七年级上册数学综合训练试试题

合集下载

苏科版七年级数学上册阶段综合练(角、余角、补角、对顶角)【含答案】

苏科版七年级数学上册阶段综合练(角、余角、补角、对顶角)【含答案】

苏科版七年级数学上册阶段综合练(角、余角、补角、对顶角)一、选择题1、如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .2、如图所示,∠1和∠2是对顶角的图形是( )A .B .C .D .3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④(3题) (4题) (6题)4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误6、如图,射线平分,以为一边作,60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒则 (BOP ∠=)A . B . C .或 D .或15︒45︒15︒30︒15︒45︒7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .(8题) (9题) (10题)9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC ∠=∠AOC AOE∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20(13题) (14题) (16题)14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.(17题) (18题)18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角; ③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).三、解答题19、计算:(1); (2); (3); (4).32175342427︒'''+︒'''90361215︒-︒'''2512355︒'''⨯536︒÷20、完成推理填空:如图,直线AB 、CD 相交于O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC =90°,∠COF =34° ( )∴∠EOF = °又∵OF 是∠AOE 的角平分线 ( )∴∠AOF ═ =56° ( )∴∠AOC =∠ ﹣∠ = °∴∠BOD =∠AOC = °( )21、如图,已知直线,相交于点,平分,平分.若,AB CD O OE BOD ∠OF COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF ?并说明理由.23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠答案一、选择题1、如图,下列各个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是( )A.B.C.D.【解题思路】根据角的表示方法判断即可.【解答过程】解:A、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;B、图形中的∠1,能用∠AOB,∠O表示,本选项符合题意;C、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;D、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;故选:B.2、如图所示,∠1和∠2是对顶角的图形是( )A.B.C.D.【答案】B【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可求解.【详解】解:对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,满足条件的只有B .故选:B .3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④【答案】B【分析】根据对顶角和邻补角的定义逐个判断即可得.【详解】解:和不是对顶角,互为邻补角,则①错误,②正确;1∠2∠,但和不一定相等,则③错误;12180∠+∠=︒1∠2∠由对顶角相等得:,则④正确;13∠=∠综上,正确的是②④,故选:B .4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数【答案】C【分析】由角平分线性质解得,根据对角线性质、平角性质解得,90EOF ∠=︒180AOD BOD ∠=︒-∠,据此解题.1,2AOC BOD DOF BOD∠=∠∠=∠【详解】解: OE ,OF 平分∠AOD ,∠BOD 11,22AOE EOD AOD DOF FOB BOD∴∠=∠=∠∠=∠=∠180AOD BOD ∠+∠=︒ 111()90222EOD DOF AOD BOD AOD BOD ∴∠+∠=∠+∠=∠+∠=︒90EOF ∴∠=︒180AOD BOD∴∠=︒-∠1,2AOC BOD DOF BOD∴∠=∠∠=∠都与∠BOD 大小变化有关,只有∠EOF 的度数与∠BOD 大小变化无关,故选:C .5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误【解题思路】根据方向角定义即可进行判断.【解答过程】解:根据方向角定义可知:灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,画出灯塔C 的位置如图3.故选:D .6、如图,射线平分,以为一边作,则 60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒(BOP ∠=)A .B .C .或D .或15︒45︒15︒30︒15︒45︒【分析】根据,射线平分,可得,分在内,在60AOB ∠=︒OC AOB ∠30BOC ∠=︒OP BOC ∠OP 内,两种情况讨论求解即可.AOC ∠【解析】,射线平分,60AOB ∠=︒ OC AOB ∠,1302AOC BOC AOB ∴∠=∠=∠=︒又15COP ∠=︒①当在内,OP BOC ∠,301515BOP BOC COP ∠=∠-∠=︒-︒=︒②当在内,OP AOC ∠,301545BOP BOC COP ∠=∠+∠=︒+︒=︒综上所述:或.15BOP ∠=︒45︒故选:.D7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°【解析】∵∠BOD =75°,∴∠AOC =75°,∵∠AOE :∠EOC =2:3,∴设∠AOE =2x °,∠EOC =3x °,则2x +3x =75,解得:x =15,∴∠AOE =30°,故选:B .8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .【分析】根据角平分线的定义得出∠BOD =2∠BOF ,∠BOF =∠DOF ,根据∠AOD :∠BOF =4:1求出∠AOD :∠BOD =4:2,根据邻补角互补求出∠AOD =120°,∠BOD =60°,求出∠AOC =60°,根据角平分线定义求出∠COE ,再求出答案即可.【解析】∵OF 平分∠BOD ,∴∠BOD =2∠BOF ,∠BOF =∠DOF ,∵∠AOD :∠BOF =4:1,∴∠AOD :∠BOD =4:2,∵∠AOD +∠BOD =180°,∴∠AOD =120°,∠BOD =60°,∴∠AOC =∠BOD =60°,∴∠BOF =∠DOF==30°, 6021∴∠COF =180°﹣∠DOF =150°,∵OE 平分∠COF ,∴∠COE=COF=,∠21 7515021=⨯∴∠AOE =∠AOC +∠COE =60°+75°=135°,故答案为:135°.9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC∠=∠AOC AOE ∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒【分析】根据对顶角相等可得,不是的角平分线,因此和不一AOD BOC ∠=∠AO COE ∠AOC ∠AOE ∠定相等,根据,利用平角定义可得,根据邻补角互补可得90EOD ∠=︒90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒【解析】、,说法正确;A AOD BOC ∠=∠、,说法错误;B AOC AOE ∠=∠、,说法正确;C 90AOE BOD ∠+∠=︒、,说法正确;D 180AOD BOD ∠+∠=︒故选:.B 10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒【分析】根据角平分线的定义和对顶角的性质即可得到结论.【解析】设,,2EOC x ∠=9EOB x ∠=平分,OA EOC ∠,12AOE EOC x ∴∠=∠=根据题意得,解得,9180x x +=︒18x =︒,18EOA AOC x ∴∠=∠==︒,18BOD AOC ∴∠=∠=︒故选:.C 二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠【答案】 外部1∠【分析】根据角的画法步骤,先画出∠AOB=∠1,再在∠AOB 的外部画出∠2,即可得到∠AOC【解析】画法详解:(1)画∠AOB=∠1.(2)以点O 为顶点,OB 为始边,在∠AOB 的外部作∠BOC=∠2;则∠AOC=∠1+∠2.故答案: (1)∠1 (2)外部12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠【分析】根据补角定义可得的度数,再根据对顶角相等可得答案.α∠【解析】的补角为,α∠ 100︒,18010080α∴∠=︒-︒=︒与是对顶角,α∠ β∠,80βα∴∠=∠=︒的余角的度为,β∴∠10︒故答案为:.10︒13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20【答案】110︒【分析】根据时针在钟面上每分钟转,分针每分钟转,然后分别求出时针、分针转过的角度,即可得到答0.5 6案.【详解】解:∵时针在钟面上每分钟转,分针每分钟转,0.5 6 ∴钟表上12时20分钟时,时针转过的角度为,分针转过的角度为,0.52010⨯= 620120⨯=所以时分针与时针的夹角为.12:2012010110-= 14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠【答案】75°.【分析】由邻补角的定义可求得∠COB =150°,然后根据角平分线的定义可求得∠2.【详解】解:∵∠1+∠COB =180°,∠1=30°,∴∠COB =180°﹣30°=150°.∵OE 是∠BOC 的平分线,∴∠2= ∠COB =75°.12故答案为:75°.15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=【分析】分两种情况:当在内时;当在外时.根据角平分线的定义,角的和差进行OC AOB ∠OC AOB ∠解答便可.【解析】当在内时,如图1,OC AOB ∠;11119020352222EOF BOE BOF AOB BOC ∠=∠-∠=∠-∠=⨯︒-⨯︒=︒当在外时,如图2,OC AOB ∠,11119020552222EOF BOE BOF AOB BOC ∠=∠+∠=∠+∠=⨯︒+⨯︒=︒故答案为:或.35︒55︒16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠【分析】首先根据余角的性质可得,再根据角平分线的性质可算出905040AOM ∠=︒-︒'=︒,再根据对顶角相等可得的度数,40280AOC ∠=︒⨯=︒BOD ∠【解析】.,90MON ∠=︒ 50BON ∠=︒,905040AOM ∴∠=︒-︒'=︒射线平分,OM AOC ∠,40280AOC ∴∠=︒⨯=︒.80BOD AOC ∴∠=∠=︒故答案为:.80︒17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.【答案】63°【分析】先求出∠AOD =54°,再求出∠BOD 和∠DOF ,即可求出∠BOF .【详解】解:∵∠DOE =90°,∠AOE =36°,∴∠AOD =90°﹣36°=54°,∵∠AOB =90°,∴∠BOD =90°﹣54°=36°,∵OF 平分∠AOD ,∴∠DOF ∠AOD =27°,12=∴∠BOF =36°+27°=63°.18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角;③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.【解析】,相交于点,,AB CD O 90BOE ∠=︒①与互为余角,正确;∴AOC ∠COE ∠②与互为余角,正确;BOD ∠COE ∠③,正确;AOC BOD ∠=∠④与互为补角,正确;COE ∠DOE ∠⑤设,则,,故与互为补角错误;30AOC ∠=︒120DOE ∠=︒180AOC DOE ∠+∠≠︒AOC ∠BOC DOE ∠=∠⑥,错误;AOC BOD COE ∠=∠≠∠故答案为:⑤⑥.三、解答题19、计算:(1); (2); (3); (4).32175342427︒'''+︒'''90361215︒-︒'''2512355︒'''⨯536︒÷【分析】(1)1度分,即,1分秒,即,依此计算加法;60=160︒='60=160'=''(2)1度分,即,1分秒,即,依此计算减法;60=160︒='60=160'=''(3)1度分,即,1分秒,即,依此计算乘法;60=160︒='60=160'=''(4)1度分,即,1分秒,即,依此计算除法.60=160︒='60=160'=''【解析】(1)原式;=︒'''=︒74596075(2)原式;=︒'''534745(3)原式;=︒'''=︒'''12560175126255(4)原式.850=︒'20、完成推理填空:如图,直线AB、CD相交于O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC=90°,∠COF=34°( )∴∠EOF= °又∵OF是∠AOE的角平分线( )∴∠AOF═ =56°( )∴∠AOC=∠ ﹣∠ = °∴∠BOD=∠AOC= °( )【分析】利用角的和差关系和角平分线定义可得∠AOF的度数,然后利用垂垂线定义计算出∠AOC的度数,再根据对顶角相等可得∠BOD的度数.【解析】∵∠EOC=90°,∠COF=34°(已知),∴∠EOF=56°,又∵OF是∠AOE的角平分线(已知),∴∠AOF ═∠EOF =56° (角平分线定义),∴∠AOC =∠AOF ﹣∠COF =22°,∴∠BOD =∠AOC =22°(对顶角相等).故答案为:已知;56;已知;∠EOF ;角平分线定义;AOF ;COF ;22;22;对顶角相等.21、如图,已知直线,相交于点,平分,平分.若,AB CD O OE BOD ∠OF COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠【答案】(1)40°;(2)150°【分析】(1)根据邻补角的性质,可求出的度数,再根据角平分线的性质即可求出的度数,DOB ∠DOE ∠(2)根据邻补角的性质,可求出的度数,再根据角平分线的性质,求出,在根据对顶角COE ∠COF ∠的性质求出,即可求出的度数.AOC ∠AOF ∠【详解】(1)∵直线,相交于点,AB CD O ∴,180AOD BOD ∠+∠=︒∵,100AOD ∠=︒∴,18080BOD AOD ∠=-∠=°°∵平分,OE BOD ∠∴.1402DOE BOD ∠=∠=°(2)∵,180COE DOE ∠+∠=°∴,180140COE DOE ∠=-∠=°°∵平分,OF COE ∠∴,1702COF COE ∠=∠=°∵,80AOC BOD ∠=∠=︒∴.150AOF AOC COF ∠=∠+∠=°22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF?并说明理由.【答案】(1)30°;(2)平分,理由见解析.【分析】(1)根据邻补角的概念求出,根据角平分线的定义计算,得到答案;BOC ∠(2)求出,根据题意分别求出,根据角平分线的定义证明即可.AOE ∠AOF EOF ∠∠、【详解】解:(1)∵∠AOC =120°,∴∠BOC =180°﹣120°=60°,∵OE 平分∠BOC ,∴∠BOE =∠BOC =×60°=30°;1212(2)OA 平分∠DOF ,理由如下:∵∠BOE =30°,∴∠AOE =180°﹣30°=150°,∵∠AOF :∠EOF =2:3,∴∠AOF =60°,∠EOF =90°,∵∠AOD =∠BOC =60°,∴∠AOD =∠AOF ,∴OA 平分∠DOF .23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠【分析】(1)根据互余、互补以及角平分线的定义可得答案;(2)由(1)的方法列出方程可求出答案.【解析】(1),,90DOE ∠=︒ 20AOE ∠=︒.902070AOD DOE AOE ∴∠=∠-∠=︒-︒=︒.180********BOD AOD ∴∠=︒-∠=︒-︒=︒平分.OF BOD ∠.∴111105522BOF BOD ∠=∠=⨯︒=︒故答案为:.55︒(2)设,AOE x ∠=则.5BOF x ∠=.90AOD x ∴∠=︒-.180(90)90BOD x x ∠=︒-︒-=︒+平分,OF BOD ∠.∴11(90)4522BOF x x ∠=︒+=︒+,∴14552x x ︒+=即9452x =︒,∴245109x =︒⨯=︒.10AOE ∴∠=︒24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠【答案】(1)10°;(2)①;②60°1602COF AOE∠=︒-∠【分析】(1)利用角平分线的定义以及角的和差计算即可求解;(2)利用角平分线的定义以及角的和差列式即可;(3)利用邻补角的定义结合(2)的结论即可求解.【详解】解:(1)∵,,∴,.80BOE ∠=︒60COE ∠=︒40AOC ∠=︒100AOE ∠=︒∵是的平分线,∴,OF AOE ∠1502AOF AOE ∠=∠=︒∴;10COF AOF AOC ∠=∠-∠=︒(2)①∵是的平分线,∴,OF AOE ∠12EOF AOE∠=∠∴;1602COF COE EOF AOE∠=∠-∠=︒-∠②∵∠BOE=180-∠AOE ,︒∴∠BOE-2∠COF=180-∠AOE-2(60-∠AOE)=180-∠AOE-120+∠AOE .︒︒12︒︒60=︒25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α【分析】(1)根据角平分线的定义先求出,再根据互补求出即可;AOD ∠BOD ∠(2)根据互余求出,再根据角平分线的定义求出,最后根据互补求出的答案;DOE ∠AOD ∠(3)由(2)的解题过程可得答案;(4)根据互余、互补、角平分线的定义可求出答案.【解析】(1)射线平分,,OE AOD ∠22250100AOD AOE DOE ∴∠=∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(2),,,90COD ∠=︒ 30COE ∠=︒903060DOE ∴∠=︒-︒=︒又平分,,OE AOD ∠2260120AOD DOE ∴∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(3),,,90COD ∠=︒ COE α∠=90DOE α∴∠=︒-又平分,,OE AOD ∠22(90)1802AOD DOE αα∴∠=∠=⨯︒-=︒-,180********BOD AOD αα∴∠=︒-∠=︒-︒+=故答案为:;2α(4)由图②得,,90DOE α∠=-︒平分,,OE AOD ∠22180AOD DOE α∴∠=∠=-︒,18018021803602BOD AOD αα∴∠=︒-∠=︒-+︒=︒-故答案为:.3602α︒-26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠【答案】(1)2,、,对顶角相等;(2)90°;(3)105°=COB AOD ∠∠=AOC BOD ∠∠【分析】(1)根据对顶角相等证明即可;(2)设,表示已知条件中的角推理计算即可;=AOC x ∠(3)结合(2)中的关系列方程即可求出x 的值,再由和互补求AOC COF ∠∠、DOF ∠COF ∠出.DOF ∠【详解】(1)根据对顶角相等可得图1中有2对相等的角(平角除外)分别是:,.=COB AOD ∠∠=AOC BOD ∠∠故答案为:2,、,对顶角相等;=COB AOD ∠∠=AOC BOD ∠∠(2)设°,则=AOC x ∠180BOC x ∠=︒-︒∵平分∴OF COB ∠11=9022COF BOC x ∠∠=︒-︒∴1==90+2AOF AOC COF x ∠∠+∠︒︒∵∴90COE ∠=︒1=2EOF COE COF x ∠∠-∠=︒∴;11=90+=9022AOF EOF x x ∠-∠-︒(3)∵:2:5AOC COF ∠∠=∴5=2AOC COF∠∠由(2)可知:,=AOC x ∠1=902COF x ∠︒-︒∴解得15=2(90)2x x ︒︒-︒30x =︒∴, ∴190=752COF x ∠=-︒180105DOF COF ∠=-∠=︒27。

初一数学上册综合算式专项练习题混合运算练习

初一数学上册综合算式专项练习题混合运算练习

初一数学上册综合算式专项练习题混合运算练习混合运算是初中数学中重要的一部分,旨在加强学生对基本运算的综合应用能力。

下面是初一数学上册综合算式专项练习题,帮助学生进一步巩固和提高混合运算技巧。

一、计算题1. 计算:(12+7)×3-15÷32. 计算:18-(3×4-8)÷(2+1)3. 计算:30-3×(2+8÷4)4. 计算:20-10÷(4-2)×35. 计算:(3+4×2)÷(5-1)6. 计算:(18-3×2)÷(4+1)7. 计算:(7×3-21)÷(2+1)8. 计算:(12-6)×4÷29. 计算:(5-3×2)÷((4-2)×3)10. 计算:(16-4×5)÷(3-1)二、解答题1. 甲乙两个人共有36元,甲比乙多拿了3元,他们两个人各自拿了多少钱?2. 某书店有一种图书售价30元,如果买3本可以打8折,那么买3本需要多少钱?3. 甲的年龄是乙的2倍加3,乙的年龄比甲小3岁,他们两个人的年龄之和是多少?4. 某地气温为零下5摄氏度,半小时后气温下降5摄氏度,那么半小时后的气温是多少摄氏度?5. 甲乙两个数的和是45,乙丙两个数的和是38,甲丙两个数的和是53,求甲、乙、丙三个数各是多少?三、应用题1. 小明共有210元,他用其中的一半买了一本书,然后用剩下的钱买了一个文具盒,文具盒比书贵50元,问小明买书花了多少钱?2. 甲乙两地相距180公里,甲地有一辆汽车向乙地开去,速度是每小时60公里。

同时,乙地有一辆汽车向甲地开去,速度是每小时70公里。

请问从他们同时开车到相遇需要多长时间?3. 甲乙两个人同时从A地出发,相隔120公里的B地是他们交汇的地方。

甲的速度是每小时40公里,乙的速度是每小时60公里。

七年级上册数学综合训练题一

七年级上册数学综合训练题一

七年级上册数学综合训练题一一、选择题(每小题3分,共30分)1. 下列各组中的两项是同类项的是 ( )A .ab 与 abcB .35-与3x -C .y x 25与 x y 23D .xy 2-与.yx 5-2. 下列运算中,正确的是 ( )A . c b a c b a 25)2(5-+=+-B . c b a c b a 25)2(5+-=+-C . c b a c b a 25)2(5++=+-D . c b a c b a 25)2(5--=+-3. )]([c b a ---去括号应得 ( )A . c b a -+-B . c b a +--C . c b a ---D . c b a ++-4. 不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是 ( )A . )()23(22a b ab b a +-+++B . )()23(22a b ab b a -----+C . )()23(22a b ab b a --+-+D . )()23(22a b ab b a --+++5. 多项式8x 2-3x +5与多项式3x 3+2mx 2-5x +7相加后,不含二次项,则m 的值是( )A . 2B .-4C . -2D .-86. 式子||||||a b ab a b ab ++的所有的可能的值有( ) A . 2 个 B . 3 个 C . 4 个 D . 无数个7. 如果m 是大于1的有理数,那么m 一定小于它的( )A .相反数B .倒数C .绝对值D .平方8. 已知-m +2n =5,那么5(m -2n )2+6n -3m -60的值为( )A .80B . 10C .210D .409. 在数轴上,点x 表示到原点距离小于5的那些点,那么│x +5│+│x -5│等于(• )A . 10B . -2xC . -10D . 2x10. 若x =-2π,化简│x +1│-│x +2│+│x +3│-│x +4│+…-│x +10│得( ) A . 2x +7 B . 2x -7 C . -2x -7 D . -2x +7 二、填空题(每小题3分,共30分) 11. 单项式2512R π-的系数是_____,次数是______. 12. 多项式2532+-x x 是______次_____项式,常数项是_______. 13. 若m y x 35和219y xn +-是同类项,则m =_____,n =_______. 14. 把多项式723322---y x y x xy 按x 升幂排列是_______________________________.15. 代数式2x +3y 的值是-4,则3+6x +9y 的值是__________.16. 当k =______时,多项式22x -7kxy +23y +7xy +5y 中不含xy 项.17. 要使多项式mx 3-2x 2+3x -4x 3+5x 2-nx 不含三次项及一次项,则m 2-2mn +n 2的值为__________.18. 式子||||m n m n +的最大值与最小值的平方和是_________. 19. 若|1|a b ++与2(1)a b -+互为相反数,则321a b +-的值为_______.20. 当x y x y -+=2时,代数式x y x y -+-22x y x y+-的值是________. 三、解答题(每小题5分,共10分) 21.(1) 2222(2)3(2)4(32)ab a a ab a ab --+--- ;(2) {}235324[3(2)(4)(1)]7-⨯-+⨯-⨯---÷-- ;(3) |12006-12005|+|12007-12006|-|12007-12005|.22. 先化简后求值:(1)()()222234,1,1x y xy x y xy x y x y +---==-其中(2)5x -{2y -3x +[5x -2(y -2x )+3y ]},其中x =11,26y -=-.(3)已知332227,6a b a b ab +=-=-,求代数式332232()(3)2()b a a b ab b a b -+---的值.23. 表示数a 、b 、c 、d 的点在数轴上的位置如图,化简│b -c │-│a -2c │-│d +b │+│d │.24.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值.25. 若多项式622+-+y mx x 与x nx 322-15-+y 的差的值与x 所取的值无关.试求多项式)341(2312222n m n m ---的值.26. 已知式子||||||a b ab a b ab ++的最大值为p ,最小值为q ,求代数式669p -q 2的值.27. 图中显示的填数“魔方”只填了一部分,将下列9个数: 14,12,1,2,4,8,•16,•32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值.64x3228.设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,b a ,b 的形式,求20062007a b +的值.29.某中学组织初一同学春游,如果租用45座的客车,则有15个人没有座位;如果租用同数量的60座的客车,则除多出一辆外,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为每辆300元,问租用哪种客车更合算?租几辆车?30.一名落水小孩抱着木头在河中漂流,在A 处遇到逆水而上的快艇和轮船,因雾大而未被发现,1小时快艇和轮船获悉此事,随即掉头追救,求快艇和轮船从获悉到追及小孩各需多少时间?31.一个三位数,十位上的数比个位上的数大4,个位上的数比百位上的数小2,若将此三位数的个位与百位对调,所得的新数与原数之比为7:4,求原来的三位数?。

初一数学上册综合算式专项练习题整式乘法混合运算

初一数学上册综合算式专项练习题整式乘法混合运算

初一数学上册综合算式专项练习题整式乘法混合运算练习题1:将多项式 (2x^2 - 3xy + 4y^2)(3x - 2y) 进行整式乘法运算。

解答:(2x^2 - 3xy + 4y^2)(3x - 2y) 可以展开为:2x^2 * 3x + 2x^2 * (-2y) - 3xy * 3x - 3xy * (-2y) + 4y^2 * 3x + 4y^2 * (-2y)。

根据整式乘法法则和指数幂的乘法法则,上述式子可以化简为:6x^3 - 4x^2y - 9x^2y + 6xy^2 + 12xy^2 - 8y^3。

练习题2:计算下列整式的值:3x^2y^3 - 2xy^3,当 x = 4,y = -2 时。

解答:将 x 替换为 4,y 替换为 -2,得到:3(4)^2(-2)^3 - 2(4)(-2)^3。

根据指数幂的乘法法则,上述式子可以化简为:3(16)(-8) - 2(4)(-8)。

继续化简,得到:-384 - (-64)。

最终结果为:-384 + 64 = -320。

练习题3:将整式 5x - 2xy + 4y - 3x^2 + 6xy 进行合并同类项的运算。

解答:整式 5x - 2xy + 4y - 3x^2 + 6xy 的各项中,存在相同的字母,并且字母的指数也相同,可以合并为同类项。

将同类项合并,得到:(5x - 3x^2) + (-2xy + 6xy) + 4y。

再进行进一步的合并运算,得到:-3x^2 + 5x + 4xy + 4y。

练习题4:将整式 (2x^2 - 3xy + 4)(3 - x) 进行整式乘法运算。

解答:(2x^2 - 3xy + 4)(3 - x) 可以展开为:2x^2 * 3 + 2x^2 * (-x) - 3xy * 3 - 3xy * (-x) + 4 * 3 + 4 * (-x)。

根据整式乘法法则和指数幂的乘法法则,上述式子可以化简为:6x^2 - 2x^3 - 9xy + 3x^2y + 12 - 4x。

初一数学上册综合算式专项练习题混合运算

初一数学上册综合算式专项练习题混合运算

初一数学上册综合算式专项练习题混合运算混合运算是初中数学中的重要内容,它要求我们在一个算式中运用多种基本运算符号进行计算。

掌握混合运算的方法和技巧对于解答数学题目和提高计算能力都至关重要。

本文将为大家介绍一些初一数学上册综合算式专项练习题,帮助大家熟悉混合运算的题型和解题方法。

1. 求解下列算式的值:(1)8 + 5 - 2 × 3(2)12 ÷ (3 + 1) × 2(3)7 + 3 × 4 ÷ 2(4)15 - (4 × 2 - 3)(5)(6 - 2) × 5 ÷ 2 + 1在求解这些算式的过程中,我们需要注意运算顺序。

首先计算括号中的内容,然后按照从左到右的顺序进行乘法、除法、加法和减法的运算。

通过列竖式的方式,可以更清晰地展现每个运算步骤,避免计算错误。

2. 完成下列方程式:(1)3 × ? + 2 = 11(2)7 - ? ÷ 2 = 3(3)6 ÷ ? + 5 = 9解这些方程式需要应用到混合运算的基本概念。

首先,需要找出一个未知数,并根据已知条件列出方程式。

然后,通过逆运算的方式求解未知数的值。

在解题过程中,要注意运算符号的优先级和计算的顺序。

3. 按要求补充算式中的数字:(1)12 + ? = 18(2)? × 4 = 36(3)5 × ? + 6 = 31通过补充数字的练习,可以帮助我们巩固混合运算的基本概念,培养我们的计算能力和逻辑思维能力。

在解决这类问题时,我们需要根据已知条件推理出未知数的值,然后将其代入算式进行计算。

4. 解决下列实际问题:(1)小明买了一箱苹果,每箱有25个。

如果他将其中的4个苹果分给小红,还剩下多少个苹果?(2)一辆汽车以每小时60公里的速度行驶,行驶4小时后,汽车行驶的总路程是多少公里?(3)一件衣服原价80元,打5折后的价格是多少?通过解决实际问题的练习,我们可以将混合运算与日常生活相结合,加深对混合运算的理解和应用能力。

人教版七年级数学上册期末综合测试题(含答案)

人教版七年级数学上册期末综合测试题(含答案)
2022-2023学年人教版七年级数学上册期末综合测试题
一、单选题(每题3分,共30分)
1. 的相反数是( )
A.2022B. C. D.
2.下列结论成立的是( )
A.若 ,则 B.若 ,则 或
C.若 ,则 D.若 ,则 .
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为44亿人,这个数用科学记数法表示为()
∴ , ,
∴ .
20(1) (件),
∴产量最多的一天比产量最少的一天多生产35件,
故答案为:35.
(2)
(件),
(元),
∴本周该工厂应支付工人的工资总额是84500元.
21.(1)解:∵ 平分 , 平分 ,
∴ , ,


故答案为: ;
(2) 平分 , 平分 ,
, ,即

(3) , ,
又 ,
,得 .
答: 为 秒.
A. B. C. D.
7.如图,下列说法正确的是( )
A.点 在射线 上B.点 是直线 的一个端点
C.射线 和射线 是同一条射线D.点 在线段 上
8.在平面内, , 在 的外部, 是锐角, 平分 , 平分 ,若 度数逐渐变大,则 变化情况是()
A.变大B.变小C.保持不变D.无法确定
9.在解方程 时,去分母正确的是( )
17.(1)
解:

(2)
解:

18.(1)解:2(2a2+9b)+(-3a2-4b)

(2)解:3x2y-[2xy2-2(xy-1.5x2y)+xy]+3xy2
当x=-3,y=-2时,
原式

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。

七年级数学综合测试卷人教版

七年级数学综合测试卷人教版

七年级数学综合测试卷人教版一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 计算:3 + (-5)的结果是()A. -2B. 2C. 8D. -8.3. 在数轴上,距离原点3个单位长度的点表示的数是()A. 3B. -3C. 3或 -3D. 6或 -6。

4. 单项式-(2)/(3)x^2y的系数是()A. -(2)/(3)B. (2)/(3)C. -2D. 2.5. 下列式子中,是一元一次方程的是()A. x + 2y = 1B. x^2-2x + 1 = 0C. 2x - 3 = (1)/(x)D. 3x - 5 = 2x6. 若x = 2是方程3x + a = 7的解,则a的值为()A. 1B. -1C. 0D. 2.7. 化简:3(a - b)+2(b - a)的结果是()A. a - bB. a + bC. 5(a - b)D. 5(b - a)8. 一个角的度数是35^∘,则它的余角的度数是()A. 55^∘B. 45^∘C. 145^∘D. 65^∘9. 把方程(x)/(2)-(x - 1)/(3)=1去分母后,正确的是()A. 3x - 2(x - 1)=1B. 3x - 2(x - 1)=6C. 3x - 2x - 2 = 6D. 3x - 2x + 2 = 110. 某商品原价为a元,打八折后的价格是()A. 0.2a元B. 0.8a元C. a元D. (a)/(0.8)元。

二、填空题(每题3分,共15分)1. 比较大小:-3___-4(填“>”或“<”)。

2. 计算:(-2)^3=___。

3. 若x = 5,则x =___。

4. 一个多项式加上2x^2-3x + 5的和是4x^2-x + 3,则这个多项式是___。

5. 已知线段AB = 8cm,点C在直线AB上,AC = 3cm,则BC =___cm。

人教版七年级数学(上)全册综合测试试卷

人教版七年级数学(上)全册综合测试试卷
(2)原式=0.5﹣ + =﹣1.5.
20.解:(1)5x﹣2=7x+8 5x﹣7x=8+2, ﹣2x=10, x=﹣5;
5/9
(2)12(2﹣3x)=4x+4, 24﹣36x=4x+4, ﹣36x﹣4x=4﹣24, ﹣40x=﹣20, x=0.5; (3) =x+1,
3﹣x=2(x+1), 3﹣x=2x+2, ﹣x﹣2x=2﹣3, ﹣3x=﹣1, x= ;

18.在同一条数轴上,点 B 表示的数是﹣8,点 C 表示的数是 16,若点 B 以每秒 6 个单位
长度的速度向右匀速运动,同时点 C 以每秒 2 个单位长度的速度向左匀速运动,当运动
秒时,BC=8 个单位长度.
三.解答题(本大题包括 7 小题,共 56 分)
19.(6 分)计算:
(1)[2 +( + ﹣ )×24]÷(﹣5).
(2)0.5+7 ×(﹣ )﹣(﹣2)3÷(﹣2)4.
20.(8 分)解方程: (1)5x﹣2=7x+8 (2)12(2﹣3x)=4x+4
2/9
(3) =x+1
(4)

=1
21.(8 分)先化简,再求值:5m2﹣[2mn﹣3( mn+2)+4m2],其中 m=﹣2,n= .
22.(8 分)如图(1)所示,∠AOB、∠COD 都是直角.
A.M 与 Q
B.N 与 P
3.对于下列四个式子:① ;②
C.M 与 P
D.N 与 Q
;③ ;④ .其中不是整式的是( )
A.①
B.②
C.③
D.④
4.同步卫星在赤道上空大约 36000000 米处.将 36000000 用科学记数法表示应为( )

人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版

人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版

可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项符合题目要求。

1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。

初一数学上册综合试题及答案

初一数学上册综合试题及答案

初一数学上册综合试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算下列表达式的结果:\(3x - 2x = \)A. \(x\)B. \(2x\)C. \(-x\)D. \(5x\)答案:A4. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 25答案:C5. 下列哪个选项是方程 \(x + 3 = 7\) 的解?A. \(x = 4\)B. \(x = 3\)C. \(x = 2\)D. \(x = 1\)答案:A6. 下列哪个选项是不等式 \(2x - 5 > 3\) 的解?A. \(x = 4\)B. \(x = 2\)C. \(x = 1\)D. \(x = 0\)答案:A7. 计算下列表达式的结果:\((-3) \times (-2) = \)A. 6B. -6C. 3D. -3答案:A8. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C9. 下列哪个选项是不等式 \(x - 2 \leq 4\) 的解?A. \(x = 6\)B. \(x = 2\)C. \(x = 1\)D. \(x = 0\)答案:A10. 计算下列表达式的结果:\(\frac{3}{4} + \frac{2}{3} = \)A. \(\frac{17}{12}\)B. \(\frac{11}{12}\)C. \(\frac{13}{12}\)D. \(\frac{15}{12}\)答案:A二、填空题(每题3分,共30分)1. 如果 \(a = 2b\),那么 \(b = \frac{a}{2}\)。

答案:\(\frac{a}{2}\)2. 一个数的立方是8,那么这个数是2。

答案:23. 一个数的平方根是3,那么这个数是9。

七年级上册数学《有理数》计算题综合训练带答案

七年级上册数学《有理数》计算题综合训练带答案

七年级上册数学《有理数》计算题综合训练1.有理数的计算:(1)1﹣(﹣8)+12+(﹣11);(2)|﹣75|3108157⎛⎫÷⨯-⨯⎪⎝⎭;(3)﹣12﹣(1﹣23)123÷×[6+(﹣3)3];(4)1119124⎛⎫-+⎪⎝⎭×(﹣6)2﹣5.5×8+25.5×8.2.有理数计算(1)75373696418⎛⎫-+-⨯⎪⎝⎭(2)4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦3.计算下列各题:(1)22+(-19)-(-8)+(+34)-(+15)(2)()()()186 1.253 -⨯-⨯-⨯(4)14452356⎛⎫⎛⎫⎛⎫⎛⎫-⨯+÷-⨯-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(4)-62÷12+ 5×(-3)2 -(-18)÷9 (5) (-34)2×53÷158-+(-2)÷(12)44.计算: (1) ; (2)(—1)×(—)÷(—2)(3) 2342293⎛⎫-÷⨯- ⎪⎝⎭; (4)(4) (-96)×(-0.125)+96×18+(-96)×54.(6)4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦5.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)4﹣8×(﹣12)3(3)3571()491236--+÷ (4)27211()(4)93536.计算:(1)(-1)2×5+(-2)3÷4;(2)52()83-⨯24+14÷3(12)-+|-22|7.计算:(1)43--12-;(2)|-49|×17;(3)|-3|-|-1|+|-3|.8.计算:(1) 23×1(1)4-×0.5;(2)-14×(-3)÷31(2-);(4)(-30)×12-13×35;(4)-22+[12-(-3)×4]÷(-3).9.计算下列各题:(1)(-12.5)+20.5;(2)213×(-67);(3)10+2÷13×(-2);(4)1-(1-0.5)×14×[2-(-2)2].9.计算:(1) (-15)÷(-3);(2) (-0.48)÷0.16;(3)(-12)÷(-14);(4) (-12)÷(-112)÷(-100).11.计算下列各题:(1)23-18-13⎛⎫- ⎪⎝⎭+38⎛⎫- ⎪⎝⎭;(2)757+9618⎛⎫-⎪⎝⎭×2×32-74÷(-1.75);(3)-13×23-0.34×27+13×(-13)-57×0.34.12.计算: (1) 35-3.7-(-25 )-1.3; (2) (-3)÷2154⎡⎤⎛⎫⎛⎫-÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦+34; (3) 3751412824⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (4 ) ()2018111123⎡⎤⎛⎫-+-⨯ ⎪⎢⎥⎝⎭⎣⎦÷(-32+2).13.计算:(1)()()642-+--- ()()3120.1252873⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭()()()() 3244531-÷+-⨯-+ ()()1534303610⎛⎫-⨯--⎪⎝⎭(4)(4211[23)6⎤--⨯--⎦.14.计算题(1)81021-++-; ()()5123164⎛⎫⎛⎫-⨯-÷- ⎪ ⎪⎝⎭⎝⎭;()()121336936⎛⎫+-⨯- ⎪⎝⎭; (4)()()274212432⎛⎫⨯-÷--÷- ⎪⎝⎭;(5)218328(4)5-÷--⨯; (6)()2223164()923⎛⎫-+⨯---÷-⎪⎝⎭15.计算:()()1571482812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦; ()20132112(1)2()36-+⨯-÷.16.计算:()()11850.254⎛⎫+---- ⎪⎝⎭()()()1231510---÷⨯()()()() 3251825122510⨯-+-⨯+⨯- ()()4241433⎡⎤--÷--⎣⎦.17.请你仔细阅读下列材料:计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解法1:按常规方法计算 原式12112151113303610530623010⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-÷+-+=-÷-=-⨯=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 解法2:简便计算,先求其倒数 原式的倒数为:()2112121123020351210310653031065⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯-=-+-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故121121303106510⎛⎫⎛⎫-÷-+-=- ⎪ ⎪⎝⎭⎝⎭再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:133125681427⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 18.计算:(1)(-49)-(+91)-(-5)+(-9); (2)-17+17÷(-1)11-52×(-0.2)3;(4) -5-[-15-(1-0.2×35)÷(-2)2].19.计算:(1) 12172()(5)13739-⨯-+-÷; (2) 53[5(10.2)(2)]3-⨯-+-⨯÷-;(4) 1111[()()()]()735105+---+÷-.20.计算下列各式的值:(1) (-5)-(+3); (2) ( -5)-(-3);(3) 5-18 (4) 0-(-4).21.计算:(1)()21 3.25÷-; (2)121143⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.22.计算:(1)(﹣12)×(﹣3754126-+); (2)2125824(3)3-+-+÷-⨯;23.计算下列各题:(1)-3-4+19-11; (2)(﹣0.75)×(﹣32)÷(﹣94);(3)2231.5322+-⨯-[2﹣(﹣0.2)×(﹣53)];24.阅读下面的解题过程,然后回答问题. 计算:1151423⎡⎤⎛⎫÷--+⨯ ⎪⎢⎥⎝⎭⎣⎦.解:1151423⎡⎤⎛⎫÷--+⨯ ⎪⎢⎥⎝⎭⎣⎦1151423⎛⎫=÷++⨯ ⎪⎝⎭(第一步)11546=÷⨯(第二步) 65411=⨯⨯(第三步)12011=. 上述解题过程是否有错误?若无错误,请指出每一步的根据;若有错误,请指出错误原因并予以更正.25.计算:(1)()21273655⎛⎫-⨯--⨯-÷- ⎪⎝⎭ (2)()735536124618⎡⎤-+-+⨯-⎢⎥⎣⎦ 26.计算 (1)23||||32÷- (2)(191|||||1|643+-+-)|24|⨯- (2)|19||106||28||97|++++--27.计算 (1)225(3)39⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦(2)3116(2)(4)8⎛⎫÷---⨯- ⎪⎝⎭(3)11332442⎛⎫⎛⎫-+---- ⎪ ⎪⎝⎭⎝⎭ (4)()()3226433--÷-⨯--. 28.计算(1)122.585%355⨯-÷; (2)21111.25225210⎛⎫⨯-+÷ ⎪⎝⎭.29.求下列各式中x 的值.(1)4x -=; (2)86x -=.30.仔细算一算:(1)13( 2.25)33(0.125)84⎛⎫⎛⎫-+----- ⎪ ⎪⎝⎭⎝⎭ (2)4(81)( 2.25)169⎛⎫-÷+⨯-÷ ⎪⎝⎭(4)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)223(3)(12)34⎡⎤⎛⎫----⨯- ⎪⎢⎥⎝⎭⎣⎦(5)323311113(3)44222⎡⎤⎛⎫⎛⎫-⨯+-⨯-⨯-÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(6)33514(1)8(3)(2)5217⎛⎫⎡⎤---⨯+-÷-+ ⎪⎣⎦⎝⎭参考答案1.(1)10;(2)25-;(3)2;(4)170.【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据有理数的乘除法和加减法可以解答本题;(4)根据乘法分配律和有理数的乘法和加减法可以解答本题.【详解】解:(1)1﹣(﹣8)+12+(﹣11)=1+8+12+(﹣11)=10;(2)|﹣75|3108157⎛⎫÷⨯-⨯⎪⎝⎭=71810 5857⎛⎫⨯⨯-⨯⎪⎝⎭=25 -;(3)﹣12﹣(1﹣23)123÷×[6+(﹣3)3]=﹣1﹣1337⨯⨯[6+(﹣27)]=﹣1﹣1337⨯⨯(﹣21)=﹣1+3=2;(4)1119124⎛⎫-+⎪⎝⎭×(﹣6)2﹣5.5×8+25.5×8=1119124⎛⎫-+⎪⎝⎭×36+(﹣5.5+25.5)×8=4+(﹣3)+9+20×8=4+(﹣3)+9+160=170.故答案为:(1)10;(2)25-;(3)2;(4)170.【点拨】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.2.(1)11;(2)16【分析】(1)根据乘法分配律即可求解;(2)根据有理数的混合运算法则即可求解.【详解】 解:原式75373636363696418=⨯-⨯+⨯-⨯28302714=-+-11= 解:原式111(7)23=--⨯⨯-761=-+16=.【点拨】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.3.(1)30; (2)-20; (3)2536-; (4) 44; (5) -31.5 .【解析】【分析】根据有理数的运算法则计算即可.【详解】解:(1)原式=22-19+8+34-15=30;(2)原式=10×(-2)=-20;(3)原式=145525 234636⎛⎫⨯⨯⨯-=-⎪⎝⎭;(4)原式=-36÷12+5×9+18÷9=-3+45+2=44;(5)原式=95812163231.5 163152⨯⨯-⨯=-=-.【点拨】本题考查有理数的运算,熟练掌握运算顺序和运算法则是解题关键.4.(1)-29;(2)-12;(3)-8;(4)-4;(5)-72;(6)16.【详解】试题分析:(1)先把原式写成省略“+”的形式,再把同号数相加即可求出答案;(2)原式先计算乘法,再计算除法即可得到结果;(3)原式先算乘方,再算乘除,最后算加减即可得到结果;(4)原式利用乘法分配律计算即可得到结果;(5)原式先提出96,再计算加减运算即可得到结果;(6)原式先算乘方与括号,再算乘法,最后进行加减计算即可得到结果.试题解析:(1)原式=-20-14+18-13=-29;(2)原式=32×34÷(-94)=-941892⨯=-;(3)原式=-8÷4499⨯=-8×9449⨯=-8;(4)原式=523(12)(12)(12) 1234⨯-+⨯--⨯-=-5-8+9=-4;(5)原式=96×(115884+-)=96×(-34)=-72(6)原式=-1-12×13×(2-9)=-1+76=16.考点:有理数的混合运算.5.(1)-29;(2)5;(3)-26;(4)-11 3.【解析】试题分析:(1)去括号进行加减运算即可;(2)先对乘方进行运算,再计算乘法,最后进行加减运算即可;(3)将除法变为乘法,再用乘法分配律进行计算;(4)先去绝对值,对乘方进行计算,再去括号,将除法变为乘法,最后进行减法运算即可.试题解析:解:(1)原式=-20-14+18-13=-29;(2)原式=4-8×1()8-=5;(3)原式=(-34-59+712)×36=-34×36-59×36+712×36=-27-20+21=-26; (4)原式=79÷715-163=79×157-163=53-163=-233. 点拨:去括号的时候注意符号问题.6.(1)3;(2)19【解析】试题分析:(1)按照先算乘方,再算乘除,后算加减的顺序计算;(2)按照先算乘方,再算乘除,后算加减的顺序计算,522483⎛⎫-⨯ ⎪⎝⎭部分可按照乘法分配律计算. 解:(1)(-1)2×5+(-2)3÷4 =1×5+(-8) ×14=5-2=3 ; (2)3521124228342⎛⎫⎛⎫-⨯+÷-+- ⎪ ⎪⎝⎭⎝⎭ =52112424228348⎛⎫⨯-⨯+÷-+ ⎪⎝⎭=()115168224-+⨯-+ =15-16-2+22=19.7.(1)56(2)7 (3)5 【详解】分析:先化简绝对值,然后进行有理数的运算即可.详解:(1)原式=43-12=56.(2)原式=49×17=7.(3)原式=3-1+3=5.点拨:本题考查了绝对值及有理数的运算.解题的关键是正确得出各数的绝对值.8.(1)3;(2)-6;(3)-15415;(4)-12.【解析】分析:(1)先算乘方和括号里,然后根据乘法法则计算即可;(2)先算乘方,再把除法转化为乘法,然后根据乘法法则计算即可;(1)先算乘方和括号里,再算除法,后算加法即可.详解:(1)原式=8××=3.(2)原式=-×÷=-××=-6.(3)原式=-15-=-15.(4)原式=-4+[12-(-12)]÷(-3)=-4+24÷(-3)=-4+(-8)=-12.点拨:本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解答本体的额关键,混合运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号里,有时也可以根据运算定律改变运算的顺序.9.(1) 8;(2)-2;(3)-2;(4)5 4 .【解析】分析:(1)按照加法法则直接计算即可;(2)先把213化成假分数,再按乘法法则计算;(3)按先算乘除,后算加减的顺序计算;(4)按先算乘方和括号里,再算乘法,后算加减的顺序计算.详解:(1)原式=20.5-12.5=8.(2)原式=-×=-2.(3)原式=10+2×3×(-2)=10-12=-2.(4)原式=1-××(2-4)=1-×(-2)=1+=.点拨:本题考查了有理数的混合运算,混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.10.(1)5;(2)-3;(3)48;(4)-1.44.【解析】分析:首先确定商的符号,然后再进行绝对值的计算,从而得出答案.奇数个负有理数相除商为负数;偶数个负有理数相除商为正数.详解:解:(1)(-15)÷(-3)=+(15÷3)=5.(2)(-0.48)÷0.16=-(0.48÷0.16)=-3.(3)(-12)÷(-)=+(12÷)=48.(4)(-12)÷(-)÷(-100)=+(12÷)÷(-100)=144÷(-100)=-1.44.点拨:本题主要考查的是有理数的除法计算法则,属于基础题型.在除法计算时,首先要确定符号,然后再进行绝对值计算得出答案.11.(1)12;(2) 7;(3)-13.34.【解析】分析:(1)、首先将括号去掉,然后将同分母的分数进行计算,从而得出答案;(2)、前面的利用简便计算,将除法改成乘法进行计算,最后根据加减法计算法则得出答案;(3)、利用乘法分配律的逆运算进行简便计算即可得出答案.详解:(1)原式=-+-=-=1-=.(2)原式=(×18-×18+×18)-1.75÷(-1.75)=14-15+7+1=7.(3)-13×-0.34×+×(-13)-×0.34=-13×+×(-13)-0.34×-×0.34=-13×-0.34×=-13×1-0.34×1=-13-0.34=-13.34.点拨:本题主要考查的是有理数的简便计算法则,属于基础题型.理解乘方分配律是解决这个问题的关键.12.(1)-4(2)-98(3)19(4)-16【解析】【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算除法运算,再计算加减运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【详解】(1)原式=(+)-(3.7+1.3)=1-5=-4;(2)原式=(-3)÷+=-+=-; (3)原式=×(-24)=×(-24)+×(-24)-×(-24)=18-14+15=19; (4)原式=÷(-7)=×=-. 【点拨】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.13.(1)-8;(2)-1;(3)10;(4)24;(5)16; 【解析】【分析】(1)先把减法转化为加法,然后按照加法法则计算;(2)先把小数化为分数,带分数化为假分数,然后按照乘法法则计算;(3)先算乘除,后算加减;(4)按照乘法的分配律计算;(5)按照先算乘方,再算乘除,后算加减,有括号的先算括号里的顺序计算.【详解】(1)()()642-+--- 102=-+8=-;()()3120.1252873⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ ()3120.125873⎛⎫⎛⎫=-⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭()11=⨯-1=-;()()()()3244531-÷+-⨯-+()6151=-++91=+10=;()()1534303610⎛⎫-⨯-- ⎪⎝⎭ ()()()1533030303610=-⨯--⨯--⨯ 10259=-++24= ;(5)(4211[23)6⎤--⨯--⎦. []11296=--⨯- 716=-+ 16=. 【点拨】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.14.(1)3;(2)-2;(3)-22;(4)-11;(5)-66;(6)-108.【分析】(1)计算加减法即可求解;(2)计算乘除法即可求解;(3)根据乘法分配律简便计算;(4)先算乘除,再算加减;(5)(6)先算乘方,再算乘除,最后算加减;【详解】解:(1)810213-++-=;()()5123164⎛⎫⎛⎫-⨯-÷- ⎪ ⎪⎝⎭⎝⎭ ()54365⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ 2=-; ()()121336936⎛⎫+-⨯- ⎪⎝⎭4246=--+ 22=-; (4)()()274212432⎛⎫⨯-÷--÷- ⎪⎝⎭, 22837=-⨯- 83=-- 11=-; (5)218328(4)5-÷--⨯,184165=--⨯ 18480=-- 66=-;(6)()2223164()923⎛⎫-+⨯---÷- ⎪⎝⎭, ()9364994=-+⨯+⨯- 36981=-+- 108=-. 【点拨】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.15.(1)26;(2)13. 【解析】【分析】(1)根据乘法分配律可以解答本题;(2)根据幂的乘方、有理数的乘除法和加法可以解答本题.【详解】 ()()1571482812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦ ()()()1574848482812⎛⎫=-⨯---⨯+-⨯ ⎪⎝⎭243028=+-26=;()20132112(1)2()36-+⨯-÷ ()11269=-+⨯⨯ ()413=-+ 13=. 【点拨】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.16.①3; ①47; ①1000-; ①43-. 【解析】【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式逆用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【详解】①原式80.2550.253=--+=;①原式35047=-+=;①原式()()2518121025401000=⨯---=⨯-=-;①原式414123=--÷=-. 【点拨】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.121-. 【解析】【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【详解】解法1,133125681427⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭ 131325682147⎡⎤⎛⎫=-÷+-+ ⎪⎢⎥⎝⎭⎣⎦ 1715682⎡⎤=-÷-⎢⎥⎣⎦ 13568=-÷ 121=-; 解法2,原式的倒数为:331218142756⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()33125681427⎛⎫=-+-⨯- ⎪⎝⎭ 33125656565681427=-⨯+⨯-⨯+⨯ 21122816=-+-+21=-, 故133121568142721⎛⎫⎛⎫-÷-+-=- ⎪ ⎪⎝⎭⎝⎭. 【点拨】此题考查了有理数的混合运算,,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.18.(1)-144;(2) -3345;(3) -42950. 【解析】【分析】(1)去括号后用有理数加减法运算法则计算即可.(2)先算乘方运算,在算乘除,在进行加减运算即可.(3)先算小括号内的,在算中括号内的,最后算括号外的可得结果.【详解】(1)原式=-49-91+5-9=-49-91-9+5=-149+5=-144;(2)原式=-17+17÷(-1)-25×(-1125)=-17+(-17)-(-15)=-34+15=-3345;(3)原式=-5-[-15-(1-325)÷4]=-5-(-15-2225×14)=-5-(-2150)=-5+2150=-42950.【点拨】本题主要考查有理数的运算法则及乘方的运算.19.(1)-213;(2)123;(3)-29【分析】根据有理数的混合运算进行计算即可解答【详解】(1)原式=72169--+-37316⎛⎫⎛⎫⎛⎫⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =2-33 =-213(2)原式=21111-3--5+-=-3--5-=-3+5+=232333⎡⎤⎛⎫⎡⎤⨯ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦(3)原式=()111+--105735⎛⎫⨯ ⎪⎝⎭ =()()()111-105+-105--105735⨯⨯⨯ =-29【点拨】此题考查有理数的混合运算,掌握运算法则是解题关键20.(1)-8;(2)-2;(3)-13;(4)4【解析】【分析】把减法转化为加法,然后根据加法法则计算即可.【详解】(1)(-5)-(+3)=(-5)+(-3)=-8.(2)(-5)-(-3)=(-5)+(+3)=-2.(3)5-18=5+(-18)=-13.(4)0-(-4)=0+(+4)=4.【点拨】本题考查了有理数的减法运算,熟练掌握减去一个数等于加上这个数的相反数是解答本题的关键.21.(1)716-;(2)34【解析】【分析】把除法转化为乘法,并把带分数化为假分数,然后根据乘法法则计算即可.【详解】(1) 原式716757 5551616⎛⎫⎛⎫=÷-=⨯-=-⎪ ⎪⎝⎭⎝⎭.(2) 原式5553343454⎛⎫⎛⎫⎛⎫=-÷-=+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【点拨】本题考查了两个有理数的除法法则,熟练掌握除以一个数等于乘以这个数的倒数是解答本题的关键.22.(1)6;(2)11 3.【解析】【分析】(1)根据乘法的分配律进行计算即可;(2)根据幂的乘方、绝对值、有理数的乘除和加减进行计算即可.【详解】解:(1)375 (12)4126⎛⎫-⨯--+⎪⎝⎭=375 (12)(12)(12)4126⎛⎫⎛⎫-⨯-+-⨯-+-⨯ ⎪ ⎪⎝⎭⎝⎭=9+7﹣10=6;(2)212|58|24(3)3-+-+÷-⨯=11432433⎛⎫-++⨯-⨯ ⎪⎝⎭ =8433-+-=113-. 【点拨】本题考查有理数的混合运算,解题的关键是明确乘法的分配律和有理数的混合运算的方法.23.(1)1;(2)12-;(3)11912- . 【解析】【分析】(1)根据有理数的加法和减法进行计算即可;(2)根据有理数的乘法和加法进行计算即可;(3)根据有理数混合运算的方法进行计算即可.【详解】解:(1)﹣3﹣4+19﹣11=﹣3﹣4﹣11+19=1;(2)39(0.75)24⎛⎫⎛⎫-⨯-÷- ⎪ ⎪⎝⎭⎝⎭ =334429-⨯⨯ =12-; (3)22351.5322(0.2)23⎡⎤⎛⎫+-⨯---⨯- ⎪⎢⎥⎝⎭⎣⎦ =39153422453⎡⎤+-⨯--⨯⎢⎥⎣⎦=391122243⎛⎫+--- ⎪⎝⎭ =39512243+-- 11912=- . 【点拨】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的方法.24.有错误.第一步减法变加法时出现错误,减去一个数等于加上这个数的相反数,即括号内的各数都要变为原数的相反数,而本题只改变了括号内第一个数(1)-的符号.正确解法:见解析,1207. 【解析】【分析】根据有理数混合运算法则判断并计算即可.【详解】有错误.第一步减法变加法时出现错误,减去一个数等于加上这个数的相反数,即括号内的各数都要变为原数的相反数,而本题只改变了括号内第一个数(1)-的符号. 正确解法:1151423⎡⎤⎛⎫÷--+⨯ ⎪⎢⎥⎝⎭⎣⎦ 1151423⎛⎫=÷+-⨯ ⎪⎝⎭ 36254666⎛⎫=÷+-⨯ ⎪⎝⎭ 7546=÷⨯ 6547=⨯⨯ 1207=. 【点拨】本题考查了有理数混合运算,熟练掌握运算顺序和运算法则是解题关键.25.(1)15;(2)14【分析】(1)根据含乘方的有理数的混合运算法则,即可求解;(2)根据有理数的混合运算以及分配律,即可求解.【详解】(1)原式=()()471825-⨯----=281825-++=15;(2)原式=()()()()735536363636124618-⨯-+⨯--⨯-+⨯-=()()21273010+-++-=14.【点拨】本题主要考查含乘方的有理数的混合运算,掌握运算顺序和分配律是解题的关键.26.(1)49;(2)90;(3)134【分析】(1)先求出绝对值,再进行除法运算;(2)先算出绝对值,再算小括号里面的,然后进行乘法运算即可;(3)先分别算出每个绝对值,再进行运算.【详解】解:(1)23||||32÷-23=3222=33÷⨯ =49(2)(191|||||1|643+-+-)|24|⨯-191=++124643234=+2+12412121215=244=90⎛⎫⨯ ⎪⎝⎭⎛⎫⨯ ⎪⎝⎭⨯(3)|19||106||28||97|++++--10+16=10-226=813=4故答案为:(1)49;(2)90;(3)134【点拨】本题考查了有理数的绝对值的混合运算,熟练绝对值的性质是解题的关键.27.(1)-11(2)122-(3)32-(4)-10【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解;(3)根据有理数的加减运算法则即可求解;(4)根据有理数的混合运算法则即可求解.【详解】(1)解: 225(3)39⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦65999⎡⎤⎛⎫=⨯-+- ⎪⎢⎥⎝⎭⎣⎦1199⎛⎫=⨯- ⎪⎝⎭=-11(2)解: 3116(2)(4)8⎛⎫÷---⨯- ⎪⎝⎭116(8)2=÷-- 122=-- 122=- (3)解: 11332442⎛⎫⎛⎫-+---- ⎪ ⎪⎝⎭⎝⎭ 11332442=--+- 13222=-+=- (4)解: ()()3226433--÷-⨯-- 1286343⎛⎫=--⨯-⨯- ⎪⎝⎭ 81310=-+-=-.【点拨】此题主要考查有理数的运算,解题的关键是熟知其运算法则.28.(1)14;(2)37240. 【分析】(1)将小数与百分数化为分数,并按照先乘除后加减的计算原则,对计算结果进行化简约分,最后求得答案;(2)将小数化为分数,并按照先乘除后加减的计算原则,遇到括号先求括号里面的结果,对计算结果进行化简约分,最后求得答案.【详解】 解:(1)122.585%355⨯-÷ =151********⨯-÷ =151********⨯-⨯ =1124-=14; (2)21111.25(2)25210⨯-+÷ =5121111()452102⨯-+⨯ =5191141020⨯+ =11740=37240. 【点拨】本题主要考察了有理数的加减乘除混合运算,解题的关键在于掌握先乘除后加减的计算原则,遇到括号先求括号里面的结果,并在计算过程中将小数、百分数等化为分数,方便约分.29.(1)4x =± (2)2x =或14x =【分析】(1)由题意利用绝对值的性质可得4x -=±,由此进行求解即可;(2)根据题意利用绝对值的性质可得86x -=±,由此进行求解即可.【详解】解:(1)①4x -=,①4x -=±,①4x =±;(2)①86x -=,①86x -=±,①2x =或14x =.【点拨】本题考查绝对值的性质,注意掌握正负数的绝对值都是正数,求这个数要考虑正负两种情况.30.(1)-1.5;(2)1;(3)5;(4)-8;(5)-79;(6)2【分析】根据有理数的混合运算法则计算即可.【详解】解:(1)13( 2.25)33(0.125)84⎛⎫⎛⎫-+----- ⎪ ⎪⎝⎭⎝⎭= 2.25 3.125 3.750.125--++=1.53-=-1.5;(2)4(81)( 2.25)169⎛⎫-÷+⨯-÷ ⎪⎝⎭ =441819916⎛⎫-⨯⨯-⨯ ⎪⎝⎭ =441819916⨯⨯⨯=1;(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ =2725248825278523⎛⎫⨯⨯⨯- ⎪⎝⎭ =24242532582525⨯-⨯=83-=5;(4)223(3)(12)34⎡⎤⎛⎫----⨯- ⎪⎢⎥⎝⎭⎣⎦ =2391234⎛⎫-+⨯ ⎪⎝⎭ =239121234⎛⎫-⨯+⨯ ⎪⎝⎭=()989-+=-8;(5)323311113(3)44222⎡⎤⎛⎫⎛⎫-⨯+-⨯-⨯-÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=111274442827⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭ =11142744487422-⨯⨯-⨯⨯+⨯⨯=42752--+=-79;(6)33514(1)8(3)(2)5217⎛⎫⎡⎤---⨯+-÷-+ ⎪⎣⎦⎝⎭ =()1741(27)325217-+⨯+-÷-+=()12(27)27-++-÷-=121-++=2【点拨】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.。

七年级数学上册期末复习综合测试题(含答案)

七年级数学上册期末复习综合测试题(含答案)

七年级数学上册期末复习综合测试题(含答案)一.精心选择(本大题有12小题,每小题2分,共24分)1.12021-的倒数是( ) A .2021- B .12021- C .2021 D .120212.关于直线,下列说法正确的是( )A .可以量长度B .有两个端点C .可以用两个小写字母来表示D .没有端点 3.下列说法不正确的是( )A .2a 是2个数a 的和B .2a 是2和a 的积C .2a 是偶数D .2a 是单项式4.下列各组中的两项,是同类项的为( ) A .25x y 与xyB .25x y -与2yxC .25ax 与2yx D .38与3x5.在下列方程中:①0x =;②21x y -=;③20n n +=;④532yy =+;⑤221x x -=+.其中一元一次方程的个数是( ). A .1 B .2 C .3 D .46.钟表上的时间指示为两点半,这时时针和分针之间的夹角为( ) A .120° B .105° C .100° D .90° 7.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .12-B .12C .56-D .568.图(1)是一个长为2a ,宽为2b (a b >)的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的正方形的面积是( )A .abB .2()a b +C .22a b - D .2()a b -9.当1x =时,代数式31px qx ++的值为2021,则当1x =-时,31px qx ++的值为( ) A .2019- B .2021- C .2020 D .202110.如图,将一副三角板的直角顶点重合放置于点A 处(两块三角板看成在同一平面内),将其中一块三角板绕点A 旋转的过程中,下列结论一定成立的是( )A .BAD DAC ∠=∠B .BAD EAC ∠≠∠C .90BAE DAC ∠-∠=︒D .180BAE DAC ∠+∠=︒11.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .0.7160%6()3x x +=- B .0.7160%6()3x x +=+ C .0.7160%6(3)x x +=-D .0.7160%6(3)x x +=+12.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是( )A .150B .200C .355D .505二.准确填空(本大题有6个小题,每小题3分,共18分)13.如果零上2℃记为2+℃,那么3-℃表示_______________. 14.3015︒'=__________°.15.一个长方形的宽为cm x ,长比宽的2倍多1 cm ,这个长方形的周长为__________cm .16.若27x a b 与3ya b -的和为单项式,则xy =_______.17.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为32cm ,若12AP PB =,则这条绳子的原长为__________cm .18.做一个数字游戏:第一步:取一个自然数18n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,计算231n +得3a ;…,以此类推,则2021a =__________.三.细心解答(本大题有8个小题,共58分)19.(本小题满分6分)计算:()32142⎛⎫-⨯- ⎪⎝⎭20.(本小题满分6分)已知232A a ab b =-+-,22B a ab =-,化简2A B -.21.(本小题满分6分) 以下是小明解方程1323x x +--=1的解答过程. 解:去分母,得31231()()x x +--=.去括号,得31231x x +-+=.移项,合并同类项,得3x =-.小明的解答过程是否有错误?如果有错误,写出正确的解答过程. 22.(本小题满分6分)已知:如图,点D 、C 、E 是线段AB 上依次排列的三点,当点C 、D 分别是AB 和AE 的中点,且15AB =, 4.5CE =时,求线段CD 的长.23.(本小题满分8分)将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五个数,所框五个数的和能等于2020吗?若能,写出这五个数;如不能,请说明理由. 24.(本小题满分8分)为了预防新冠肺炎的发生,学校免费为师生提供防疫物品.某校购进洗手液与84消毒液共400瓶.已知洗手液的价格是25元/瓶,84消毒液的价格是15元/瓶,总共消费了7200元.该校购进洗手液和84消毒液各多少瓶?25.(本小题满分9分)已知:点O 是直线AB 上的一点,90COD ∠=︒.OE 是BOD ∠的平分线. (1)当点C 、D 、E 在直线AB 的同侧(如图)时,①若35COE ∠=︒,求AOD ∠的度数. ②若COE α∠=,则AOD ∠=________.(用含α的式子表示) (2)当点C 与点D 、E 在直线AB 的两侧(如图)时,(1)中②的结论是否仍然成立?请给你的结论并说明理由.26.(本小题满分9分)如图,甲、乙两人(看成点)分别在数轴3-和5的位置上,沿数轴做移动游戏.每次的移动游戏规则如下:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若第一次移动游戏,甲、乙两人都猜对了,则甲、乙两人之间的距离是_______个单位; (2)若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终停留的位置对应的数为m .请你用含n 的代数式表示m ; (3)经过_______次移动游戏,甲、乙两人相遇。

人教版数学七年级上册第一章有理数综合测试题(含答案)

人教版数学七年级上册第一章有理数综合测试题(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃2.若|a|+a=0,则a是( )A. 零B. 负数C. 负数或零D. 非负数3.计算﹣13﹣9的值( )A ﹣22 B. ﹣4 C. 22 D. ﹣194.﹣7+5相反数是( )A. 2B. ﹣2C. ﹣8D. 85.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -327.我县人口约为530060人,用科学记数法可表示为( )A 53006×10人 B. 5.3006×105人 C. 53×104人 D. 0.53×106人8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A ﹣7 B. 7 C. ﹣7或7 D. ﹣3或79.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017.A. 1题B. 2题C. 3题D. 4题二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示为_________.12.﹣2.5绝对值是_____.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.15.若|a|=8,|b|=5,且ab<0,那么a﹣b=_____.16.计算(﹣1)÷6×(﹣16)=_____.17.规定一种新运算:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.18.若|a|=2,|b|=3,若ab>0,则|a+b|=_____.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29 );(3)(16﹣23+34)×(﹣24);(4)﹣14﹣32÷[(﹣2)3+4].20.在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.21.已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.22.规定一种新的运算:a★b=a×b﹣a﹣b2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表与标准质量的差值(单位:千克)﹣3 ﹣2 0 1 1.5 2.51箱数 1 4 3 4 5 3若每袋标准质量为450g,则这批样品的总质量是多少?24.某检修站,甲乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A地的哪一边,距A地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?答案与解析一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃【答案】D【解析】【分析】根据正数和负数的定义和已知得出即可.【详解】解:温度上升10℃记作+10℃,温度下降6℃记作﹣6℃,故选D .【点睛】本题考查了正数和负数,能理解正数和负数的定义是解此题的关键.2.若|a|+a=0,则a 是( )A. 零B. 负数C. 负数或零D. 非负数 【答案】C【解析】【分析】根据绝对值的性质,从而得到答案.【详解】当a =0时,|a |+a =0,当a 为负数时,|a |+a =-a +a =0,当a 为非负数时,|a |+a =a +a =2a ≠0,综上所述,故答案选C.【点睛】本题主要考查了绝对值的性质,解本题的要点在于了解一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.计算﹣13﹣9的值( )A. ﹣22B. ﹣4C. 22D. ﹣19 【答案】A【解析】【分析】根据减去一个数等于加上这个数的相反数,进行运算即可.【详解】解:()13913922--=-+-=-,故选A .【点睛】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.4.﹣7+5的相反数是( )A. 2B. ﹣2C. ﹣8D. 8【答案】A【解析】【分析】先计算﹣7+5的值,再求它的相反数.【详解】﹣7+5=-2,-2的相反数是2.所以B选项是正确的.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;【答案】C【解析】分析:先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.解答:解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选C.6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -32 【答案】D【解析】【分析】先把除法转化为乘法,然后根据乘法法则计算即可.【详解】(-8)×(-2)÷(- 1 2 )=(-8)×(-2) ×(- ) =-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.7.我县人口约为530060人,用科学记数法可表示为( )A. 53006×10人B. 5.3006×105人C. 53×104人D. 0.53×106人【答案】B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A. ﹣7B. 7C. ﹣7或7D. ﹣3或7【答案】D【解析】【分析】首先根据相反数的定义求出x的值,绝对值的定义可以求出y的值,然后就可以求出x+y的值.【详解】∵-x=-2,|y|=5,∴x=2,y=±5,∴当x=2,y=5时,x+y=7;当x=2,y=-5时,x+y=-3.故选D.【点睛】此题主要考查了绝对值的定义及性质,解题时首先利用绝对值的定义求出y的值,然后代入代数式计算即可求解.9.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃【答案】C【解析】【分析】根据题意设上升为正,下降为负,直接列出算式即可.【详解】解:根据题意知半夜的温度为:367972+-=-=(℃),故选C .【点睛】本题考查了有理数的加减混合运算法则,解题时认真审题,弄清题意,列出算式后再按照有理数的加减混合运算法则计算.10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017. A. 1题B. 2题C. 3题D. 4题【答案】C【解析】【分析】根据有理数的加减运算法则及除法和乘方的运算法则逐一计算可得. 【详解】解:①()01011--=+=,他计算正确; ②11122⎛⎫÷-=- ⎪⎝⎭,他计算正确; ③11111,23236⎛⎫-+=--=- ⎪⎝⎭他计算正确; ④()201711-=-,他计算错误; 他做对了3道题.故选C .【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和 运算法则及其运算律.二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示_________.【答案】-2【解析】【分析】根据正数和负数的意义解题即可.【详解】正午(中午12:00)记作0小时,午后2点钟记作+2小时,10-12=-2,则上午10点钟可表示为-2.【点睛】本题考查了正数和负数的意义,理解“正”和“负”的相对性是解题的关键.12.﹣2.5的绝对值是_____.【答案】2.5【解析】【分析】根据绝对值的含义和求法解答.【详解】解: 2.5-的绝对值是2.5,故答案为2.5.【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:① 当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数﹣a ;③当a 是零时,a 的绝对值是零.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.【答案】-4【解析】【分析】根据有理数的加法解答即可.【详解】解:因为26-+=-,所以()624=---=-,故答案为4-.【点睛】本题主要考查的是有理数的加法,掌握有理数的加法法则是解题的关键.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.【答案】1010【解析】【分析】首先把数字分组:(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019,算出前面有多少个-1相加,再加上2019即可.【详解】解:1-2+3-4+5-6+…+2015-2016+2017-2018+2019=(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019=-1009+2019=1010.【点睛】此题考查有理数的加减混合运算,注意数字合理分组,按照分组后的规律计算得出结果即可. 15.若|a|=8,|b|=5,且ab <0,那么a ﹣b=_____.【答案】±13【解析】【分析】根据绝对值和有理数的乘法得出a,b 的值,进而利用有理数的加减运算法则计算得出答案.【详解】解:因为若|a|=8,|b|=5,且ab <0,所以85a b =-=,或85a b ==-,,所以8513a b -=--=-或()8513--=,故答案为±13. 【点睛】此题主要考查了有理数的乘法和加减,正确掌握运算法则是解题关键.16.计算(﹣1)÷6×(﹣16)=_____. 【答案】136 . 【解析】【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.规定一种新运算:a ⊗b=(a+b)b ,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.【答案】0【解析】【分析】根据新运算,直接运算得结果.【详解】解:()()222220.-⊗=-+⨯=故答案为0【点睛】本题考查了新运算及有理数的混合运算.题目比较简单,解决本题的关键是理解新 运算的规定.18.若|a|=2,|b|=3,若ab >0,则|a+b|=_____.【答案】5【解析】【分析】由条件可以求出a 、b 的值,再由ab >0可以知道a 、b 同号,据此确定a,b 的值,从而可以求出结论.【详解】解:∵|a|=2,|b|=3,∴a=±2,b=±3, ∵ab >0,∴a=2,b=3或23a b =-=-,,当a=2,b=3时,|a+b|=|2+3|=5;当23a b ,=-=-时,()2355a b +=-+-=-=;综上,|a+b|=5,故答案为5.【点睛】本题考查了有理数的乘法,解决本题的关键是根据绝对值性质求出a,b 的值,然后分两种情况解题.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29); (3)(16﹣23+34)×(﹣24); (4)﹣14﹣32÷[(﹣2)3+4].【答案】(1)22;(2)49;(3)﹣6;(4)7. 【解析】【分析】(1)先化简,再计算加减法;(2)从左往右依此计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】(1)原式201517,=-+3715,=-=22;(2)原式()22,9⎛⎫=-⨯- ⎪⎝⎭4.9= (3)原式()()()123242424,634=⨯--⨯-+⨯- 41618,=-+-6=-;(4)原式()132[84],=--÷-+()1324,=--÷-18,=-+=7.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.在数轴上分别标出表示有理数2.5,﹣2的点A,B ,并求|AB|.【答案】在数轴上2.5,﹣2处标出点A,B 如图所示见解析,AB=4.5.【解析】分析】直接根据数轴上两点间的距离公式求解即可.【详解】在数轴上2.5,﹣2处标出点A,B 如图所示,()2.52 4.5AB =--=.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.21.已知|x+4|=5,(1﹣y)2=9,且x ﹣y <0,求2x+y 的值.【答案】6或20-或14-【解析】【分析】根据绝对值和偶次幂得出x,y 的值,进而解答即可.【详解】因为|x+4|=5,(1﹣y)2=9,且0x y -<,所以x=1,y=4,或92x y =-=-,,或94x y ,,=-=当x=1,y=4时,2x+y=6;当92x y =-=-,时,2x+y=20-; 当94x y =-=,时,2x+y= 14-.即2x+y 的值为6或20-或14-.【点睛】本题考查有理数的乘方、绝对值的性质,解题的关键是根据绝对值和偶次幂得出x,y 的值.22.规定一种新的运算:a ★b=a×b ﹣a ﹣b 2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]【答案】(1)﹣49;(2)﹣190.【解析】【分析】(1)将a=2,b=8代入公式计算可得;(2)先计算()52-★,得其结果为18-,再计算()()718--★.【详解】(1)2★8228281,=⨯--+162641,=--+49=-;(2)∵()()()25252521,-=⨯----+★ 10541,=---+18=-,∴()()()()7[52]718,--=--★★★()()()()27187181,=-⨯-----+12673241,=+-+190=-.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g ,则这批样品的总质量是多少?【答案】这批样品总质量是9008g .【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意计算解答作答.【详解】依题意,得 312414 1.55 2.538g -⨯-⨯+⨯+⨯+⨯=,450×20=9000g,9000+8=9008g,答:这批样品的总质量是9008g .【点睛】主要考查正负数在实际生活中应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某检修站,甲乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?【答案】(1)甲在A地的东边,且距离A地39千米;(2)出发到收工时共耗油32.5升.【解析】【分析】(1)只需求得所有数据的和,若和为正数,则甲在A地的东边,若和为负数,则甲在A地的西边,结果的绝对值即为离A地的距离;(2)只需求得所有数的绝对值的和,即为所走的总路程,再根据每千米汽车耗油0.5升,求得总耗油.【详解】(1)15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6=+39(千米).则甲在A地的东边,且距离A地39千米;(2)15+2+5+1+10+3+2+12+4+5+6=65(千米),65×0.5=32.5(升).则出发到收工时共耗油32.5升.【点睛】此题考查了正数和负数的实际意义,即在实际问题中,表示具有相反意义的量.25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?【答案】(1)小明妈妈星期五生产玩具为19个;(2)小明妈妈本周实际生产玩具为145;(3)小明妈妈这一周的工资总额是756元.【解析】【分析】(1)根据记录可知,小明妈妈星期五生产玩具20﹣1=19个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;【详解】(1)小明妈妈星期五生产玩具20﹣1=19个,--+-+++⨯=,(2)小明妈妈本周实际生产玩具71148160207145故答案为145;(3)()()1455786311412,⨯+++⨯-++⨯ 7256332,=+-=756(元)答:小明妈妈这一周的工资总额是756元.【点睛】主要考查正负数在实际生活中的应用.要注意弄清楚题意,仔细求解.。

初一上册数学综合测试卷及答案【三篇】

初一上册数学综合测试卷及答案【三篇】

初一上册数学综合测试卷及答案【三篇】初一上册数学有理数综合测试卷及答案一.选择题(每小题3分,共24分)1.-2的相反数是()A.2B.-2C.D.2.│3.14-|的值是().A.0B.3.14-C.-3.14D.3.14+3.一个数和它的倒数相等,则这个数是()A.1B.C.±1D.±1和04.如果,下列成立的是()A.B.C.D.5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(保留两个有效数字)D.0.0502(精确到0.0001)6.计算的值是()A.B.C.0D.7.有理数a、b在数轴上的对应的位置如图所示:则()A.a+b<0B.a+b>0C.a-b=0D.a-b>08.下列各式中正确的是()A.B.C.D.二.填空(每题3分,共24分)9.在数+8.3、-4、-0.8、、0、90、、中,________是正数,_________不是整数。

10.+2与-2是一对相反数,请赋予它实际的意义:_________.11.的倒数的绝对值是___________.12.+4=;13.用科学记数法表示13040000,应记作_______________.14.若a、b互为相反数,c、d互为倒数,则(a+b)3.(cd)4=__________.15.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个.16.在数轴上与-3距离四个单位的点表示的数是__________.三.解答题(每题6分,共12分)17.(-0.9)+(+4.4)+(-8.1)+(+5.6)18.四.解答题(每题8分,共40分)19.把下列各数用“”号连接起来:,-0.5,,,-(-0.55),20.如图,先在数轴上画出表示2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表示的数,以及B,C两点间的距离.21.求+的最小值22.某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月赢利2万元,7~10月平均每月赢利1.7万元,11~12月平均每月亏损2.3万元,问:这个公司去年总的盈、亏情况如何?23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)520136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?参考答案一.选择题1.A2.C3.C4.D5.C6.D7.A8.A二.填空题9.+8.3、90;+8.3、、、.10.向前走2米记为+2米,向后走2米记为米。

初一数学上册综合算式专项练习题百分数运算练习

初一数学上册综合算式专项练习题百分数运算练习

初一数学上册综合算式专项练习题百分数运算练习在数学学科中,百分数是一个非常重要且实用的概念。

它可以用来表示一个数值相对于整体的比例关系,常见于实际生活中的各种场景。

为了帮助同学们更好地掌握和应用百分数运算,下面将提供一些初一数学上册综合算式专项练习题,让我们一起来练习吧!1. 32个苹果中有20个是红苹果,请计算红苹果的占比是多少?解析:要计算红苹果的占比,我们可以使用百分数来表示。

首先,我们计算红苹果的个数占总苹果的比例,即20/32。

然后,将这个比例转化为百分数形式,即(20/32) * 100%,即62.5%。

因此,红苹果的占比为62.5%。

2. 一张试卷总共有50道题目,小明答对了45道,请计算小明的得分率。

解析:得分率可以理解为小明正确答题的比例。

首先,我们计算小明答对的题目占总题目的比例,即45/50。

然后,将这个比例转化为百分数形式,即(45/50) * 100%,即90%。

因此,小明的得分率为90%。

3. 一瓶饮料原价为8元,现在打5折出售,请计算现在的售价是多少?解析:打折可以理解为原价的一部分。

5折表示打5折,即原价的50%。

要计算现在的售价,我们可以用原价乘以折扣的比例,即8元 * 50%。

计算得到4元。

因此,现在的售价是4元。

4. 将一个数字增加120%后得到66,求原数字是多少?解析:增加120%可以理解为原数字的一部分增加了120%。

设原数字为x,根据题意可得x + 120% * x = 66。

化简方程得到x + 1.2x = 66,即2.2x = 66。

再进一步计算得到x = 30。

因此,原数字是30。

5. 将一个数减少15%后得到60,求原数是多少?解析:减少15%可以理解为原数字的一部分减少了15%。

设原数字为y,根据题意可得y - 15% * y = 60。

化简方程得到y - 0.15y = 60,即0.85y = 60。

再进一步计算得到y = 70.59。

因此,原数是70.59。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学综合训练试试题
同学们都在忙碌地复习自己的功课,为了帮助大家能够对自己多学的知识点有所巩固,下文整理了这篇七年级上册数学综合训练试题,希望可以帮助到大家!
1、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加
工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公
司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加
工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等
条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行
方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多?为什么?
2、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同
型号的`电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
1若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
2若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销
售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售
时获利最多,你选择哪种方案?
感谢您的阅读,祝您生活愉快。

相关文档
最新文档