2020春人教版六年级数学下册《鸽巢原理例1》 说课稿
人教版六年级下册数学《鸽巢问题》说课稿
抽屉原理说课稿河溪小学高仕红一、说教材这节课是小学数学六年级下册第五单元数学广角的第一节, 教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。
让学生经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。
二、说教学目标根据《数学课程标准》和教材内容,我确定本节课学习目标如下:知识与技能:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
过程与方法:经历抽屉原理的探究过程,通过摆一摆、分一分等实践操作,发现、归纳、总结原理。
情感态度与价值观:感知抽屉原理产生的历史背景,通过抽屉原理的灵活应用,感受数学的魅力。
教学重点是;经历抽屉原理的探究过程,发现、总结并理解抽屉原理。
教学难点:理解抽屉原理中“至少”的含义。
并会利用抽屉原理解决实际问题。
学具准备:每组都有相应数量的盒子、铅笔。
三、说教法学法学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生的手去认识,而是创造条件让学生自己去探索、发现。
因此我在教法主要采用了设疑激趣法、探究发现法、实践操作法。
学法上学生主要采用了自主、合作、探究式的学习方式。
四、说教学流程本节课共三个教学环节:创设情境,导入新课;动手操作,探究新知。
实践应用,拓展延伸。
先说第一个环节创设情境,导入新课。
1.老师组织学生做“抢凳子的游戏”。
请4位同学上来,摆开3张凳子。
老师宣布游戏规则:4位同学围着凳子转圈,老师喊“停”的时候,四个人每个人都必须坐在凳子上。
教师背对着游戏的学生,宣布游戏开始,然后叫“停”!师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。
老师说得对吗?师:为什么?(学生回答)师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。
师:那么像这样的现象中隐藏着什么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】开场白:尊敬的各位评委老师:大家好!我是面试小学数学教师的3号考生,今天试讲的题目是《数学广角—鸽巢问题》,下面开始我的试讲。
一、导入师:上课!同学们好,请坐!师:玩过“抢椅子”游戏吗?谁能说说游戏规则?你那么高兴,你来说!师:他说将椅子围成一个圈,人也站一个圈,有专门的主持人负责敲鼓,开始敲时人就围着椅子同一方向转,当敲击声停止,就要抢坐在椅子上。
师:那椅子数和人数是怎样的?师:他说椅子数比人数少1。
师:规则说的很详细!大家听明白了吗?想试试吗?师:大家都很踊跃!那就请刚才说游戏规则的同学选出三名同学,一起来玩这个游戏吧!师:老师当主持人,我们玩三次,大家注意观察,看看有什么发现!师:有趣的游戏结束了,你发现了什么?有一名同学没抢到椅子。
师:一个简单的游戏里,又蕴含着什么数学知识呢?你想知道吗?师:就让我们一起来探究:数学广角—鸽巢问题。
二、新授师:大屏幕上,这三名同学在做一个探究活动,找一找其中的数学信息吧!师:你举手最快了,请你!师:他说要把4支铅笔放进3个笔筒里,总有一个笔筒里至少有2支铅笔。
师:声音洪亮,信息找的很完整!师:这里的“总有”和“至少”是什么意思?自己想一想,和同桌说一说。
师:你平时不怎么举手,这次很勇敢,说说你的理解!师:他说“总有”就是总是会有的意思,“至少”是最少的意思。
师:很高兴你能说的这么好!是的,“总有”是总是会有、一定有,“至少”是最少、最低限度。
这句话其实就是说无论怎么放,都会有一个笔筒里最少是2支铅笔。
师:那这句话到底对不对呢?怎样验证呢?师:现在,我们开展小组探究活动,用老师给大家准备的纸杯当笔筒,用你的四支笔,摆一摆、画一画、写一写,把自己的想法表示出来。
师:活动之前,老师想提示大家,一个笔筒里放4支笔,另两个笔筒里没有,这4支笔无论放到哪个笔筒里,都只看做一种情况。
人教版数学六年级下册第27课鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册第27课鸽巢问题说课稿(推荐3篇) 人教版数学六年级下册第27课鸽巢问题说课稿【第1篇】《鸽巢问题》说课稿尊敬的各位评委老师,大家好!我是()号考生。
今天我说课的内容是《鸽巢问题》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《鸽巢问题》是人教版小学数学六年级下册第68页的内容,,是数与代数领域的重要知识点。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
②能力目标:通过画图发展学生的类推能力,形成比较抽象的数学思维。
③情感目标:通过“鸽巢问题”的灵活应用感受数学的魅力。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”。
难点是:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”二、说教法学法有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。
可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。
因此,这节课我采用的教法:引导法、观察法、讨论法;学法是:动手操作法,合作交流法。
三、说教学准备在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了如下教学环节。
环节一、情境导入我给大家表演一个魔术。
一副牌,取出大小王,还剩52张牌,你们5人每人随意抽出一张,我知道至少有2张牌是同花色的。
问问同学是否相信?并做几组实验,验证这一猜想。
借助同学的疑问和兴趣,此时,我会点明:告知这个故事里蕴含着一个重要的数学原理,即抽屉原理,从而引出新知。
通过情境设置,从学生熟悉的生活情境和已有的知识基础出发,找准了新知识的起点,激发起学生对的比例的学习兴趣和求知欲。
2024年人教版数学六年级下册鸽巢问题说课稿3篇
人教版数学六年级下册鸽巢问题说课稿3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。
2、培养学生分析、归纳等思维能力。
3、激发学生自主学习、积极探索和合作交流的良好习惯。
说教学重点:理解公因数和最大公因数的概念。
说教学难点:理解并掌握求两个数的最大公因数的方法。
教具准备:课件,长方形纸板,不同边长的正方形纸片(硬卡纸做的)。
说教学过程:一、创设情境,引导动手操作1、情境导入2、出示问题,明确要求。
(理解重点要求,如整分米数,整块)3、学生猜测可选用几分米的地砖。
4、介绍教具,明确活动要求、5、小组活动。
二、自主探索,形成概念1、展示学生作品,得出结果。
2、教师将不同铺法展示到课件上。
3、明确王叔叔对地砖的要求必须符合什么条件。
(地砖的边长必须既是16的因数又是12的因数。
)4、引出公因数和最大公因数的概念,揭示课题。
5、巩固练习课本80页做一做。
三、自主探究,掌握方法1、怎样求两个数的最大公因数。
2、出示例2,独立思考,做在练习本上,指名板演,集体订正。
3、归纳方法,找出公因数和最大公因数的之间的关系。
(几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。
)四、巩固练习,总结提升1、81页做一做,独立思考,指名回答,集体订正。
2、总结规律。
(当两个数是倍数关系时,较小的数就是最大公因数。
两个数的公因数只有1时,那他们的最大公因数就是1。
)五、小结谈谈本节课有什么收获。
〖人教版数学六年级下册鸽巢问题说课稿第【2】篇〗教学内容:人教版小学数学六年级下册教材第68~69页。
教材分析:鸽巢问题又称抽屉原理或鸽巢原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。
这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。
学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。
六年级下册数学说课稿《第1课时鸽巢问题 》人教版
六年级下册数学说课稿《第1课时鸽巢问题》人教版一. 教材分析《鸽巢问题》是人教版六年级下册数学的一节说课稿。
本节课主要让学生理解并掌握鸽巢问题的原理及应用,培养学生解决实际问题的能力。
教材通过生活中的实例,引导学生发现规律,从而解决问题。
内容安排由浅入深,既注重了知识的巩固,又培养了学生的逻辑思维能力。
二. 学情分析六年级的学生已经具备一定的逻辑思维能力和解决问题的能力。
他们对生活中的问题有自己独特的看法,善于发现生活中的规律。
但是,对于鸽巢问题的理解和应用还需要通过实例来进行引导。
此外,由于学生的学习差异,对于部分学生来说,理解和掌握鸽巢问题可能存在一定的困难。
三. 说教学目标1.知识与技能:让学生理解并掌握鸽巢问题的原理及应用,能运用鸽巢问题解决实际问题。
2.过程与方法:通过生活中的实例,引导学生发现规律,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生克服困难的信心,提高学生解决问题的能力。
四. 说教学重难点1.教学重点:让学生理解并掌握鸽巢问题的原理及应用。
2.教学难点:如何引导学生发现生活中的规律,运用鸽巢问题解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、分组讨论法等。
2.教学手段:多媒体课件、教学卡片、实物模型等。
六. 说教学过程1.导入新课:通过一个生活中的实例,引出鸽巢问题,激发学生的学习兴趣。
2.讲解原理:讲解鸽巢问题的原理,让学生理解并掌握。
3.案例分析:分析几个典型案例,让学生运用所学知识解决问题。
4.分组讨论:让学生分组讨论,自主发现生活中的规律,解决实际问题。
5.总结提升:总结本节课所学内容,让学生形成系统的知识结构。
6.课后作业:布置一些相关的练习题,巩固所学知识。
七. 说板书设计板书设计遵循简洁明了、条理清晰的原则,主要包括以下内容:1.鸽巢问题的定义2.鸽巢问题的原理3.鸽巢问题的应用八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2024年人教版数学六年级下册第27课鸽巢问题说课稿3篇
人教版数学六年级下册第27课鸽巢问题说课稿3篇〖人教版数学六年级下册第27课鸽巢问题说课稿第【1】篇〗教学内容审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。
设计理念《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握说教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】说教学目标:(一)知识与技能:1、通过观察、猜测、实验等活动,使学生初步了解并找出简单事物的组合数;2、使学生获得一些初步的数学实践活动经验。
(二)过程与方法:1、培养学生初步观察、分析推理能力以及有序地、全面地思考总是的方法和意识;2、感受数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题。
(三)情感、态度和价值观:1、通过活动培养学生学习数学的兴趣和合作意识;2、初步学会表达解决总是的大致过程和结果。
说教学重点:简单的排列组合的方法。
说教学难点:有序的思考问题。
教学任务分析:“实践与综合应用”是数学课程内容标准中的四个领域之一。
在第一学段中,要特别加强实践活动,“搭配中的学问”是本册书的四个专题活动之一。
通过这一专题让学生感受数学与现实生活的联系,培养学生的实践能力。
通过本节课的教学重在训练学生有序思考能力,这种能力对学生今后学习数学乃至其他学科,以及解决生活中的实际问题都起着重要的作用。
说学情分析:学生对新奇的具体的事物感兴趣,爱动、好问,注意力不够稳定,而不善于记忆抽象的内容等。
同时对身边的数学有浓厚的兴趣,乐于探究生活中的数学;有较强的语言表达能力、动手操作能力,初步具备了用所学知识解决实际问题的能力;思维活跃,能多角度思考问题,富有创新精神。
因此我在数学广角这一主题中安排了五个板块进行教学,循序渐进,螺旋上升。
说教学过程:一、创设情况,提出搭配中的问题谈话:今天我感到很高兴,因为有这样难得的机会和大家在一起学习,希望在这节课中我们能够成为好朋友!今天我们初次见面,我给你们先讲个“田忌赛马”的故事,想听吗?(教师讲故事,大屏幕播放连环画)(学生聚精会神地边听故事边看画面。
)谈话:故事讲完了,你知道孙膑是如何帮助田忌反败为胜的吗?田忌赛马是用到了数学中的什么学问,学习了今天的知识,你就能揭开这其中的奥秘,也能成为聪明的军事家孙膑。
鸽巢原理(说课稿)
六年级下册《数学广角——鸽巢问题》说课稿一、说教材1、教材内容及版本人教版六年级下册第68页例1。
2、教材的地位和作用本课时用直观的方法,介绍了“鸽巢问题”的形式,并安排了很多具体问题和变式,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。
在《鸽巢原理》学习过程中对“总有一个”和“至少”这两个关键词的解读引出为了达到“至少”而进行“平均分”的思路,以及把什么看作鸽子,把什么看作鸽巢,这样一个数学模型的建立。
通过“说理”的方式来理解“鸽巢原理”的过程,六年级学生对于总结规律的方法接触较少,这个过程有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
二、说教学目标根据教材分析和认识我确定的本节课学习目标如下:1. 知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。
渗透“建模”思想。
2. 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.情感与态度:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
三、说教学重难点【教学重点】经历鸽巢原理的探究过程,发现、总结并理解鸽巢原理。
【教学难点】理解鸽巢原理中“总有”“至少”的含义,并会用抽屉原理解决实际问题。
四、说教法学法1 . 教法:主要采用设疑激趣法、讲授法、实践操作法,以学生为课堂的主体,采用创设情境,提出问题,让学生大胆猜测、在学生充分讨论的基础上教师利用多媒体课件展示各种摆放情况,引导学生总结规律,进行启发式教学。
2.学法:主要采用动手操作、自主探究、合作交流,共同总结得出结果,体现数学知识的形成过程,感受数学学习乐趣。
五、说教学过程根据本课内容,为了更好实现教学目标利用网络资源,我把本节课分成4个环节:1.游戏导入——2.探究新知——3.形成规律——4.运用总结规律。
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)
人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】一、教学内容:教科书第68页例1。
二、说教学目标:(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
三、教学重难点说教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。
说教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。
四、说教学准备:多媒体课件。
五、说教学过程(一)候课阅读分享:同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。
(二)激情导课好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。
你准备好了吗?好,我们现在开始上课。
(三)民主导学1、请同学们先来看例1。
把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。
请你再把题读一次,这是为什么呢?要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。
我们再思考这一句话中,总有和至少是什么意思?对总有就是一定的意思。
至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。
或者是说,铅笔的支数要大于或等于两支。
那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。
你说对了吗?课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!方法一:用“枚举法”证明。
人教版数学六年级下册《鸽巢问题》说课稿
人教课标版小学六年级下册《数学广角——鸽巢问题》说课稿——平罗县城关第五小学:郭占军一、说教材我说的内容是人教版六年级数学下册数学广角《鸽巢问题》第一课时68、69页例1、例2.本单元用直观的方法,介绍了《鸽巢问题》的两种形式,并安排了很多具体问题和变式,帮助学生通过说理的方式来理解《鸽巢问题》,有助于提高学生的逻辑思维能力。
教材中,有3处不好理解的地方:1)“总有一个”“至少”这两个关键词的解读。
2)为了达到“至少”而进行“平均分”的思路。
3)把什么看作物体,把什么看作抽屉,这样一个数学模型的建立。
二、说教学目标根据《数学课程标准》和教材内容,我确定本节课学习目标如下:1、知识与技能:通过观察、猜测、实验推理等活动,经历探究用抽屉原理解决鸽巢问题的过程,2、过程与方法:经历探究“鸽巢原理”的学习过程,初步了解抽屉原理,会用抽屉原理解决简单的生活问题。
3、情感、态度和价值观:通过用抽屉原理解决鸽巢问题的灵活运用,展现数学的魅力。
三、说教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”,能够用抽屉原理解决“鸽巢问题”。
难点:找出运用抽屉原理解决“鸽巢问题”的窍门进行反复推理。
我之所以这样确定重难点和教学目标,因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。
四、说教法学法教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
学法上学生主要采用了自主、合作、探究式的学习方式。
五、说教学流程本节课共六个教学环节:游戏导入——检测预习——探究新知(解决问题——发现规律,初步建模)——达标测评——课堂小结——达标测评下面我分别说说这样设计的意图。
第一环节——游戏导入通过“扑克牌”游戏,体验不管怎么抽,总有同一花色的牌至少有2张。
激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,我这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
小学数学-六年级下册-5-1鸽巢原理(1)说课稿
小学数学-六年级下册-5-1 鸽巢原理(1)说课稿一. 教材分析《小学数学-六年级下册-5-1 鸽巢原理(1)》这一节内容,是在学生掌握了基本的数学运算、几何图形、方程解法等知识的基础上进行教学的。
鸽巢原理是组合数学中的一个基本原理,它通过实例向学生介绍了利用抽屉原理解决实际问题的方法。
本节课通过具体的案例,使学生了解和掌握鸽巢原理,培养学生的逻辑思维能力和解决实际问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,能够理解和掌握基本的数学概念和运算方法。
但是,对于组合数学中的鸽巢原理,学生可能较为陌生,需要通过具体的案例和实践来理解和掌握。
此外,学生可能对于解决实际问题的方法还不够熟练,需要通过实例来进行引导和培养。
三. 说教学目标1.知识与技能:使学生了解和掌握鸽巢原理,能够运用鸽巢原理解决实际问题。
2.过程与方法:通过实例分析,培养学生的逻辑思维能力和解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和探究精神。
四. 说教学重难点1.重点:使学生了解和掌握鸽巢原理。
2.难点:如何引导学生运用抽屉原理解决实际问题。
五. 说教学方法与手段1.教学方法:采用案例教学法、问题驱动法、小组合作法等方法,引导学生通过实例来理解和掌握鸽巢原理。
2.教学手段:利用多媒体课件、教学卡片、实物模型等辅助教学,使学生更直观地理解和掌握鸽巢原理。
六. 说教学过程1.导入:通过一个简单的实例,引出鸽巢原理的概念,激发学生的兴趣。
2.新课导入:介绍鸽巢原理的基本原理和应用,引导学生通过实例来理解和掌握鸽巢原理。
3.案例分析:分析几个具体的案例,使学生进一步理解和掌握鸽巢原理。
4.实践环节:让学生分组讨论,尝试运用鸽巢原理解决实际问题。
5.总结提升:对鸽巢原理进行总结,引导学生运用鸽巢原理解决实际问题。
6.课堂练习:布置一些练习题,巩固学生对鸽巢原理的理解和掌握。
七. 说板书设计板书设计要简洁明了,能够突出鸽巢原理的核心内容。
人教版六年级下学期数学《 鸽巢问题》说课稿-
人教版六年级下学期数学《鸽巢问题》说课稿-一. 教材分析鸽巢问题是数学中的一个经典问题,它涉及到组合计数和概率论的初步概念。
人教版六年级下学期数学教材中引入了鸽巢问题,旨在让学生通过解决实际问题,进一步理解整数和分数的概念,以及培养学生的逻辑思维和解决问题的能力。
二. 学情分析六年级的学生已经掌握了基本的数学知识,具备了一定的逻辑思维和解决问题的能力。
但是,对于鸽巢问题这种涉及组合计数和概率论的问题,可能还需要进一步的引导和培养。
因此,在教学过程中,我将会根据学生的实际情况,逐步引导学生理解和掌握鸽巢问题的解法。
三. 说教学目标1.知识与技能目标:通过解决鸽巢问题,让学生进一步理解整数和分数的概念,掌握鸽巢问题的解法。
2.过程与方法目标:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生勇于探索、积极思考的学习态度。
四. 说教学重难点1.教学重点:让学生掌握鸽巢问题的解法,培养学生运用数学知识解决实际问题的能力。
2.教学难点:对于复杂情况的鸽巢问题,如何引导学生理解和运用概率论的知识。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握鸽巢问题的解法。
2.教学手段:利用多媒体教学,通过生动的动画和图示,帮助学生形象地理解鸽巢问题。
六. 说教学过程1.导入:通过一个实际问题,引发学生对鸽巢问题的思考,激发学生的学习兴趣。
2.探究:引导学生通过小组合作,共同探讨鸽巢问题的解法,培养学生合作学习的能力。
3.讲解:在学生探究的基础上,进行讲解,让学生理解鸽巢问题的解法,并能够运用到实际问题中。
4.练习:设计一些相关的练习题,让学生通过练习,巩固所学知识,提高解决问题的能力。
5.总结:通过总结,让学生理解鸽巢问题的解法,并能够运用到实际问题中。
七. 说板书设计板书设计要简洁明了,能够突出鸽巢问题的关键点,包括鸽巢问题的定义、解法等。
数学人教版六年级下册鸽巢问题(例1、例2)说课及教学设计
《数学广角——鸽巢问题》说课稿伊宁市第十小学李芸一、说教材:本单元共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍鸽巢问题。
例3则是在学生理解鸽巢问题这一数学方法的基础上,会用这一原理解决简单的实际问题。
今天我讲的是例1和例2的内容,主要经历鸽巢问题的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面进一步学习鸽巢问题及利用这一原理解决问题做了有力的铺垫。
因此,这节课在本单元起着引领指航的重要作用。
二、说教学内容:本课时的教学内容为例1和例2。
例1介绍了较简单的“鸽巢问题”:只要鸽子数比鸽巢数多,总有一个鸽巢里至少放进2只鸽子。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个笔筒里至少放进2支铅笔。
例1呈现的是2种思维方法:一是枚举法,罗列了摆放的所有情况。
二是假设法,用平均分的方法直接考虑“至少”的情况。
通过例1两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
例2在例1的基础上说明:只要鸽子数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。
三、说教学目标:根据《数学课程标准》和教材内容,我确定本节课学习目标如下:知识与技能:初步了解鸽巢问题,会用鸽巢问题解决简单的实际问题。
过程与方法:经历鸽巢问题的探究过程,通过摆一摆、分一分等实践操作,发现、归纳、总结原理。
情感态度与价值观:通过鸽巢问题的灵活应用,感受数学的魅力。
教学重点:经历鸽巢问题的探究过程,发现、总结并理解鸽巢问题。
教学难点:理解鸽巢问题中“至少”的含义。
四、说教法、学法:教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
学法上学生主要采用了自主、合作、探究式的学习方式。
五、说教学流程:(一)、游戏激趣,初步体验。
今天在学习新课之前,老师先和大家玩一个“猜一猜”游戏。
(下面有3只鸽子,2个鸽巢,让3只鸽子回到家,学生帮鸽子找家,老师猜)通过游戏让学生初步的感知生活中的“鸽巢问题”。
人教版数学六年级下册鸽巢问题教案(推荐3篇)
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境 揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有” “至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有” “至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入 初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
2020年春人教版六年级下册数学精品说课稿 《鸽巢问题》
《鸽巢问题》说课稿我说课的内容是人教版六年级数学下册第五单元的数学广角《鸽巢问题》。
我将从以下几方面进行说课。
说教材。
《鸽巢问题》包含着一个重要而又基本的数学原理——“鸽巢原理”,应用它可以使生活中很多有趣的,又相当复杂的问题,得以简单的解决。
我要说的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决。
说学情虽然六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,但因为鸽巢原理的实质是揭示了一种存在性,比较抽象,因此要真正让小学生深刻理解,还是很有挑战性的。
说教学目标根据《新课程标准》的要求和学生已有的知识基础和认知能力,确定以下教学目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。
会用“鸽巢原理”解决简单的实际问题。
通过“鸽巢原理”的灵活运用,感受数学的魅力,渗透数学模型思想。
说重点难点教学重点:经历“鸽巢原理”的探究过程,建立数学模型。
教学难点:理解“鸽巢原理”。
在“说理”中体会“鸽巢原理”的简单应用。
说教法学法教法:主要采用探究发现法、实践操作法和讲授法,并充分运用多媒体教学手段,帮助学生理解并建立数学模型。
学法:主要采用动手实践、自主探索、合作交流的学习方法,通过多方面数学活动获得知识,得到全面发展。
说教学过程我本着以学定教的设计理念,设计四个环节:游戏导入,激发兴趣——自主操作,探究新知——巩固应用,提升认识——全课总结,畅谈感受。
接下来,我具体谈谈这四个环节的教学:第一环节游戏导入,激发兴趣课的开始我设计了5个同学抢坐4把椅子的游戏,激发兴趣,启迪思考。
【设计意图:创设贴近生活的数学情境,让学生初步体验“总有什么至少怎么样”的说法,激起学生探究其中原理的兴趣,为学习新知做了铺垫。
】第二环节自主操作,探究新知。
根据学生认知规律,我设计了两个活动活动一,动手操作,初识原理出示例1,把4支铅笔放在3个笔筒里,不管怎么放,总有一个笔筒里至少有两支笔。
六年级数学《鸽巢原理》说课稿
六年級數學下冊“數學廣角--抽屜原理”教學設計楊麗霞【說教材】《鴿巢問題》第一課時是新人教版六年級數學下冊數學廣角68、69頁例1、例2的教學內容.本節課用直觀的方法,介紹了《鴿巢問題》的兩種形式,并安排了很多具體問題和變式,幫助學生通過說理的方式來理解《鴿巢問題》,有助于提高學生的邏輯思維能力。
【說學情】抽屜原理是學生從未接觸過的新知識,難以理解抽屜原理的真正含義,六年級的學生對于總結規律的方法接觸比較少,尤其對于“數學證明”。
因此,教師一方面要適當引導,引發學生的學習興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主體性,重在讓學生經歷知識的發生、發展和過程 . 【說教學目標】根據《數學課程標準》和教材內容,我確定本節課學習目標如下:1、知識與技能:了解“鴿巢問題”的特點,理解“鴿巢原理”的含義。
使學生學會用此原理解決簡單的實際問題。
GAGGAGAGGAFFFFAFAF2、過程與方法:經歷探究“鴿巢原理”的學習過程,體驗觀察、猜測、實驗、推理等活動的學習方法,滲透數形結合的思想。
3、情感、態度和價值觀:通過用“鴿巢問題”解決簡單的實際問題,激發學生的學習興趣,使學生感受數學的魅力。
【說教學重難點】教學重點:經歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。
教學難點:理解抽屜原理,并對一些簡單實際問題加以“模型化”。
【說教法學法】教法:本節課主要采用了設疑激趣法、講授法、實踐操作法。
學法:學生主要采用了自主、合作、探究式的學習方式。
【說教學過程】本節課共分五個教學環節:聯系生活,激趣導課動手實驗,探究新知發現規律,初步建模運用原理,解決問題共同總結,加深理解GAGGAGAGGAFFFFAFAF一、聯系生活,激趣導入用一副牌展示“抽屜原理”。
(師生合作完成)師:同學們喜歡玩游戲嗎,游戲的名字叫“猜花色”。
請五個同學同當老師的助手,大家知道一副撲克牌有54張去掉兩張王牌,剩52張。
六年级数学《鸽巢原理》说课稿
六年级数学下册“数学广角--抽屉原理”教学设计杨丽霞【说教材】《鸽巢问题》第一课时是新人教版六年级数学下册数学广角68、69页例1、例2的教学内容.本节课用直观的方法,介绍了《鸽巢问题》的两种形式,并安排了很多具体问题和变式,帮助学生通过说理的方式来理解《鸽巢问题》,有助于提高学生的逻辑思维能力。
【说学情】抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。
因此,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性,重在让学生经历知识的发生、发展和过程 .【说教学目标】根据《数学课程标准》和教材内容,我确定本节课学习目标如下:1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
【说教学重难点】教学重点:经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。
教学难点:理解抽屉原理,并对一些简单实际问题加以“模型化”。
【说教法学法】教法:本节课主要采用了设疑激趣法、讲授法、实践操作法。
学法:学生主要采用了自主、合作、探究式的学习方式。
【说教学过程】本节课共分五个教学环节:联系生活,激趣导课动手实验,探究新知发现规律,初步建模运用原理,解决问题共同总结,加深理解一、联系生活,激趣导入用一副牌展示“抽屉原理”。
(师生合作完成)师:同学们喜欢玩游戏吗,游戏的名字叫“猜花色”。
请五个同学同当老师的助手,大家知道一副扑克牌有54张去掉两张王牌,剩52张。
现在五个同学每人随意抽五张牌先反扣在桌上。
我猜,每位同学的手中至少有两张花色是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸽巢问题说课稿
一、说教材。
1、教学内容:人教版义务教育教科书六年级下册第68页例1及做一做。
2、教材地位及作用。
本单元用直观的方法,介绍了“鸽巢问题”的两种形式,并安排了很多具体问题和变式,帮助学生加深理解,学会利用“鸽巢问题”解决简单的实际问题。
实际上,通过“说理”的方式来理解“鸽巢问题”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
就课时划分而言,《鸽巢问题》的例1和例2既可以用一课时完成,又可以分两课时完成,我之所以选择后者,是因为在《鸽巢问题》中,“总有”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度。
而且例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“鸽巢问题”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,才能更好地学习鸽巢问题(二),才能灵活运用这一原理解决各种实际问题。
二、说学情。
1、年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
2、思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。
因此教师要耐心细致的引导,重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论,要让学生不但知其然,更要知其所以然。
三、说教学目标。
根据《数学课程标准》和教材内容以及学生的学情,我确定本节课学习目标如下:
知识性目标:初步了解“鸽巢问题”的特点,理解“鸽巢问题”的含义,会用此原理解决简单的实际问题。
能力性目标:经历探究“鸽巢问题”的学习过程,通过实践操作,发现、归纳、总结原理,渗透数形结合的思想。
情感性目标:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,感受到数学的魅力。
四、说教学重、难点。
教学重点:引导学生把具体问题转化成“鸽巢问题”。
教学难点:找出“鸽巢问题”解决的窍门进行反复推理。
五、说教法、学法。
教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
根据六年级学生的理解能力和思维特征,为使课堂生动、高效,课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。
学法上主要采用了自主合作、探究交流的学习方式。
体现数学知识的形成过程,让学生在自己的经验中通过观察,实验,猜测,交流等数学活动形成良好的数学思维习惯,提高解决问题的能力,感受数学学习的乐趣。
六、说教学流程。
在教学设计上,我本着“以学定教”的设计理念,把教学过程分四环节进行:设疑导入,激发兴趣——自主操作,探究新知——归纳小结,形成规律——回归生活,灵活应用。
一、设疑导入,激发兴趣。
在导入部分,通过抽扑克牌“魔术”,激发学生的兴趣,引入新知。
二、自主操作,探究新知。
根据学生学习的困难和认知规律,我在探究部分设计了三个层次的数学活动。
(一)实物操作,初步感知。
学生通过例1要求通过“把4枝铅笔放入3个笔筒”的实际操作,解决3个问题:
1、怎样放?
重点是让学生明确如果只是放入每个笔筒中的枝数的排序不一样,应视为一种分法,并引导其有序思考,为后面枚举法的运用扫清障碍。
2、共有几种放法?
这里主要是孕伏对“不管怎样放”的理解。
3、认识“总有一个”的意义。
通过观察笔筒中铅笔枝数,找出4种放法中铅笔枝数最多的笔筒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个笔筒放的枝数是最多的,分别是2枝,3枝和4枝。
(二)脱离具体操作,由形抽象到数。
通过“思考:把5枝铅笔放入4个笔筒,又会出现怎样的情况?”由学生直接完成表格,达成三个目的:
1、理解“至少”的含义,准确表述现象。
(1)通过观察表格中枝数最多的笔筒里的数据,让学生在“最多”中找“最少”。
(2)学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒”时,总有一个笔筒里至少放入2枝铅笔的结论。
2、理解“平均分”的思路,知道为什么要“平均分”。
抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个笔筒里至少是几枝的方法——就是按照笔筒数平均分,只有这样才能让最多的笔筒里枝数尽可能少。
3、抽象概括,小结现象。
通过“4枝放入3个笔筒”、”5枝放入4个笔筒”等不同的实例让学生较充分地感受、体验、发现相同的现象,让学生抽象概括出“当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体”,初步认识鸽巢原理。
(三)学生自选问题探究。
首先设下疑问:“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”
这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。
三、归纳小结,形成规律。
在学生经历了真实的探究过程后,我将本节课研究过的所有实例通过课件进行总体呈现。
让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体。
四、回归生活,灵活应用。
研究的问题来源于生活,还要还原到生活中去。
在教学的最后,请学生用这节课学的鸽巢原理解释课始老师的魔术问题,进行首尾的呼应;再让学生应用“鸽巢原理”解决的生活中简单有趣的实际问题,激发学生的兴趣,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是待分的“物体”,什么是“抽屉”,让学生体会抽屉的形式是多种多样的。
同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。
五、板书的设计。