小学五年级奥数数学竞赛试题

合集下载

小学五年级奥数试题(含答案)

小学五年级奥数试题(含答案)

小学五年级奥数试题(含答案)一、选择题1. 小明有8个苹果,小红有6个苹果,小明比小红多几个苹果?A. 2个B. 4个C. 6个D. 8个答案:B. 4个2. 一只小狗每天晨跑2公里,晚跑3公里,一周跑多少公里?A. 10公里B. 12公里C. 14公里D. 16公里答案:D. 16公里3. 一个月有30天,一个星期有7天,那么3个星期有多少天?A. 19天B. 20天D. 22天答案:C. 21天4. 小红拿了25个苹果,她和小明一共有38个苹果,请问小明拿了几个苹果?A. 10个B. 12个C. 13个D. 15个答案:B. 12个5. 一盒牛奶有900毫升,小明喝了1/4盒,还剩多少毫升?A. 200毫升B. 300毫升C. 450毫升D. 600毫升答案:C. 450毫升二、填空题1. 36 ÷ 6 = ____2. 54 - __ = 42答案:123. 78 + __ = 100答案:224. 3 × 5 - __ = 7答案:85. 72 ÷ __ = 8答案:9三、解答题1. 用算术法解答:小明和小红一起买了15颗苹果,小明买了3颗苹果,那么小红买了几颗苹果?答案:小红买了12颗苹果。

2. 用绘图法解答:平行四边形ABCD的周长是24cm,边长AB是4cm,请画出平行四边形ABCD。

答案:(请自行绘图)3. 用列式解答:一个数加上3等于10,这个数是多少?答案:这个数是7。

总结:通过以上的奥数试题,我们可以锻炼和提高我们的数学技能。

不仅需要掌握基本的运算规则和运算方法,还需要灵活运用解题思路和方法。

希望大家能够通过不断的练习和思考,提高自己的数学水平。

小学五年级奥数竞赛数学竞赛试卷及答案

小学五年级奥数竞赛数学竞赛试卷及答案

小学五年级奥数竞赛数学竞赛试卷及答案一、拓展提优试题1.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.3.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.4.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.5.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.6.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.7.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.8.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.9.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?11.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.12.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.13.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.14.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.15.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.16.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.17.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.18.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.19.(7分)如图,按此规律,图4中的小方块应为个.20.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有 个.21.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了 米.22.(12分)甲、乙两人从A 地步行去B 地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过 分钟才能追上乙. 23.已知13411a b -=,那么()20132065b a --=______。

五年级小学生奥数题3篇

五年级小学生奥数题3篇

五年级小学生奥数题3篇【篇一】五年级小学生奥数题1、有两条各长30厘米的纸条, 粘贴在一起长56厘米, 粘贴在一起的部分长()厘米。

2、一条直线能将平面分为两部分, 两条直线最多能将平面分为4部分, 那么5条直线最多能将平面划分成()部分。

3、小华参加数学竞赛, 共有10道赛题。

规定答对一题给十分, 答错一题扣五分。

小华十题全部答完, 得了85分。

小华答对了几题?4、图书室有连环画28本, 文艺书36本, 买来的故事书比连环画和文艺书的总和少50本。

图书室有故事书多少本?5、用数字0, 1, 2, 3, 4中的任意三个数相加可以得到多少个不同的和。

6、钟鼓楼的钟打点报时, 5点钟打5下需要4秒钟。

问中午12点是打12下需要多少秒钟?7、二(2)班有44个同学划船, 大船每条可以坐6人, 租金10元, 小船每条可以坐4人, 租金8元, 如果你是领队, 要使租金最少, 租多少条大船, 多少条小船, 租金多少元。

8、小青比小李大5岁, 小李比小风大2岁, 小风比小云小4岁, 他们4人(), ()最小。

的比最小的大()岁。

9、有一个卖茶叶蛋的老太太, 第一次卖去锅内茶叶蛋的一半多2个, 第二次又卖去余下的一半多2个, 锅内还有1个茶叶蛋, 这个老太太原来一共有多少个茶叶蛋?10、3个空汽水瓶可以换1瓶汽水, 小花买18瓶汽水, 可以喝到多少瓶汽水?【篇二】五年级小学生奥数题1、两组学生进行跳绳比赛, 平均每人跳152下, 甲, 组有6人, 平均每人跳140下, 乙组平均每人跳160下, 乙组有多少人?2、甲、乙、丙三人的平均年龄为22岁, 如果甲、乙的平均年龄是18岁, 乙、丙的平均年龄是25岁, 那么乙的年龄是多少岁?3、五个数排一排, 平均数是9, 如果前四个数的平均数是7, 后四个数的平均数是10, 那么, 第一个数和第五个数是多少?4、甲、乙两个码头相距144千米, 汽船从乙码头逆水行驶8小时到达甲码头, 已知汽船在静不中每小时行驶21千米。

五年级奥数竞赛试题加油站_通用版

五年级奥数竞赛试题加油站_通用版

五年级数学竞赛试卷(四)1.(3分)在1、2、3…499、500中,数字2一共出现了次.2.(3分)食堂有大米和面粉共351袋,如果大米增加20袋,面粉减少50袋,那么大米的袋数比面粉的袋数的3倍还多1袋,原来大米有袋,面粉有袋.3.(3分)279是甲乙丙丁四个数的和,如果甲减少2,乙增加2,丙除以2,丁乘以2后,则四个数都相等,那么甲是,乙是,丙是,丁是.4.(3分)兄弟俩比年龄,哥哥说:“当我是你今年岁数的那一年,你刚5岁.”弟弟说:“当我长到你今年的岁数时,你就17岁了.”哥哥今年岁,弟弟今年岁.5.(3分)甲对乙说:“我的年龄是你的3倍.”乙对甲说:“我5年后的年龄和你11年前的年龄一样.”甲今年岁,乙今年岁.6.(3分)A、B两地相距21千米,上午9时甲、乙分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立即返回,中午12时他们第二次相遇.此时甲走的路程比乙走的路程多9千米.甲每小时走千米.7.(3分)一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是每小时5千米,这条船在静水中每小时行千米.8.(3分)(2019•济南)一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是米.9.(3分)蜗牛从一个枯井网上爬,白天向上爬110厘米,夜里向下滑40厘米,若要第五天的白天爬到井口,这口井至少深厘米.10.(3分)周老师给学是发练习本,每人分7本还多出7本,如果每人多发2本,就有一个同学分不到,那么一共有个同学,个练习本.11.(3分)王飞以每小时40千米的速度行了240千米,按原路返回时每小时行60千米,王飞往返的平均速度是每小时行千米.12.(3分)1,3,6,10,15,,28,….13.(3分)某电影院有26排座位,后一排比前一排多两个座位,最后一排有70个座位,这个影院一共有个座位.14.(3分)一座桥全长160米,计划在桥的两侧栏杆上各安装16块花纹图案,每块图案的横长为2.5米,靠近桥两头的图案距离桥端都是15米,求相邻两块图案之间应相隔几米?15.(3分)甲的年龄比乙的年龄的3倍小4岁,甲在7年前和乙在9年后年龄相等,甲、乙现年各多少岁?16.(3分)某电影院共售出前后排电影票1050张,共收款3900元,前排每张3.5元,后排每张4元,问前后排票各多少张?17.(3分)规定a△b=(b+a)×b,那么(2△5)△5=.18.(3分)把一批书平均分给6个小朋友,结果多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多出1本.这批书至少有本.19.(3分)如图,大正方形的边长为2厘米,E、F、G、H分别为各边的中点,则中间小正方形的面积为多少平方厘米?20.(3分)兄弟两骑车郊游,弟弟先出发,速度每分钟200米,5分钟后,哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟之后又立即返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟后再超过200米为止,这时狗跑了多少千米?参考答案1.200.【解析】试题分析:此题应通过分类来解决:1~99有20个(22有2个2),100~199有19个,200~299有100个(2在百位),20(2在十,个位),300~399有20个(322有2个2),400~499有20个(422有2个2),所以,共20×4+100=200个.解:1~99有20个(22有2个2),100~199有20个,200~299有100个(2在百位),20(2在十,个位),300~399有20个(322有2个2),400~499有20个(422有2个2),所以,共20×4+100=200(次).故答案为200.点评:此题通过分段来解决比较简单,也不宜遗漏.2.221,130.【解析】试题分析:可设原来大米有x袋,根据题意则面粉有(351﹣x)袋,根据等量关系:(大米的袋数+20)﹣3×(面粉的袋数﹣50)=1,由此可以列方程解决问题.解:设原来大米有x袋,根据题意则面粉有(351﹣x)袋,根据题意可得方程,(x+20)﹣3×(351﹣x﹣50)=1,x=221,351﹣221=130(袋);答:原来有大米221袋,面粉130袋.故答案为:221,130.点评:此题是应用方程的思想解决问题.题目中的两个等量关系一个用来设未知数,一个用来列方程,由此可以解决问题.3.64;60;124;31.【解析】试题分析:最后4个数相等,设最后每个数都是x,那么甲数原来是x+2,乙数原来是x﹣2,丙数原来是2x,丁数原来是x÷2(即x),它们的和是279,由此列出方程.解:设后来每个数为x,由题意得x+2+x﹣2+2x+x=2794x=279x=62;甲数:62+2=64;乙数:62﹣2=60;丙数:62×2=124;丁数:62÷2=31;故答案为:64;60;124;31.点评:本题根据最后数相等的条件设出后来的数,根据这几个数的变化你这这种变化写出原数,根据原数的和列出方程.4.13,9.【解析】试题分析:根据题意可知,两人的年龄差是一个不变量,无论当哥哥是弟弟今年的岁数时,还是当弟弟长到哥哥今年的岁数时,这个年龄差是不变的.由题意可设兄弟两人的年龄差为x岁,由题意可知弟弟今年的年龄就是(5+x)岁,哥哥今年的年龄就是(5+2x)岁,再根据题意可知,如果弟弟到了今年哥哥的年龄,也就是到了(5+2x)岁,哥哥就17岁了,可列出方程求出两人的年龄差是多少,就可以求出两人今年的年龄各是多少岁.解:设兄弟两人的年龄差为x,那么弟弟今年的年龄就是(5+x)岁,哥哥今年的年龄就是(5+2x)岁,根据题意如果弟弟到了今年哥哥的年龄,哥哥就17岁了,可得:5+2x+x=175+3x=173x=17﹣53x=12x=4则弟弟今年是:5+x=9(岁),哥哥今年是:5+2x=5+2×4=13(岁).故填:13,9.点评:在年龄问题中,两人的年龄差是个不变量,根据这个不变量的特点,再根据题目给出的条件列出方程求解即可.5.24、8.【解析】试题分析:由甲对乙说的话可知,甲的年龄是乙的3倍,两者的年龄是倍数的关系,可设乙是年龄是x岁,甲就是3x岁.由乙对甲说的话可知,乙加上5岁与甲减去11岁之后他们的年龄相等,列出方程解答即可.解:设乙今年x岁,那么甲今年3x岁.根据题意,可得:x+5=3x﹣112x=5+112x=16x=8则甲今年的年龄是3x=3×8=24(岁)故填:24、8.点评:年龄问题中,如果知道两个人之间的年龄倍数的关系,根据列方程解含有两个未知数的应用题的方法求解即可.6.12.【解析】试题分析:由题意可知甲、乙两人走的路程和为AB间距离的3倍,即:21×3=63(千米),甲比乙多走了9千米,那么已走的路程就为(63﹣9)÷2=27(千米),那么甲共走了63﹣27=36(千米),故甲的速度为每小时36÷3=12(千米).解:12时﹣9时=3时.[63﹣(63﹣9)÷2]÷3,=[63﹣27]÷3,=12(千米).故答案为:12.点评:“甲与乙第二次相遇时共走了3个AB间距离”是此题解答的关键.7.45.【解析】试题分析:要求这条船在静水中每小时行多少千米,根据“水速=(顺水速度﹣逆水速度)÷2”,先求出顺水速度比逆水速度多5×2=10千米;每小时多行10千米,顺水航行需4小时,则多行10×4=40千米,又知道行完全程,逆水比顺水多行了(5﹣4)=1小时,根据等差关系求出逆水速度;进而求出顺水速度;根据“船速=(顺水速度+逆水速度)÷2”,代入数值,进行解答即可.解:逆水速度:(5×2×4)÷(5﹣4),=40(千米/时);顺水速度:40×5÷4=50(千米);船速:(50+40)÷2=45(千米/时);答:这条船在静水中每小时行45千米;故答案为:45.点评:此题做题的关键是根据水速与顺水速度和逆水速度的关系进行分析,进而得出逆水速度和顺水速度,然后根据船速与顺水速度和逆水速度的关系求出结论.8.300.【解析】试题分析:由题意可知:75秒是火车开过桥长1200米加上车长的时间.15秒是火车开过自己车长的时间.火车开过1200米,用的时间就是75﹣15=60秒,火车速度就是1200÷60=20米/秒,火车的车长就是20×15=300米.解:75﹣15=60(秒),火车速度是:1200÷60=20(米/秒),火车全长是:20×15=300(米).故答案为:300.点评:本题主要考查学生要弄清:火车在75秒内所行的路程是1200米+一个车身的长度.9.321.【解析】试题分析:由题意知蜗牛1天爬110﹣40=70厘米,那么4天就是70×4=280厘米,又因为到第5天的白天,晚上不算在内,要保证第5天白天爬出井口,则第4天一定不能爬出井口.井深至少比第四天能够爬出的高度多1厘米.所以这口井的深度是:(110﹣40)×3+110+1.解:(110﹣40)×3+110+1=210+110+1=321(厘米)故答案为:321.点评:此题属于周期性问题,在列式时要特别注意是“第五天的白天爬到井口”.问“至少”,所以第5天白天爬完1厘米就结束了.10.8,63.【解析】试题分析:设有x个同学,每人发7本还多7本,那么有练习本表示为7x+7,每人多发2本,也就是每人发9本,就有一个同学分不到,练习本数量表示为9(x﹣1)根据题意,7x+7=9(x﹣1).解:设有x 个学生,7x+7=(7+2)×(x﹣1)7x+7=9x﹣92x=16x=87x+7=7×8+7=63(本)故填:8,63.点评:本题存在这样的数量关系:两次发的总本书是一样的,根据发的本书和人数列出等量关系式,进而列出方程.11.48千米.【解析】试题分析:根据路程,速度,时间的关系可以求出返回的时间,再根据求平均数的方法,即可求出平均速度.解:240÷60=4(小时);240×2÷(240÷40+4);=480÷(6+4);=480÷10;=48(千米);答:王飞往返的平均速度是每小时行48千米.点评:此题主要考查了求平均数的方法,即平均速度=总路程÷总时间,找准对应量,列式解答即可.12.21.【解析】试题分析:3﹣1=2,6﹣3=3,10﹣6=4,15﹣10=5;相邻两个数的差是2,3,4,5…后一个差比前一个差大1;由此求解.解:5+1=6;15+6=21;验证:21+(6+1)=28;故答案为:21.点评:本题关键是找出相邻两个数差的变化规律,再根据规律求解.13.1170.【解析】试题分析:根据“有26排座位,后一排比前一排多两个座位,”可知公差为:2,项数为:26,又根据“最后一排有70个座位,”可知末项为:70,所以可以求出首项,列式为:70﹣(26﹣1)×2=20,再根据高斯求和公式可以求出座位数,列式为:(20+70)×26÷2=1170(个),据此解答.解:第一排座位数为:70﹣(26﹣1)×2,=70﹣50,=20(个),总座位数为:(20+70)×26÷2,=90×26÷2,=1170(个),答:这个影院一共有1170个座位.故答案为:1170.点评:本题考查了高斯求和公式的实际应用,相关的知识点是:和=(首项+末项)×项数÷2;首项=末项﹣公差×(项数﹣1);末项=首项+公差×(项数﹣1);项数=(末项﹣首项)÷公差+1.14.6.【解析】试题分析:先求出从第一个图案到最后一个图案的距离:160﹣15×2=130(米),再用2.5×16求出图案的总长,再求出空的总长,最后除以16﹣1就是相邻两块图案之间应相隔的米数.解:从第一个图案到最后一个图案的距离:160﹣15×2=130(米),图案总长:2.5×16=40(米),空总长为:130﹣40=90 (米),16个图案总共有15个空,所以相邻两块图案之间相隔的米数:90÷15=6(米),答:相邻两块图案之间相隔6米.点评:解答本题的关键是理解题意求出空的总长及明白16个图案总共有15个空.15.甲、乙现年各26岁、10岁.【解析】试题分析:甲在7年前和乙在9年后年龄相等那么可得甲比乙大7+9=16岁,设甲现在x岁,则乙现在就是x﹣16,再根据甲的年龄比乙的年龄的3倍小4岁,可得乙的年龄的3倍减去4岁就是甲的年龄.由此即可列出方程解决问题.解:设甲现在x岁,则乙现在就是x﹣16,根据题意可得方程:(x﹣16)×3﹣4=x,3x﹣52+52=x+52,3x﹣x=x﹣52+x,2x÷2=52÷2,x=26,乙现在就是:x﹣16=26﹣16=10,答:甲、乙现年各26岁、10岁.点评:此题等量关系较复杂,要求学生要审清题意找准等量关系,根据题干得出二人的年龄差是解决本题的关键.16.前排售出600张,后排售出450张.【解析】试题分析:设售出后排票x张,那么售出前排票就有(1050﹣x)张,再依据数量×单价=总价,分别求出前,后排票的总价,最后根据它们总价的和是3900元列方程解答.解:设售出后排票x张,3.5×(1050﹣x)+4x=3900,3.5×1050﹣3.5x+4x=3900,0.5x+3675﹣36750=3900﹣3675,0.5x÷0.5=225÷0.5,x=450;1050﹣450=600(张);答:前排售出600张,后排售出450张.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.17.200.【解析】试题分析:根据题意知道a△b等于a与b的和乘b,由此用此方法计算(2△5)△5的值.解:(2△5)△5,=[(2+5)×5]△5,=35△5,=(35+5)×5,=40×5,=200;故答案为:200.点评:关键是根据给出的式子,找出新的运算方法,再利用新的运算方法解决问题.18.73.【解析】试题分析:求这批书至少有多少本,先求出6、8和9的最小公倍数,然后加上1本即可.解:6=2×3,8=2×2×2,9=3×3,所以6、8、9的最小公倍数是:2×2×2×3×3=72;这批书至少有:72+1=73(本);答:这批书至少有73本.故答案为:73.点评:此题主要考查求三个数的最小公倍数的方法:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.19.0.8平方厘米.【解析】试题分析:如图所示,将原图进行割补,则可以得出,正方形的面积就等于5个小正方形的面积和,于是阴影部分的面积就等于大正方形的面积除以5,据此即可得解.解:将原图割补为下图:2×2÷5=0.8(平方厘米)答:阴影部分的面积是0.8平方厘米.点评:解答此题的关键是:利用割补的方法,将原正方形割补成同样的5个小正方形,从而问题轻松得解.20.6200米.【解析】试题分析:根据题意,可利用速度×时间=路程确定弟弟行驶的路程,可用弟弟行驶的路程除以哥哥与弟弟的速度差就可得到哥哥追弟弟行驶的时间,可用狗跑的时间乘狗的速度再将上200米就是狗跑的路程,列式解答即可得到答案.解:弟弟行驶的路程:200×5=1000(米),哥哥与弟弟的速度差为:250﹣200=50(米),所以追及的时间为:1000÷50=20(分钟),狗跑的路程为:20×300+200=6200(米),答:这时狗跑了6200米.点评:解答此题的关键是确定根据哥哥追弟弟所用的时间确定狗行驶的时间,最后再用时间×速度+200=狗跑的路程.。

五年级奥数竞赛试题含答案(人教版)

五年级奥数竞赛试题含答案(人教版)

五年级奥数竞赛试卷姓名:得分:一、填空。

(每题4分,共56分)1、一个三位数,最高位上的数是a,十位上的数是b,个位上的数是c,这个三位数是()。

2、直角三角形的三条边分别是5米、4米和3米,面积是()。

3、用一个杯子向空瓶里倒水,如果倒进3杯水,连瓶共重440克,如果倒进5杯水,连瓶共重600克,这个瓶子是()克。

4、爸爸今年43岁,儿子今年11岁,()年后爸爸的年龄是儿子的3倍。

5、早晨6时,钟面上的时针和分针所成的角是平角,下午3时,时针和分针所成的角是直角。

5时的时候,时针和分针所成的角是()度。

6、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,则同时参加语文、数学两科竞赛的有()人。

7、有6个学生都面向北站成一排,每喊一次口令只能有五个人向后转,则最少喊()次,才能使这6人都面向南。

8、三个数的平均数是4.2,其中第一个数是4.25,第二个数比第一个数多0.3,第三个数是()。

9、新学期开学,第一天见面每两位同学互相握手问候一次,全班40人共握手()次。

10、在等差数列7、10、13、16……中,907是第()个数,第907个数是()。

11、从A城到B城,甲用10小时,乙用8小时,甲、乙两人的速度比是()。

12、猴妈妈从山上摘回一篮梨和苹果,平均分给一群小猴,每只小猴分2个梨和3个苹果,最后梨刚好分完,而苹果还剩10个。

已知苹果个数是梨的2倍。

这群小猴共有()只。

13、水池内有棵水草,每天都要长大一倍,10天正好长满水池,第()天正好长满水池的一半。

14、有一批货物,原计划16天运完,实际每天多运了5吨,结果12天就运完了,这批货物原有()吨。

二、判断。

(每题2分,共10分)1、循环小数都是无限小数。

()2、两个三角形一定能拼成一个平行四边形。

()3、两个因数相乘,所得的积一定大于其中一个因数。

()4、长方体的6个面展开后,一定都是长方形。

五年级奥数竞赛试卷【含答案】

五年级奥数竞赛试卷【含答案】

五年级奥数竞赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 21B. 34C. 57D. 462. 一个正方形的边长是4厘米,它的面积是?A. 16平方厘米B. 8平方厘米C. 4平方厘米D. 12平方厘米3. 下列哪个数既是3的倍数,又是4的倍数?A. 12B. 18C. 21D. 244. 下列哪个图形是轴对称图形?A. 等边三角形B. 等腰三角形C. 长方形D. 正方形5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 2/3二、判断题(每题1分,共5分)1. 一个数的因数一定比这个数小。

()2. 任何两个奇数相加的和都是偶数。

()3. 一个正方形的对角线将正方形分成两个面积相等的三角形。

()4. 1米等于10厘米。

()5. 0是最小的自然数。

()三、填空题(每题1分,共5分)1. 一个数的倍数的个数是______。

2. 1千克等于______克。

3. 一个正方形的周长是24厘米,它的边长是______厘米。

4. 2的3次方等于______。

5. 下列数中,______是合数。

四、简答题(每题2分,共10分)1. 请列举出5以内的质数。

2. 请解释什么是公倍数。

3. 请简述平行四边形的性质。

4. 请解释什么是约数。

5. 请列举出3的倍数的前5个数。

五、应用题(每题2分,共10分)1. 一个长方形的长是8厘米,宽是4厘米,求它的面积。

2. 一个数的因数有1、2、3、4,这个数是多少?3. 一个正方形的周长是32厘米,求它的边长。

4. 请找出两个数的公倍数。

5. 请找出两个数的最大公约数。

六、分析题(每题5分,共10分)1. 小明有10个苹果,他要把这些苹果分成几份,每份要有3个苹果,他最多可以分成几份?2. 一个长方形的周长是24厘米,长和宽的和是10厘米,求长方形的长和宽。

七、实践操作题(每题5分,共10分)1. 请用图形纸剪出一个正方形,并计算它的面积。

小学五年级精选奥数题及解析

小学五年级精选奥数题及解析

小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。

技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。

你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。

那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。

9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。

(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。

11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。

五年级奥数竞赛题及答案

五年级奥数竞赛题及答案

五年级奥数竞赛题及答案D同的颜色,现有五种不同的颜色,按上述要求可以写出()种不同颜色搭配的“imo”。

a . 15 b. 20 c.45d. 60、17.五(2)班有56个学生,在一次测验中,答对第一题的34人,答对第二题的29人,两题都答对的15人。

那么,两题都不对的有()人。

a.7 b.8c.12 d.20a. 6b. 7c. 8d. 9只知道:(1)小徐比战士年龄大;(2)小刘和农民不同岁;(3)农民比小张年龄小;那么,()工人。

a. 小刘b. 小张c. 小徐d. 说不准四、简算与计算(要写出简算过程,共15分,每小题5分)六、解决问题(共30分,每小题6分)23、合唱队中女生比男生多25人,如果再调走5名男生,那么女生人数正好是男生的4倍,合唱队中女生有多少人?24、甲、乙、丙三人参加数学竞赛,甲、乙的总分是153分,乙、丙的总分是173分,甲、丙的总分是160分,甲、乙、丙三人各得多少分?25. 修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天修完,一共修了多少米?26. 甲、乙两个书店存书册数相等,甲书店售出3000册,乙书店购入2000册,这时乙书店存书的册数是甲的2倍,甲、乙两书店原来共存书多少册?27. 甲乙丙丁四个人共买了10个面包平均分着吃,甲拿出了6个面包的钱,乙和丙都只拿出了2个面包的钱,丁没带钱。

吃完后一算,丁应该拿出1.25元,甲应收回多少元?参考答案一、填空。

1. 5.6 、562. 183. 64 4、36 5. 96. 457. 4(a+b)8. 189. 63.127.3.13. 10. 36二、判断。

三、选择。

16.d17.b18.c19.b四、简算与计算。

20. 3621. 12.5 22.3330六、解决问题。

23、4024.甲、70 乙、83丙、9025、120026. 16000(册)27. 1.75元【篇二:2015五年级数学_竞赛试题_课标版】ss=txt>班级:姓名:得分:一、填空(共30分,每小题3分)1. 两个数的和是61.6,其中一个数的小数点向右移动一位,就与另一个数相同。

小学五年级经典奥数题带答案

小学五年级经典奥数题带答案

小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克元,小的每千克元,这样卖这批西瓜共值290元,如果每千克西瓜降价元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+(28-x)==x=328-x=25答:有一元的3张,一角的25张。

2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。

3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。

小学五年级数学奥数竞赛试卷及答案

小学五年级数学奥数竞赛试卷及答案

小学五年级数学奥数竞赛试卷及答案一、拓展提优试题1.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.2.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.3.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.4.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…5.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是A6.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.7.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.8.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.9.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.10.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.11.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.12.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.13.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.14.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.15.观察下面数表中的规律,可知x=.【参考答案】一、拓展提优试题1.解:作CE⊥AB于E.∵CA=CB,CE⊥AB,∴CE=AE=BE,∵BD﹣AD=2,∴BE+DE﹣(AE﹣DE)=2,∴DE=1,在Rt△CDE中,CE2=CD2﹣DE2=24,∴S=•AB•CE=CE2=24,△ABC故答案为242.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.3.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.4.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.5.解:找一剪刀与一等边三角形纸片,按题中所示步骤进行操作,最后得到的图形是A,故答案为:A.6.解:38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=15+23=16+22,因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;经检验,只有26﹣12=14,14是7的倍数,即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,答:小胖的生日是5月26日.故答案为:26.7.解:因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD 的面积平分4份,平行四边形面积是240平方厘米,所以S△DOC=240÷4=60(平方厘米),又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,所以S△ECF=S△DOC=×60=20(平方厘米),所以阴影部分的面积是 20平方厘米.故答案为:20.8.解:2&(3&4),=(2+1)÷[(3+1)÷4],=3÷1,=3;故答案为:3.9.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.10.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.11.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:201612.解:根据分析可得,朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,24﹣4+1=21(种)答:朝上一面的4个数字的和有 21种.故答案为:21.13.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2914.解:根据分析,因面和水的比为3:2,即每一份水需要:3÷2=1.5份面粉,现在有5千克水,则需要面粉:5×1.5=7.5千克,而现有面粉量为:1.5千克,故还须加:7.5﹣1.5=6千克,分三次加入,则每次须加入:6÷3=2千克.故答案是:2.15.解:根据分析可得,81=92,所以,x=9×5=45;故答案为:45.。

小学五年级奥数竞赛试卷

小学五年级奥数竞赛试卷

小学五年级奥数竞赛试卷姓名:班级:(时间:80分钟)1. 15.48×35-154.8×1.9+15.48×84=2.解方程。

5×(2x+7)-30=3×(2x+7) x=3.循环小数0.37 205 小数点右面第106位上的数字是。

4. 一排电线杆,原来两根之间的距离是35米,现改为45米,如果起点的一根位置不移动,至少米又有一根电线杆不需要移动。

5.一船在静水中每小时18千米,在一条顺水用4小时行了80千米,这条河的水流速度是。

6.同学们去春游,带水壶的有78 人,带水果的有 77 人,既带水壶又带水果的有48 人。

参加春游的同学共有人。

7. 同时被3、4、5整除的最小四位数是。

8. 某个游戏,满分为100分,每人可以做4次,以平均分为游戏的成绩。

小王的平均分为85分,那么,他任何一次游戏的得分都不能低于分。

9. 五年级数学竞赛,小明获得的名次与他的年龄和竞赛的成绩相乘之积是2134,小明获得的名次名,成绩是分。

10.有一个六位数□2002□能被88整除,这个六位数是。

11.用5、5、5、1四个数字组成一个算式,使其结果为24。

算式是。

12. 五年级有六个班,每班人数相等。

从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数,原来每班人。

13.连续5个奇数的和是95,其中最大的是,最小的是。

14.1+2+3+4+5……+2007+2008的和是。

(奇数或偶数)15.在八个房间里,有七个房间开着灯,如果每次同时拨动四个房间的开关,(能或不能)把全部房间的灯关上,每次拨动5个房间的开关,(能或不能)把全部房间的灯关上。

16.大年三十彩灯悬,彩灯齐明光灿灿,三三数时能数尽,五五数时剩一盏,七七数时刚刚好,八八数时还缺三。

请你自己猜一猜,彩灯至少有盏17.甲、乙、丙、丁四位同学在篮球比赛中犯规的次数各不相同,A、B、C、D四位裁判有一段对话:A说:“甲犯规4次,乙犯规3次。

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。

实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。

照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。

实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。

现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。

快车每小时行42千米,慢车每小时行35千米。

两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。

两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。

甲每小时做124个,乙每小时做136个。

他们合做了8小时,超额完成120个。

他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。

客船开出4小时与货船相遇。

货船每小时行18千米,客船每小时行27千米。

两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。

(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。

(完整)五年级奥数竞赛题

(完整)五年级奥数竞赛题

1. 小阳期终测试时语文和数学的平均分数是96 分, 数学比语文多8 分. 语文是( ) 分,数学是( ) 分.2. 甲、乙两个仓库共存大米42 吨,如果从甲仓库调 3 吨大米到乙仓库,那么两个仓库所存的大米就正好同样多. 原来甲仓库存大米( ) 吨, 乙仓库存大米( )吨.3. 爸爸和爷爷1994 年的年龄加在一起是127 岁, 十年前爷爷比爸爸大37 岁, 爷爷是( ) 年出生的.4. 有一个停车场上,现有24 辆车,其中汽车是 4 个轮子,摩托车是 3 个轮子, 这些车共有86 个轮子.其中摩托车有( ) 辆.5. 参加少年宫科技小组的同学,今年比去年的 3 倍少35 人,去年比今年少41人,今年参加科技小组的同学有( ) 人.6. 父亲今年47 岁,儿子今年19 岁, ( ) 年前父亲的年龄是儿子的 5 倍.7. 一个植树小组植树,如果每人栽 5 棵,还剩14 棵;如果每人栽7 棵,就缺4棵.这个植树小组有( ) 人,一共要栽( ) 棵树.8. 甲、乙、丙三数之和是1160,甲是乙的一半,乙是丙的 2 倍.三个数各是多少?9. 某招待所开会,每个房间住 3 人,那么36 人没床位;每个房间住4 人,那么还有13人没床位,如果每个房间住5人,那么情况又怎么样?10. 小明读一本书,第一天读83 页,第二天读74页,第三天读71 页,第四天读64 页,第五天读的页数比这五天中平均读的页数要多 3.2 页.小明第五天读了多少页?11. 在桥上测量桥高, 把绳子对折后垂到水面时绳子还剩下8 米;把绳子三折后, 垂到水面时绳子还剩下 2 米,求桥高和绳长各是多少米.12.44 名学生去划船,一共乘坐10只船,其中每只大船坐6人,每只小船坐4人.大船和小船各有多少只?13. 实验小学四年级举行数学竞赛,一共出了10 道题,答对一题得10 分,答错一题倒扣 5 分.张华把10 道题全部做完,结果得了70 分.他答对了几道题?14. 买4 支铅笔和5 块橡皮,共付 6 元;买同样的6 支铅笔和 2 块橡皮,共付 4.60 元.每支铅笔和每块橡皮各多少钱?15. 修一条路,第一天修了全长的一半多 6 米,第二天修了余下的一半少20 米, 第三天修了30 米,最后还剩14 米没修.这条路长多少米?16. 张强用270 元买了一件外衣,一顶帽子和一双鞋子,外衣比鞋贵140 元,买外衣和鞋比帽子多花210 元,张强买这双鞋花了多少钱?17. 红光厂方案每天生产电冰箱40 台,经过技术革新后,每天比原方案多生产5台,这样提前 2 天完成了这批生产任务,并且比原方案还多生产了35 台.实际生产了多少台电冰箱?18. 有16 位教授, 有人带1 个研究生, 有人带2 个研究生, 也有人带3 个研究生, 他们共带了27 个研究生,其中带 1 个研究生的教授人数与带 2 个和 3 个研究生的教授总数一样多,问带 2 个研究生的教授有几人?19. 甲、乙两人共储蓄640 元,乙、丙两人共储蓄600 元,甲、丙两人共储蓄44 0 元.甲储蓄多少元?20. 一个除式,商是18,余数是4,被除数与除数的和是270,被除数是多少?21. 有甲、乙两筐苹果,平均每筐重52 千克,现从甲筐中取出 5 千克放入乙筐, 那么两筐苹果重量相等.甲筐苹果原来重多少千克?22. 甲、乙、丙三人共做了183 道数学题,乙做的题比丙的 2 倍少4 道,甲做的题比丙的 3 倍多7 道.丙做了多少道题?23. 有甲、乙两桶油,如果给甲再注入15 升油,两桶油就同样多;如果给乙桶再注入145 升油,乙桶的油就是甲桶的 3 倍.原来乙桶油有多少升?24. 哥哥和弟弟各买假设干本练习本,如果哥哥给弟弟 3 本,两人的练习本数量就同样多;如果弟弟给哥哥 1 本, 哥哥的练习本本数就是弟弟的 3 倍. 哥哥和弟弟原来各买练习本多少本?25. 大马的年龄是小马年龄的4 倍, 再过20 年大马的年龄比小马的2 倍小14 岁. 大马、小马现年各几岁?26. 有1000 人报名参参加学测试, 最后录取了150人. 录取者的平均成绩与没有录取者的平均成绩相差38 分, 全体考生的平均成绩是55 分, 录取分数线比录取者的平均成绩少 6.3 分.问录取分数线是多少分.27. 甲、乙、丙三人, 平均体重63 千克, 甲与乙的平均体重比丙的体重多 3 千克, 甲比丙重 2 千克,求乙的体重.28. 有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6个人;如果减少一条船,每条船必须坐9 个人.这个班共有多少同学去划船?29. 有14 个纸盒,其中有装 1 只球的,也有装 2 只和3 只球的,这些球共有25只.装 1 只球的盒子数等于装 2 只球与 3 只球的盒数的和.装1、2、3 只球的盒子各有多少个?30. 大小酒瓶共50 个,每个大瓶装酒 1 千克,每个小瓶装酒0.75 千克,大瓶比小瓶多装酒15 千克,大、小瓶各有多少个?31. 本学期数学课进行了五次测验, 小明的成绩第二次比第一次多10分, 第三次比第二次少 5 分,第四次比第三次多 4 分,前4 次的平均成绩是85 分.如果第五次比第四次少13 分,那么小明全学期五次测验的平均成绩是多少分?32. 甲级茶叶 2 千克和乙级茶叶 5 千克的价格相等,买 6千克甲级茶叶和7 千克乙级茶叶共付款601.92 元,每千克甲级茶叶和每千克乙级茶叶的价格各是多少元?33. 有甲、乙、丙三个书架,共有图书450 本,如果从甲架拿出60 本放入乙架, 再从乙架拿出120 本放入丙架,最后再从丙架拿出50 本放入甲架,那么三个书架图书本数一样多.原来三个书架各有图书多少本?34. 某人领得奖金240 元,有2 元、5 元、10 元三种人民币,共50 张,其中2元与 5 元的张数一样多,那么 2 元、 5 元、10 元各有多少张?35. 苹果的个数是梨的3 倍,如果每天吃 2 个苹果、1 个梨,假设干天后,梨正好吃完,而苹果还剩下7 个,原来的苹果有多少个?36. 某区小学生进行两次数学竞赛,第一次及格的比不及格的 3 倍多4 人;第二次及格人数增加了 5 人, 正好是不及格人数的 6 倍. 问共有多少学生参加数学竞赛.37. 学校买来一批英文打字机分给各班学习.如果其中两个班每班分到 4 台,其余班级每班分 2 台,那么多 4 台;如果有一个班分 6 台,其余班级每班分 4 台,那么缺乏12 台.这个学校买来的英文打字机共有多少台?38. 蜘蛛有8 只脚,蜻蜓有 6 只脚和两对翅膀,蝉有 6 只脚和一对翅膀,现有这三种小虫共18 只,共有脚118 只,翅膀20 对.求每种小虫的只数.39. 小象说:“妈妈,我到你现在这么大时,你就是31 岁了.〞大象说:“我像你这么大年龄时,你只有 1 岁.〞大、小象现在各几岁?6.有三个数,每次选取其中两个数, 算出这两个数的平均值, 再加上余下的第三个数, 这样算了三次,分别得到35、27 和25.求原来这三个数是多少.40. 有甲、乙、丙三种练习本,小芳各买 2 本,共付 4.8 元;小红买了2本甲种本、 3 本乙种本、4本丙种本、共付7.6 元;小青买了2本甲种本、4本乙种本、5 本丙种本,共付9.4 元.甲、乙、丙三种练习本每本售价各是多少元?41. 有三堆弹子, 共46 颗. 第一次从第一堆里拿出与第二堆颗数相同的弹子并入第二堆里;第二次再从第二堆里拿出与第三堆颗数相同的弹子并入第三堆里;第三次再从第三堆里拿出与第一堆剩下的颗数相同的弹子并入第一堆里. 经过这样的变动后,三堆弹子的颗数恰好完全相同.原来每堆弹子各有多少颗?42. 两个四位数的差是2005,那么这两个四位数的和最大是几,最小是几?43. 某次数学测试五道题,全班52人参加,共做对181道,每人至少做对1 道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多, 那么做对4道的人数有多少人?44. A、B、C、D E是从小到大排列的五个不同整数,用其中每两个数相加,可以得到十个和,这十个和中不相同的有八个:分别是17、22、25、28、31、33、36与39.求这五个整数的平均数.45. 商店购进甲、乙、丙三种不同的糖果,所付的钱数相等.甲、乙、丙三种糖果每千克的购进价格分别为8.8元、12元和13.2元,如果把这三种糖果混合在一起成为什锦糖,那么这种什锦糖每千克的本钱是多少元?46. 爸爸把钓来的一条大鲤鱼分成前、中、后三段,中段的重量恰好比前、后两段重量的和少1千克,后段重量等于中段重量的一半与前段重量的和.只知道前段重2千克,你能算出这条鲤鱼的重量吗?47. A、B、C、D E五人在一次总分值为100分的测试中,得分都是大于91的整数. 如果A、B、C的平均分为95分,B、C、D的平均分为94分;A是第一名;E是第三名得96分;那么D的得分是多少?48. 加工一批零件,甲独做需3天完成,乙独做需4天完成.两人同时加工这批零件,完成任务时,甲比乙多做24个,这批零件共有几个?49. 在一列数2、2、4、8、2、……中,从第3个数开始,每个数都是它前面两个数的乘积的个位数字.按这个规律,这列数中的第2004个数是〔〕.50. 甲乙两个工作队原来共有工人170人,后来因工作需要从甲队调出30人,而给乙队调进10人,这时甲队工人是乙队工人数的2倍,两个工作队原来甲队有〔〕人,乙队有〔〕人.51. 甲筐有苹果400个,乙筐有苹果240个,现在从两筐取出数目相等的苹果,剩下的苹果个数,甲筐恰好是乙筐的 5 倍,甲筐所剩苹果数是〔〕个,乙筐所剩苹果是〔〕 .52. 一个湖泊周长1800 米, 沿湖泊周围每隔 3 米栽一棵柳树, 每2 棵柳柳中间栽一棵桃树,湖泊周围栽柳树〔〕棵,栽桃树〔〕棵.53. 小东方案到周口店参观猿人遗址. 如果他坐汽车以40 千米/ 小时的速度行驶, 那么比骑车去早到 3 小时,如果他以8 千米/ 小时的速度步行去,那么比骑车晚到 5 小时,小东的出发点到周口店有多少千米?54. 六位数〔〕2004〔〕能被99 整除,这个六位数是多少?55. 甲、乙两地相距465千米, 一辆汽车从甲地开往乙地, 以每小时60千米的速度行驶一段后, 每小时加速15 千米, 共用了7 小时到达乙地. 每小时60 千米的速度行驶了几小时?56. 笼中装有鸡和兔假设干只,共100 只脚,假设将鸡换成兔,兔换成鸡,那么共92只脚.笼中原有兔、鸡各多少只?57. 蜘蛛有8 条腿,蜻蜓有 6 条腿和2 对翅膀.蝉有 6 条腿和1 对翅膀.现在这三种小虫共18 只,有118 条腿和20 对翅膀,每种小虫各几只?58. 学雷锋活动中,同学们共做好事240 件,大同学每人做好事8 件,小同学每人做好事 3 件,他们平均每人做好事 6 件.参加这次活动的小同学有多少人?59. 某班42 个同学参加植树, 男生平均每人种 3 棵, 女生平均每人种 2 棵,男生比女生多种56 棵,男、女生各有多少人?60. 一本百科全书的页数一共需要6869 个数码,问这本书有几页?图形题1 .如图,一个平行四边形,对角线BE=ED 底边BF=FG=GC三角形FEG的面积是3平方米,这个平行四边形总面积是多少?u r2 .把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形,求这个立体图形的外表积.3 .如图,在一个边长为6的正方形中,放入一个边长为2的正方形, 保持与原正方形的边平行,现在分别连接大正方形的一个顶点与小正方形的两个顶点,形成了图中的阴影图形,阴影局部的面积是多少?4.如图把一个长方形分成8块,求A B C面积.g A B g162012c5.一块正方形玻璃,四条边都减少8厘米,面积就减少了448平方厘米,求正方形玻璃原来的面积.。

小学五年级奥数题带答案

小学五年级奥数题带答案

小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张。

2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。

3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。

五年级奥数竞赛试卷【含答案】

五年级奥数竞赛试卷【含答案】

五年级奥数竞赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 21B. 34C. 57D. 462. 一个正方形的边长是4厘米,它的面积是?A. 16平方厘米B. 8平方厘米C. 4平方厘米D. 12平方厘米3. 下列哪个数既是3的倍数,又是4的倍数?A. 12B. 18C. 21D. 244. 下列哪个图形不是四边形?A. 正方形B. 长方形C. 三角形D. 梯形5. 下列哪个数是质数?A. 15B. 19C. 21D. 27二、判断题(每题1分,共5分)1. 两个奇数相加的结果一定是偶数。

()2. 一个三角形的内角和等于180度。

()3. 任何数乘以0都等于0。

()4. 一个长方形的对边相等。

()5. 1是质数。

()三、填空题(每题1分,共5分)1. 2 + 3 = __2. 9 5 = __3. 4 × 6 = __4. 18 ÷ 3 = __5. 一个正方形的边长是5厘米,它的面积是__平方厘米。

四、简答题(每题2分,共10分)1. 请写出三个3的倍数。

2. 请写出三个4的倍数。

3. 请写出三个5的倍数。

4. 请写出三个6的倍数。

5. 请写出三个7的倍数。

五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下几个苹果?2. 一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?3. 一个正方形的边长是6厘米,它的周长是多少厘米?4. 15 + 27 = __5. 36 ÷ 6 = __六、分析题(每题5分,共10分)1. 请分析下列数列的规律,并写出下一个数:2, 4, 6, 8, __2. 请分析下列数列的规律,并写出下一个数:3, 6, 9, 12, __七、实践操作题(每题5分,共10分)1. 请用纸和剪刀剪出一个正方形,边长为5厘米,并计算它的面积。

2. 请用纸和剪刀剪出一个长方形,长为8厘米,宽为4厘米,并计算它的面积。

五年级奥数竞赛试题-加油站|通用版

五年级奥数竞赛试题-加油站|通用版

五年级数学竞赛试卷(四)1.(3分)在1、2、3…499、500中,数字2一共出现了次.2.(3分)食堂有大米和面粉共351袋,如果大米增加20袋,面粉减少50袋,那么大米的袋数比面粉的袋数的3倍还多1袋,原来大米有袋,面粉有袋.3.(3分)279是甲乙丙丁四个数的和,如果甲减少2,乙增加2,丙除以2,丁乘以2后,则四个数都相等,那么甲是,乙是,丙是,丁是.4.(3分)兄弟俩比年龄,哥哥说:“当我是你今年岁数的那一年,你刚5岁.”弟弟说:“当我长到你今年的岁数时,你就17岁了.”哥哥今年岁,弟弟今年岁.5.(3分)甲对乙说:“我的年龄是你的3倍.”乙对甲说:“我5年后的年龄和你11年前的年龄一样.”甲今年岁,乙今年岁.6.(3分)A、B两地相距21千米,上午9时甲、乙分别从A、B两地出发,相向而行,甲到达B地后立即返回,乙到达A地后立即返回,中午12时他们第二次相遇.此时甲走的路程比乙走的路程多9千米.甲每小时走千米.7.(3分)一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是每小时5千米,这条船在静水中每小时行千米.8.(3分)(2014•济南)一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是米.9.(3分)蜗牛从一个枯井网上爬,白天向上爬110厘米,夜里向下滑40厘米,若要第五天的白天爬到井口,这口井至少深厘米.10.(3分)周老师给学是发练习本,每人分7本还多出7本,如果每人多发2本,就有一个同学分不到,那么一共有个同学,个练习本.11.(3分)王飞以每小时40千米的速度行了240千米,按原路返回时每小时行60千米,王飞往返的平均速度是每小时行千米.12.(3分)1,3,6,10,15,,28,….13.(3分)某电影院有26排座位,后一排比前一排多两个座位,最后一排14.(3分)一座桥全长160米,计划在桥的两侧栏杆上各安装16块花纹图案,每块图案的横长为2.5米,靠近桥两头的图案距离桥端都是15米,求相邻两块图案之间应相隔几米?15.(3分)甲的年龄比乙的年龄的3倍小4岁,甲在7年前和乙在9年后年龄相等,甲、乙现年各多少岁?16.(3分)某电影院共售出前后排电影票1050张,共收款3900元,前排每张3.5元,后排每张4元,问前后排票各多少张?17.(3分)规定a△b=(b+a)×b,那么(2△5)△5=.18.(3分)把一批书平均分给6个小朋友,结果多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多出1本.这批书至少有本.19.(3分)如图,大正方形的边长为2厘米,E、F、G、H分别为各边的中点,则中间小正方形的面积为多少平方厘米?20.(3分)兄弟两骑车郊游,弟弟先出发,速度每分钟200米,5分钟后,哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟之后又立即返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟后再超过200米为止,这时狗跑了多少千米?参考答案1.200.【解析】试题分析:此题应通过分类来解决:1~99有20个(22有2个2),100~199有19个,200~299有100个(2在百位),20(2在十,个位),300~399有20个(322有2个2),400~499有20个(422有2个2),所以,共20×4+100=200个.解:1~99有20个(22有2个2),100~199有20个,200~299有100个(2在百位),20(2在十,个位),300~399有20个(322有2个2),400~499有20个(422有2个2),所以,共20×4+100=200(次).故答案为200.点评:此题通过分段来解决比较简单,也不宜遗漏.2.221,130.【解析】试题分析:可设原来大米有x袋,根据题意则面粉有(351﹣x)袋,根据等量关系:(大米的袋数+20)﹣3×(面粉的袋数﹣50)=1,由此可以列方程解决问题.解:设原来大米有x袋,根据题意则面粉有(351﹣x)袋,根据题意可得方程,(x+20)﹣3×(351﹣x﹣50)=1,x=221,351﹣221=130(袋);答:原来有大米221袋,面粉130袋.故答案为:221,130.点评:此题是应用方程的思想解决问题.题目中的两个等量关系一个用来设未知数,一个用来列方程,由此可以解决问题.3.64;60;124;31.【解析】试题分析:最后4个数相等,设最后每个数都是x,那么甲数原来是x+2,乙数原来是x﹣2,丙数原来是2x,丁数原来是x÷2(即x),它们的和是279,由此列出方程.解:设后来每个数为x,由题意得x+2+x﹣2+2x+x=2794x=279x=62;甲数:62+2=64;乙数:62﹣2=60;丙数:62×2=124;丁数:62÷2=31;故答案为:64;60;124;31.点评:本题根据最后数相等的条件设出后来的数,根据这几个数的变化你这这种变化写出原数,根据原数的和列出方程.4.13,9.【解析】试题分析:根据题意可知,两人的年龄差是一个不变量,无论当哥哥是弟弟今年的岁数时,还是当弟弟长到哥哥今年的岁数时,这个年龄差是不变的.由题意可设兄弟两人的年龄差为x岁,由题意可知弟弟今年的年龄就是(5+x)岁,哥哥今年的年龄就是(5+2x)岁,再根据题意可知,如果弟弟到了今年哥哥的年龄,也就是到了(5+2x)岁,哥哥就17岁了,可列出方程求出两人的年龄差是多少,就可以求出两人今年的年龄各是多少岁.解:设兄弟两人的年龄差为x,那么弟弟今年的年龄就是(5+x)岁,哥哥今年的年龄就是(5+2x)岁,根据题意如果弟弟到了今年哥哥的年龄,哥哥就17岁了,可得:5+2x+x=175+3x=173x=17﹣53x=12x=4则弟弟今年是:5+x=9(岁),哥哥今年是:5+2x=5+2×4=13(岁).故填:13,9.点评:在年龄问题中,两人的年龄差是个不变量,根据这个不变量的特点,再根据题目给出的条件列出方程求解即可.5.24、8.【解析】试题分析:由甲对乙说的话可知,甲的年龄是乙的3倍,两者的年龄是倍数的关系,可设乙是年龄是x岁,甲就是3x岁.由乙对甲说的话可知,乙加上5岁与甲减去11岁之后他们的年龄相等,列出方程解答即可.解:设乙今年x岁,那么甲今年3x岁.根据题意,可得:x+5=3x﹣112x=5+112x=16x=8则甲今年的年龄是3x=3×8=24(岁)故填:24、8.点评:年龄问题中,如果知道两个人之间的年龄倍数的关系,根据列方程解含有两个未知数的应用题的方法求解即可.6.12.【解析】试题分析:由题意可知甲、乙两人走的路程和为AB间距离的3倍,即:21×3=63(千米),甲比乙多走了9千米,那么已走的路程就为(63﹣9)÷2=27(千米),那么甲共走了63﹣27=36(千米),故甲的速度为每小时36÷3=12(千米).解:12时﹣9时=3时.[63﹣(63﹣9)÷2]÷3,=[63﹣27]÷3,=12(千米).故答案为:12.点评:“甲与乙第二次相遇时共走了3个AB间距离”是此题解答的关键.7.45.【解析】试题分析:要求这条船在静水中每小时行多少千米,根据“水速=(顺水速度﹣逆水速度)÷2”,先求出顺水速度比逆水速度多5×2=10千米;每小时多行10千米,顺水航行需4小时,则多行10×4=40千米,又知道行完全程,逆水比顺水多行了(5﹣4)=1小时,根据等差关系求出逆水速度;进而求出顺水速度;根据“船速=(顺水速度+逆水速度)÷2”,代入数值,进行解答即可.解:逆水速度:(5×2×4)÷(5﹣4),=40(千米/时);顺水速度:40×5÷4=50(千米);船速:(50+40)÷2=45(千米/时);答:这条船在静水中每小时行45千米;故答案为:45.点评:此题做题的关键是根据水速与顺水速度和逆水速度的关系进行分析,进而得出逆水速度和顺水速度,然后根据船速与顺水速度和逆水速度的关系求出结论.8.300.【解析】试题分析:由题意可知:75秒是火车开过桥长1200米加上车长的时间.15秒是火车开过自己车长的时间.火车开过1200米,用的时间就是75﹣15=60秒,火车速度就是1200÷60=20米/秒,火车的车长就是20×15=300米.解:75﹣15=60(秒),火车速度是:1200÷60=20(米/秒),火车全长是:20×15=300(米).故答案为:300.点评:本题主要考查学生要弄清:火车在75秒内所行的路程是1200米+一个车身的长度.9.321.【解析】试题分析:由题意知蜗牛1天爬110﹣40=70厘米,那么4天就是70×4=280厘米,又因为到第5天的白天,晚上不算在内,要保证第5天白天爬出井口,则第4天一定不能爬出井口.井深至少比第四天能够爬出的高度多1厘米.所以这口井的深度是:(110﹣40)×3+110+1.解:(110﹣40)×3+110+1=210+110+1=321(厘米)故答案为:321.点评:此题属于周期性问题,在列式时要特别注意是“第五天的白天爬到井口”.问“至少”,所以第5天白天爬完1厘米就结束了.10.8,63.【解析】试题分析:设有x个同学,每人发7本还多7本,那么有练习本表示为7x+7,每人多发2本,也就是每人发9本,就有一个同学分不到,练习本数量表示为9(x﹣1)根据题意,7x+7=9(x﹣1).解:设有x 个学生,7x+7=(7+2)×(x﹣1)7x+7=9x﹣92x=16x=87x+7=7×8+7=63(本)故填:8,63.点评:本题存在这样的数量关系:两次发的总本书是一样的,根据发的本书和人数列出等量关系式,进而列出方程.11.48千米.【解析】试题分析:根据路程,速度,时间的关系可以求出返回的时间,再根据求平均数的方法,即可求出平均速度.解:240÷60=4(小时);240×2÷(240÷40+4);=480÷(6+4);=480÷10;=48(千米);答:王飞往返的平均速度是每小时行48千米.点评:此题主要考查了求平均数的方法,即平均速度=总路程÷总时间,找准对应量,列式解答即可.12.21.【解析】试题分析:3﹣1=2,6﹣3=3,10﹣6=4,15﹣10=5;相邻两个数的差是2,3,4,5…后一个差比前一个差大1;由此求解.解:5+1=6;15+6=21;验证:21+(6+1)=28;故答案为:21.点评:本题关键是找出相邻两个数差的变化规律,再根据规律求解.13.1170.【解析】试题分析:根据“有26排座位,后一排比前一排多两个座位,”可知公差为:2,项数为:26,又根据“最后一排有70个座位,”可知末项为:70,所以可以求出首项,列式为:70﹣(26﹣1)×2=20,再根据高斯求和公式可以求出座位数,列式为:(20+70)×26÷2=1170(个),据此解答.解:第一排座位数为:70﹣(26﹣1)×2,=70﹣50,=20(个),总座位数为:(20+70)×26÷2,=90×26÷2,=1170(个),答:这个影院一共有1170个座位.故答案为:1170.点评:本题考查了高斯求和公式的实际应用,相关的知识点是:和=(首项+末项)×项数÷2;首项=末项﹣公差×(项数﹣1);末项=首项+公差×(项数﹣1);项数=(末项﹣首项)÷公差+1.14.6.【解析】试题分析:先求出从第一个图案到最后一个图案的距离:160﹣15×2=130(米),再用2.5×16求出图案的总长,再求出空的总长,最后除以16﹣1就是相邻两块图案之间应相隔的米数.解:从第一个图案到最后一个图案的距离:160﹣15×2=130(米),图案总长:2.5×16=40(米),空总长为:130﹣40=90 (米),16个图案总共有15个空,所以相邻两块图案之间相隔的米数:90÷15=6(米),答:相邻两块图案之间相隔6米.点评:解答本题的关键是理解题意求出空的总长及明白16个图案总共有15个空.15.甲、乙现年各26岁、10岁.【解析】试题分析:甲在7年前和乙在9年后年龄相等那么可得甲比乙大7+9=16岁,设甲现在x岁,则乙现在就是x﹣16,再根据甲的年龄比乙的年龄的3倍小4岁,可得乙的年龄的3倍减去4岁就是甲的年龄.由此即可列出方程解决问题.解:设甲现在x岁,则乙现在就是x﹣16,根据题意可得方程:(x﹣16)×3﹣4=x,3x﹣52+52=x+52,3x﹣x=x﹣52+x,2x÷2=52÷2,x=26,乙现在就是:x﹣16=26﹣16=10,答:甲、乙现年各26岁、10岁.点评:此题等量关系较复杂,要求学生要审清题意找准等量关系,根据题干得出二人的年龄差是解决本题的关键.16.前排售出600张,后排售出450张.【解析】试题分析:设售出后排票x张,那么售出前排票就有(1050﹣x)张,再依据数量×单价=总价,分别求出前,后排票的总价,最后根据它们总价的和是3900元列方程解答.解:设售出后排票x张,3.5×(1050﹣x)+4x=3900,3.5×1050﹣3.5x+4x=3900,0.5x+3675﹣36750=3900﹣3675,0.5x÷0.5=225÷0.5,x=450;1050﹣450=600(张);答:前排售出600张,后排售出450张.点评:此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.17.200.【解析】试题分析:根据题意知道a△b等于a与b的和乘b,由此用此方法计算(2△5)△5的值.解:(2△5)△5,=[(2+5)×5]△5,=35△5,=(35+5)×5,=40×5,=200;故答案为:200.点评:关键是根据给出的式子,找出新的运算方法,再利用新的运算方法解决问题.18.73.【解析】试题分析:求这批书至少有多少本,先求出6、8和9的最小公倍数,然后加上1本即可.解:6=2×3,8=2×2×2,9=3×3,所以6、8、9的最小公倍数是:2×2×2×3×3=72;这批书至少有:72+1=73(本);答:这批书至少有73本.故答案为:73.点评:此题主要考查求三个数的最小公倍数的方法:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.19.0.8平方厘米.【解析】试题分析:如图所示,将原图进行割补,则可以得出,正方形的面积就等于5个小正方形的面积和,于是阴影部分的面积就等于大正方形的面积除以5,据此即可得解.解:将原图割补为下图:2×2÷5=0.8(平方厘米)答:阴影部分的面积是0.8平方厘米.点评:解答此题的关键是:利用割补的方法,将原正方形割补成同样的5个小正方形,从而问题轻松得解.20.6200米.【解析】试题分析:根据题意,可利用速度×时间=路程确定弟弟行驶的路程,可用弟弟行驶的路程除以哥哥与弟弟的速度差就可得到哥哥追弟弟行驶的时间,可用狗跑的时间乘狗的速度再将上200米就是狗跑的路程,列式解答即可得到答案.解:弟弟行驶的路程:200×5=1000(米),哥哥与弟弟的速度差为:250﹣200=50(米),所以追及的时间为:1000÷50=20(分钟),狗跑的路程为:20×300+200=6200(米),答:这时狗跑了6200米.点评:解答此题的关键是确定根据哥哥追弟弟所用的时间确定狗行驶的时间,最后再用时间×速度+200=狗跑的路程.。

五年级奥数竞赛试题

五年级奥数竞赛试题

五年级奥数竞赛试题【试题一】数字规律题题目:观察下列数字序列,找出规律并求出第10项的值。

2, 4, 7, 11, 16, ...【答案】规律分析:每一项与前一项的差值依次为2, 3, 4, 5, 5,可以看出差值序列是2, 1, 3, 4, 0,差值序列的规律是+1, +2, -1。

根据这个规律,我们可以推断出下一个差值为+3,再下一个差值为+1,以此类推。

所以第7项的差值为5+3=8,第8项为16+8=24,第9项的差值为24+1=25,第10项为25+5=30。

【试题二】几何图形题题目:一个长方形的长是宽的两倍,如果长增加10厘米,宽增加5厘米,面积增加了85平方厘米。

求原来长方形的长和宽。

【答案】设原来长方形的宽为x厘米,那么长为2x厘米。

根据题意,新的长方形的长为2x+10厘米,宽为x+5厘米。

面积增加了85平方厘米,可以列出方程:(2x+10)(x+5) - 2x*x = 852x^2 + 20x + 10x + 50 - 2x^2 = 8530x + 50 = 8530x = 35x = 35/30x = 7/6由于长和宽不能是分数,我们取最接近的整数,即x=1。

那么原来的长为2*1=2厘米,宽为1厘米。

但这个结果不符合题意,因为增加后的面积不可能是85平方厘米。

我们需要重新检查计算过程。

【试题三】逻辑推理题题目:有5个盒子,编号为1到5。

每个盒子里都装有不同数量的球,但每个盒子里的球数都不超过10个。

现在有5个人,每个人说出了关于球数的猜测,但每个人只猜对了一半。

请根据以下信息推断每个盒子里的球数。

A说:2号盒子有3个球,5号盒子有7个球。

B说:1号盒子有4个球,3号盒子有8个球。

C说:2号盒子有6个球,4号盒子有5个球。

D说:3号盒子有9个球,5号盒子有1个球。

E说:1号盒子有2个球,4号盒子有10个球。

【答案】我们可以通过排除法来解决这个问题。

首先,如果A关于5号盒子的猜测是正确的,那么D关于5号盒子的猜测就是错的,这意味着D关于3号盒子的猜测是正确的。

小学五年级奥数竞赛试卷

小学五年级奥数竞赛试卷

小学五年级奥数测试题1(每题6分;共120分) 班级姓名1、计算4.75–9.63+(8.25-1.37) 17.48×37-174.8×2.72、在算式□×5÷3×9+11=1991中;□里应填入的数字是( )。

3、一个自然数与它本身相加、相减、相除所得的和、差、商再相加;结果是1991;那么原来的自然数是( )4、某同学在计算一道除法题时;误将除数32写成23;所得的商是32余数是11;正确的商与余数的和是( )5、亮亮从家步行去学校;每小时走5千米。

回家时骑自行车;每小时走13千米。

骑自行车比步行的时间少4小时;亮亮家到学校的距离是( )千米。

6、一个两位数;个位数字是十位数字的3倍;如果这个数加上60;则两个数字相等;这个两位数是( )。

7、两个自然数的和是286;其中一个数的末位数是0;如果把这个零去掉;所得的数与另一个数相同;那么原来两位数的积是( )8、下图中;三角形ABC的面积是30平方厘米;D是BC的中点;AE的长是ED的长的2倍;那么三角形CDE的面积是( )平方厘米。

9、甲乙丙丁四个人共买了10个面包平均分着吃;甲拿出6个面包的钱;乙和丙都只拿出2个面包的钱;丁没带钱。

吃完后一算;丁应该拿出1.25元;甲应收回( )元。

10、在200位学生中;至少有( )人在同一个月过生日。

11、暑假小明去游园;遇到了甲、乙、丙、丁四位同学;小明和四位同学都握了手;甲和3个人握了手;乙和2个人握了手;丙和1个人握了手;那么丁和( )个人握了手。

12、有一个长方形;它的长和宽各增加8厘米;这个长方形的面积就增加了208平方厘米;原来长方形的周长是( )厘米。

13、甲乙二人环绕周长是400米的跑道跑步;如果两人从同一地点出发背向而行;那么经过2分钟两人相遇;如果两人从同一地点出发同向而行;那么经过20分钟两人相遇;已知甲的速度比乙的速度快;甲每分钟跑( )米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

花园五年级奥数测试题
姓名:得分:
1—6每题10分,7、8每题20分
1.
2.9
3.甲乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙。

问:两人每秒钟各跑多少米?
4.一辆卡车和一辆大客车从相距320千米的两地相向而行,已知卡车每小时行45千米,大客车每小时行40千米,如果卡车上午8时开出,问:大客车何时开出两车才能在中午12时相遇?
5.小明前几天数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分,问这是他第几次测验?
6.
7.
8.。

相关文档
最新文档