总共可以画条直线;二选择题(每题3分,共24分)7、角三角形绕它的直一周得到的几何体是12、如果与互补,与互余,则与的关系是()A.=B.C.D.以上都不对13、对于直线,线段,射线,在下列各图中能相交的是()14、下面图形经折叠后可以围成一个棱柱的有()A. 1个B. 2个C. 3个D. 4个AB;③AM=BM;④AM+BM=AB。
上面四个式子中,正15、已知M是线段AB的中点,那么,①AB=2AM;②BM=12确的有()A.1个 B.2个 C.3个 D.4个16、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、如右图,AB、CD交于点O,∠AOE=90°,若∠AOC:∠COE=5:4,则∠AOD等于()A.120° B.130° C.140° D.150°18、图中(1)-(4)各图都是正方体的表面展开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是()A. (1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分,共21分)19、已知、求作线段AB使AB=2a-b(不写作法,保留作图痕迹)ab20、按照要求,在图中画出表示下列方向的射线:(1)南偏东300 (2)北偏西600 (3)西南方向四、解答题(8+8+9分,共25分)21、若一个角的补角等于它的余角的4倍,求这个角的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19部分图形的初步认识第一讲简单的立体图形线段与角课标要求(1)点、线、面。
通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)。
完成基本作图:作一条线段等于已知线段.(2)角。
①通过丰富的实例,进一步认识角。
②会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。
③了解角平分线。
④了解补角、余角,知道等角的余角相等、等角的补角相等。
(3)视图①会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图)会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
②了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。
③了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。
④观察与现实生活有关的图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。
中考考点要求1. 了解线段、射线、直线的区别与联系。
掌握它们的表示方法.2. 掌握“两点确定一条直线的”的性质,了解“两条直线相交只有一个交点”.3. 理解线段的和与差的概念,会比较线段的大小,理解“两点之间线段最段”的性质4. 理解线段的中点和两点间距离的概念.5. 会用尺规作图作一条线段等于一直线段.6. 理解角的概念,理解平角、直角、周角、锐角、钝角的概念。
7掌握度、分、秒的换算,会计算角度的和、差、倍、分.8. 掌握角的平分线的概念,会画角的平分线.9. 会解决有关余角、补角的计算问题;会用“同角或等角的余角相等、同角或等角的补角相等”进行推理。
10. 建立初步的空间观念,会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.11. 了解旋转体和多面体的概念.12. 会计算圆柱、圆锥的侧面展开图的面积.典型例题例 1. 判断正误,并说明理由①.两条直线如果有两个公共点,那么它们就有无数个公共点;( )②.射线AP与射线PA勺公共部分是线段PA( )③.有公共端点的两条射线叫做角;( )④.互补的角就是平角;( )⑤.经过三点中的每两个画直线,共可以画三条直线;( )⑥.连结两点的线段,叫做这两点间的距离;( )⑦.角的边的长短,决定了角的大小;⑧.互余且相等的两个角都是45°的角;( )⑨.右两个角互补,则其中一定有一个角是钝角;⑩大于直角的角叫做钝角•解:①.2.因为两点确定唯一的直线.②.2,因为线段是射线的一部分. 如图: 显然这句话是正确的.③.X ,因为角是有公共端点的两条射组成的图形.④.X.互补两角的和是180°,平角为180° .就量数来说,两者是相同的,但从“形”上说,互补两角不一定有公共顶点,故不一定组成平角•如下图⑤.X.平面内三点可以在同一条直线上,也可以不在同一条直线上.⑥.X.连结两点的线段的长度,叫做这两点的距离.⑦.X.角的大小,与组成角的两条射线张开的程度相关,或者说与射线绕着它的端点旋转过的平面部分的大小相关,与角的边画出部分的长短无关.⑧.2,互余”即两角和为90 ° .⑨.X. “互补”即两角和为180°.想一想:这里的两个角可能是怎样的两个角?⑩X .钝角是大于直角而小于平角的角【注意】1.第⑤题中三个点的相互位置共有两种情况,如图再如两角互补,这里的两角有两种情形,如图:图(1)图(2)因此,互补的两个角中,可能有一个是钝角,前必须全面地考虑,这就要求有“分类讨论”的思想,“分类讨论”是数学中重要的思想方法之一.2. 注意数和形的区分与联系:“线段”表示的是“图形”,而“距离”指的是线段的“长度”,指的是一个“数量”,两者不能等同.例2.如图:是一个水管的三叉接头,试画出它的三视图。
【注意】画三视图的原则是:长对齐,宽相等,也可能两个角都是直角,因此在作出判断咼平齐。
例3.下面是正方体的展开图,每个平面内都 注了字母,请根据要求回答问题:? (2) 和B 面所对的会是哪一面? (3) 面E 会和哪些面平行?答:(1)和面A 所对的是面D; (2)和B 面所对的是面F ; (3)面E 和面C 平行。
例4. ( 1)线段DEh 有A B 、C 三个点,则图中共有多少条线段? (2)若线段DEh 有n 个点呢?D AB C E* ------------ * ------ _亍 ____ __________________ *解:(1) 10 条。
方法一:可先把点 D 乍为一个端点,点A 、B 、C E 分别为另一个端点构成线段,再把点A作为一个端点,点 B C E 分别为另一个端点构成线段……依此类推,数出所有线段求和, 即得结果.方法二:5个点,每个点与另外一个点为端点可以组成一条线段,共有5X 4条,但不计1重复的应有 4 5条,即10条。
2(2) (n + 1) + n + (n — 1) + …+ 3+ 2+ 1 =(n 1)(n2)(条)2例5.计算:(1) 37° 28'+ 44° 49'; (2) 23. 118° 12'— 37° 37'X 2; (3) 132° 26 ' 42〃一 41.325 X 3; (4) 360°- 7 (精确到分). 解:(1) 37° 28'+ 44° 49'=81 ° 77'=82° 17'(2) 118° 12' — 37° 37'X 2 =118° 12'— 75° 14 ' =117° 72'— 75° 14 ' =42° 58'.(3) 法一 132 ° 26' 42〃— 41.325 ° X 3 =132.445 — 123.975 =8.47 .法二 132 ° 26' 4241.325 X 3=132° 26' 42〃— 123.975CA BD FE=132° 26' 42〃— 12358' 30〃=131° 86' 42〃— 12358' 30〃=8° 28' 12〃. (4) 360°- 7 =51°+ 3°+ 7 =51 °+ 25'+ 5'- 7 =51 °+ 25'+ 300"- 7〜51°+ 25'+ 43〃 〜51° 26'.【注意】⑴1 °= 60', 1'= 60〃,低一级单位满“ 60”,要向高一级单位进“ 1”, 由高一级单位借“ 1”要化成“ 60”加入低一级单位参与运算.⑵在“度”、“分”、“秒”的混合运算中,可将“分”、“秒”化成度,也小数部分 的度数可化成”“分”“秒”进行计算。
2例6.已知/ a 与/ 3互为补角,且/ B 的土比/ a 大15°,求/ a 的余角.3解:由题意可得=63°解之得丿nZP =117*Z a 的余角=90°—Z a = 90°— 63°= 27°.答:Z a 的余角是27°.【注意】通过列方程或方程组解决几何问题是常用的方法,关键是选取适当的未知数。
强化训练一•填空题1. 用一副三角板可以作出大于 0°而小于180°的角的个数是 _____________ .2. _______________________________________________ 时钟的分针每60分钟转一圈,那么分针转90°需____________________________________________ 分钟,转120°需 ______ 分钟, 25分钟转________ 度.3. _____________________________________________ 如图,四点A 、B C 、D 在一直线上,则图中有 ____________________________________________ 条线段,有 _______ 条射线;若 AC=12cm BD=8cm 且 AD=3BC 则 AB= ________ ,BC= _______ ,CD= ______A B CB4. 已知有共公顶点的三条射线 OA OB OC 若Z AOB=120,'Z BOC=30,则 Z AOC= _______ ” /5. 已知点A 、B C 三个点在同一条直线上,若线段 AB=8 BC=5,则线段AC= ________ / 訂 A6.如图,已知 OAL OB 直线CC经过顶点O,若D .Z BOD Z AOC=5 2,则Z AOC= _______ Z BOD= _________(2)52 45^32 46^ ______ ° ____ ' . 18.^26 34^ _______ ___ '8. 要把木条固定在墙上至少要钉两颗钉子,这是因为 _________________________________ 。
9. 水平放置的正方体的六个面分别用“前面、后面、上 面、1■- =1802-ZP -Zot =15° .37 .计算(1 ) 23030 '78.36 二II下面、左面、右面”表示•如右图,是体的前面,“锦”表示右面,“程”表示下面•则“祝” 方体的___________ •4. 在下列立体图形中,不属于多面体的是( )A .正方体B .三棱柱C .长方体D .圆锥体5. (2004年河北省课程改革实验区)图中几何体的主视图是(三•解答题课标要求①了解对顶角,知道对项角相等。
②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。
③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线。
④知道两直线平行同位角相等,进一步探索平行线的性质个正方体的平面展开图,若图中的“似”表示正方“你”、“前”分别表示正10.如图,B、O C在同一条直线上,厶AOC 贝U N EOD- _____ .二、选择题1.下列各图中,分别画有直线AB, 两条线有交点的是0E平分.AOB线段MN射线DCDOF分上(A)(B)2.如果在一条直线上得到10条不同的线段,个不同的点•A 20 B(D)(C)那么在这条直线上至少要选用(、10 D3. 平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+r等于(D 、以上都不对A 12B 、16C 、2021. (1) 一个角的余角比它的补角还多1920° ,求这两个角的度数.C D、为4个居民小区,现要在四试问应把购物中心建在何处,才,求这个角•(2)已知互余两角的差为2.已知如图,设A、B、边形ABC内建一个购物中心,能使4个居民小区到购物中心的距离之和最小?试在图中画出这个中心(用点P表示),不必说明理由第二讲相交线和平行线其中所给0D⑤ 知道过直线外一点有且仅有一条直线平行于已知直线, 会用角尺和直尺过已知直线外一点画这条直线的平行线。