全桥驱动全桥整流变换器的高频变压器设计2

合集下载

LLC谐振变换器的高频变压器设计

LLC谐振变换器的高频变压器设计
2012年中国电机工程学会直流输电与电力电子专委会学术年会论文集543的计算由于变压器副边侧采用全桥整流电路因此变压器副边的总的视在功率pts1254005025wtstp等于变压器原边侧的输入功率p5025512755w098tp10变压器总的视在功率pttpts1015255w变压器磁芯的面面积ap的计算锰锌铁氧体磁芯属于铁粉磁芯范畴通过查阅相关资料铁粉磁芯在温升25时与电流密度相关的常数k由前面的计算分析可知变压器原副边侧绕组导线采用18号导线而18号导线的导线裸面积0008228cm之比为088即088
1 10152.55 104 1 0.125 ) 0.15 15.7 103 403 4 0.32208 154 (cm 4)
5
高频变压器其他相关参数的计算
(1) 变压器原边侧绕组匝数 NP 及有关参数
由于变压器原边侧采用半桥转换电路,则
543
2012 年中国电机工程学会直流输电与电力电子专委会学术年会论文集
2012 年中国电机工程学会直流输电与电力电子专委会学术年会论文集
LLC 谐振变换器的高频变压器设计
赵慧超,张青利,刘昌,颜湘武
(华北电力大学电气与电子工程学院,保定,071000)
摘要:LLC 半桥谐振变换器以其高效率、高功率密度等优点成为研究的热门拓扑。合理选择其参数是实现
变换器高工作效率, 优良软开关特性的前提和保证。 高频变压器既是 LLC 半桥谐振变换器的核心组件之一, 同时又是 LLC 半桥谐振变换器的主要发热源和体积重量的主要占有者。因此,针对高频变压器的优化设计 也是对 LLC 半桥谐振变换器的优化设计。 采用 AP 法针对 5kW 高频变压器进行理论计算与设计, 并进行了 优化,详细阐述了高频变压器的设计与制作方法。

LLC谐振全桥DCDC变换器设计修改

LLC谐振全桥DCDC变换器设计修改

LLC谐振全桥DC/DC变换器设计摘要:电力电子变压器(PET)作为一种新型变压器除了拥有传统变压器的功能外,还具备解决传统变压器价格高、体积庞大、空载损耗严重、控制不灵活等问题的能力,值得深入研究。

PET的DC-DC变换器是影响工作效率和装置体积重量的重要部分,本文以PET中DC-DC变换器为主要研究对象,根据给出的指标,对全桥LLC谐振变换器的主电路进行了详细的设计,主要有谐振参数的设计,利用磁集成思想,设计磁集成变压器,可以大大减小变换器的体积和重量,并在参数设计的基础上完成器件的选型。

此外,根据给出的参数,计算出各部分损耗,进而计算出效率,结果满足设计效率的要求。

利用PEmag和Maxwell仿真软件设计磁集成变压器,验证磁集成变压器参数。

运用Matlab/simulink对PET中的DC-DC变换器模型进行仿真分析,并在实验样机上进行实验研究,实验结果验证了DC-DC变换器的理论研究和设计方法的正确性及有效性。

关键词:电力电子变压器;LLC谐振变换器;损耗分析;磁集成变压器中图分类号:TD62 文献标识码:A 文章编号:Design of LLC resonant full bridge DC / DC converterAbstract: The Power Electronic Transformer (PET) as a new power transformer,not only has the functions of traditional transformers, but also has the ability to solve the problems of traditional power transformers that the high price, huge volume, prodigious no-load loss and inflexible control, and it is worth in-depth study.The DC-DC converter of PET is an important part of affecting work efficiency, volume and weight of the device. This paper studies the DC-DC converter mainly, then,according to given indexes, main circuit of full-bridge LLC resonant converter is designed in detail, including the design of resonant parameters. And the magnetic integrated transformer is designed with the idea of magnetic integration, which greatly reduces the converter volume, and the selection of devices is completed on the basis of parameters design.In addition, according to the given parameters, losses of each part and the efficiency are calculated. The results meet the efficiency requirements of design. PEmag and Maxwell simulation software are used to design magnetic integrated transformer, and verified the magnetic integrated transformer parameters.Matlab/simulink is used to simulate and analyze the DC-DC converter performance of PET. A prototype of full-bridge LLC resonant converter is developed and system test platform is built according to the theoretical research and simulation results. The correctness and effectiveness of theoretical research and design methods of the DC-DC converter are verified by analyzing the waveforms of the test.Key words:power electronic transformer; LLC resonant converter; loss analysis; magnetic integrated transformer煤矿井下存在着各种电压等级的电源以及电气设备,供电系统十分复杂。

开关电源用高频变压器设计

开关电源用高频变压器设计

技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾一、正激式开关电源高频变压器:No 1 2 待求参数项 副边电压 Vs 最大占空比θonmax 详细公式 Vs = Vp*Ns/Np θonmax = Vo/(Vs-0.5)1、θonmax 的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。

2、0.5 是考虑输出整流二极管压降的调整值,以下同。

3 临界输出电感 LsotonLso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax /(2*f*Po)21、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Lso]}dt = Po 2、Ton=θon/f 4 实际工作占空比θon 如果输出电感 Ls≥Lso:θon=θonmax 否则: θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}ton1、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Ls]}dt = Po 2、Ton=θon/f 5 6 导通时间 Ton 最小副边电流 IsmintonTon =θon /f Ismin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon /(2*f*Ls)]/[(Vs-0.5)*θon]21、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po 2、Ton=θon/f 7 8 9 副边电流增量 ΔIs 副边电流峰值 Ismax 副边有效电流 IstonΔIs = (Vs-0.5-Vo)* Ton/ Ls Ismax = Ismin+ΔIs Is = √[(Ismin + Ismin*ΔIs+ΔIs /3)*θon]2 2 21、Is=√[(1/T)*∫0 (Ismin+ΔIs*t/Ton) dt] 2、θon= Ton/T 10 11 12 副边电流直流分量 Isdc 副边电流交流分量 Isac 副边绕组需用线径 Ds 电流密度取 5A/mm 13 14 15 原边励磁电流 Ic 最小原边电流 Ipmin 原边电流增量 ΔIp2Isdc = (Ismin+ΔIs/2) *θon Isac = √(Is - Isdc ) Ds = 0.5*√Is2 2Ic = Vp*Ton / Lp Ipmin = Ismin*Ns/Np ΔIp = (ΔIs* Ns/Np+Ic)/η第1页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾16 17原边电流峰值 Ipmax 原边有效电流 IptonIpmax = Ipmin+ΔIp Ip = √[(Ipmin + Ipmin*ΔIp+ΔIp /3)*θon]2 2 21、Ip=√[(1/T)*∫0 (Ipmin+ΔIp*t/Ton) dt] 2、θon= Ton/T 18 19 20 原边电流直流分量 Ipdc 原边电流交流分量 Ipac 原边绕组需用线径 Dp 电流密度取 4.2A/mm 21 22 23 24 25 262Ipdc = (Ipmin+ΔIp/2) *θon Ipac = √(Ip - Ipdc ) Dp = 0.55*√Ip2 2最大励磁释放圈数 Np′ 磁感应强度增量 ΔB 剩磁 Br 最大磁感应强度 Bm 标称磁芯材质损耗 PFe (100KHz 100℃ KW/m3) 选用磁芯的损耗系数ω 1.08 为调节系数Np′=η*Np*(1-θon) /θon ΔB = Vp*θon / (Np*f*Sc) Br = 0.1T Bm = ΔB+Br 磁芯材质 PC30:PFe = 600 磁芯材质 PC40:PFe = 450 ω= 1.08* PFe / (0.2 *100 )2.4 1.227 28 29磁芯损耗 Pc 气隙导磁截面积 Sg 有效磁芯气隙δ′ 1、根据磁路欧姆定律:H*l = I*Np 又有:H = B/μPc = ω*Vc*(ΔB/2) *f2.41.2方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc 2 2 圆形中心柱:Sg= {π*(d/2+δ′/2) /[π*(d/2) ]} *Sc δ′=μo*(Np *Sc/Lp-Sc/AL) 有空气隙时:Hc*lc + Ho*lo = Ip*Np2Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp式中:lc 为磁路长度,δ为空气隙长度,Np 为初级圈数,Lp 为初级电感量,ΔB 为工作磁感应强度增量; μo 为空气中的磁导率,其值为 4π×10 H/m; 2、ΔB=Vp*Ton/Np*Sc 3、μc 为磁芯的磁导率,μc=μe*μo 4、μe 为闭合磁路(无气隙)的有效磁导率,μe 的推导过程如下: 由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo2 -7又根据:Bc=Vp*Ton/Np*Sc代入上式化简 得:μe = Lpo*lc/μo*Np *Sc第2页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导2刃禾5、Lpo 为对应 Np 下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤 5 代入 4,4 代入 3,3、2 代入 1 得:Lp =Np *Sc/(Sc/AL +δ/μo) 如果δ′/lc≤0.005: δ=δ′ 2 如果δ′/lc>0.03: δ=μo*Np *Sc/Lp 否则 δ=δ′*Sg/Sc ΔD = 132.2/√f Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′ Ud = Vo+√2 *Vinmax*Ns/Np′ Ud′=√2 *Vinmax*Ns/Np30实际磁芯气隙 δ31 32 33 34穿透直径 ΔD 开关管反压 Uceo 输出整流管反压 Ud 副边续流二极管反压 Ud′第3页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾二、双端开关电源高频变压器:No 1 2 待求参数项 副边电压 Vs 最大占空比θonmax 如果为半桥:Vs = Vp*Ns/(2*Np) 否则: Vs = Vp*Ns/Np θonmax = Vo/(Vs-0.5) 详细公式1、θonmax 的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。

全桥LLC谐振电源的与研究理论部分

全桥LLC谐振电源的与研究理论部分

全桥LLC谐振电源的与研究理论部分毕业设计(论文)题目:全桥LLC谐振电源的设计与研究理论部分专业年级2009级电气工程及其自动化学号姓名指导教师尹斌评阅人王仲夏2013年6月中国马鞍山本科毕业设计(论文)任务书Ⅰ、毕业设计(论文)题目:全桥LLC谐振电源的设计与调试-理论部分Ⅱ、毕业设计(论文)工作内容(从专业知识的综合运用、论文框架的设计、文献资料的收集和应用、观点创新等方面详细说明):随着软开关技术和并联均流的发展,高性能的大功率高频开关电源的研究与开发已成为电力电子领域的重要研究方向,高频化,高效率,高功率密度和低损耗,低EMI噪声是DC/DC变换器的发展趋势,全桥LLC谐振变换器能够实现全负载范围下原边开关管ZVS,副边整流管ZCS,有效解决了移相全桥PWM ZVS DC/DC变换器存在的问题,使得LLC谐振拓扑结构成为电力电子技术领域研究的热点。

本课题以全桥LLC谐振变换器为研究内容,并与移相全桥PWM ZVS DC/DC变换器进行比较,总结二者优缺点,接着对变换器工作原理进行详细研究,建立数学模型,运用MATLAB仿真证明理论分析的正确性。

最后,搭建220V-40A 全桥LLC谐振变换器实验平台,验证理论分析的正确性和设计方法的合理性。

具体工作的步骤、内容、要求安排如下:1.绪论,介绍研究的背景。

2.以全桥LLC谐振变换器为研究内容,并与移相全桥PWM ZVS DC/DC变换器进行比较总结二者优缺点。

3.对变换器工作原理进行详细研究,建立数学模型,运用MATLAB仿真证明理论分析的正确性。

4.总结论文。

Ⅲ、进度安排:第1周~第2周(2周):根据毕业设计任务和要求,收集、查阅和研究学习相关的信息和资料:确定相应的技术方案和实施过程及规划;第3周~第5周(3周):撰写论文初稿,查阅相关资料进行修改;第6周~第9周(4周):设计电路图,调试硬件;第10周~第12周(3周):完成MATLAB软件设计;第13周~第14周(2周):充实论文,后期检查整改。

开关电源:单管自激,反激,推挽,半桥,全桥

开关电源:单管自激,反激,推挽,半桥,全桥

图 2.4 单端正激式开关电源
单端反激式开关电源 反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励 时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的 激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式 开关电源。反激式开关电源是在反极性(Buck—Boost)变换器的基础上演 变而来的,它具有以下优点: 比正激式开关电源少用一个大储能滤波电感及一个续流二极管,因此,体积 比正激式开关电源的要小,且成本也要低。
C18 Q5 C1815 22u50V
+
D17 R21 1N4148 12k
R27 1.5k
HW.79 94V-0
S-100N-R5
2000-11-21
+
C17 1u50V
MW
S-100-24 IN 110VAC 1.9A IN 220VAC 0.8A OUT 24VDC 4.5A
TL494 管脚功能及参数
+
R3 100R 2W 102 1kV FMX 1
C2
+V +V
1k 2W
C1 +
SCK054
TF-096
C3
D3S B-60 -0.5
N C10 4.7u50V T2 D7 R6 T028 15R
3A250V R13 580k 1/2W RT C6 220u 200V 470u 35V x5
开关电源:单管自激,反激,推挽,半桥,全桥
单端正激式开关电源 正激式变压器开关电源,是指当变压器的初级线圈正被直流电压激励 时,变压器的次级线圈正好有功率输出。它是在 BUCK 电路的开关管 Q 与续 流二极管 D 之间加入单端变压隔离器而得到的。它具有以下优点: 1) 正激变换器利用高频变压器的一次侧、二次侧绕组隔离的特点,可以方 便的实现交流电网和直流输出之间的隔离。 2) 正激变换器电路简单,成本很低,能方便的实现多路输出。 3) 正激变换器只有一个开关管,只需一组驱动脉冲;其对控制电路的要求 比双端变换器低。

高频变压器设计原理

高频变压器设计原理

摘要:阐述了高频开关电源热设计的一般原则,着重分析了开关电源散热器的热结构设计。

关键词:高频开关电源;热设计;散热器1 引言电子产品对工作温度一般均有严格的要求。

电源设备内部过高的温升将会导致对温度敏感的半导体器件、电解电容等元器件的失效。

当温度超过一定值时,失效率呈指数规律增加。

有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升为25℃时的1/6。

所以电子设备均会遇到控制整个机箱及内部元器件温升的要求,这就是电子设备的热设计。

而高频开关电源这一类拥有大功率发热器件的设备,温度更是影响其可靠性的最重要的因素,为此对整体的热设计有严格要求。

完整的热设计包括两方面:如何控制热源的发热量;如何将热源产生的热量散出去。

最终目的是如何将达到热平衡后的电子设备温度控制在允许范围以内。

2 发热控制设计开关电源中主要的发热元器件为半导体开关管(如MOSFET、IGBT、GTR、SCR等),大功率二极管(如超快恢复二极管、肖特基二极管等),高频变压器、滤波电感等磁性元件以及假负载等。

针对每一种发热元器件均有不同的控制发热量的方法。

2.1 减少功率开关的发热量开关管是高频开关电源中发热量较大的器件之一,减少它的发热量,不仅可以提高开关管自身的可靠性,而且也可以降低整机温度,提高整机效率和平均无故障时间(MTBF)。

开关管在正常工作时,呈开通、关断两种状态,所产生的损耗可细分成两种临界状态产生的损耗和导通状态产生的损耗。

其中导通状态的损耗由开关管本身的通态电阻决定。

可以通过选择低通态电阻的开关管来减少这种损耗。

MOSFET的通态电阻较IGBT的大,但它的工作频率高,因此仍是开关电源设计的首选器件。

现在IR公司新推出的IRL3713系列HEXFET(六角形场效应晶体管)功率MOSFET已将通态电阻做到3mΩ,从而使这些器件具有更低的传导损失、栅电荷和开关损耗。

美国APT公司也有类似的产品。

车载逆变电源的设计及仿真毕业设计

车载逆变电源的设计及仿真毕业设计
1.
目前市场上常见的车载逆变器按功率等级大致可以分为75W、100W、150W、300W、500W、800W、1000W、1500W、2000W、2500W等规格。车载逆变器的输入为汽车点烟器或蓄电池,一般汽车点烟器10A左右的电流,故点烟器输出的功率约为150W。对于功率等级小于150W的车载逆变器可以直接由点烟器供电,大于150W功率等级时需直接从车载蓄电池供电,否则会因过流烧毁汽车配件及保险丝。随着车上使用的电器种类增多,对车载逆变器的容量提出了更高的要求,小功率150W及以下规格的车载逆变器已经不能满足人们需求,中大功率的车载逆变器是今后的发展趋势。车载逆变器所带的负载通常为以下几类:第一类:整流性负载,如笔记本电脑、各种充电器、组合式音响、数码相机、打印机、游戏机、影碟机、移动DVD;第二类:电阻性负载,如小型电热器具,电热杯等;第三类:感性负载,车载冰箱、照明灯、电转等电动机型的电器。车载逆变器按输出电压波形主要可以分为两种:方波和正弦波。方波逆变结构简单,控制方便,但方波逆变输出电压谐波含量高,同时带负载能力较差且对使用电器寿命影响较大。随着负载增大,方波中包含的三次谐波分量使负载电流容性分量增加,严重时会损耗逆变器输出滤波电容。最初采用简易的多谐振荡器制作的车载方波逆变器,输出功率小,带负载能力差,已逐步被市场淘汰。近年来提出了准正弦波逆变(即修正正弦波),可以带电阻和整流桥负载,满足了日常大部分电子产品的要求,效率较高,最高效率约为90%,价格适中,是当前市场的主流产品。但是准正弦波其本质是带死区时间的方波,仍然不能满足车载冰箱、日光灯、电风等感性负载的要求。一些精密的设备和感性负载类的电器必须要正弦波供电才能工作,否则,轻则电器设备不能正常工作,重则造成损坏用电设备或大大缩短车载逆变器的寿命。正弦波逆变,弥补了方波逆变的不足,适合任何类型的负载,但是控制相对复杂,效率较低,因此高效率正弦波车载逆变器日益成为一种需求。[2]综上所述,作为车载电源转换器,针对其特定的应用场合,必须具有满足以下几个方面的要求:

电力电子变压器中高频变压器的设计方式

电力电子变压器中高频变压器的设计方式

电力电子变压器中高频变压器的设计方式陈永杰;赵奇;唐日强【摘要】电力系统在我国经济发展中起着重要的作用,保证电力系统的完善对其功能的发挥而言意义重大。

就目前的电力系统结构分析来看,变压器是其中不可缺少的重要组成部分,因为变压器在电力系统当中承担着功率传输、电压变换以及电气隔离等主要功能。

就目前的变压器利用分析来看,电力电子变压器在电力系统当中有着重要的应用,而高频变压器又是电力电子变压器的核心组成部分,所以说高频变压器的质量直接影响着电力电子变压器的运行效果。

为了保证电力电子变压器在具体应用中能够具有较高的价值,对高频变压器一定要有科学的设计。

本文就电力电子变压器中高频变压器的设计方式进行具体的讨论,目的是强化电力电子变压器的应用质量。

【期刊名称】《电气技术与经济》【年(卷),期】2018(000)001【总页数】3页(P34-36)【关键词】电力电子变压器;高频变压器;纳米晶【作者】陈永杰;赵奇;唐日强【作者单位】许继变压器有限公司;许继变压器有限公司;许继变压器有限公司【正文语种】中文【中图分类】TM410 引言电力电子变压器是在技术应用不断提升的基础上产生的一种新型的变压器,此变压器使用了大功率的电力电子元件,并采用相应的控制技术,所以电力系统当中的电压变换和能量传递等功能被轻松实现。

传统电力变压器在应用中能够实现的基本功能是电压的变换和电气隔离,而电力电子变压器能够灵活对输入的电流、输出电压以及功率因数进行调节,其在实际利用中更具灵活性,其应用价值也较为突出。

在电力电子变压器当中,高频变压器尤为重要,所以探讨其设计方式并对其进行调整优化,可以进一步提升电力电子变压器的利用价值。

1 高频变压器设计(1)高频变压器磁心选择在高频变压器的设计当中,磁心选择是一项重要的内容。

从目前的分析来看,高频变压器和普通的工频变压器存在着明显的不同,因为高频变压器需要长期在400Hz~100kHz的高频环境中进行工作,所以其磁心的选择十分重要。

基才SG3525的全桥变换器控制驱动电路设计

基才SG3525的全桥变换器控制驱动电路设计

电压 脉 宽 型 控 制 芯 片 S 3 2 A 以 及 高 压 悬 浮 驱 动 芯 片 G 55 I21 , R 13 以其 工 作 稳 定 、 围 电路 简 单 , 为 了 比较 理 想 的 控 外 成 制 驱 动 芯 片 。 章 采 用 该 两 种 芯 片 设 计 了用 以驱 动 全 桥 变 文 换 器 中功 率 MO F T 的控 制 驱 动 电路 ,并 在 s e 环 境 中搭 SE b a r
2 主体 电路 设 计
21 S 5 5控 制 电路 设 计 . G3 2
死 区 时 间 不但 与 有 关 ,而 且 还 与 外 接 的定 时 电 阻 R 有 关 。文 献 【】 出 了 R 的 最 大 取 值 和 的 最 小 取 值 之 间 的 4给
关 系 曲线 。 由于课 题设 计 驱 动全 桥驱 动 的两 对 开关 管 频 率为 5 H , 0k z
Co r la i e c r uis d s g o l- r d e c n e t r ba e o nt o nd drv i c t e i n fFu lb i g o v r e s d n SG3 2 55
W ANG o gp n ,S N e g,S h — i g, HU Hu - o S n - i g HE F n HI ip n Z Z ib
第 1 9卷 第 2 4期
Vo .9 11
No2 .4
电子设 计 工程
E e to i s n En i e rn l cr n c De i g n e i g g
21 0 1年 l 2月
De . c 201 1
基才 S 5 5的全桥 变换 器控制 驱动 电路设计 G32
要 参 数 的 设 计 过程 。 并在 sbr ae 环境 下搭 建 了仿 真 模 型 , 真 结 果验 证 了设 计 参 数 合 理 可行 。 仿

全桥变换器

全桥变换器

Full-bridge converter变换器电气0810 赵玮08292053题目:设计一Full-bridge converter变换器。

输出电压48V,功率为100W。

其中:输入电压为直流48V~8V。

要求:1.通过计算选参数把输出电压纹波Vp-Vp控制在2%之内。

2.主电路元器件的选用、控制芯片的选用、各种为改善电源质量的电磁兼容措施等,任由各位同学自己决定,但要说明选用的理由。

3. 要有:过压和欠压保护;短路保护;过电流保护措施一、主电路工作原理及器件选择1、全桥变换工作原理全桥变换器的主电路如下图1所示,其主要工作波形如下图2所示。

仅需在全桥电路上增加一个谐振电感L或利用变压器漏感,便可通过L1与功率开关管输出电容Ci(i=1,2,3,4)的谐振,在电感储能释放过程中,使Ci上的电压u逐步下降到零,而使功率开关管体内的寄生二极管VDi(i=l,2,3,4)开通,使电路中4个开关器件实现零电压开通或零电流关断。

通过改变对角线上开关管驱动信号之间的相位差来改变占空比,以达到控制输出电压的目的。

变压器副边所接整流二极管VD5、VD6实现全波整流。

2、Full-bridge converter变换器结构图13、全桥变换器工作波形图24、参数计算和器件选择1)变压器的选择为了在规定的输入电压范围内能够输出所要求的电压,变压器的变比应按最低输入电压U 选择。

为了降低输出整流二极管的反向电压,为了提高高频变压器的利用率,减小开关管的电流,选择副边的最大占空比为0.85,则可计算出副边电压为:(max)sec(min)sec(max)o D LFV V V V D ++=其中:0(max)V 是最高输出电压,即均充电压;d V 是输出整流二极管的通态压降;LF V 是输出滤波电感上的直流压降。

取(max)48(12%)49o V V =⨯+≈,d LF V =0.7V,V 1V =,所以sec(min)490.7163.3750.8V V ++==,所以变压器原副边变比为560.8963.375K =≈,变比即为:K=0.89。

毕业论文——全桥LLC串联谐振DCDC变换器

毕业论文——全桥LLC串联谐振DCDC变换器

编号南京航空航天大学毕业设计全桥 LLC 串联谐振 DC/DC 题目变换器学生姓名学号学院自动化学院专业电气工程与自动化班级指导教师二〇XX年X月毕业设计(论文)报告纸全桥 LLC 串联谐振 DC/DC 变换器摘要近现代随着能源价格的增高和需求的增大,工作效率的高低成为了 DC/DC 变换器比较重要的指标之一。

为了追求 DC/DC 变换器的大功率和高效率,需要不断地改进变换器的结构和器件。

传统移相全桥软开关变换器可以有较大的功率,并且可以较好的实现 ZVS,提高效率。

但是相对的却限制了负载的范围,反向二极管的恢复也成了问题并且在输入大电压时效率很低。

为了解决这些问题,本文试着研究全桥 LLC 串联谐振变换器。

本文首先简单介绍了传统移相全桥 PWM ZVS 变换器、全桥 LC 串联谐振变换器、全桥LC 并联谐振变换器和全桥 LCC 串并联谐振变换器,并指出了其中的优缺点。

在此基础上对比介绍了全桥 LLC 串联谐振变换器。

对 LLC 串联谐振全桥 DC/DC 变换器的工作原理进行了详细研究,利用基频分量近似法建立了变换器的数学模型,确定了主开关管实现 ZVS 的条件,推导了边界负载条件和边界频率,确定了变换器的稳态工作区域,推导了输入、输出电压和开关频率以及负载的关系。

之后又设计了一个变换器电路,计算了相关参数,并且对元器件进行了选择。

本文使用UC3861 进行开关控制,设计了它的闭环电路。

最后用 saber 软件分别进行了满载、半载、轻载和空载的仿真分析。

仿真结果证实了理论分析的正确性。

关键词:DC/DC 变换器,全桥,UC3861,LLCiFull bridge LLC series resonant DC/DC converterAbstractIn modern times with increasing energy prices and increased demand, the level of efficiency has become the important index of DC/DC converter. In order to pursue DC/DC converter with high power and high efficiency, the structure and device of converter is needed to be improved. The traditional phase shifted full bridge PWM ZVS converter has some bad place.It limits the load range. Reverse diode recovery has become a problem when the input voltage and high efficiency is very low. To solve these problems, we try to study the full bridge LLC series resonant converter.This paper introduces the circuit and the characteristics of the traditional phase shifted full bridge PWM ZVS converter, full bridge LC series resonant converter and the full bridge LC parallel resonant converter and the full bridge LCC series resonant converter. Then their shortcomings are pointed out. In this paper, LLC series resonant Full Bridge DC/DC converter is analyzed in detail. Based on the fundamental element simplification method, the mathematics model of the converter is obtained, and the conditions to achieve ZVS are given. Steady working region of LLC series resonant Full Bridge DC/DC is confirmed, the relations between input and output voltage depending on switching frequency and load conditions are given.Then, a converter circuit is designed, its parameters are calculated and the selected its components. This paper uses UC3861 for switching control and designed the closed-loop circuit. Finally uses the saber software to analyze some different situation of load.Finally, the simulation results are given, confirm the theoretical results are accurate.Key Words:DC/DC converter; Full bridge; UC3861; LLC目录摘要 (i)ii 第一章引言.............................................................................................................................- 1 -1.1 课题背景......................................................................................................................... - 1 -1.2 谐振变换器研究现状..................................................................................................... - 1 -1.2.1 移相全桥 PWM ZVS DC/DC 变换器.................................................................. - 1 -1.2.2 LC 串联谐振变换器............................................................................................. - 2 -1.2.3 LC 并联谐振变换器............................................................................................. - 3 -1.2.4 LCC 串并联谐振变换器....................................................................................... - 3 -1.3 本文的主要内容............................................................................................................. - 4 - 第二章全桥 LLC 串联谐振 DC/DC 变换器................................................................................ - 6 -2.1 引言................................................................................................................................. - 6 -2.1.1 拓扑图................................................................................................................... - 6 -2.1.2 全桥 LLC 谐振变换器的优缺点.......................................................................... - 6 -2.2 全桥 LLC 串联谐振变换器的原理................................................................................ - 6 -2.2.1 全桥 LLC 串联谐振变换器的等效电路.............................................................. - 6 -2.2.2 全桥 LLC 串联谐振变换器的工作区域............................................................ - 10 -2.3 全桥 LLC 串联谐振变换器的工作过程...................................................................... - 12 -2.3.1 开关管工作在区域 1(f m<f<f r)....................................................................... - 12 -2.3.2 开关管工作在区域 2(f>f r)............................................................................. - 14 -2.4 频率特性....................................................................................................................... - 16 -2.5 空载特性....................................................................................................................... - 17 -2.5 短路特性....................................................................................................................... - 18 -2.6 本章总结....................................................................................................................... - 19 - 第三章闭环控制电路的设计..................................................................................................... - 20 -3.1 UC3861 的简单介绍..................................................................................................... - 20 -3.2 UC3861 的工作原理..................................................................................................... - 21 -3.3 闭环电路的设计........................................................................................................... - 22 -3.4 本章总结....................................................................................................................... - 22 - 第四章参数设计及仿真结果..................................................................................................... - 24 -4.1 参数设计....................................................................................................................... - 24 -4.1.1 性能指标要求..................................................................................................... - 24 -4.1.2 主电路参数设计................................................................................................. - 24 -4.1.3 输出整流滤波电路............................................................................................. - 28 -4.1.4 fmax、fmin、死区时间设计.............................................................................. - 28 -4.2 saber 仿真结果.............................................................................................................. - 29 -4.2.1 满载..................................................................................................................... - 29 -4.2.2 半载..................................................................................................................... - 34 -4.2.3 轻载..................................................................................................................... - 38 -4.2.4 空载..................................................................................................................... - 40 -4.3 本章小结....................................................................................................................... - 42 - 第五章全文总结及展望........................................................................................................... - 43 - 参考文献................................................................................................................................. - 44 - 致谢..................................................................................................................................... - 45 -第一章引言1.1课题背景随着电力电子技术的发展与计算机技术的快速提升,有关 DC/DC 变换器的应用变得很普遍,对于这方面的研究也就多了起来。

双向DCDC变换器研究毕业设计

双向DCDC变换器研究毕业设计
图1-3航空电源系统
1.3 双向 DC/DC 变换器的现状和发展
1.3.1双向直流变换器的现状
20世纪80年代初,为减轻人造卫星太阳能电源系统的体积和重量,美国学者提出用Buck/Boost型双向DC/DC变换器代替蓄电池充电器和放电器。此后人们对人造卫星用蓄电池调节器进行了深入研究,并使之进入了实用阶段。
双向直流变换器按开关转换条件,也可分为硬开关和软开关两类。
桥式直流变换器有两类:一类是由双电压源型桥式直流变换器构成,主变压器两侧电路结构对称;一类是由电压源型桥式直流变换器和电流源型桥式直流变换器构成。这两种桥式变换器均可具有软开关特性。控制方式有两种:①变压器两侧开关管相移控制, 变压器有等效电感,通过控制两侧变换单元之间的相位关系来调节两个电源之间的能量传输大小和方向;②只对变压器一侧开关管进行控制,来调节向另一侧传递能量的大小,另一侧开关管用其反并联二极管整流,工作原理类似单向直流变换器。
This paper first introduces the concept of bi-directional DC / DC converter applications, as well as the status quo, and on this basis, the advantages and disadvantages of the voltage of a current bi-directional full-bridge DC / DC converter;Buck mode, the high pressure side switch tube drive signals, the low pressure side of the switch drive signal blockade, the only power switch body diode rectifier;The circuit for voltage full-bridge structure.Boost mode, the low voltage side switching possession of the drive signal, the high pressure side of the switch drive signal blockade, only the power switch body diode rectifier; the circuit for current-mode full-bridge structure.

推挽式高频变压器设计

推挽式高频变压器设计

供一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)磁通密度磁通密度是磁感应强度的一个别名。

垂直穿过单位面积的磁力线叫做磁通量密度,简称磁通密度,测量主机侧板底部磁通密度它从数量上反映磁力线的疏密程度。

磁场的强弱通常用磁感应强度“B”来表示,哪里磁场越强,哪里B的数值越大,磁力线就越密。

按照国际单位制磁感应强度的单位是特斯拉,其符号为T:磁感应强度还有一个过时的单位:高斯,其符号为G:1 T = 10000 G。

这个符号在技术设施中还广泛使用。

通常条形磁铁两极附近的磁感应强度大约是几十到几百高斯。

在处理与磁性有关问题时,除了要用到磁感应强度外,常常还要讨论穿过一块面积的磁力线数目,称做磁CPU附近磁通密度通量,简称磁通,有Φ 示。

磁通量的单位是韦伯,用Wb表示,以前还有麦克斯韦有Mx表示。

如果磁场中某处的磁感应强度为B,在该处有一块与磁通垂直的面,它的面积为S,则穿过它的磁通量就是Φ = BS式中磁感应强度B的单位是高斯(Gs);面积S的单位是平方厘米;磁通量的单位是麦克斯韦(Mx)。

磁通量的简介公式:Φ=BS,适用条件是B与S平面垂直。

当B与S存在夹角θ时,Φ=B*S*cosθ。

Φ读“fai”四声。

单位:在国际单位制中,磁通量的单位是韦伯,符号是Wb,1Wb=1T*m^2;=1V*S,是标量,但有正负,正负仅代表穿向。

意义:磁通量的意义可以用磁感线形象地加以说明.我们知道在同一磁场的图示中,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B 越大.因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大.B与S平面不垂直的情况磁通量通过某一平面的磁通量的大小,可以用通过这个平面的磁感线的条数的多少来形象地说明。

高频变压器电路的波形参数分析

高频变压器电路的波形参数分析

高频变压器电路的波形参数分析引言AP表示磁心有效截面积与窗口面积的乘积。

计算公式为式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积( cm2) Ae为磁心有效截面积( cm2),Ae≈Sj=CD,Sj 为磁心几何尺寸的截面积,C为舌宽,D为磁心厚度。

根据计算出的AP值,即可查表找出所需磁心型号。

下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。

1 高频变压器电路的波形参数分析开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波( PWM波形) 、锯齿波( 不连续电流模式的一次侧电流波形) 、梯形波( 连续电流模式的一次侧电流波形) 等。

高频变压器电路中有3个波形参数:波形系数( Kf) ,波形因数(kf) ,波峰因数(kP)。

1)波形系数Kf为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦波电流,在一次、二次绕组中就会产生感应电动势e。

根据法拉第电磁感应定律,e=dΦ/dt =d( NABsinωt ) /dt = NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf 。

正弦波的电压有效值为在开关电源中定义正弦波的波形系数Kf=√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。

2)波形因数kf为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。

在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压压(URMS) 与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式以正弦波为例,这表明,Kf=4kf,二者相差4倍。

开关电源6种常见波形的参数见表1。

因方波和梯形波的平均值为零,故改用电压均绝值期,占空比D=t/T。

2 用AP法( 面积乘积法) 选择磁心的公式推导令一次绕组的有效值电压为U1,一次绕组的匝数为NP,所选磁心的交流磁通密度为BAC,磁通量为Φ,开关周期为T,开关频率为f,一次侧电流的波形系数为Kf,磁心有效截面积为Ae ( 单位是cm2),有关系式考虑Kf=4kf关系式之后,可推导出同理,设二次绕组的有效值电压为US,二次绕组的匝数为NS,可得设绕组的电流密度为(单位是A/cm2) ,导线的截面积为S=I/J。

推挽全桥双向直流变换器的研究

推挽全桥双向直流变换器的研究

推挽全桥双向直流变换器的研究1 引言随着环境污染的日益严重和新能源的开发,双向直流变换器得到了越来越广泛的应用,像直流不停电电源系统,航天电源系统、电动汽车等场合都应用到了双向直流变换器。

越来越多的双向直流变换器拓扑也被提出,不隔离的双向直流变换器有Bi Buck/Boost、Bi Buck-Boost、Bi Cuk、Bi Sepic-Zeta;隔离式的双向直流变换器有正激、反激、推挽和桥式等拓扑结构。

不同的拓扑对应于不同的应用场合,各有其优缺点。

推挽全桥双向直流变换器是由全桥拓扑加全波整流演变而来。

推挽侧为电流型,输入由蓄电池供给,全桥侧为电压型,输入接在直流高压母线上。

此双向直流变换器拓扑适用在电压传输比较大、传输功率较高的场合。

本文分析了推挽全桥双向直流变换器的工作原理,通过两种工作模式的分析,理论上证明了此拓扑实现能量双向流动的可行性,并对推挽侧开关管上电压尖峰形成原因进行了分析,提出了解决方法,在文章的最后给出了仿真波形和实验波形。

2 工作原理图1为推挽全桥双向DC/DC变换器原理图。

图2给出了该变换器的主要波形。

变换器原副边的电气隔离是通过变压器来实现的,原边为电流型推挽电路,副边为全桥电路,该变换器有两种工作模式:(1)升压模式:在这种工作模式下S1 、S2 作为开关管工作; S3,S4 ,S5 ,S6 作为同步整流管工作,整流方式为全桥整流,这种整流方式适用于输出电压比较高,输出电流比较小的场合。

由于电感L 的存在S1、S2 的占空比必须大于0.5。

(2)降压模式:在这种工作模式下S3,S4,S5,S6 作为开关管工作,S1 、S2 作为同步整流管工作,整流方式为全波整流。

分析前,作出如下假设:所有开关管、二极管均为理想器件;所有电感、电容、变压器均为理想元件;,;2.1 升压工作模式在升压工作模式下,原边输入为电流型推挽电路,副边输出为全桥整流电路。

S1 ,S2 作为开关管工作,S3 ,S4,S5,S6 作为同步整流管工作。

全桥驱动全桥整流变换器的高频变压器设计2

全桥驱动全桥整流变换器的高频变压器设计2

全桥驱动全桥整流变换器的高频变压器设计1、根据电路形式、输出电压电流、变压器效率计算变压器的传送功率。

2、确定工作磁感应强度、电流密度系数、窗口占空系数(利用率)、工作频率、波形因数。

3、计算功率面积乘积并据此选择磁芯,根据所选磁芯参数计算电流密度。

4、根据伏秒积计算原边绕组匝数;根据电压比计算副边绕组匝数。

5、根据功率和波形因数计算各绕组电流幅值。

1、变压器传送功率计算o o o P I U =⨯o I P P η=11t o I o P P P P η⎛⎫ ⎪ ⎪⎝⎭=+=+2、功率面积乘积计算对于全桥驱动,变压器的2m B B ∆=。

其中,0.15~0.25m B =,电流密度系数400J K =,窗口占空系数0.2~0.4Ko =,工作频率20Z f KH =,波形因数f K =。

1.16411104o p J c m P A K A B fη⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ ⎪⎪ ⎪ ⎪ ⎪⎝⎭+⨯=⨯⨯⨯⨯3、选择磁芯,计算电流密度0.14()J p J K A -=⨯4、原边和副边绕组匝数:124p on p m c m c U t U DN B A B A f⨯⨯==⨯⨯⨯21s pU N N U =5、原边和副边绕组电流幅值: 副边绕组电流幅值:2o I I D=o s s s s o o o so s os P U D I U I D U I U U I I DI I D=⨯=⨯⨯=⨯=∴=⨯∴= 原边绕组电流幅值:o p p P I U Dη=⨯⨯全桥变换器输出电压与输入电压关系推导伏秒积产生磁通链:t t p p p c p p s s s c s sU N B A L I U N B A L I ⨯∆=∆Φ=⨯∆⨯=⨯∆⨯∆=∆Φ=⨯∆⨯=⨯∆ 原边能量:()22211222p on p on p p p p p U t U t L i L L L ⎛⎫⎪ ⎪⎝⎭⨯⨯⨯⨯=⨯⨯=副边能量:()22211222s on s on s s s s s U t U t L i L L L ⎛⎫ ⎪ ⎪⎝⎭⨯⨯⨯⨯=⨯⨯=两边相等:()()2222p on s on s s p ppsU t U t U N U N L L ⨯⨯=⇒==结论:正激变换器输出与输入的电压比等于副边与原边的匝数比全桥驱动全桥整流变换器的高频变压器A P 公式推导伏秒积产生磁通链:222p on p p p m c T D U t U D U N B A f⨯=⨯⨯=⨯=⨯⨯得原边匝数和副边匝数:4p p m c U DN B A f⨯=⨯⨯由于p s p sU U N N =,故: 4s s m c U D N B A f⨯=⨯⨯窗口中包含的总电流为:()441(1)44p s p p s st w w p s m c m c o p p s s m c m c m c I I U D I U D I I A K N N J J J JB A f B A f P U I U I D J B A f J B A fη⨯⨯⨯⨯=⨯=+=+⨯⨯⨯⨯++⨯===⨯⨯⨯⨯⨯⨯得功率面积乘积计算式:1(1)4o p w c m P A A A J Kw B fη+=⨯=⨯⨯⨯考虑电流密度计算式:()x J p JK A =⨯,x 为结构系数。

隔离型双向全桥DCDC变换器研究

隔离型双向全桥DCDC变换器研究

隔离型双向全桥DCDC变换器研究一、概述随着现代电力电子技术的飞速发展,双向全桥DCDC变换器在可再生能源系统、电动汽车、储能系统等领域得到了广泛的应用。

隔离型双向全桥DCDC变换器作为一种高效率、高功率密度的电力电子设备,具有结构简单、控制灵活、能量可双向流动等优点,成为了电力电子领域的研究热点。

本文旨在对隔离型双向全桥DCDC变换器进行深入研究,首先介绍了隔离型双向全桥DCDC变换器的工作原理和基本结构,然后分析了其控制策略和调制方法,接着讨论了变换器的效率优化和热管理问题,最后通过仿真和实验验证了所提出方法的有效性和可行性。

通过对隔离型双向全桥DCDC变换器的深入研究,本文旨在为其在实际应用中的设计和优化提供理论指导和参考,进一步推动隔离型双向全桥DCDC变换器在电力电子领域的发展。

1. 研究背景及意义随着全球能源危机和环境问题的日益严重,可再生能源和电动汽车等领域对高效、高功率密度和高可靠性的电源变换器需求日益增长。

隔离型双向全桥DCDC变换器作为一种重要的电力电子设备,具有结构简单、效率高、功率密度大、控制灵活等优点,被广泛应用于可再生能源发电系统、电动汽车、航空航天、数据中心等领域。

隔离型双向全桥DCDC变换器在实际应用中面临着一些挑战,如开关器件的损耗、电磁干扰、电压和电流的应力、热管理等问题。

研究隔离型双向全桥DCDC变换器的工作原理、设计方法、控制策略和性能优化等方面具有重要的理论和实际意义。

本文旨在对隔离型双向全桥DCDC变换器进行深入研究,分析其工作原理和特性,探讨其设计方法和控制策略,并通过仿真和实验验证所提出的方法和策略的有效性和可行性。

研究成果将为隔离型双向全桥DCDC变换器的优化设计和应用提供理论依据和技术支持,促进可再生能源和电动汽车等领域的发展。

2. 国内外研究现状隔离型双向全桥DCDC变换器作为一种高效、可靠的电力电子变换装置,在新能源发电、电动汽车、数据中心等领域具有广泛的应用前景。

全桥逆变焊机高频变压器设计

全桥逆变焊机高频变压器设计

摘要关键词:AbstractKey Words :目录引言文献综述1.1电焊机的构造及原理电焊机是利用正负两极在瞬间短路时产生的高温电弧来熔化电焊条上的焊料和被焊材料,来达到使它们结合的目的。

电焊机的结构十分简单,说白了就是一个大功率的变压器,将220V交流电变为低电压,大电流的电源,可以是直流的也可以是交流的。

电焊变压器有自身的特点,就是具有电压急剧下降的特性。

在焊条引燃后电压下降;在...电焊机的工作电压的调节,除了一次的220/380电压变换,二次线圈也有抽头变换电压,同时还有用铁芯来调节的,可调铁芯... 电焊机一般是一个大功率的变压器,系利用电感的原理做成的.电感量在接通和断开时会产生巨大的电压变化,利用正负两极在瞬间短路时产生的高压电弧来熔化电焊条上的焊料.来达到使它们结合的目的1.2全桥逆变焊机(Full Briudge)工作原理分析工频交流电源的整流滤波回路与双单端逆变器相同,只是在逆变单元中分别由VT1 和VT3 组成左桥臂,VT2 和VT4组成右桥臂,四个开关功率管共同组成桥式电路。

1.3工作原理分析:1) 在NT时,左桥臂中VT1 和右桥臂VT4 门极激励脉冲信号Ugvt1 和Ugvt4 同时现,VT1 和VT4 同时导通,高频变压器将向次级传输能量,原边电流回路为Ud + →VT1 →T1 →VT4 →Ud - 。

经过次级的整流电路整流、直流电抗器DCL 的滤波作用,从而得到合适焊接工艺要求的直流电。

图1b 为此时等效电路(Equivalent circuit) 。

电路稳态方程:输出电压:Uo = D Ud / n2) 在NT + ton 时,功率开关VT1、VT4 的控制极的PWM脉冲激励同时消失,VT1、VT4 同时截止,由于VD2、VD3 的钳位作用,VT1、VT4 承受最大电压Ud ,次级整流管的截止,其阻断了高频变压器与输出回路的联系,此时主电路将不再向输出回路传输能量,高频变压器等效为一个电感,将储存在其中的电磁能量通过VD2、VD3 回馈到电源中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全桥驱动全桥整流变换器的高频变压器设计
1、根据电路形式、输出电压电流、变压器效率计算变压器的传送功率。

2、确定工作磁感应强度、电流密度系数、窗口占空系数(利用率)、工作频率、波形因数。

3、计算功率面积乘积并据此选择磁芯,根据所选磁芯参数计算电流密度。

4、根据伏秒积计算原边绕组匝数;根据电压比计算副边绕组匝数。

5、根据功率和波形因数计算各绕组电流幅值。

1、变压器传送功率计算
o o o P I U =⨯
o I P P η
=
11t o I o P P P P η⎛⎫ ⎪ ⎪⎝⎭
=+=+
2、功率面积乘积计算
对于全桥驱动,变压器的2m B B ∆=。

其中,0.15~0.25m B =,电流密度系数400J K =,窗口占空系数0.2~0.4Ko =,工作频率
20Z f KH =
,波形因数f K =。

1.16
411104o p J c m P A K A B f
η⎛⎫⎛⎫
⎪ ⎪ ⎪ ⎪
⎝⎭
⎪ ⎪ ⎪ ⎪ ⎪⎝

+⨯=⨯⨯⨯⨯
3、选择磁芯,计算电流密度
0.14()J p J K A -=⨯
4、原边和副边绕组匝数:
124p on p m c m c U t U D
N B A B A f
⨯⨯==⨯⨯⨯
21s p
U N N U =
5、原边和副边绕组电流幅值: 副边绕组电流幅值:2o I I D
=
o s s s s o o o s
o s o
s P U I U I D U I U U I I D
I I D
==⨯⨯=⨯=∴=⨯∴= 原边绕组电流幅值:o
p p P I U D
η=⨯⨯
全桥变换器输出电压与输入电压关系推导
伏秒积产生磁通链:
t t p p p c p p s s s c s s
U N B A L I U N B A L I ⨯∆=∆Φ=⨯∆⨯=⨯∆⨯∆=∆Φ=⨯∆⨯=⨯∆ 原边能量:()2
2
211222p on p on p p p p p U t U t L i L L L ⎛⎫
⎪ ⎪⎝⎭⨯⨯⨯⨯=⨯⨯=
副边能量:()22
2
11222s on s on s s s s s U t U t L i L L L ⎛⎫ ⎪ ⎪⎝⎭
⨯⨯⨯⨯=⨯⨯=
两边相等:()(
)22
22p on s on s s p p
p
s
U t U t U N U N L L ⨯⨯=
⇒==
结论:正激变换器输出与输入的电压比等于副边与原边的匝数比
全桥驱动全桥整流变换器的高频变压器A P 公式推导
伏秒积产生磁通链:
222p on p p p m c T D U t U D U N B A f
⨯=⨯⨯=⨯=⨯⨯
得原边匝数和副边匝数:
4p p m c U D
N B A f
⨯=
⨯⨯
由于
p s p s
U U N N =,故: 4s s m c U D N B A f
⨯=
⨯⨯
窗口中包含的总电流为:
(
)441(1)44p s p p s s
t w w p s m c m c o p p s s m c m c m c I I U D I U D I I A K N N J J J J
B A f B A f P U I U I D J B A f J B A f
η⨯⨯⨯⨯=⨯=+=+⨯⨯⨯⨯++⨯===
⨯⨯⨯⨯⨯⨯
得功率面积乘积计算式:
1(1)4o p w c m P A A A J Kw B f
η
+=⨯=
⨯⨯⨯
考虑电流密度计算式:()x J p J
K A =⨯,x 为结构系数。

代入上式得全桥驱动的高频变压器功率面积乘积计算式为:
1
11(1)
4x
p w c J w m Po A A A K K B f
η⎛⎫ ⎪ ⎪
⎪ ⎪ ⎪⎝

++=
⨯=⨯⨯⨯。

相关文档
最新文档