非齐次泊松过程和复合泊松过程45页PPT
合集下载
第三章泊松(Poisson)过程.
基础部张守成 2020年2月28日星期五
4. 齐次泊松过程的两个相关随机变量
设{N (t), t 0}是强度为的泊松过程,Wn(n 1)
表示事件第n次出现的等待时间.
W0 0
记 Ti Wi Wi1, i 1,2, 则Ti 表示第n-1次
事件发生到第n次事件发生的时间间隔.
(每小时)的泊松过程 {N(t), t 0}, 若每个人消费 的金额(元)为独立同分布的随机变量 Yn:
f ( y) 0.05e0.05 y ( y 0)
设 X(t) 表示 [0,t) 时间内该超市的总营业额,求3 小时内总营业额的期望和方差.
基础部张守成 2020年2月28日星期五
令 s 0, 根据假设 N (0) 0 可得
均值函数: E[N (t)] t,
方差函数: DN (t) Var[N (t )] t
E[ N (t)].
t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2020年2月28日星期五
(2) 协方差函数:
设{N(t), t0}是强度的泊松过程,{Yk,k=1,2,}是
独立同分布随机变量序列,且与{N(t), t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称为复合泊松过程. 例 设N(t)是在(0, t]内来到某商店的顾客数,Yk是
N (t)
第k个顾客的花费,则 X (t) 是Yk (0, t]内的营业额. k 1
如果对任意的实数h 和 0 s h t h,
X (t h) X (s h) 和 X (t) X (s) 具有相同的分布, 则称增量具有平稳性.
4. 齐次泊松过程的两个相关随机变量
设{N (t), t 0}是强度为的泊松过程,Wn(n 1)
表示事件第n次出现的等待时间.
W0 0
记 Ti Wi Wi1, i 1,2, 则Ti 表示第n-1次
事件发生到第n次事件发生的时间间隔.
(每小时)的泊松过程 {N(t), t 0}, 若每个人消费 的金额(元)为独立同分布的随机变量 Yn:
f ( y) 0.05e0.05 y ( y 0)
设 X(t) 表示 [0,t) 时间内该超市的总营业额,求3 小时内总营业额的期望和方差.
基础部张守成 2020年2月28日星期五
令 s 0, 根据假设 N (0) 0 可得
均值函数: E[N (t)] t,
方差函数: DN (t) Var[N (t )] t
E[ N (t)].
t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2020年2月28日星期五
(2) 协方差函数:
设{N(t), t0}是强度的泊松过程,{Yk,k=1,2,}是
独立同分布随机变量序列,且与{N(t), t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称为复合泊松过程. 例 设N(t)是在(0, t]内来到某商店的顾客数,Yk是
N (t)
第k个顾客的花费,则 X (t) 是Yk (0, t]内的营业额. k 1
如果对任意的实数h 和 0 s h t h,
X (t h) X (s h) 和 X (t) X (s) 具有相同的分布, 则称增量具有平稳性.
泊松过程
8
3.1 泊松过程的定义 泊松过程的定义
• 独立增量计数过程: 独立增量计数过程: 对于t 对于 1<t2<…<tn,N(t2)-N(t1), N(t3)-N(t2), … …, N(tn)-N(tn-1)独立 独立 • 平稳增量计数过程: 平稳增量计数过程: 在(t,t+s]内(s>0),事件 发生的次数 内 ,事件A发生的次数 N(t+s)-N(t)仅与时间间隔 有关, 仅与时间间隔s有关 仅与时间间隔 有关, 而与初始时刻t无关 而与初始时刻 无关
j=0
= Pn ( t ) P0 ( h) + Pn−1 ( t ) P1 ( h) + ∑ Pn − j ( t ) Pj ( h)
j=2
n
= Pn ( t ) P0 ( h) + Pn−1 ( t ) P1 ( h) + o( h) = (1 − λ h) Pn ( t ) + λ hPn−1 ( t ) + o( h)
14
3.1 泊松过程的定义 泊松过程的定义
P0 ( t + h) − P0 ( t ) o( h ) , 故 = − λ P0 ( t ) + h h P0′( t ) 当h → 0时有 P0′( t ) = − λ P0 ( t )或 = −λ P0 ( t ) 由于 P0 (0) = P{N(0) 0} = 1 = 于是有 P0 ( t ) = e − λt
j =0
16
Pn ( t + h) = P{N ( t + h) = n}
(2)对n≥1,建立递推公式 对 ≥ ,
n
j =0
n
3.1 泊松过程的定义 泊松过程的定义
3.1 泊松过程的定义 泊松过程的定义
• 独立增量计数过程: 独立增量计数过程: 对于t 对于 1<t2<…<tn,N(t2)-N(t1), N(t3)-N(t2), … …, N(tn)-N(tn-1)独立 独立 • 平稳增量计数过程: 平稳增量计数过程: 在(t,t+s]内(s>0),事件 发生的次数 内 ,事件A发生的次数 N(t+s)-N(t)仅与时间间隔 有关, 仅与时间间隔s有关 仅与时间间隔 有关, 而与初始时刻t无关 而与初始时刻 无关
j=0
= Pn ( t ) P0 ( h) + Pn−1 ( t ) P1 ( h) + ∑ Pn − j ( t ) Pj ( h)
j=2
n
= Pn ( t ) P0 ( h) + Pn−1 ( t ) P1 ( h) + o( h) = (1 − λ h) Pn ( t ) + λ hPn−1 ( t ) + o( h)
14
3.1 泊松过程的定义 泊松过程的定义
P0 ( t + h) − P0 ( t ) o( h ) , 故 = − λ P0 ( t ) + h h P0′( t ) 当h → 0时有 P0′( t ) = − λ P0 ( t )或 = −λ P0 ( t ) 由于 P0 (0) = P{N(0) 0} = 1 = 于是有 P0 ( t ) = e − λt
j =0
16
Pn ( t + h) = P{N ( t + h) = n}
(2)对n≥1,建立递推公式 对 ≥ ,
n
j =0
n
3.1 泊松过程的定义 泊松过程的定义
泊松过程合成和分解.ppt
例:设{X n}Markov链,状态空间 I {0,1}, p01 p10 1.则所有状态互达。 集合{n 1: p00 (n) 0} {2,4,6,...}, 其最大公约数为 2,d (0) 2. {X n}不遍历
例:设{X n}Markov链,状态空间 I {0,1}, p01 1, p10 p11 0.5.则所有状态互达。 集合{n 1: p11(n) 0} {1,2,3,4,...}, 其最大公约数为 1,d (1) 1.
例1:有10把步枪,其中两把已校正,命中率为p1; 其余
未校正,命中率为p2 ,这里p1 p2.某人任取一把开始打靶,
令X n为第n次命中的次数,即X n
1 0
第n次命中 第n次未命中
(1)对n
m,求(X
n,X
)的联合分布律和边缘分布律。
m
(2)以Sn表示前n次命中的次数,求Sn的分布律。
(3)若p1 1,p2 0,写出所有样本函数,写出Sn的分布律.
若i可达j, j可达i,则称i和j互达
设i是一个状态,定义 i的周期 d (i)为 集合{n 1: pii (n) 0}的最大公约数。 若d (i) 1,则称i非周期;否则称 i是周期的
性质:若 i和j互达,则 d(i) d( j)
定理:设{X n}是状态有限的 Markov链, 并且所有状态互达。则 以下3条相互等价。 (1){X n}遍历; (2)所有状态非周期; (3)某一状态非周期。
此时对n
m,X
n和X
独立吗?为什么?
m
解: 令A "取到已校正的枪", 由全概率公式得:
(1) p11 P( X n 1, X m 1)
P( X n 1, X m 1| A)P( A) P( X n 1, X m 1| A)P( A) 0.2 p12 0.8 p22; 同理p01 p10 0.2 p1(1 p1) 0.8 p2 (1 p2 ); p00 0.2(1 p1)2 0.8(1 p2 )2 P( X n 0) 0.2(1 p1) 0.8(1 p2 ) P( X n 1) 0.2 p1 0.8 p2
泊松过程poisson课件
则T 旳概率分布为 分布:
fT
(t )
e t
(t )k 1
, (k 1)!
t
0
0 ,
t0
故仪器在时刻 t0 正常工作旳概率为:
P P(T t0 )
e
t
(t)k 1
dt
t0
(k 1)!
P[ X (t0 )
k]
k 1
e t0
n0
(t0 )n
n!
(3) 到达时间旳条件分布
假设在[0 , t ]内事件A已经发生一次,拟定这一事件到 达时间W1旳分布 ——均匀分布
6.2 泊松过程旳基本性质
泊松分布:
P{X (t s) X (s) n} (t)n et , n 0,1,
n!
P{X (t) n} (t)n et , n 0,1, 2,
n!
ΦX ( ) E[e jX (t) ] et(ej 1)
(1) 泊松过程旳数字特征
均值函数
mX (t) E[ X (t)] t
D[S (t)]
tE[
X
2 1
]
t(
2
2
)
泊松脉冲列
[定义] 称泊松过程 { X(t) , t 0 } 旳导数过程为泊松脉冲列,
记为 { Z(t) , t 0 } ,即
Z (t) d X (t) dt
X(t) u(t ti )
i
Z(t) (t ti )
i
t0 t1 t2
ti
t
t0 t1 t2
事件A发生旳次数, T1 T2 T3
n
Wn Ti (n 1)
Tn
i 1
t
0 W1 W2 W3
Wn-1 Wn
fT
(t )
e t
(t )k 1
, (k 1)!
t
0
0 ,
t0
故仪器在时刻 t0 正常工作旳概率为:
P P(T t0 )
e
t
(t)k 1
dt
t0
(k 1)!
P[ X (t0 )
k]
k 1
e t0
n0
(t0 )n
n!
(3) 到达时间旳条件分布
假设在[0 , t ]内事件A已经发生一次,拟定这一事件到 达时间W1旳分布 ——均匀分布
6.2 泊松过程旳基本性质
泊松分布:
P{X (t s) X (s) n} (t)n et , n 0,1,
n!
P{X (t) n} (t)n et , n 0,1, 2,
n!
ΦX ( ) E[e jX (t) ] et(ej 1)
(1) 泊松过程旳数字特征
均值函数
mX (t) E[ X (t)] t
D[S (t)]
tE[
X
2 1
]
t(
2
2
)
泊松脉冲列
[定义] 称泊松过程 { X(t) , t 0 } 旳导数过程为泊松脉冲列,
记为 { Z(t) , t 0 } ,即
Z (t) d X (t) dt
X(t) u(t ti )
i
Z(t) (t ti )
i
t0 t1 t2
ti
t
t0 t1 t2
事件A发生旳次数, T1 T2 T3
n
Wn Ti (n 1)
Tn
i 1
t
0 W1 W2 W3
Wn-1 Wn
第三章泊松过程PPT课件
பைடு நூலகம்
P1(t)tet
下面用归纳法证明 Pn (t )
et
( t )n
n!
成立。
假设 Pn1(t ) et
(t )n1 ,由前推导知
n1 !
d
dt
e tPn (t)
e tPn1(t)
e te t ( t)n1 (n 1)!
( t)n1
(n 1)!
积分得
et
Pn(t)
(t)n
n2
n!
故定义3.2蕴涵定义3.3。
下面来证明定义3.3蕴涵定义3.2。 令
P n ( t ) P { X ( t ) n } P { X ( t ) X ( 0 ) n } 由定义3.3的(2)和(3),有
P0(th)P{X(th)0}P{X(th)X(0)0} P{X(t)X(0)0,X(th)X(t)0}
所以
P n (t) P n (t)P n 1 (t)
e t P n ( t)P n ( t)e tP n 1 ( t)
因此
d
dt
etPn(t)
etPn1(t)
当n=1时,
d d tetP 1(t)etP 0(t)ete t
即 P1(t)(tc)et
由于 P1(0) 0 ,代入上式得
泊松过程是计数过程的最重要的类型之一,其定义如下:
定义 3.2 称计数过程{X(t),t 0}为具有参数 >0 的
泊松过程,若它满足下列条件
(1) X(0)= 0;
(2) X(t)是独立增量过程;
(3) 在任一长度为t 的区间中,事件A发生的次数
服从参数 >0 的泊松分布,即对任意s,t>0,有
得
P0(t) et
P1(t)tet
下面用归纳法证明 Pn (t )
et
( t )n
n!
成立。
假设 Pn1(t ) et
(t )n1 ,由前推导知
n1 !
d
dt
e tPn (t)
e tPn1(t)
e te t ( t)n1 (n 1)!
( t)n1
(n 1)!
积分得
et
Pn(t)
(t)n
n2
n!
故定义3.2蕴涵定义3.3。
下面来证明定义3.3蕴涵定义3.2。 令
P n ( t ) P { X ( t ) n } P { X ( t ) X ( 0 ) n } 由定义3.3的(2)和(3),有
P0(th)P{X(th)0}P{X(th)X(0)0} P{X(t)X(0)0,X(th)X(t)0}
所以
P n (t) P n (t)P n 1 (t)
e t P n ( t)P n ( t)e tP n 1 ( t)
因此
d
dt
etPn(t)
etPn1(t)
当n=1时,
d d tetP 1(t)etP 0(t)ete t
即 P1(t)(tc)et
由于 P1(0) 0 ,代入上式得
泊松过程是计数过程的最重要的类型之一,其定义如下:
定义 3.2 称计数过程{X(t),t 0}为具有参数 >0 的
泊松过程,若它满足下列条件
(1) X(0)= 0;
(2) X(t)是独立增量过程;
(3) 在任一长度为t 的区间中,事件A发生的次数
服从参数 >0 的泊松分布,即对任意s,t>0,有
得
P0(t) et
泊松过程 ppt课件
P{X(t)-X(0)=n-1,X(t+h)-X(t)=1}+
P{X(njt2)-X(0)=n-j,X(t+h)-X(t)=j}.
根据定义3.3的(2)与(3),得
Pn(t+h)=Pn(t)P0(h)+Pn-1(t)P1(h)+o(h) =(1-λh)Pn(t)+λhPn-1(t)+o(h) 于是,有
则称 { n n 1 }
以 T n ( n 1 ) 表 示 第 n 1 次 发 生
则称 { T n n 1 }
首页
定理3.2
首页
设{ X (t) , t 0 }是参数为 ( 0 )的泊松过程,
则到达时间间隔序列T1,T2, 是相互独立的随机变量序列,
且都有相同的均值为1/ 的指数分布。
故定义3.3蕴涵定义3.2.
n!
第二节 泊松过程的基本性质
一.数字特征
设{ X (t) , t 0 }为泊松过程,对任意的 t, s [0, ),
且s t,有 E [ X ( t ) X ( s ) ] D [ X ( t ) X ( s ) ] ( t s ) 由于X(0)0,故
第三章 泊松过程(Poisson process)
第一节 泊松过程的定义和例子 第二节 泊松过程的基本性质 第三节 非齐次泊松过程 第四节 复合泊松过程
第一节 泊松过程的定义和例子
1.计数过程
如果用 N(t) 表示到时刻 t 为止已发生的“事件 A”的总数, 若 N(t) 满足下列条件:
(1) N(t) 0
k!
k0,1,2,
则称 X (t) 为具有参数 的泊松过程。
首页
注意 从条件(3)可知泊松过程有平稳增量,且
P{X(njt2)-X(0)=n-j,X(t+h)-X(t)=j}.
根据定义3.3的(2)与(3),得
Pn(t+h)=Pn(t)P0(h)+Pn-1(t)P1(h)+o(h) =(1-λh)Pn(t)+λhPn-1(t)+o(h) 于是,有
则称 { n n 1 }
以 T n ( n 1 ) 表 示 第 n 1 次 发 生
则称 { T n n 1 }
首页
定理3.2
首页
设{ X (t) , t 0 }是参数为 ( 0 )的泊松过程,
则到达时间间隔序列T1,T2, 是相互独立的随机变量序列,
且都有相同的均值为1/ 的指数分布。
故定义3.3蕴涵定义3.2.
n!
第二节 泊松过程的基本性质
一.数字特征
设{ X (t) , t 0 }为泊松过程,对任意的 t, s [0, ),
且s t,有 E [ X ( t ) X ( s ) ] D [ X ( t ) X ( s ) ] ( t s ) 由于X(0)0,故
第三章 泊松过程(Poisson process)
第一节 泊松过程的定义和例子 第二节 泊松过程的基本性质 第三节 非齐次泊松过程 第四节 复合泊松过程
第一节 泊松过程的定义和例子
1.计数过程
如果用 N(t) 表示到时刻 t 为止已发生的“事件 A”的总数, 若 N(t) 满足下列条件:
(1) N(t) 0
k!
k0,1,2,
则称 X (t) 为具有参数 的泊松过程。
首页
注意 从条件(3)可知泊松过程有平稳增量,且
《随机过程》第3章-泊松过程
中南民族大学经济学院
43
.随机过程》第3章-泊松过程
2 非齐次Poisson过程
中南民族大学经济学院
44
.随机过程》第3章-泊松过程
随机过程
第三章 泊松过程
1 齐次Poisson过程 2 非齐次Poisson过程 3 复合Poisson过程 4 年龄与剩余寿命 5 更新过程
中南民族大学经济学院
37
.随机过程》第3章-泊松过程
2 非齐次Poisson过程
中南民族大学经济学院
38
.随机过程》第3章-泊松过程
2 非齐次Poisson过程
中南民族大学经济学院
39
.随机过程》第3章-泊松过程
证明:
2 非齐次Poisson过程
中南民族大学经济学院
40
.随机过程》第3章-泊松过程
22
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
23
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
24
.随机过程》第3章-泊松过程
1 齐次Poisson过程
中南民族大学经济学院
25
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
1 齐次Poisson过程
中南民族大学经济学院
9
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
10
.随机过程》第3章-泊松过程
证明:
1 齐次Poisson过程
中南民族大学经济学院
11
.随机过程》第3章-泊松过程
泊松过程
nk
参数为 n 和 s/t 的 二项分布
[例3] 设在 [ 0 , t ] 内事件A已经发生 n 次,求第k次(k < n) 事件A发
生的时间Wk 的条件概率密度函数。
P{s Wk s h, X (t ) n} P{s Wk s h X (t ) n} P{ X (t ) n} P{s Wk s h, X (t ) X ( s h) n k} P{ X (t ) n} P{s Wk s h} P{ X (t ) X ( s h) n k} P{ X (t ) n}
P{ X (t h) X (t ) 1} h o(h) P{ X (t h) X (t ) 2} o(h)
称它为具有参数 >0 的泊松过程
泊松过程例子
考虑某一电话交换台在某段时间接到的呼叫。令X(t)表示 电话交换台在 [0, t] 时间内收到的呼叫次数,则{ X(t), t 0 } 是一个泊松过程。 考虑来到某火车站售票窗口购买车票的旅客。若记X(t) 为 时间 [0, t] 内到达售票窗口的旅客数,则{ X(t), t 0 } 是一 个泊松过程。 考虑机器在 (t, t+h] 内发生故障这一事件。若机器发生故 障,立即修理后继续工作,则在 (t, t+h] 内机器发生故障 而停止工作的事件数构成一个随机点过程,它可以用泊松 过程来描述。
时间间隔Tn
[定理] 设 {X (t), t 0 }是具有参数的泊松过程,{Tn , n 1 } 是对应的 时间间隔序列,则随机变量Tn (n=1,2,…)是独立同分布的均值为1/ 的指数分布。
Tn 的分布函数: Tn 的概率密度函数:
非齐次泊松过程与复合泊松过程
E ((1: 30) - (0 : 30)) 10
29
四、复合泊松过程
在人们的日常生活中,泊松过程往往不是单独存在的。 比如顾客到商店,不会只是在商店转一圈,往往会购物(当然,进 去转转不买也是有的)。 生产线的机器坏了,维修的时候会有维修费用。 参加保险公司的医疗保险人生病,保险公司会对其作出赔偿等。 这一系列的泊松过程都会有累积的事件参杂在其中。如果我们能 够将这些累积的事件和泊松过程联系起来,找出一定的规律,也 许就能成为解决某些生活规律的工具。例如,算出商店一天的营 业额,生产线一年的机器维修费用,保险公司的预备赔偿金的存 储额等。 因此,可以看出,前面多考虑的泊松过程,并未涉及到“泊松过 程质点”的大小,确定这些泊松过程质点的累积效果的随机过程 及其概率结构是有实际意义的。
非齐次泊松过程 复合泊松过程
主讲人:张建军
2015.5.01
1
一、泊松过程的定义 二、齐次泊松过程 三、非齐次泊松过程 四、复合泊松过程
2
一、泊松过程的定义
泊松过程是一类较为简单的时间连续状态离 散的随机过程。 一种累计随机事件发生次数的最基本的独立 增量过程。
3
一、泊松过程的定义
泊松过程是由法国著名数学家泊松(Poisson,
0
11
三、非齐次泊松过程
下面我们将从均值函数的层面解释非齐次泊松过程与齐次泊松过程 的不同之处: 在齐次泊松过程中,由于齐次性,即它的平稳增量过程,过程的 强度为λ,因此,在(s ,t+s)内,其均值为λt。 在非齐次泊松过程中,由于非齐次性,即强度函数的为λ(t),因 此: t 在(0 ,t)内,均值为 (t ) 0 ( s)ds 在 (0, t t ) 内,均值为:(t t )
随机过程第三章课件
(3)该过程为平稳增量过程;
(4)在 t , t t 内出现一个事件的概率为t ot(当 t 0 时)
为 ot ,即 P N t t N t 2 ot
则称该计数过程为泊松过程。
为一常数;在 t , t t 内出现事件二次以及二次以上的概率
st
,则 N s N t
3.2 泊松过程
【二】泊松过程:
【定义一】泊松过程 设 N t , t 0 为计数过程,其状态取非负整数,并满 足下列假设:
(1)从 t 0 起开始观察事件,即 N 0 0
和 N t4 N t3 是相互统计独立的;
(2)该过程是独立增量过程,即当 0 t1 t2 t3 t4 时,N t2 N t1
FSn
t k et t 0 t PSn t PN t n
f Sn t
dFSn t dt
t n1 t 0 e t n 1!
k n
k!
3.3 有关泊松过程的几个问题
【三】到达时间的条件分布:
设泊松过程 N t , t 0 ,如果已知在 0, t 内有一个 A 事件出现,问这 一事件到达时间的分布如何?
PT1 s, N t 1 PN s 1, N t N s 0 PN t 1 PN t 1 PN s 1PN t N s 0 PN t 1
(1)从 t 0 起开始观察事件,即 N 0 0
和 N t4 N t3 是相互统计独立的;
(2)该过程是独立增量过程,即当 0 t1 t2 t3 t4 时,N t2 N t1
北大随机过程课件泊松过程PPT
互独立的随机变量。求在五周内移民到该地区
的人口数的数学期望及其方差。
2018/11/10
2018/11/10
非齐次泊松过程举例
假设不相交叠的时间间隔内到达商店的 顾客数是相互统计独立的 ,问在上午8:30 -9:30间无顾客到达商店的概率是多少? 在这段时间内到达商店顾客数学期望是多 少?
2018/11/10
复合泊松过程
定义:
设有泊松过程{ N(t),t ≥0 }和一族独立同分布 随机变量{ Yn },n=1,2,3,…,且{ N(t) }和{ Yn} 也是相互统计独立的. 设随机过程 X (t ) Yn ,
2018/11/10
基本概念--泊松过程
泊松过程为满足下列假设的计数过程 :
1. 从t=0起开始观察事件,即N(0)=0; 2. 该过程是独立增量过程; 3. 该过程为平稳增量过程; 4. 在(t,t+∆t)内出现一个事件的概率为λ ∆t+ o(∆t)(当∆t→0时), λ 为一常数;在(t,t+∆t) 内出现事件二次以及二次以上的概率为o(∆t), 即 P{[N(t+ ∆t)-N(t)] ≥2}=o(∆t);
(1). 泊松过程{N(t), t>0}的第一个事 件到达时间t的概率密度分布.
t ~ t t 内有一个到达。 即:0 ~ t 内无到达,
f ( ) e
2018/11/10
泊松分布相关的问题
(2). 泊松过程{N(t), t>0}的各次事件 间的时间间隔分布.
设各次事件间的时间间隔记为Tn , n 1, 2,3, 则
2018/11/10
泊松分布相关的问题
(5).(续)
泊松分布 ppt课件
1.计数过程:设
为一随机过程,
如果N(t)是取非负整数值的随机变量,且满足s<t时,
N(s) ≤N(t),则称 XT {N(t),t T [0,)} 为计数过程(counting process).
若用N(t)表示电话交换台在时间[0,t]中接到
电话呼叫的累计次数,则{N(t) ,t≥0}就是一计数过程.
定义1 称随机过程{N(t),t0}为计数过程,若N(t)表示到 时刻t为止已发生的“事件A”的总数,且N(t)满足下列条件: (1) N(t)0 (2)N(t)取正整数; (3)若s<t,则N(s)<N(t); (4)当s<t,N(t)-N(s)等于区间(s,t]中发生的“事件A”的次数.
若t1<t2t3<t4,则在(t1,t2]内事件A发生的次数N(t2)-N(t1) 与在(t3,t4]内时间A发生的次数N(t4)-N(t3)相互独立,此时 计数过程N(t)是独立增量过程.
P{N(t) - N(s) k} [(t s)]k e(ts) , k 0,1, 2,
k!
则称{N(t),t0}为参数(或平均率、强度)为的(齐次) 泊松过程。[泊松过程的第二种定义方式]
注:由条件(3)知,泊松过程是平稳增量过程且E[X(t)]= t. 由于, =E[X(t)]/t表示单位时间内事件A发生的平均个数, 故称为此过程的速率或强度
X(t)-X(s),0≤s<t 为随机过程在 (s , t] 的增量.如果对 任意选定的正整数n和任意选定的0≤t0<t1<t2<…<tn, n个增量X(t1)-X(t0),X(t2)-X(t1), …,X(tn)-X(tn-1)相互 独立,则称 {X(t),t≥0}为独立增量过程.
第三章 泊松(Poisson)过程
E[ N ( t )] t ,
DN (t ) Var[ N (t )] t
E[
N (t ) ]. t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2014年6月18日星期三
(2)
协方差函数:
C N ( s, t ) mins, t , s, t 0.
基础部张守成 2014年6月18日星期三
(1) 7时至9时为t(2,4],则由非齐次泊松过程的 性质可得7时至9时乘车人数的数学期望为
E[ N (4) N (2)] m(4) m(2)
( t )dt
2
4
(200 400t )dt 1400dt
2 3
3
4
由于Wn Ti , 利用矩母函数容易证明
i 1
n
Wn ~ (n, ), 即Wn具有概率密度
t ( t )n 1 ,t 0 e fWn ( t ) ( n 1)! 0 , t 0
基础部张守成 2014年6月18日星期三
二、泊松过程的推广
由于 N ( s, t ) N ( t ) N ( s) ~ ( (t s )) , (1) E[ N (t ) N ( s )] Var[ N (t ) N ( s )] (t s ).
令 s 0, 根据假设 N (0) 0 可得
均值函数: 方差函数:
P Yn 2 0.4,P Yn 3 0.4, P Yn 4 0.1.
设X (t)表示 [0, t )时间内移民到该地的人口数, 求在五周内移民到该地人口数的的期望和方差.
X ( t ) Yn 是复合泊松过程, 解: 由Yn的分布律可得
DN (t ) Var[ N (t )] t
E[
N (t ) ]. t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2014年6月18日星期三
(2)
协方差函数:
C N ( s, t ) mins, t , s, t 0.
基础部张守成 2014年6月18日星期三
(1) 7时至9时为t(2,4],则由非齐次泊松过程的 性质可得7时至9时乘车人数的数学期望为
E[ N (4) N (2)] m(4) m(2)
( t )dt
2
4
(200 400t )dt 1400dt
2 3
3
4
由于Wn Ti , 利用矩母函数容易证明
i 1
n
Wn ~ (n, ), 即Wn具有概率密度
t ( t )n 1 ,t 0 e fWn ( t ) ( n 1)! 0 , t 0
基础部张守成 2014年6月18日星期三
二、泊松过程的推广
由于 N ( s, t ) N ( t ) N ( s) ~ ( (t s )) , (1) E[ N (t ) N ( s )] Var[ N (t ) N ( s )] (t s ).
令 s 0, 根据假设 N (0) 0 可得
均值函数: 方差函数:
P Yn 2 0.4,P Yn 3 0.4, P Yn 4 0.1.
设X (t)表示 [0, t )时间内移民到该地的人口数, 求在五周内移民到该地人口数的的期望和方差.
X ( t ) Yn 是复合泊松过程, 解: 由Yn的分布律可得
泊松过程ppt课件
R X ( s ,t ) E [ X ( s ) X ( t ) ]s (t 1 )
一般情况下,泊松过程的协方差函数可表示为
BX(s,t)mis,n t)(
时间间隔Tn的分布
设{X(t),t≥0}是泊松过程,,令X(t)表示t时刻事件 A发生的次数,Tn表示从第(n-1)次事件A发生 到第n次事件A发生的时间间隔。
解:
复合泊松过程
定义3.5:
设{N(t),t≥0}是强度为λ的泊松过程, {Yk,k=1,2,…}是一列独立同分布随机变量, 且与{N(t),t≥0}独立,令
N(t)
X(t) Yk, t 0 k1
则称{X(t),t≥0}为复合泊松过程。
N(t)
在时间段(0,t]内来到商店的顾客数
Yk
第k个顾客在商店所花的钱数
1、两分钟内接到3次呼叫的概率。 2、第二分钟内接到第3次呼叫的概率。
作业 3.1, 3.3, 3.5
例题3.6
设{X1 (t),t ≥0}和{X2 (t),t ≥0}是两个相互独立的
泊松过程,它们在单位时间内平均出现的事件
数分别为λ1和λ2,记 为W k(过1) 程X1(t)的第k次事
件到达时间, 为W1过(2) 程X2(t)的第1次事件到达
时间,求
P{Wk(1) W1(2)}
解:
非齐次泊松过程
0s t 其它
设{X(t),t≥0}是泊松过程,已知在[0,t]内事件A 发生n次,求这n次到达事件W1<W2, …<Wn的 联合概率密度函数。
解:
例题3.4
设在[0,t]内事件A已经发生n次,且0<s<t,对 于0<k<n,求P{X(s)=k|X(t)=n}
一般情况下,泊松过程的协方差函数可表示为
BX(s,t)mis,n t)(
时间间隔Tn的分布
设{X(t),t≥0}是泊松过程,,令X(t)表示t时刻事件 A发生的次数,Tn表示从第(n-1)次事件A发生 到第n次事件A发生的时间间隔。
解:
复合泊松过程
定义3.5:
设{N(t),t≥0}是强度为λ的泊松过程, {Yk,k=1,2,…}是一列独立同分布随机变量, 且与{N(t),t≥0}独立,令
N(t)
X(t) Yk, t 0 k1
则称{X(t),t≥0}为复合泊松过程。
N(t)
在时间段(0,t]内来到商店的顾客数
Yk
第k个顾客在商店所花的钱数
1、两分钟内接到3次呼叫的概率。 2、第二分钟内接到第3次呼叫的概率。
作业 3.1, 3.3, 3.5
例题3.6
设{X1 (t),t ≥0}和{X2 (t),t ≥0}是两个相互独立的
泊松过程,它们在单位时间内平均出现的事件
数分别为λ1和λ2,记 为W k(过1) 程X1(t)的第k次事
件到达时间, 为W1过(2) 程X2(t)的第1次事件到达
时间,求
P{Wk(1) W1(2)}
解:
非齐次泊松过程
0s t 其它
设{X(t),t≥0}是泊松过程,已知在[0,t]内事件A 发生n次,求这n次到达事件W1<W2, …<Wn的 联合概率密度函数。
解:
例题3.4
设在[0,t]内事件A已经发生n次,且0<s<t,对 于0<k<n,求P{X(s)=k|X(t)=n}
复合泊松过程.ppt
由题设条件易证{X(t),t≥0}具有独立增量性。
定理2:
设 N (t)
X (t) Yk , t 0
是复合泊松过程,则
k 1
(1)X(t)的矩母函数
X (t) (u)
et[Y
( u )1]
其中,是事件的到达率,Y (u) 是随机
变量 Yi 的矩母函数; (2)若 E(Y12 ) ,则
E[ X (t)] tE[Y1], D[ X (t)] tE[Y12 ]
第五节 复合泊松(Poisson)过程
本节学习的主要内容
一、复合泊松过程的定义 二、复合泊松过程的性质 三、复合泊松过程的应用
一、复合泊松过程的定义
定义:设{N(t),t0}是强度的泊松过程, {Yk ,k=1,2,}是一族独立同分布随机变量, 且与{N(t),t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称{X(t),t0}为复合泊松过程。
条件:
(1)存在一个泊松过程和一个随机变量序列; (2)随机变量序列是相互独立,且服从同一分布; (3)随机变量序列与泊松过程是相互独立。
例1:假设N(t)是在时间(0,t]内来到某商
店的顾客数,每个顾客购买商品的概率
为p,且与其它顾客是否购买商品无关。
问:在时间(0,t]内购买商品的顾客数是
否复合泊松过程?
二、复合泊松过程的性质
定理1: N (t)
设 X (t) Yk , t 0 是复合泊松过程,则 k 1
{X(t),t0}是独立增量过程。
证明: 令 0 t0 t1 t2 tm,则
N (tk )
X (tk ) X (tk1)
Yi , k 1,2,, m
泊松分布ppt课件
定义1 称随机过程{N(t),t0}为计数过程,若N(t)表示到 时刻t为止已发生的“事件A”的总数,且N(t)满足下列条件: (1) N(t)0 (2)N(t)取正整数; (3)若s<t,则N(s)<N(t); (4)当s<t,N(t)-N(s)等于区间(s,t]中发生的“事件A”的次数.
若t1<t2t3<t4,则在(t1,t2]内事件A发生的次数N(t2)-N(t1) 与在(t3,t4]内时间A发生的次数N(t4)-N(t3)相互独立,此时 计数过程N(t)是独立增量过程.
2 泊松过程的基本性质
1.对任意t>0,N(t)~ (t),P{N(t)=k} 由泊松分布知
特别地,令t0 =0,由于假设N(0)=0,故可推知 泊松过程的均值函数和方差函数分别为
,即泊松过程的强度 λ (常数)等于 单位长时间间隔内出现的质点数目的期望值.
2 泊松分布的一维特征函数
(u) E[eiuN (t) ] eiuk (t)k et (teiu )k et
e4 4e4 42 e4 43 e4 71 e4
2! 3!
3
即Poisson过程是满足 增量独立性 增量平稳性 增量普通性
的计数过程.
平稳性:在时间区间[t, t+t)内到达k个的概率与t无关,只与t 有关。记为pk(t)。 无后效性:不相交的时间区间内到达数互相独立。 普通性:在足够短的时间内到达多于一个的概率可以忽略; 有限性:任意有限个区间内到达有限个顾客的概率等于1。
泊松过程及维纳过程是两个典型的随机过程, 它们在随机过程的理论和应用中都有重要的地位, 它们都属于所谓的独立增量过程.
一、 独立增量过程(independent increment process) 给定二阶矩过程 { X(t),t≥0 } 我们称随机变量
4-泊松过程
定义4.1.2
P{N (t1 ) N (0) k1}gP{N (t2 ) N (t1 ) k2 k1}gL gP{N (tn ) N (tn 1 ) kn kn 1}
[ (t t )]kn kn1 e (tn tn1 ) (t ) k1 e t1 [ (t2 t1 )]k2 k1 e (t2 t1 ) 1 g gL g n n1 k1 ! (k2 k1 )! (kn kn1 )!
2016/4/17
第四章 泊松过程
§4.1 泊松过程概念
§4.2 随机质点的到达时间与 时间间隔 §4.3 复合泊松过程与非平稳 泊松过程
1
本章基本要求
了解泊松过程的概念,掌握泊松过程的
一维分布、增量的分布,及数字特征, 了解其一维特征函数; 会用定义2证明泊松过程;
掌握随机质点的到达时间及时间间隔分
k e t t1k (t2 t1 ) k k gL g(tn tn 1 ) k
n n 1 2 1
n k n1
k1 !g(k2 k1 )!g L g(kn kn 1 )!
14
2! 1 t o(t )
二、泊松过程的数字特征与一维特征函数
设 {N (t ), t 0} 是强度为 的泊松过程,则 1. 均值函数 mN (t ) E ( N (t )) t
(2)对于任意两个时刻 0 t1 t 2,应有N (t1 ) N (t 2 ); (3)对于任意两个时刻0 t1 t 2,增量 N (t1 , t 2 )
N (t 2 ) N (t1 )等于在时间间隔 [ t1 , t 2 )内出现或
到达的随机质点个数。
5
相关主题