人教版初一数学下册平方根典型例题及练习.doc

合集下载

人教版七年级下册数学 平方根 知识点练习题(含答案)

人教版七年级下册数学  平方根 知识点练习题(含答案)

6.1 平方根知识点 1 算术平方根的定义1.下列说法正确的是 ( )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对2.“9的算术平方根”这句话用数学符号表示为 ( )A .√9B .±√9C .√3D .±√3知识点 2 求算术平方根3.4的算术平方根是 ( )A .2B .-2C .±2D .√24.若√a =2,则a 的值为 ( )A .-4B .4C .-2D .√15. 求下列各数的算术平方根:(1)0.64; (2)916; (3)(-3)2; (4)214.6. 求下列各式的值:(1)√25; (2)√169; (3)√42.知识点 3 算术平方根的非负性7.任何一个数的平方都不会是负数,所以负数没有算术平方根,即当a 0时,√a 有意义;当a 0时,√a 无意义.由此可知在√a 中,被开方数a 是非负数,√a 也是非负数,即√a 0.8.下列各数中,没有算术平方根的是 ( )A .2B .0C .-4D .0.0019.下列式子有意义的是 ( )A .√-3B .√-32C .-√(-3)2D .√-(-3)2 知识点 4 算术平方根的估算10. 估计√22的值在 ( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间11.已知a,b是两个连续整数,若a<√7<b,则a,b的值分别是()A.2,3B.3,2C.3,4D.6,812.与√14-2最接近的自然数是.13.比较下列各组数的大小:(1)√3与1.7;(2)√8-1与1.214.算术平方根等于它的相反数的数是()A.0B.1C.0,1D.0,±115.估计√5-1的值在()2A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间16.如图,按下面的程序计算,若开始输入的x值为1,则最后输出的结果是()A.√7B.4C.7D.13xy=.17.若|x-2|+√x+y=0,则-1218.已知一个数的算术平方根是a,则比这个数大8的数是.19.算术平方根等于它本身的数是,√16的算术平方根是,√9的算术平方根是.20.规定用符号[x]表示一个数的整数部分,例如[3.69]=3,[√3]=1,按此规定,[√13-1]=.21.小亮房间的地板面积为9平方米,恰好由25块大小相同的正方形地板砖铺成,求每块正方形地板砖的边长.22.某工厂计划将原有的正方形场地改建成800平方米的长方形场地,且其长、宽的比为5∶2.(1)求改建后的长方形场地的长和宽分别为多少米;(2)如果把原来面积为900平方米的正方形场地的金属栅栏围墙全部利用,来作为新场地的长方形围墙,栅栏围墙是否够用?为什么?23.已知2a+1的算术平方根是0,b -a 的算术平方根是12,求12ab 的算术平方根.24.乔迁新居,小明家买了一张边长是1.3米的正方形新桌子,原有边长是1米的两块正方形台布都不适用了,丢掉又太可惜了.小明的姥姥按图所示的方法,将两块台布拼成一块正方形大台布,请你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子吗?参考答案1.A2.A3.A4.B5.解:(1)0.8. (2)34. (3)3. (4)32.6.解:(1)因为52=25,所以√25=5.(2)因为432=169,所以√169=43. (3)因为42=16,所以√42=√16=4.7.≥ < ≥8.C 9.C 10.B 11.A 12.213.解:(1)√3>1.7. (2)√8-12<1.14.A15.C 解析:√5≈2.236,则√5-12≈0.618.16.A 解析: 当输入1时,3×1+1=4,取算术平方根可得2,则3×2+1=7,取算术平方根可得√7,√7>2.故选A . 17.2 解析: 由“几个非负数之和等于0,则这几个数都为0”可得,x -2=0,x+y=0,解得x=2,y=-2,所以-12xy=-12×2×(-2)=2.18.a 2+8 解析: 因为一个数的算术平方根是a ,所以这个数为a 2,则比这个数大8的数是a 2+8.19.0,1 2 √320.2 解析: 因为3<√13<4,所以2<√13-1<3,所以[√13-1]=2.21.解:由题意可知,每块正方形地板砖的面积是925平方米,所以每块正方形地板砖的边长是√925=35(米).22.解:(1)设改建后的长方形场地的长为5x 米,则宽为2x 米.根据题意,得5x ·2x=800,解得x=√80,∶长为5√80米,宽为2√80米.答:改建后的长方形场地的长和宽分别为5√80米、2√80米.(2)栅栏围墙不够用.理由如下:设原正方形场地的边长为y 米,则y 2=900,解得y=30,∶原正方形场地的周长为120米.新长方形场地的周长为(5√80+2√80)×2=14√80(米).∶124.6=14×8.9<14√80<14×9=126,∶120<14√80,∶栅栏围墙不够用.23.解:因为2a+1的算术平方根是0,所以2a+1=0,所以a=-12.因为b -a 的算术平方根是12,所以b -a=14,所以b=-14,所以12ab=12×(-12)×(-14)=116,所以12ab 的算术平方根是14.24.解:由题意,得拼成的正方形大台布的面积为2平方米.设它的边长为x 米,则x 2=2.因为1.412=1.9881,1.422=2.0164,所以1.412<x 2<1.422,即1.41<x<1.42.因为新正方形桌子的边长为1.3米,x>1.3,所以这块大台布能盖住现在的新桌子.6.2 立方根一.选择题(共14小题)1.下列计算中错误的是( )A .=6B .﹣=﹣4C .﹣=﹣3D .﹣=﹣0.12.﹣的立方根是( )A .﹣B .C .﹣D .3.下列叙述中,错误的是( )①﹣27立方根是3;①49的平方根为±7;①0的立方根为0;①的算术平方根为.A .①①B .①①C .①①D .①①4.若=2,则x 的值为( )A .4B .8C .﹣4D .﹣55.如果=﹣,那么a ,b 的关系是( )A.a=b B.a=±b C.a=﹣b D.无法确定6.立方根是﹣3的数是()A.9B.﹣27C.﹣9D.277.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.8.若=a,则a的值不可能是()A.﹣1B.0C.1D.39.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.=﹣3D.0.2 的算术平方根是0.0210.正方体的体积为7,则正方体的棱长为()A.B.C.D.7311.若a满足,则a的值为()A.1B.0C.0或1D.0或1或﹣1 12.下列等式成立的是()A.B.C.D.13.若=1.02,=10.2,则y等于()A.1000000B.1000C.10D.10000 14.利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若≈1.30,≈4.11,则≈()A.13.0B.130C.41.1D.411二.填空题(共6小题)15.若有意义,则x的取值范围是.16.小明设计了一个如下图所示的电脑运算程序:(1)当输入x的值是64时,输出的y值是.(2)分析发现,当实数x取时,该程序无法输出y值.17.将一块体积为1000cm3的正方体木块锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为cm.18.若的整数部分为2,则满足条件的奇数a有个.19.已知2a﹣1的平方根是±3,则7+4a的立方根是.20.如果=2.872,=0.2872,则x=.三.解答题(共5小题)21.用计算器探索.已知按一定规律排列的一组数:1,,,…,,,如果从中选择出若干个数,使它们的和大于3,那么至少要选几个数?22.如图,这是由8个同样大小的立方体组成的魔方,体积为8cm3.(1)这个魔方的棱长为.(2)图中阴影部分是一个正方形,求出阴影部分的周长.23.请认真阅读下列材料,再解决后面的问题.依照平方根(即二次方根)和立方根(即三次方根)的定义,可给出四次方根、五次方根的定义.比如:若x2=a(a≥0),则x叫a的二次方根;若x3=a,则x叫a的三次方根:若x4=a(a≥0),则x叫a的四次方根;(1)依照上面的材料,请你给出五次方根的定义,并求出﹣32的五次方根;(2)解方程:(2x﹣4)4﹣8=024.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.25.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.参考答案一.选择题(共14小题)1.C.2.A.3.D.4.B.5.C.6.B.7.C.8.D.9.D.10.B.11.C.12.C.13.B.14.C.二.填空题(共6小题)15.任意实数.16.(1);(2)0或1或负数.17.5.18.9.19.320.0.0237.三.解答题(共5小题)21.解:左边第一个数是1,第二个是=≈0.7,第三个数是=≈0.57,第四个数是==0.5,第五个数是=≈0.44,第六个数是=≈0.41,1++++=1+0.7+0.56+0.5+0.44=3.2,所以可以把这些数加起来,得出至少要5个数和才大于3.22.解:(1)=2(cm).故这个魔方的棱长是2cm.故答案为:2cm.(2)①魔方的棱长为2cm,①小立方体的棱长为1cm,①阴影部分是正方形,其边长为:=(cm),①出阴影部分的周长4cm.23.解:(1)如果x5=a,那么x叫做a的五次方根,﹣32的五次方根为﹣2;(2)(2x﹣4)4﹣8=0,(2x﹣4)4﹣16=0,(2x﹣4)4=16,2x﹣4=±,2x﹣4=±2,x=3或x=1.24.解:((1),所以立方体棱长为cm;(2)最多可放4个.设长方形宽为x,可得:4x2=36,x2=9,①x>0,①x=3,,横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.25.解:(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6答:该魔方的棱长6cm;(2)设该长方体纸盒的长为ycm,则6y2=600,故y2=100,解得:y=±10因为y是正数,所以y=1010×10×2+10×6×4=440(平方厘米)答:该长方体纸盒的表面积为440平方厘米.6.3实数一.选择题1.在实数,,,,0.3中,无理数有()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.B.C.D.3.已知k<<k+1,k为整数,则k和k+1分别为()A.1,2B.2,3C.3,4D.4,5 4.下列说法正确的是()A.2的平方根是B.(﹣4)2的算术平方根是4C.近似数35万精确到个位D.无理数的整数部分是55.下列关于的说法中,错误的是()A.是无理数B.2<<3C.5的平方根是D.是5的算术平方根6.下列实数中,无理数有(),,,|﹣1|,,,0.1010010001…(相邻两个1之间的0的个数逐次增加1)A.1个B.2个C.3个D.4个7.实数2介于()A.7和8之间B.6和7之间C.5和6之间D.4和5之间8.若的整数部分为a,小数部分为b,则数轴上表示实数﹣a,b的两点之间距离为()A.B.C.D.9.定义新运算:a*b=(a≠b且a+b>0),例如:3*2==,则6*(6*3)的值为()A.1B.C.D.10.下列各组数中互为相反数的一组是()A.2与B.|﹣2|与C.﹣2与D.2与二.填空题11.已知x为整数,且x<﹣1<x+1,则x的值为.12.选用适当的不等号填空:﹣﹣π.13.计算﹣12020+﹣|﹣|=.14.已知a,b为实数,下列说法:①若ab<0,且a,b互为相反数,则=﹣1;①若a+b<0,ab>0,则|2a+3b|=﹣2a﹣3b;①若|a﹣b|+a﹣b=0,则b>a;①若|a|>|b|,则(a+b)×(a﹣b)是正数;①若a<b,ab<0且|a﹣3|<|b﹣3|,则a+b>6,其中正确的是.15.实数a、b、c、d在数轴上对应的点的位置如图所示,在这四个数中,绝对值最小的数是.三.解答题16.2﹣;(2)求x的值:(x﹣3)3=﹣1.17.计算(1);(2).18.将下列各数在数轴上表示出来,并比较它们的大小(用“<”连接).﹣(﹣4),﹣|﹣3.5|,+(﹣1),0,+(+2.5)19.(1)画出数轴并表示下列有理数,﹣2,﹣2.5,0,,,并用“<”号连接.(2)已知有理数a、b在数轴上的对应点如图,化简|a|﹣|a+b|+|c﹣b|.参考答案与试题解析一.选择题1.【解答】解:=9,无理数有:,,共有2个.故选:B.2.【解答】解:A、=3,故此选项错误;B、=3,故此选项错误;C、=2﹣,故此选项错误;D、﹣=﹣3,正确.故选:D.3.【解答】解:①3<<4,k<<k+1,①k=3,k+1=4,故选:C.4.【解答】解:A.2的平方根是±,故错误;B.(﹣4)2的算术平方根是4,故正确;C.近似数35万精确到万位,故错误;D.①4<<5,①无理数的整数部分是4,故错误.故选:B.5.【解答】解:A、是无理数,本选项不符合题意;B、2<<3,本选项不符合题意;C、5的平方根是±,本选项符合题意;D、是5的算术平方根,本选项不符合题意;故选:C.6.【解答】解:,是分数,属于有理数;,|﹣1|=1,是整数,属于有理数;无理数有,,0.1010010001…(相邻两个1之间的0的个数逐次增加1)共3个.故选:C.7.【解答】解:①2=,且6<<7,①6<2<7.故选:B.8.【解答】解:①4<7<9,①2<<3,①a=2,b=﹣2,则|﹣a﹣b|=|﹣2﹣(﹣2)|=.故选:B.9.【解答】解:根据题中的新定义得:6*3==1,则原式=6*1==.故选:B.10.【解答】解:A、2与不是互为相反数,不合题意;B、|﹣2|与,两数相等,不是互为相反数,不合题意;C、﹣2与是互为相反数,符合题意;D、2与两数相等,不是互为相反数,不合题意;故选:C.二.填空题(共5小题)11.【解答】解:①x<﹣1<x+1,①﹣2<x<﹣1,①4<<5,①3<﹣1<4,2<﹣2<3,①x=3.故答案为:3.12.【解答】解:①5<<6,①>π,①﹣<﹣π,故答案为:<.13.【解答】解:原式=﹣1﹣2﹣2=﹣5.故答案为:﹣5.14.【解答】解:①若ab<0,且a,b互为相反数,则=﹣1,本选项正确;①若ab>0,则a与b同号,由a+b<0,则a<0,b<0,则|2a+3b|=﹣2a﹣3b,本选项正确;①①|a﹣b|+a﹣b=0,即|a﹣b|=﹣(a﹣b),①a﹣b≤0,即a≤b,本选项错误;①若|a|>|b|,当a>0,b>0时,可得a>b,即a﹣b>0,a+b>0,所以(a+b)(a﹣b)为正数;当a>0,b<0时,a﹣b>0,a+b>0,所以(a+b)(a﹣b)为正数;当a<0,b>0时,a﹣b<0,a+b<0,所以(a+b)(a﹣b)为正数;当a<0,b<0时,a﹣b<0,a+b<0,所以(a+b)(a﹣b)为正数,本选项正确;①①a<b,①a﹣3<b﹣3,①ab<0,①a<0,b>0,当0<b<3时,|a﹣3|<|b﹣3|,①3﹣a<3﹣b,不符合题意;所以b≥3,|a﹣3|<|b﹣3|,①3﹣a<b﹣3,则a+b>6,本选项正确;则其中正确的有4个.故答案为:①①①①.15.【解答】解:绝对值最小的数是b,故答案为:b.三.解答题(共4小题)16.【解答】解:(1)原式=4﹣4=0;(2)(x﹣3)3=﹣1,则x﹣3=﹣1,解得:x=2.17.【解答】解:(1)原式=﹣(3+2﹣2)﹣=5﹣5+2﹣=;(2)原式=5+﹣﹣2+=8﹣.18.【解答】解:如图所示:则﹣|﹣3.5|<+(﹣1)<0<+(+2.5)<﹣(﹣4).19.【解答】解:(1),则﹣2.5<﹣2<﹣<0<;(2)由数轴可得:a+b<0,c﹣b>0,a<0,原式=﹣a﹣[﹣(a+b)]+(c﹣b)=﹣a+a+b+c﹣b=c.。

人教版七年级下第六章实数“平方根、立方根"习题

人教版七年级下第六章实数“平方根、立方根"习题

人教版七年级下 第六章 实数 “平方根、立方根"习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:(1)=; (2= ; (3)|2.5= ;(4= ; (5)n =; (6)= .2的立方根是;的平方根是.3.28y x =-,且y 的立方根是2,求x 的值 .4=,其中x 的取值范围 ;=,其中y 的取值范围.5 1.289====462.6=,则x =;;= ;若 5.981=,则y =.6.已知21a -与5a -是m 的平方根,那么m =.二、单选题7.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列等式不一定成立的是( ).A=B a=C a=D .3a=9.下列说法错误的是( ).A .4是16的算术平方根B .37-是949的一个平方根C .0的平方根与算术平方根都是0D .2(9)-的平方根是9-10.若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数11.若01x <<,则2x 、x 这四个数中( ).A 2x 最小B .x 最小C .2x 小D .x 最大,2x 最小12xy的值为( ).A .23B .32C .23-D .32-三、解答题13.计算:(1- (214.(1)已知5b =,求35a b +的立方根;(2)已知2(3)0x -=,求4x y +的平方根.15.已知3既是5a +的平方根,也是721a b -+的立方根,解关于x 的方程()2290a x b --=.答案第1页,共1页参考答案:1. 6-0.2 2.54π- 1a-2. 2 2±3.4±4. 0任意数1y =5.214000 0.1463± 0.1289-2146.81或97.C 8.B 9.D 10.B 11.A 12.A 13.(1)558;(2)112-.14.(1)3;(2)4±15.72x =或12x =。

人教版七年级数学下册第六章第一节平方根复习试题(含答案) (51)

人教版七年级数学下册第六章第一节平方根复习试题(含答案) (51)

人教版七年级数学下册第六章第一节平方根习题(含答案) ≈_____(结果精确到0.1).【答案】5.1【解析】【分析】根据求算术平方根的按键顺序,计算即可.【详解】 25.7=,显示5.069516742.5.1≈故答案为:5.1.【点睛】此题考查的是用计算器计算一个数的算术平方根,掌握求算术平方根的按键顺序是解决此题的关键.72.=____;2(6)-的算术平方根为____;2(6)±的算术平方根为_____:|81|-的算术平方根为_____.【答案】-6 6 6 9【解析】【分析】根据乘方的性质、绝对值的定义和算术平方根的定义计算即可【详解】解:因为2(6)36-=,所以36的算术平方根为6,所以6=-;因为2-=,所以36的算术平方根为6;(6)36因为2±=,所以36的算术平方根为6;(6)36因为|81|81-=,所以81的算术平方根为9.故答案为:-6;6;6;9.【点睛】此题考查的是实数的运算,掌握乘方的性质、绝对值的定义和算术平方根的定义是解决此题的关键.73.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】-3 25【解析】【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.三、解答题74.若一个数(5a+1)和另一个(a-19)是数m的平方根,求m的值。

【答案】m的值为256或576.【解析】【分析】根据平方根的定义,分5a+1和a-19互为相反数和相等两种情况讨论,求得a的值,根据平方根的定义求得m的值.【详解】解:①当(5a+1)+(a-19)=0,解得:a=3,则m=(5a+1)2=162=256.②当5a+1=a-19时,解得:a=-5,则m=(-25+1)2=576.故m的值为256或576.【点睛】本题考查了平方根的定义.解答关键是注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.75.求下列各式中实数的x值.(1)25x2﹣36=0(2)|x+2|=π【答案】(1)x=±6;(2)x=﹣2﹣π或x=﹣2+π5【解析】【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解.【详解】解:(1)25x2﹣36=0,25x2=36,,x2=3625;x=±65(2)|x+2|=π,x+2=±π,x=﹣2﹣π或x=﹣2+π.【点睛】本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数.76.已知某正数的两个平方根分别是a+3和5﹣3a,(1)求这个正数;(2)若b的立方根是2,求b﹣a的算术平方根.【答案】(1)49;(2)2.【解析】【分析】(1)由平方根的性质知a+3+5-3a=0,解之可得a=4,据此知这个数为(a+3)2,再代入计算可得;(2)先得出b=8【详解】解:(1)根据题意知a +3+5﹣3a =0,解得:a =4,所以这个数为(a +3)2=72=49;(2)根据题意知b =8, =2.【点睛】本题主要考查立方根、平方根,解题的关键是熟练掌握平方根和立方根的定义.77.一个正数x 的两个不同的平方根分别是21a -和 2.a -+(1)求a 和x 的值;(2)化简23a a x +-+【答案】(1)-1;9 (2)8-+【解析】【分析】(1)根据正数的平方根的性质可知,一个正数有两个平方根,且互为相反数,得到2a-1+(-a+2)=0,解得a ,求出x 即可;(2)把1a =-,9x =代入原式计算化简即可.【详解】(1)根据题意知,()()2120a a -+-+=解得1a =-,所以-a+2=3,可得9x =,故答案为:-1;9;(2)把1a =-,9x =代入23a a x -+,()21319=--⨯-+,268=-+=-+ 故答案为:8-+.【点睛】本题考查了正数的平方根的性质,相反数的性质,代数式化简求值,掌握正数的两个平方根互为相反数是解题的关键.78.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm ?【答案】(1)20;(2)无法裁出这样的长方形.【解析】【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm,宽为3x cm,根据题意列出方程,解方程比较4x与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,∴cm;()2根据题意设长方形长为4x cm,宽为3x cm,x x⋅=由题:43360则230x=x∴=x∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.79.如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间t(单位:s)与细线的长度l(单位:m)之间满足关系2t=0.4m时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】1.3【解析】【分析】直接把l=0.4m 代入关系式2t =t 的值. 【详解】把l=0.4m 代入关系式2t =∴12=0.45t πππ=⨯=1.3(秒). 【点睛】此题考查算术平方根,解题关键在于掌握运算法则.80.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?【答案】(1;(2)<;(3)不能裁剪出,详见解析【解析】【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,∴cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=, ∴a =∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.。

(完整版)人教版七年级数学下6.1《平方根》同步练习试题及答案(可编辑修改word版)

(完整版)人教版七年级数学下6.1《平方根》同步练习试题及答案(可编辑修改word版)

1.A16一、选择题人教版七年级数学下 6.1《平方根》同步练习1. 下列说法正确的是( )A .25 的平方根是B . - 22 的算术平方根是 25 25C .8 的立方根是D .6 是 36 的平方根 2. 如果一个实数的平方根与它的立方根相等,则这个数是( )A .0B .正实数C .0 和 1D .1 3.(﹣3)2 的平方根是( )A .3B .﹣3C .±3D .94.若 a 2=25,|b|=3,则 a+b 的值是( )A .﹣8B .±8C .±2D .±8 或±25.下列说法不正确的是( )A . 的平方根是B .﹣9 是 81 的一个平方根C .0.2 的算术平方根是 0.04D .﹣27 的立方根是﹣3 6.16 的算术平方根和 25 的平方根的和是( )A .9B .﹣1C .9 或﹣1D .﹣9 或 1二、填空题7. 的算术平方根是; 8. 的值等于,2 的平方根为 . 9. 若 x ,y 为实数,且+|y+2|=0,则 xy 的值为 .10.下列各数:0,﹣4,(﹣3)2,﹣32,﹣(﹣2),有平方根的数有 个.11. 如果一个数的平方根是(﹣a+3)和(2a ﹣15),则这个数为 .12. 已知一个正数的平方根是 3x ﹣2 和 5x+6,则这个数是. 三、解答题13.解方程 4(x ﹣1)2=914.2a ﹣3 与 5﹣a 是同一个正数 x 的平方根,求 x 的值.15.已知 2a ﹣1 的平方根是±3,3a+b ﹣1 的算术平方根是 4,求 a+2b 的值.参考答案试题分析:一个正数的平方根有两个,它们互为相反数;负数没有平方根;一个正数有一25个正的立方根,一个负数有一个负的立方根.则25 的平方根是±5;的平方根是365± ;8 的立方根是2;-=-4,则-没有平方根.62.A【解析】试题分析:根据立方根和平方根的性质可知,只有0 的立方根和它的平方根相等,解决问题.解:0 的立方根和它的平方根相等都是0;1 的立方根是1,平方根是±1,∴一个实数的平方根与它的立方根相等,则这个数是0.故选A.3.C【解析】试题分析:首先根据平方的定义求出(﹣3)2,然后利用平方根的定义即可求出结果.解:∵(﹣3)2=9,而9 的平方根是±3,∴(﹣3)2的平方根是±3.故选:C.4.D【解析】试题分析:根据平方根的定义可以求出a,再利用绝对值的意义可以求出b,最后即可求出a+b 的值.解:∵a2=25,|b|=3∴a=±5,b=±3,则a+b 的值是±8 或±2.故选D.5.C【解析】试题分析:根据平方根的意义,可判断A、B,根据算术平方根的意义.可判断C,根据立方根的意义,可判断D.解:A 、,故A 选项正确;B、=﹣9,故B 选项正确;C、=0.2,故C 选项错误;D、=﹣3,故D 选项正确;故选:C.【解析】16 【解析】试题分析:利用算术平方根及平方根定义求出值,进而确定出之和即可. 解:根据题意得:16 的算术平方根为 4;25 的平方根为 5 或﹣5,则 16 的算术平方根和 25 的平方根的和是 9 或﹣1,故选 C7.2【解析】试题分析: =4,本题实际上就是求 4 的算术平方根.8.2;±.【解析】试题分析:根据一个正数有两个平方根,它们互为相反数,其中正的平方根叫做算术平方根,即可得到结果.解:∵22=4,∴4 的算术平方根是 2,即=2.∵正数由两个平方根,∴2 的平方根是±. 故答案为:2;±. 9.﹣2【解析】试题分析:首先根据非负数的性质可求出 x 、y 的值,进而可求出 xy 的值. 解:由题意,得:x ﹣1=0,y+2=0;即 x=1,y=﹣2;因此 xy=1×(﹣2)=﹣2,故答案为:﹣2.10.3.【解析】试题分析:先求得各数的值,然后根据正数有两个平方根,0 的平方根是 0,负数没有平方根解答即可.解:(﹣3)2=9;﹣32=﹣9;﹣(﹣2)=2∵正数和零有平方根,∴有平方根的是:0,(﹣3)2,﹣(﹣2),共 3个.故答案为:3.11.81.试题分析:依据正数的两个平方根互为相反数,列方程可求得a 的值,然后可求得这个正数的平方根,最后依据平方根的定义可求得这个正数.解:∵一个数的平方根是(﹣a+3)和(2a﹣15),∴﹣a+3+2a﹣15=0.解得:a=12.∴﹣a+3=﹣12+3=﹣9.∵(﹣9)2=81,∴这个数为81.故答案为:81.12.【解析】试题分析:由于一个非负数的平方根有 2 个,它们互为相反数.依此列出方程求解即可.解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.13.x1= ,x2=﹣【解析】试题分析:直接开平方法必须具备两个条件:(1)方程的左边是一个完全平方式;(2)右边是非负数.将右边看做一个非负已知数,利用数的开方解答.解:把系数化为 1,得(x﹣1)2=开方得 x ﹣1=解得x1=,x2=﹣.14.49【解析】试题分析:根据正数的平方根有 2 个,且互为相反数,求出 a 的值,即可确定出 x 的解得:a=﹣2,值.解:∵2a﹣3 与5﹣a 是同一个正数 x 的平方根,∴2a﹣3+5﹣a=0,解得:a=﹣2,则 x=49.考点:平方根.15.9【解析】试题分析:根据平方根的定义列式求出 a 的值,再根据算术平方根的定义列式求出 b 的值,然后代入代数式进行计算即可得解.解:∵2a﹣1 的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1 的算术平方根是 4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.。

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。

最新人教版初中七年级下册数学《平方根》同步练习题

最新人教版初中七年级下册数学《平方根》同步练习题

《平方根》同步测试(第1课时)一、选择题1.9的算术平方根是( ).A. 3 B.±3 C.81 D.±81考查目的:本题考查算术平方根的概念.答案:A.解析:根据算术平方根的概念,因为,所以9算术平方根为3.故答案选A.2.已知,则=( ).A.0. 5 B.±0.5 C.0.0625 D.±0.0625考查目的:考查算术平方根的概念和符号表示.答案:C.解析:符号表示的算术平方根.因为算术平方根等于0.25的数是0.0625,即,所以.3.(2010?贺州)的算术平方根是( ).A.±2 B.2 C.±4 D.4考查目的:本题考查算术平方根的概念和符号表示.答案:B.解析:表示16的算术平方根.因此本题应先求“=?”,再求“?”的算术平方根.由于,4的算术平方根是2,故答案选B.二、填空题4.一个面积为0.64m的正方形桌面,它的边长是.考查目的:本题考查运用算术平方根的概念解决问题.答案:0.8m.解析:因为正方形的面积为边长的平方,所以边长是面积的算术平方根,故边长为.5.算术平方根等于它的相反数的数是______.考查目的:本题考查算术平方根的性质.答案:0.解析:因为算术平方根一定是非负数(0和正数),所以算术平方根等于它的相反数的数是一定是非正数(0和负数).既是非负数,又是非正数的数只有0,故算术平方根等于它相反数的数是0.6.请你观察思考下列计算过程:因为,所以;同样:因为,所以;…,由此猜想=__________.考查目的:本题考查运用算术平方根概念探究规律.答案:111111111.解析:观察过程:“因为,所以;同样:因为,所以;…”可发现:算术平方根全由1组成,1的个数与被开方数的中间的数字相同.由此猜想=111111111.三、解答题7.“欲穷千里目,更上一层楼,”说的是登得高看得远,如图,若观测点的高度为,观测者视线能达到的最远距离为,则=,其中是地球半径(通常取6400km).小丽站在海边一块岩石上,眼睛离海平面的高度为20m,她观测到远处一艘船刚露出海平面,求此时的值.考查目的:本题考查算术平方根的应用.答案:16km.解析:根据题意,将,代入=,得=16(km).8.(1)计算:①,②,③,④;(2)观察你计算的结果,用你发现的规律直接写出下面式子的值:.考查目的:本题考查算术平方根的求法以及分析结果发现规律的能力.答案:(1)①1,②3,③6,④10;(2)406.解析:(1)根据算术平方根的求法,可得:①,②,③,④;(2)分析①②③④的结果,可发现:①=1,②=3=1+2,③=6=1+2+3,④=10=1+2+3+4.所以=1+2+3+4+…+28=406.《平方根》同步测试(第2课时)一、选择题1.估计的值在( ).A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间考查目的:本题考查用有理数估计一个带算术平方根符号的(无理)数的大致范围.答案:B.解析:解题的关键是找出10在哪两个连续整数的平方之间.因为,,所以3<<4,故在3与4之间.答案选B.2.是的( ).A.10倍B.100倍C.1000倍 D.10000倍考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律的应用.答案:A.解析:根据被开方数的变化与算术平方根的变化之间的规律“被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动位(为正整数)”解答.因为110是1.1的小数点向右移动2位,所以的小数点相应的向右移动1位,就得到的值,即是的10倍.3.下列关于的说法错误的是( ).A.1<<2 B.1.7<<1.8 C. D.是一个无限不循环小数考查目的:本题考查无限不循环小数的概念以及用有理数估计无理数的大小.答案:C.解析:因为,,所以1<<2,即选项A正确;因为,,所以1.7<<1.8,即选项B正确;因为是一个无限不循环小数,而1.732是一个有限小数,所以选项C错误,选项D正确.故答案选C.二、填空题4.若将边长为1的五个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图1中剪开的斜线的长是_______.考查目的:本题考查运用算术平方根解决问题.答案:.解析:由于每个小正方形面积为1,所以图1的面积为5.剪开后拼成图2的正方形的面积也是5,边长是.因为图1中剪开的斜线的长就是图2正方形的边长,所以图1中剪开的斜线的长是.5.已知,则约是_______.考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律,以及算术平方根的符号表示.答案:0.0735.解析:由于被开方数0.005403是由54.03小数点向左移动四位得到的,则0.005403的算术平方根就是54.03的算术平方根的小数点向左移动两位得到,即.故答案选B.6.已知,为两个连续整数,且<<,则.考查目的:本题考查用有理数估计一个(带算术平方根符号的)无理数的大致范围.答案:5.解析:因为,,所以2<<3,对比已知条件,可得,,所以.三、解答题7.根据下表回答下列问题:28.028.128.228.328.428.528.628.728.8784.00789.61795.24800.89806.56812.25817.96823.69829.44(1)795.24的算术平方根是;(2)≈;(3)在哪两个数之间?考查目的:本题考查算术平方根的概念,以及用文字语言、符号语言表示算术平方根的能力和估算能力.答案:(1)28.2;(2)28.7;(3)28.4与28.5之间.解析:可根据算术平方根的定义解答,但需要一定的估算能力.(1)从表中可直接看出795.24的算术平方根是28.2;(2)表示823.7的算术平方根,表中平方数最接近823.7数是823.69,而,所以≈28.7;(3)因为 806.56<810<812.25,所以28.4<<28.5.8.某农场有一块长30米,宽20米的场地,要在这块场地上建一个正方形鱼池,使它的面积为场地面积的一半,问能否建成?若能建成,请你估计鱼池的边长为多少?(精确到0.1米)考查目的:本题考查估计算术平方根的大小的实际应用.答案:能,约17.3米.解析:设鱼池的边长为米,则,,<20,故能建成.因为,,所以17.3<<17.4,且与17.3更接近,所以可以估计鱼池的边长为17.3米.《平方根》同步测试(第3课时)一、选择题1.“16的平方根是±4”用数学式子表示正确的是( ).A.=±4 B.±=±4 C.=4 D.- =-4考查目的:本题考查平方根的符号表示.答案:B.解析:“16的平方根”用符号表示是“”,因此“16的平方根是±4”用符号表示是“”.故答案选B.2.下列命题中,正确的个数有( ).①=±3;②2的平方根是4;③的平方根是±1.A.0个 B.1个 C.2个 D.3个考查目的:本题考查平方根的概念,以及平方根与算术平方根的区别.答案:B.解析:因为,所以①错误;因为2的平方根是,所以②错误;因为=1,1的平方根是±1,所以③正确,故答案选B.3.如果一个正数的平方根为和,则这个正数为( ).A.25 B.36 C.49 D.64考查目的:本题考查平方根的定义以及相反数的概念.答案:C.解析:由平方根的定义可知,和是一对相反数,即,解这个方程得.当时,,,所以这个正数为.故答案选C.二、填空题4.已知=,则20.14的平方根为__________(用含的代数式表示).考查目的:本题考查平方根与算术平方根之间的区别,以及被开方数的变化与算术平方根的变化之间的规律.答案:.解析:因为20.14是2014的小数点向右移动2位得到的,所以应由小数点向右移动1位得到.根据可得,所以20.13的平方根为.5.如果的平方根等于±2,那么=______.考查目的:本题考查平方根与算术平方根的概念以及它们之间的区别.答案:16.解析:根据平方根的定义,可知,4的平方根等于±2,所以;再根据算术平方根的定义,可知,算术平方根等于4的数是16.故答案应填16.6.若和是数的平方根,则=______.考查目的:本题考查平方根概念的运用.答案:256或576.解析:本题没有说明和是否为数的不同的平方根,所以有两种情况.当+=0时,解得,所以,,所以;当=时,解得,则,故答案为256或576.(注意本题与“数的平方根是和”的区别)三、解答题7.如图所示是计算机程序计算,(1)若开始输入,则最后输出= ;(2)若输出的值为22,则输入的值= .考查目的:本题考查平方运算与开平方运算是互逆运算.答案:(1)-2;(2)±3.解析:(1);(2)根据题意,可得,整理得,.8.已知正数的两个平方根分别是、.请计算代数式的值.考查目的:本题考查平方根的概念和性质.答案:0.解析:由平方根的性质:正数有两个平方根,它们互为相反数.可得;由平方根的概念和性质,可得,所以.。

人教版七年级数学下册6.1平方根典型例题选讲

人教版七年级数学下册6.1平方根典型例题选讲

6.1平方根典型例题选讲例1说出一个正数的算术平方根与平方根的区别与联系.解:(1) 一个正数的平方根有两个,这两个平方根互为相反数,其中正的平方根叫做算术平方根.(2) 一个数的算术平方根与平方根的平方都等于这个数.例2如图,把12个边长为1cm的正方形拼在一起.F।~~~4 B(1)算出A点到B、C、D、E、F之间的长度.(2)以图中A、B、C、D、E、F中的三个点为顶点的三角形中有没有等腰三角形?如果有写出这些三角形,并说明它们为什么是等腰三角形. ”分析:利用勾股定理可以算出A点与C、D、E、F各点的距离.(2)找到某一点到另外两个点的距离相等,就可以确定由这三个点为顶点的三角形是等腰三角形.解:(1) AB 3cm. AC :4212^17 cm.AD .. 4222 2 0 4 5 2 5 cm.AE v,4232 V25 5 cm.AF 222 32 7T3 cm.(2)图中CEF, BEF是等腰三角形,因为EC EF 2cm,因此CEF是等腰三角形.又因为BE BF J3212版cm,因此BEF是等腰三角形.例3 在直角三角形ABC中,a、b是两条直角边,c为斜边,若a 9.23,b 13.46, 求c的长(精确到0. 01) .分析:根据勾月£定理a2 b2 c2,代入相关的数据,利用求平方根的方法可求出c 的化解:a2 b2 c2 ,且 a 9.23,b 13.46,•• c Ja2b259.232 13.462J266.3645 16.32.例4求下列各数的平方根., 、、22(1)9 (2) 3—(3) 0. 8149解:(1) V ( 3)2 9••.9的平方根是 3,即 J9 3./C、22 169 13 2 169(2): 3一——,(一)2 ——, 49 49 7 49「•理的平方根是史,即/ -. 49 7 . 49 7(3)., ( 0.9)2 0.81・•.0. 81 的平方根是0.9,即 J081 0.9.说明:①命题目的:给出一个正数,会求出平方根.②解题关键:一个正数有两个平方根并互为相反数.③错解剖析:容易犯漏掉负的平方根的错误.例5求下列各数的平方根和算术平方根.(1) 0.0064 (2) 2—(3) 1 (—)2 (4) ( 7)249 13解答:(1)因为(0.08)2 0.0064,所以0.0064的平方根是0.08算术平方根是0.08.(2)因为2义100而(!0)210°所以2工的平方根是10,它的算49 49 7 4949 7术平方根是—.7122 169 144 25 ㈤ / 5、2 25 12、2 钻w.(3)因为1 (一)2------- 2一——,而(一)2——,所以1 (一)2的平万13 132 169 13 169 13根是-,它的算术平方根是 -. 13 13(4)因为(7)2 49,而(7)2 49,所以(7)2的平方根是7,它的算术平方根是7. 2 / 7说明:本题考查求平方根和求算术平方根的方法.因为一个正数的平方根有两个,不要遗漏负的平方根.当被开方数是带分数时,应把带分数化为假分数,然后再求平方根,当被开方数是一个数字算式时,要先算出这算式的值,再求它的平方根,不这样做,容易造成错误.例如,说(7)2 平方根是7,就错了.例6求下列各式中的x:,.、 2 2(1)X 289 0 (2) (x 1) 81 .分析:根据平方根的定义,或x2 a2,则x 任(a 0),其中(2)中(x 1)看成一个整体,先求出(x 1)的值,再求x的值.解答:(1) ; x2 289 0,即 x2 289 .x ^/289 17 .(2)•• (x 1)2 81 ,「• x 1 两9 ,当x 1 9时,x 8;当x 1 9时,x 10.例7 已知25x2 144 0 ,且x是正数,求代数式2^5x 13的值.分析:只要求出x的值,代入代数式2j5T73就可以了,关键是解已知方程.144 12 12 解答 1:由 25x2 144 0 得 x2—, •. x 上,又一x 0, .. x —.25 5 5当 x 12时,2 5x 13 2.5 12 13 2 - 25 10.5 . 5解答 2:由 25x2 144 0,得 25x2 144 ,即(5x)2 144,. - 5x 12 .把5x 12代入 2A/5X 13,得 2"'5x 13 2,2 13 2V25 10.例8 如果& 1 j y—3 6―y―z 0,求x, y, z的值.分析:已知条件是含三个未知数的等式,一般很难求出未知数的值,但注意到算术平方根非负这一条件可解.解答: ••• 0,,y 飞 0,%'x y z 0x 1 y 3 . x y z 0•, x 1 y 3 x y z 0x 1 0;应有 y 3 0x y z 0,x1解得y 3z 2. 说明:求解本题的关键抓住了算术平方根非负这一隐含条件, 如果若干个非 负数的和为零,则每个非负数都必须为零.例9选择题:下列命题中真命的个数是(). (4) V ( 3)2的算术平方根是 3; (6) 0的平方根是0, 0没有算术平方根; (D) 4 分析:判断上述命题的真假,要依靠各自本身的定义.(1) (0.2)2 0.04 0.40.2不是0.4的算术平方根.故(1)是假命题.⑵题中嘏是算术平方根,其结果是唯一的,不可能是两个值,所以⑵也是假命题.(3)题中22 4,由平方根性质:负数没有平方根. 所以(3)也是假 命题.(1) 0.4 0.2;(3) 22的平方根是2;7 24(5) 7是124的平方根;5 25(7) 1的算术平方根是1 .2 4(A) 1 (B) 2 (C) 3 3 -;(4)中的3)2的算术平方根应是正数,而3是个负数,不符合算术平方根 的定义. 故(4)也是假命题.7 249 24 (一) —1 — ,5 25 2524 、 7124的平方根是7 25 5(6) 0的平方根0就是0的算术平方根,故(6)题也不正确.⑺求2的算术平方根,应是对央行开方运算,而非平方运算.故此命 题也不是真命题.解答:应选(A )说明:平方根、算术平方根是非常重要的概念.其共同点:平方根和算术平方根都是对非负数的开方运算, 0的平方根和算 术平方根都只有一个0;其不同点是:一个正数的平方根有两个,两算术平方根 只有一个;它们的联系是:算术平方根是平方根中的正的平方根.例10如果一个数的平方根是a 3与2a 15,那么这个数是多少?分析:首先我们观察题目中给出的是一个正数的两个平方根, 根据平方根的 性质可知它们互为相反数,其和为 0.解答:因为一个正数的两个平方根互为相反数,所以 (a 3) (2a 15) 0, 解得a 4,当a 4时,a 3 7 ,即两个平方根分别为7和7 ,故原数为49 说明:关键抓住一个正数的两个平方根的性质,转化为求方程的解.典型例题:用计算器开平(立)方例1 (1)求加4的近似值(保留五个有效数字).(2)求62483的平方根(精确到0.1).一 5 ............ .. .........(3)求12-的平方根(保留三个有效数字).9解:(1)按键 2 4W ,显示:4.898979486, ••・疝 4.8990.(5) 此为真命题.(2)按键6 2 4 8 3 应,显示:249.9659977,「• 62483 的平方根是^250.0.(3)按键5 Qg 国1 2日叵],显示:3.543381938, A 12-的平方根是 B54. 9 说明:(1)计算器显示的是一个非负数的算术平方根, 求一个非负数的平方根时,只要在算术平方根前加 “野即可.(2)通常求一个分数的平方根时,要先把这 个分数化成小数,化小数的方法除了例题(3)中介绍的方法外,还可以用如下 按键法:1 2田5非日所得的结果相同.例2 (1)求241的立方根(保留三个有效数字);(2)求—72.4的立方根(保留三个有效数字).解:(1)按键 2 4 1 INV 国X ,显示6.223084253「• 241的立方根为6.22.(2)按键7 2啊|+ / —| 丽 国土 显示—4.167857437,「• —72.4的立方根 为—4.17.例3用计算器求4的平方根.,4= 2说明:要熟练掌握计算器的用法.例4用计算器求、目456 (结果保留4个有效数字)解:解:用计算器求 V14的步骤如下:..3.456 1.859说明:①命题目的:考查用计算器求一个数的平方根.②解题关键:正确使用第二功能键f2ndF-③错题剖析:a.把4的平方根写成2,或错写成2.b.不同的计算器,显示器所能显示的数的数位不尽相同,一般地最多能显示10个位数,如果题目没有给出特别要求,计算结果只保留4个有效数字.例5用计算器求J0.001045 ,按键的顺序是.分析:本题要求用计算器求一个数的平方根,主要是注意按键的步骤.解答:按键的步骤是0.001045、[2F|、困、回、目.说明:利用按键上方的功能时需要先按第二功能键“2F” .。

(完整版)《平方根》典型例题及练习

(完整版)《平方根》典型例题及练习

平方根练习题1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根是 ;(3) 没有平方根.3、重要公式: (1)=2)(a (2){==a a 24、平方表:5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.6.一个正方体的棱长扩大3倍,则它的体积扩大_____________.7.若一个数的立方根等于数的算术平方根,则这个数是_____________.8. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________.例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( )A 、6B 、6±C 、6 D 、 6±例3、下列各式中,哪些有意义? (1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a强化训练 一、选择题1.下列说法中正确的是( ) A .9的平方根是3 B422. 4的平方的倒数的算术平方根是( ) A .4 B .18C .-14D .143.下列结论正确的是( ) A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛-- 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个6.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±7.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 8.36的平方根是( )A 、6B 、6±C 、 6D 、 6±9.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数10.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-11.算术平方根等于它本身的数是( ) A 、 1和0 B 、0 C 、1 D 、 1±和0 12.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±13.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a- C .2a - D .3a14.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )A .1± B. 4 C. 3或5 D. 515.若9,422==b a ,且0<ab ,则b a -的值为 ( ) A.2- B. 5± C. 5 D. 5- 二、填空题: 1.2)8(-= , 2)8(= 。

七年级下册数学同步练习题库:平方根(计算题:一般)

七年级下册数学同步练习题库:平方根(计算题:一般)

平方根(计算题:一般)1、如果9的算术平方根是a,b的绝对值是4,求a-b的值.2、求下列各数的平方根.(1)6.25;(2);(3);(4)(-2)4.3、我们已经学过完全平方公式,知道所有的非负数都可以看作是一个数的平方,如,那么,我们可以利用这种思想方法和完全平方公式来计算下面的题:例:求的算术平方根.解:∴的算术平方根是.你看明白了吗?请根据上面的方法化简:(3)4、计算:(1)(2)(3)+-(4)5、计算:﹣22++(3﹣π)0﹣|﹣3|6、求下列各式中的x的值,(1)(2)(3)7、计算:(1)()2+﹣(2)++﹣|1﹣|+.8、求下列各式的值(1)﹣﹣(2)﹣12+(﹣2)3×.9、(1)++(2)(﹣)2﹣|1﹣|+﹣5(3)求x值:(3x+1)2=16(4)(x﹣2)3﹣1=﹣28.10、求下列式中的x的值.3(2x+1)2=27.11、计算:|﹣3|﹣(5﹣π)0+.12、计算:(1)(2)13、(1)计算:|﹣3|+(π+1)0﹣;(2)已知:(x+1)2=16,求x.14、计算:(1);(2);(3);(4);(5);(6)(结果保留3个有效数字)15、(2015秋•宝应县月考)计算:(1)()2+﹣(π﹣3.14)0+;(2)(2x﹣1)2﹣1=8.16、(1)计算:;(2)求中x的值.(3)÷(4)17、计算:(1);(2)解方程:9x2-121=0.18、计算(1);(2);(3);(4).19、计算:(﹣1)2015+﹣20150﹣(﹣)﹣2.20、计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.21、(7分)计算:.22、计算:23、若,求2x+5的算术平方根.24、如果,求x+y的值.25、求下列各式中x的值.(1)(x+1)2=49;(2)25x2-64=0(x<0).26、求下列各数的平方根.(1)6.25;(2);(3);(4)(-2)4.27、如果,求x+y的值.28、已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求ab的值.29、已知3x-4是25的算术平方根,求x的值.30、求下列各数的算术平方根:(1)900;(2)1;(3);31、若(a-1)2+|b-9|=0,求的平方根.32、如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的小正方形.(1)用、、表示纸片剩余部分的面积;(2)当,,且剪去部分的面积等于剩余部分的面积时,求正方形的边长的值.33、计算:34、已知,则的整数部分是多少?如果设的小数部分为b,那么b是多少?35、一个正数a的平方根是3x-4与2-x,则a是多少?36、物体从高处自由下落,下落的高度h与下落时间t之间的关系可用公式表示,其中g=10米/秒2,若物体下落的高度是180米,则下落的时间是多少秒?37、用计算器计算,,,.(1)根据计算结果猜想(填“>”“<”或“=”);(2)由此你可发现什么规律?把你所发现的规律用含n的式子(n为大于1的整数)表示出来.38、用计算器计算:≈________.(结果保留三个有效数字)39、若△ABC的三边长分别是a、b、c,且a与b满足,求c的取值范围.40、求下列各数的算术平方根:(1)900;(2)1;(3);41、求下列各式中x的值:(1)169x2=100;(2)x2-3=0;(3)(x+1)2=81.42、如果a为正整数,为整数,求a可能的所有取值.43、若,求2x+5的算术平方根.44、若(a-1)2+|b-9|=0,求的平方根.45、计算:(10分)(1)已知:(x+2)2=25,求x;(2)计算:46、计算:参考答案1、72、±2.5,,,±43、(1)(2)(3)4、(1)-1.6 (2)±15 (3) 1 (4)5、-46、(1)、x=;(2)、x=1;(3)、x=8或x=-47、﹣10;﹣2+.8、(1)原式=0;(2)原式=﹣39、(1)原式=9﹣3+=6;(2)原式=2﹣+1+2﹣5=5﹣6;(3)x=1或x=﹣;(4)x=﹣1.10、x=1或x=-2.11、712、(1)、=7,=-7;(2)、5.13、(1)4;(2)x=3或x=﹣5.14、(1);(2)-17;(3)-9;(4)2;(5)-36;(6)37.9.15、(1)0;(2)x1=2,x2=﹣1.16、(1)3;(2)x= 8或-2;(3);(4).17、(1)-1;(2).18、(1);(2);(3);(4).19、﹣4.20、原式=2.21、﹣1.22、23、324、1325、(1)6或-8(2)26、(1)±2.5(2)(3)(4)±427、1328、1029、330、(1)30(2)1(3)31、±332、(1);(2)33、634、35、136、637、(1)> (2)(n为大于1的整数).38、0.46439、1<c<340、(1)30,(2)1,(3)41、(1).(2).(3) x=8或x=-1042、a所有可能取的值为5、10、13、14.43、44、±345、(1)3,-7 (2)46、.【解析】1、因为9的算术平方根是3,所以a=3.因为|b|=4,所以b=4或-4.所以当a=3,b=4时,a-b=-1;当a=3,b=-4时,a-b=7.2、(1)因为(±2.5)2=6.25,所以6.25的平方根是±2.5.(2)因为,所以的平方根是,即.(3)因为,所以的平方根是.(4)因为(±4)2=(-2)4,所以(-2)4的平方根是±4.3、试题分析:仿照例题直接利用完全平方公式开平方得出即可.利用中所求代入进而得出答案.仿照例题分别化简各二次根式,进而求出即可.试题解析:4、试题分析:根据平方根和立方根的意义解方程即可.试题解析:(1)=(2)=(3)=-3+3+1=1(4)==-3-++=考点:立方根与平方根5、试题分析:分别进行乘方、二次根式、零指数幂和绝对值的化简等运算,然后合并求解.试题解析:﹣22++(3﹣π)0﹣|﹣3|=﹣4+2+1﹣3=﹣4考点:实数的运算6、试题分析:(1)、首先根据等式的性质得出,然后根据平方根的性质得出x的值;(2)、首先根据等式的性质得出的值,然后根据立方根的计算法则得出答案;(3)、首先根据题意得出,然后根据平方根的性质得出x-2=6,从而求出x的值.试题解析:(1)、解得:x=(2)、=8 x+1=2 解得:x=1(3)、 x-2= 6 解得:x=8或x=-4考点:解方程7、试题分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用立方根定义,以及绝对值的代数意义化简,合并即可得到结果.解:(1)原式=9﹣4﹣15=﹣10;(2)原式=﹣1﹣2+﹣+1+=﹣2+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8、试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.解:(1)原式=3﹣6+3=0;(2)原式=﹣1﹣1﹣1=﹣3.9、试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用二次根式性质,平方根定义,绝对值的代数意义化简,合并即可得到结果;(3)方程利用平方根定义开方即可求出x的值;(4)方程整理后,利用立方根定义开立方即可求出x的值.解:(1)原式=9﹣3+=6;(2)原式=2﹣+1+2﹣5=5﹣6;(3)开方得:3x+1=4或3x+1=﹣4,解得:x=1或x=﹣;(4)方程整理得:(x﹣2)3=﹣27,开立方得:x﹣2=﹣3,解得:x=﹣1.10、试题分析:先两边都除以3,再根据平方根的定义进行求解.试题解析:(2x+1)2="9"2x+1=±3.2x+1=3或2x+1=-3x=1或x=-2.考点:平方根.11、试题分析:首先根据绝对值、0次幂以及二次根式的计算法则求出各式的值,然后进行求和. 试题解析:原式=3﹣1+5=7.考点:有理数的计算12、试题分析:(1)、利用直接开平方法进行求解;(2)、首先根据算术平方根以及立方根的计算法则求出各式的值,然后进行有理数的加减法计算.试题解析:(1)、=49 解得:=7,=-7(2)、原式=3-(-4)-2=5.考点:(1)、解一元二次方程;(2)、根式的计算.13、试题分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用立方根定义计算即可得到结果;(2)方程利用平方根定义开方即可求出x的值.解:(1)原式=3+1﹣2+2=4;(2)开方得:x+1=4或x+1=﹣4,解得:x=3或x=﹣5.考点:实数的运算;平方根;零指数幂.14、试题分析:(1)因为的平方等于0.09,据此求值;(2)先计算根号下的运算,然后根据平方根的定义求值;(3)因为-9的立方等于-729,据此求值;(4),根据去绝对值的法则化去代数式中的绝对值符号,然后进行合并;(5)首先计算乘方和开方部分,然后按照有理数的运算法则进行计算;(6)先应用乘法分配律去掉小括号,再化去中括号,进行合并,然后取的近似值,得出结果.试题解析:(1);(2);(3);(4)=2;(5)==-32-1-3=-36;(6)==37.9.考点:实数的运算.15、试题分析:(1)分别根据数的乘方及开方法则、0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.(2)直接利用开方法求出x的值即可.解:(1)原式=2+3﹣1﹣4=0;(2)原方程可化为(2x﹣1)2=9,两边开方得,2x﹣1=±3,解得x1=2,x2=﹣1.考点:实数的运算;平方根;零指数幂.16、试题分析:(1)由零指数幂和负整数指数幂的意义得到原式=4﹣2+1,然后进行加减运算;(2)先变形得到,然后由平方根的定义求解;(3)先由二次根式的乘除法法则进行计算,然后利用二次根式的性质化简后合并即可;(4)先把变成,再由,即可得到结论.试题解析:(1)原式=4﹣2+1=3;(2),∴x-3=±5,∴x= 8或-2;(3)原式==;(4)原式====.考点:1.实数的运算;2.平方根;3.零指数幂;4.负整数指数幂;5.二次根式的混合运算.17、试题分析:(1)先根据平方根和立方根的定义、去绝对值的法则、零指数幂法则对原式进行化简,再进行合并;(2)通过移项得到的值,再通过开平方得到x的值.试题解析:解:(1)原式=3+-1-2-1=-1;(2)移项,得9x2=121,,所以x=.考点:实数的运算;开平方的应用.18、试题分析:(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开方即可求出解;(3)利用算术平方根和立方根的定义开方,再进行加减计算,即可解答;(4)先分别求出立方根和算术平方根,再进行有理数的计算.试题解析:解:(1),,开方得:;(2)方程变形得:,开立方得:x﹣3=3,解得:x=6;(3)原式==;(4)原式==.考点:1.立方根;2.平方根.19、试题分析:首先按照顺序进行计算,然后熟练掌握乘方运算法则、立方根化简、零指数幂、负整数指数幂运算法则是正确解题的关键.试题解析:-1的奇数次方是-1,8的立方根是2,任何不是0的数的0次幂都等于1,∴原式=﹣1+2﹣1﹣4=-4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.20、试题分析:分别利用乘方的意义,二次根式性质化简,零指数幂,负整数指数幂,最立方根定义计算出各项的结果后在合并即可.试题解析:解:原式=﹣1+3﹣2+1﹣3+4=2.考点:绝对值;零指数幂;负整数指数幂;立方根;实数的运算.21、试题分析:利用负整数指数幂、零指数幂、二次根式性质、特殊角的三角函数值分别进行计算即可.试题解析:原式=﹣3﹣4+5+1=﹣1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.22、试题分析:原式= =.考点:实数的计算23、∵,∴x+2=4,∴x=2,∴2x+5=9.∴.24、由题意可知解得x=3.把x=3代入原式,得y=10,所以x+y=3+10=13.25、(1)∵(x+1)2=49,∴x+1=±7,∴x=6或x=-8.(2)∵25x2-64=0,∴25x2=64,∴或(不合题意舍去).∴.26、(1)因为(±2.5)2=6.25,所以6.25的平方根是±2.5.(2)因为,所以的平方根是,即.(3)因为,所以的平方根是.(4)因为(±4)2=(-2)4,所以(-2)4的平方根是±4.27、由题意可知解得x=3.把x=3代入原式,得y=10,所以x+y=3+10=13.28、由题意知2a-1=9,解得a=5.3a+b-1=16,解得b=2,所以ab=5×2=10.29、因为25的算术平方根是5,所以3x-4=5,解得x=3.所以x的值为3.30、(1)因为302=900,所以900的算术平方根是30,即.(2)因为12=1,所以1的算术平方根是1,即.(3)因为,所以的算术平方根是,即.31、由题意得a=1,b=9,所以.因为(±3)2=9,所以的平方根是±3.32、(1)根据题意可知纸片剩余部分的面积=矩形的面积-四个小正方形的面积;(2)根据剪去部分的面积等于剩余部分的面积列方程,然后解方程即可.试题解析:(1).(2)依题意.即:∵x取正数答:正方形的边长是.点睛:本题主要考查用字母表示数或式子的能力. 解题的关健在于要把握好题中的数量关系:纸片剩余部分的面积=矩形纸片面积-4小正方形的面积,即可得出第(1)的结果,在第(2)问中,利用“剪去部分的面积=剩余部分的面积”列方程,并用平方根的定义进行求解,同时注意答案要符合题意.33、试题分析:=3,=4,任何不是零的数的零次幂等于1,=2.试题解析:原式=3+4+1-2=6.考点:无理数的计算.34、由,知的整数部分是5,小数部分.35、根据题意,得3x-4+2-x=0,∴x=1,∴3x-4=3×1-4=-1,∴a=(3x-4)2=1.36、由题意知,所以t2=36,解得t=6.答:下落的时间是6秒.37、(1)>.(2)(n为大于1的整数).(详解:借助计算器可知,根据这一结果,猜想.进而推断出一般结论)38、用计算器计算,所以.39、∵,∴a=1,b=2.又2-1<c<2+1,∴1<c<3.40、(1)因为302=900,所以900的算术平方根是30,即.(2)因为12=1,所以1的算术平方根是1,即.(3)因为,所以的算术平方根是,即.41、(1)∵169x2=100,∴,∴,∴.(2)∵x2-3=0,∴x2=3,∴.(3)∵(x+1)2=81,∴,∴x+1=±9,∴x=8或x=-10.42、∵,且为整数,a为正整数,∴或1或2或3.∴当a=14时,;当a=13时,;当a=10时,;当a=5时,.故a所有可能取的值为5、10、13、14.43、∵,∴x+2=4,∴x=2,∴2x+5=9.∴.44、由题意得a=1,b=9,所以.因为(±3)2=9,所以的平方根是±3.45、试题分析:(1)根据平方根的意义可先求出x+2的值,然后可求出x的值;(2)先将各根式化简,然后进行有理数的加减即可.试题解析:(1)因为(x+2)2=25,所以,所以;(2)=4-2+=.考点:1.平方根;2.二次根式;3.三次根式.46、试题分析:根据负整数指数幂、二次根式、零次幂、特殊角的三角函数值的意义进行计算即可求出代数式的值.试题解析:考点:1.负整数指数幂;2.二次根式;3.零次幂;4.特殊角的三角函数值.。

(完整word)七年级下册平方根练习题及答案

(完整word)七年级下册平方根练习题及答案
求值质=.
讨算・
29.半习代中较大前是■
—'30,th较两数的犬牛;V271
31.若怛十目卜小-2尸=0・则—=
32.2-75的相反数是.
33.忑-】的相反救是
引.辺的绝对值是*-1的倒数是S忑的
相反数是’
35. #^[)^1477 -1.215, J1477-3.843,那&70 01477-
迄 若习莎=□孔 癒?=2.飯乩脅琢=6一190・贝慣层丽顽工.
-/U-..::「.・「;;.1:I.」口二[
A.0.0140;B.0.1410;C.4.459;
71.己知7232.5625= 15.25,则^2325625=
A.1.525;B.15.25;C.152.5;D.1525.
72.=0 4358,那么二[]
A.4858;B.485.8;C.48.58;D.4.858.
A.1;B.是一个无理数;C.3;D.无法确定.
68.在下列条件中不能保证扳是实数的星[]
A.n为正整数,a为实数;B.n为正整数,a为非负数;C. n为奇数,a为实数;D.n为偶数,a为非负数.
69.下列命题中,真命题是[]A.绝对值最小的实数不存在;B.无理数在数轴上的对应点
不存在;
C.与本身的平方根相等的实数不存在;D•最大的负数不存在.
(1);
]
D•实数.
[
D.不存在这样的数.
[ ]
D.实数集合.
两个无理数的积一定是无理数;
[ ]
D.只有(3).
57.
-
:■--数是
A.4;
B.3;C.6;
58.若=1556,血=1536,则惡为[]
A.2360;B.236C

人教版数学七年级下册--6.1 平方根 作业

人教版数学七年级下册--6.1 平方根 作业

第13章 实数第1节 平方根第一课时 平方根(一)名师导航:本课重点是算术平方根的概念.难点是根据算术平方根的概念正确求出非负数的算术平方根.具体来说,理解算术平方根的概念,会用根号表示正数的算术平方根,并知道算术平方根的非负性,还有理解开方与乘方互为逆运算的关系,会用平运算求某些非负数的算术平方根.典例精析:【例1】(2007甘肃陇南)计算:2-= ( )A.5 B.3 C.-3 D.-13=,代入计算即可.【解析】原式=2-3=-1,故选D .【规律总结】本题考查了算术平方根的概念,并代入运算,属于基础题.【例22)=0,求a、b的值.0,(a+b-22)≥0知,这两个式子都为0,于是构建方程组求解.0,(a+b-22)≥0知原等式可化为下面方程组20,20.a b a b --=⎧⎨+-=⎩解得a =2,b=0. 【规律总结】本题是典型的非负数性质的应用,同学们注意积累几种非负数的形式:算术平方根、平方数、绝对值等.跟踪训练:1.如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 就叫做a 的_____________,记做________,读作“根号a ”.2.___________________的算术平方根是它本身.3.(1)100的算术平方根是________ (2)0.36的算术平方根是_________(3)21()3-的算术平方根是________ (4_________ (5) 9的算术平方根是___________ (6) 3的算术平方根是___________(7)14的算术平方根是___________ (8)12的算术平方根是___________ 4.直接写出下列各式的值(1_________;(2=_________;(3=_________;(4_________;(5_________;(6=_________;(7_________;(8)=_________;(9=_________; 5.9116的算术平方根是__________________ 6.下列说法中正确的是( )A .5是25的算术平方根B .±4是16的算术平方根C .-6是2(6)-的算术平方根 D .0.01是0.1的算术平方根7.2的算术平方根是 ( )A .16B .±16C .2D .48.一个数只要存在算术平方根,那么这个数( )A .只有一个并且是正数B .一定小于这个数C .必是一个非负数D .不可能等于这个数9.在给出的下列说法中(1)2(2)±的算术平方根是2±; (2)2(2)±的算术平方根是2;(3)2(2)±的算术平方根是-2; (4)2(2)±的算术平方根是2±;正确的有 ( )A .1个B .2个C .3个D .4个10. 直接写出下列各式的值.(10=,则x =_______; (21=,则x =_______;(32=,则x =_______; (42=,则x =_______;(58=,则x =______;(6x =,则x =_______;13.1第1课时参考答案:12.0,13.(1)10;(2)0.6;(3)13;(4)3;(5)3;(6;(7)12;(8 4.(1)4;(2)0.2;(3)4;(4)0.2;(5)12;(6)4;(7)5;(8)±163;(9)-75 5.546.A 7.D 8.C 9.B 10.(1)0;(2)1;(3)4;(4)2;(5)36;(6)3 第1节 平方根第二课时 平方根(二)名师导航:本课重点是会用计算器求一个数的算术平方根,理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律,能用夹值法求一个数的算术平方根的近似值,体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数.本课难点是夹值法及估计一个(无理)数的大小的思想.典例精析:【例1】小刚同学应用计算器探究算术平方根时发现: ;,……由此猜想_______ _.【思路点拨】观察已知等式,每个被开方数都是以最中间数字为轴的对称数字,并且最中间的“轴数字”是几,则根式的结果就是几个1排列而成的数字.【解析】由以上分析知应填111111111.【规律总结】本题是一道规律性问题,根据探究发现规律是解题关键.【例2】用计算器探索:已知按一定规律排列的一组数:1,如果从中选出若干个数,使它们的和大于3,那么至少要选______个数.【思路点拨】先用计算器计算可得,,,……观察结果可知,分母中的被开方数越大,其结果越小,因此应选排在前面的若干个数.【解析】通过计算可知:,而,故至少要选5个数.【规律总结】应用计算器计算出前面一些数的近似值来分析,发现从前面的数依次选取是解题的关键.跟踪训练:1. 用计算器求489.3结果为(保留四个有效数字)( )A .12.17B .±1.868C .1.868D .-1.8682和0.168的大小正确的是( )A=0.168 B >0.168 C <0.168 D .以上答案都不对 3.利用计算器求下列各式的值(结果保留四个有效数字)(1(24.(7.14132.25+)÷31.65≈__________.(保留四个有效数字)5≈__________,(保留四个有效数字)并用计算器验证.6. 对于18,利用计算器对它不断进行开平方运算,你发现了什么?7.求下列各数的算术平方根,保留四个有效数字,并探讨这些数的算术平方根有什么规律:(1)78000,780,7.8,0.00078; (2)0.00065,0.065,650,650008. 在一个半径为20cm 的圆形铁板上,欲截取一面积最大的正方形铁板作机器零用,求正方形的边长.(精确到0.1)9. 一个正方形的草坪面积为658平方米,问这个草坪的周长是多少米(精确到0.1m )13.1第2课时参考答案:1.C2.C3.(1)49(2)7.9624.2.965.8.0446.越来越接近17.(1)279.3,27.93,2.793,0.02793;(2)0.02550,0.2550,2.550,25.50,255.0 它们的规律:一个数扩大为原来的100倍,它的算术平方根就扩大为原来的10倍;一个数缩小为原来的1100,则它的算术平方根就缩小到原来的110. 8.28.39.25.65第1节 平方根第三课时 平方根(三)名师导航:本课的重点是平方根的概念和求数的平方根.要明确平方根和算术平方根的联系与区别,能用符号正确表示一个数的平方根,理解平方根运算和乘方运用之间的互逆关系.本课的难点是平方根和算术平方根的联系与区别:(1)具有包含关系:平方根包含算术平方根,算术平方根只是平方根中的一个;(2)存在条件相同:平方根与算术平方根都只有非负数(即正数和零)才有;(3)零的平方根和算术平方根都是0.典例精析:【例题】已知12-a 与5-a 是m 的平方根,求m 的值.【思路点拨】由平方根的概念,知12-a 与5-a 有两种可能的关系,一是相等,二是互为相反数.【解析】 解:本题有两种情况:⑴当512-=-a a 时,得4-=a912-=-a()8192=-=m ⑵当()()0512=-+-a a 时,2=a312=-a932==m故m 的值是81或9【规律总结】“m 的平方根是b a ,”与“b a ,是m 的平方根”这两种说法所表达的意义是不同的,前者隐含条件0=+b a ,而后者隐含条件0=+b a 或b a =两种情况.跟踪训练:1.如果2x a =,那么x 叫做a 的____________.2.一个正数a 的平方根有_______个,它们互为________;_____数没有平方根;____的平方根只有一个.3.1的平方根是_______,3的平方根是_______,2(5)-的平方根是___________.4.平方得9的数是________,9开平方得_________.5.若24x =,则x =_______;若4x =,则x =_______.6.12-是________的平方根,19的平方根是___________. 7.下列命题正确的是A .一个整数的平方根是它的算术平方根B .一个数的正的平方根是它的算术平方根C .一个非零数的正的平方根是它的算术平方根D .一个非负数的非负平方根是它的算术平方根8.36的平方根是___________9.求下列各式中的x(1)22510x -= (2)2221517x +=10. ,则2x+5的平方根是______.13.1第3课时参考答案:1.平方根 2.2,相反数,负,0 3.±1,±5 4.±3,3 5.±2,±4 6.14,±13 7.D 8 9.(1)15x =±,(2)±8 10.±3。

人教版七年级数学下册第六章第一节平方根习题(含答案) (45)

人教版七年级数学下册第六章第一节平方根习题(含答案)  (45)

人教版七年级数学下册第六章第一节平方根复习试题(含答案)先化简,再求值:()()222244324m n mn mn m n -+-+-,其中2|1|(2)0m n ++-=.【答案】2 22-m mn ;6.【解析】【分析】原式去括号合并得到最简结果,再根据非负性把m 与n 的值代入计算即可求出值.【详解】原式222244324m n mn mn m n =-+--+222m mn =-.∵2|1|(2)0m n ++-=,∴1m =-,2n =.原式246=+=.【点睛】此题考查整式的加减-化简求值,绝对值和平方根的非负性,熟练掌握运算法则是解本题的关键.92.已知2a-1的平方根是±1,3a+b-1的平方根是±4,c 的整数部分,求a+2b+c 的平方根。

【答案】±6【解析】先依据平方根的定义列出关于a 、b 的方程组求得a 、b 的值,的大小,可求得c 的值,即可求得a+2b+c 的值,最后求它的平方根即可.【详解】由题意得211,3116a a b -=+-=,则1,14a b ==49<<,即 78<<∴c=7∴6==±,故答案为:±6.【点睛】本题主要考查的是平方根的定义、估算无理数的大小,熟练掌握相关定义和方法是解题的关键.93.已知x 、y 都是实数,且2y =(1.(2)求x+4y 的平方根.【答案】(1,(2)3±【解析】【分析】(10,求出x ,进而求解.(2)题干要求x+4y 的平方根,根据二次根式被开方数大于等于0,求出x 和y 值代入即可求值.解:(1)已知x 、y 都是实数,且2y =,得到220,220,x x -≥-≥求得 1x =,回代求得y=2.(2)由(1)知x=1,y=2,有x+4y=1+8=9,则x+4y 的平方根为±3.【点睛】本题考查平方根的运算,结合被开方数大于等于0,进行分析求值,注意平方根为正负两种情况.94.求下列各式中x 的值(1)2160x -=(2)64x 3+27=0【答案】(1) 4,x =±(2) 34x =- 【解析】【分析】(1)利用直接开方法即可求解x 的平方根即可,注意正负性.(2)对27移项,并化3次项系数为1,对3次项开立方求立方根即可.【详解】解:(1)2160x -=,216x =,x =4x =±(2)64x 3+27=0,332736427,,.644x x x x -=-==-= 【点睛】本题考查实数的运算,对x 分别进行化系数为1以及开平方根开立方根即可.95.已知2x -的平方根是2±,27x y ++的立方根是3,求22x y +的平方根和立方根.【答案】平方根是10±【解析】【分析】根据平方根和立方根的定义,列出方程求出x 、y ,再求22xy +的平方根和立方根.【详解】 解:由题意得 x-2=42x+y+7=27⎧⎨⎩,解得68x y =⎧⎨=⎩所以2222=68=100++x y ,100的平方根是10±所以22x y +的平方根是10±.【点睛】本题考查平方根和立方根,熟练掌握定义,列出方程是关键.96.先化简再求值:()()23223232324xy y x y x y y xy y +---++-,其中()2230x y -++= 【答案】-9【解析】【分析】 先根据整式的运算法则,将原式进行合并同类项整理,再根据()2230x y -++=,可得x-2=0,y+3=0,从而可以得知x ,y 的值,代入原式解得即可.【详解】解:原式整理得:23223232326224xy y x y x y y xy y xy y =+-+---=+ ∵()2230x y -++=,2x -具有非负性,()23y +具有非负性, ∴x-2=0,y+3=0∴x=2,y=-3将其代入上式中得:()()2323318279⨯-+-=-=-【点睛】本题考查的是绝对值和乘方的非负性以及整式的合并同类项,根据绝对值和乘方的非负性求出x 、y 的值是解题的关键.97.已知||0a =,29c =,求c+(a-b )的值.【答案】4或-2【解析】【分析】根据绝对值和算术平方根的非负性求出a 、b 的值,再根据平方根的定义求出C,然后代入求值即可.【详解】解:由||0a =,可得a=0,b+1=0即a=0,b=-1又由29c =,则c=±3则c+(a-b )=±3+(0-(-1))=±3+1即结果为4或-2【点睛】本题考查了绝对值和算术平方根的非负性以及平方根的相关知识,初中阶段涉及到非负性的有偶次方、算术平方根、绝对值.98.已知2+a b(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.【答案】(1)23a b -的平方根为4±;(2)3x =±.【解析】【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:20a b +=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.99.已知1a -和52a -都是非负数m 的平方根,求m 的值。

(新人教版)数学七年级下册:6.1《平方根》练习题(含答案)

(新人教版)数学七年级下册:6.1《平方根》练习题(含答案)

6.1 平方根教学目标:掌握算术平方根定义,会求一个数的算术平方根。

一、选择题1.下列各式中无意义的是( )A .7B .7 C.7 D .7 22.1的算术平方根是()4A .1B .1C .1D .1168223. 下列运算正确的是()A .33B . 33 C . 93D .93二、填空题4. 若一个正方形的面积为13,则正方形的边长为 .5. 小明房间的面积为 10.8 米 2,房间地面恰好由 120 块 相同的正方形地砖铺成,每块地砖的边长是.6. 计算:⑴ 9 =⑵52⑶22⑷-42⑸(3) 2.=_______7.若下列各式有意义, 在后面的横线上写出 x 的取值范围: ⑴ x⑵ 5 x8.若 a 2b 3 0 ,则 a 2b.9.一个正方形的面积扩大为原来的4 倍,它的边长变为原来的 倍,面积扩大为原来的9 倍,它的边长变为原来的倍,面积扩大为原来的 n 倍,它的边长变为原来的倍 .10._______ 的算数平方根是它本身 . 三、解答题11.求下列各数的算术平方根。

⑴ 169 ⑵ 0.0256⑶124⑷222512. 要种一块面积为 615.44 m 2 的圆形草地以美化家庭,它的半径应是多少米?(π取 3.14 )6.1 平方根教学目标:掌握平方根的定义,区别于算数平方根,会求一个数的平方根。

一、选择题1.下列说法中不正确的是( )A.2是 2的平方根 B.2是 2的平方根C.2 的平方根是 2D.2的算术平方根是 22. 1的平方根是()4A.1B.1 C.1 D.1 168223.“4的平方根是2 ”,用数学式子可以表示为()2554 2 4 2 4 2 4 2A.5B.5C.5D.5252525254.下列各式中,正确的个数是( )①0.90.3 ② 174 ③ 32 的平方根是- 393④52的算术平方根是- 5⑤7 是113的平方根6 36A.1 个B.2 个C.3 个D.4个5. 若 a 是4 2 的平方根, b 的一个平方根是 2,则代数式 a + b 的值为()A.8B.0C.8或 0 D.4 或- 4二、填空题6. 如果某数的一个平方根是 -6 ,那么这个数为 ________.7. 如果正数 m 的平方根为 x1和x3 ,则 m 的值是.8. 16 的算术平方根是2,9 的平方根是 .9.若b 1 a a 1 4 ,则ab的平方根是.三、解答题10.求下列各式的值。

(完整版)初一下册数学平方根练习题(含答案)

(完整版)初一下册数学平方根练习题(含答案)

一、填空题平方根练习题姓名:班级:考号:1、已知m 的平方根是2a-9 和5a-12,则m 的值是.2、对于任意不相等的两个数a,b,定义一种运算※如下:a※b= ,如3※2=.那么12※4=.3、实数a 在数轴上的位置如图所示,化简:。

4、已知:,则x+y 的算术平方根为.二、选择题5、已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.5 6、若,,且,则的值为( )A.-1 或11 B.-1 或-11 C. 1 D.117、点P ,则点P 所在象限为( ).A.第一象限B. 第二象限C. 第三象限 D 第四象限.8、的平方根是A.9 B.C.D.39、一个正方形的面积是15,估计它的边长大小在()A.2 与3 之间B.3 与4 之间C.4 与5 之间D.5 与6 之间三、简答题10、已知的平方根是±3,的算术平方根是4,求的平方根11、如图,实数、在数轴上的位置,化简.12、如果一个正数m 的两个平方根分别是 2a-3 和a-9,求2m-2 的值.四、计算题13、已知与的小数部分分别是a、b,求ab 的值.14、设都是实数,且满足,求式子的算术平方根.15、参考答案一、填空题1、92、1/23、14、5二、选择题5、D6、 D7、D8、C9、B三、简答题10、…2分…..4分……6分结果.8 分11、解:由图可知: , ,∴. 2 分∴ 原式= 5 分= 6 分= .7 分12、∵一个正数的两个平方根分别是 2a-3 和a-9,∴(2a-3)+(a-9)=0,解得a= 4,∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;四、计算题13、解:因为,所以的小数部分是,的小数部分是14、解:由题意得,,解得,所以,所以的算术平方根为.15、原式=+2+4﹣4= ;。

(完整版)七年级数学《平方根》典型例题及练习

(完整版)七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。

初一下册数学平方根练习题(含答案)

初一下册数学平方根练习题(含答案)

平方根演习题姓名:_______________班级:_______________考号:_______________一.填空题1.已知m的平方根是2a-9和5a-12,则m的值是________.2.对于随意率性不相等的两个数a,b,界说一种运算※如下:a※b =,如3※2=.那么12※4= .3.实数a在数轴上的地位如图所示,化简:.4.已知:,则x+y的算术平方根为_____________.二.选择题5.已知:是整数,则知足前提的最小正整数为()A.2 B.3C .4D.56.若,,且,则的值为( )A.-1或11 B.-1或-11 C. 1 D.117.点P,则点P地点象限为( ).B. 第二象限C. 第三象限 D第四象限.8.的平方根是A.9 B. C. D.39.一个正方形的面积是15,估量它的边长大小在()A.2与3之间 B.3与4之间 C.4与5之间D.5与6之间三.简答题10. 已知的平方根是±3,的算术平方根是4,求的平方根11.如图,实数.在数轴上的地位,化简.12.假如一个正数m的两个平方根分离是2a-3和a-9,求2m-2的值.四.盘算题13.已知与的小数部分分离是a.b,求ab的值.14.设都是实数,且知足,求式子的算术平方根.15.参考答案一.填空题1.92.1/23.14.5二.选择题5.D6. D7.D8.C9.B三.简答题10.…2分…..4分……6分成果 .8分11.解:由图可知: ,,∴. 2分∴原式= 5分= 6分=.7分12.∵一个正数的两个平方根分离是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a= 4,∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;四.盘算题13.解:因为,所以的小数部分是,的小数部分是14.解:由题意得,,解得,所以,所以的算术平方根为.15.原式=+2+4﹣4=;。

人教版七年级数学下册第六章第一节平方根试题(含答案) (10)

人教版七年级数学下册第六章第一节平方根试题(含答案)  (10)

人教版七年级数学下册第六章第一节平方根复习试题(含答案)21++a 的最小值是多少?此时a 的取值是多少?【答案】2 -1.【解析】 0≥ ,从而21++a 的最小值是2;因为负数没有算术平方根,所以10a +≥ ,从而求出a 的取值范围.a+1的算数平方根是非负的,所以当a+1的算术平方根加2时最小值为2,此时a+1=0,即a=-1.92a ,小数部分为b ,试求1)4b a 的值. 【答案】1【解析】试题分析:根据无理数的估算,即34<< ,得到a =3,从而3b =- ,然后代入化简即可.<<34<<3即3a =,从而3b a ==故))1144b a a a ==2214a ⎡⎤-⎢⎥⎣⎦ =()211334- =1414⨯= 93.已知2251440x -=,且x 是正数,求2x 的值?【答案】245【解析】试题分析:求出x 的值,再代入求出即可. 试题解析:解:对方程进行变形可得到214425x =, 两边开平方可得到125x =±,因为x 是正数,所以x =125,即2x =245. 点睛:本题考查了算术平方根的应用,主要考查学生的计算能力.94.已知12x y =⎧⎨=-⎩和34x y =-⎧⎨=⎩是关于x ,y 的二元一次方程:ax+by=1的两的值.【答案】1.【解析】试题分析:根据方程的解满足方程,可得关于a ,b 的方程组,解方程组可得a 、b 的值,然后代入即可得答案.试题解析:由题意,得21341a b a b -=⎧⎨-+=⎩ ,解得32a b =-⎧⎨=-⎩,﹣2=1.95.我们已经学过完全平方公式222)2(a ab b a b ±+=±,知道所有的非负数都可以看作是一个数的平方,如222,3==,227,00==那么,我们可以利用这种思想方法和完全平方公式来计算下面的题: 例:求3-的算术平方根.解:222111)==-=,∴3-1.你看明白了吗?请根据上面的方法化简:(3【答案】(11(2)4(3【解析】试题分析:()1仿照例题直接利用完全平方公式开平方得出即可.()2利用()1中所求代入()2进而得出答案.()3仿照例题分别化简各二次根式,进而求出即可.试题解析:(==1 1.(2===+=+ 2(44(3===1.96.已知a的两个平方根分别为3b-1和b+5,求a的值.【答案】16【解析】试题分析:根据正数的两个平方根互为相反数列出方程,解方程求得b的值,再求a的值即可.试题解析:∵3b-1和b+5是a的两个平方根,∴(3b-1)+(b+5)=0解得:b=-1,∴a的两个平方根分别是-4和4,a=±=∴()241697.(1) 求出式子中x的值:9x2=16(20.【答案】(1)4x=±;(2)-33【解析】试题分析:(1)方程系数化为1后,直接开平方即可求出解;(2)原式利用平方根、立方根及零次幂的定义化简,即可得到结果.解:(1)x2=169x=±43(2) 原式=–2–2+1= –398.解方程:2x-=5(1)125【答案】x1=6,x2=﹣4【解析】试题分析:根据题意,先两边同时除以系数,然后根据平方根的意义和性质求解即可.试题解析:两边都除以5,得(x﹣1)2=25,开方,得x﹣1=±5,即x1=6,x2=﹣4.99.若2a-3与5-a是一个正数x的平方根,求这个正数a的值.【答案】-2【解析】试题分析:根据一个正数的平方根互为相反数,可得平方根的和为0,根据解一元一次方程,可得答案.试题解析:若2a-3与5-a是一个正数x的平方根,2a-3+5-a=0,a=-2.100.求下列各式中的x:(1)2x+=-x=(2)()3464510【答案】(1)X=(2).X=-8【解析】试题分析:(1)变形后,直接开平方;(2)直接开立方解方程即可;试题解析:(1)2x=51022x=x=(2)()3464x+=-x+4=-4x=-8。

七年级的的数学《平方根》典型例题及练习.doc

七年级的的数学《平方根》典型例题及练习.doc

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于 a,即 x2=a 那么这个数 x 就叫做 a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:( 1)一个正数有个平方根,它们;( 2) 0 平方根,它是;( 3)没有平方根.4、重要公式:( 1)( a)2 ( 2)a2 a5、平方表:12= 62 = 112= 162= 212=22= 72 = 122= 172= 222=32= 82 = 132= 182= 232=42= 92 = 142= 192= 242=52= 102= 152= 202= 252=【典型例题】例 1、判断下列说法正确的个数为()① -5 是 -25 的算术平方根;② 6 是 6 2 的算术平方根;③ 0 的算术平方根是 0;④ 0.01 是 0.1 的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B. 1 个C. 2 个 D . 3 个例 2、36的平方根是()A、 6 B 、 6 C、 6 D、6例 3、下列各式中,哪些有意义?( 1) 5 ( 2) 2 ( 3) 4 (4)( 3)2 ( 5)103例 4、一个自然数的算术平方根是a,则下一个自然数的算术平方根是()A .a 1B . a 1C .a2 1D .a2 1例 5、求下列各式中的x:( 1)x2 25 0 (2) 4(x+1) 2-169=0【巩固练习】一、选择题以育人为根本,以教学为中心。

以教研为先导,以质量为生命。

以奋斗求发展,以特色求优势。

1。

人教版七年级数学下册平方根同步练习(解析版)

人教版七年级数学下册平方根同步练习(解析版)

人教版七年级数学下册平方根同步练习[解析版]同步练习参考答案与试题解析一.选择题1.4的平方根是[]A.±2 B.﹣2 C.2 D.解:4的平方根是:±=±2.故选:A.2.[﹣2]2的平方根是[]A.2 B.﹣2 C.±2 D.解:∵[﹣2]2=4,∴4的平方根是:±2.故选:C.3.下列等式正确的是[]A.B.C.D.选D4.若+[y﹣3]2=0.则x y的值为[]A.﹣8 B.8 C.9 D.解:∵+[y﹣3]2=0,∴x=﹣2,y=3;∴x y=[﹣2]3=﹣8.故选:A.5.若|1﹣x|+=0,则x的取值范围是[]A.x≥1 B.x=1 C.x≤1 D.x>1解:由题意得,1﹣x=0,x﹣1=0,解得,x=1,故选:B.6.一个正方形的面积为2,则它的边长是[]A.4 B.±C.﹣D.解:设它的边长为x,则x2=2,所以x=.所以它的边长是.故选:D.7.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是[]A.a+2 B.a2+2 C.D.解:由题意,得正偶数是a2,下一个偶数是[a2+2],与这个正偶数相邻的下一个正偶数的算术平方根是,故选:C.二.填空题8.的平方根是±.解:的平方根是±.故答案为:±.9.能够说明“=x不成立”的x的值是﹣1[写出一个即可].解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣110.=4.解:原式==4,故答案为:4.11.若x,y为实数,且|x﹣2|+[y+1]2=0,则的值是.解:∵|x﹣2|+[y+1]2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴,故答案为:.12.将一个长为2,宽为4的长方形通过分割拼成一个等面积的正方形,则该正方形的边长为2.解:长方形的面积为:2×4=8,则正方形的面积也为8,所以正方形的边长为:,故答案为:2.三.解答题13.一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值.解:∵一个正数的x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得:a=﹣2,∴2a﹣3=﹣7,∴x=[﹣7]2=49.14.求符合下列各条件中的x的值.[1][x﹣4]2=4[2][x+3]2﹣9=0.解:[1]∵[x﹣4]2=4,∴x﹣4=±2.解得:x1=2,x2=6.[2]移项得:[x+3]2=9,两边同时乘以3得:[x+3]2=27,∴x+3=±3.∴x1=3﹣3,x2=﹣3﹣3.15.如图,某玩具厂要制作一批体积为1000cm3的长方体包装盒,其高为10cm.按设计需要,底面应做成正方形.求底面边长应是多少?解:底面面积为;1000÷10=100 cm2底面边长:=10 cm,答:底面边长应是10cm.16.已知2a+1 的平方根是±3,是3a+b﹣1的算术平方根,试求a+2b 的平方根.解:∵2a+1 的平方根是±3,∴2a+1=9.解得a=4.∵是3a+b﹣1的算术平方根,∴3a+b﹣1=16.∴12+b﹣1=16.解得:b=5.∴a+2b=4+10=14.∴a+2b的平方根为±.17.小文房间的面积为10‘8m2,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖的边长是多少?解:设每块地砖的边长是x,则120x2=10‘8,解得x=0‘3,即每块地砖的边长是0‘3m.18.你能找出规律吗?[1]计算:=6,=6.=20,= 20.[2]请按找到的规律计算:①;②.[3]已知:a=,b=,则=a2b[用含a,b的式子表示].。

人教版七年级数学下册平方根(提高)典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册平方根(提高)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】平方根(提高)责编:杜少波【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【:389316 平方根,知识要点】 要点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥,a 是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质2(0)||0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩()20aaa =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案. 【答案与解析】解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8; 故a=5,b=2; 又∵2<<3, ∴c=2,∴a+b+c=5+2+2=9, ∴9的平方根为±3.【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用. 举一反三:【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-=2、x 为何值时,下列各式有意义?2x 4x -11x x +-1x -. 【答案与解析】解:(1)因为20x ≥,所以当x 2x(2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠时,13x x --有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义. 举一反三:【变式】已知4322232b a a =-+-+,求11a b+的算术平方根. 【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=,∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+g ;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+g 49257535==⨯=g ;(2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解. 类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=;(3)()2932640x +-= 【答案与解析】 解:(1)∵23610x -=∴2361x = ∴36119x =±=±(2)∵()21289x += ∴1289x +=± ∴x +1=±17 x =16或x =-18. (3)∵()2932640x +-=∴()264329x +=∴8323x +=±∴21499x x ==-或【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度. 举一反三:【变式】求下列等式中的x :(1)若21.21x =,则x =______; (2)2169x =,则x =______;(3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2.类型四、平方根的综合应用 【:389316 平方根:例5】5、已知a 、b 是实数,26|20a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +=260a +≥,|20b -≥,∴260a +=,20b =. ∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可. 举一反三:【:389316 平方根:例5练习】 【变式】若2110x y -++=,求20112012x y +的值.【答案】 解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2xy +=+-=. ②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.【:389316 平方根:例6】6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得 32300x x ⋅=. 26300x =. 250x =.∵ x >0, ∴ 50x =∴ 长方形纸片的长为350cm . ∵ 50>49,507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片. 【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片. 举一反三:【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m2的正方形空地上建一个篮球场,已知篮球场的面积为420m2,其中长是宽的倍,篮球场的四周必须留出1m宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【答案】解:设篮球场的宽为xm,那么长为2815x m,由题意知,所以x2=225,因为x为正数,所以x==15,又因为=900<1000,所以按规定在这块空地上建一个篮球场.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算数平方根及平方根练习题
【知识要点】
1、平方根:一般地,如果一个数x 的平方等于a, 即x
2=a 那么这个数x 就叫做 a 的平方根(也叫做二次方根式),
2、算术平方根:
3、平方根的性质:
(1)一个正数有个平方根,它们;(2)0 平方根,它是;(3)没有平方根.4、重要公式:
(1)( a)2 (2) a a
2
5、平方表:12= 62= 112= 162=
2= 62= 112= 162=
2
2= 72= 122= 252=
3
2= 82= 132= ...
4
2= 92= 142= ...
5
2= 102= 152= ...
6. 正数有_____________个立方根, 0 有__________个立方根, 负数有__________个立方根, 立方根也叫做
_______________.
7. 一个正方体的棱长扩大 3 倍, 则它的体积扩大_____________.
8. 若一个数的立方根等于数的算术平方根, 则这个数是_____________.
2005
9. 0 的立方根是___________.(-1) 的立方根是______________.18 26
27
的立方根是________.
【典型例题】
例1、判断下列说法正确的个数为()
①-5 是-25 的算术平方根;
②6 是 6 2 的算术平方根;
③0 的算术平方根是0;
④0.01 是0.1 的算术平方根;
⑤一个正方形的边长就是这个正方形的面积的算术平方根.
A.0 个 B .1 个 C .2 个 D .3 个
例2、36 的平方根是()
A、6 B 、 6 C 、 6 D 、 6
例3、下列各式中,哪些有意义?
(1) 5 (2) 2 (3) 4 (4)((5)
3)
2
10 3
例4、一个自然数的算术平方根是a,则下一个自然数的算术平方根是()A . a 1 B . a 1 C . 1
a D . 2 1
2
a
算数平方根及平方根练习题
一、选择题
1.下列说法中正确的是(

A .9 的平方根是 3
B . 16 的算术平方根是± 2 C. 16 的算术平方根是 4 D.
16 的平方根是± 2
2. 4 的平方的倒数的算术平方根是( )
A .4
B
. 1
8
C .- 1
4
D . 1
4
3.下列结论正确的是( )
A
( 6)2
6
B ( 3)2 9 C
( 16)2 16
D
2
16
16 25
25
4.以下语句及写成式子正确的是( ) A 、7 是 49 的算术平方根,即
49
7
B
、7 是
2
( 7) 的平方根,即
( 7)
7
2
C 、 7是 49 的平方根,即 49 7
D 、 7 是 49 的平方根,即
49 7
5.下列说法: (1)
3是 9 的平方根; (2)9 的平方根是
3;(3)3 是 9 的平方根; (4)9 的平方根是 3,其
中正确的有( )
A .3 个
B .2 个
C .1 个
D .4 个
6.下列说法正确的是(

A .任何数的平方根都有两个
B
.只有正数才有平方根 C .一个正数的平方根的平方仍是这个数 D

2
a 的平方根是
a
7.下列叙述中正确的是( )
A .(-11)
2
的算术平方根是± 11
B
.大于零而小于 1 的数的算术平方根比原数大 C .大于零而小于 1 的数的平方根比原数大 D
.任何一个非负数的平方根都是非负数
8. 36 的平方根是( ) A 、6
B
、 6
C
、 6
D 、
6
9.当 m 0 时, m 表示( )
A
. m
的平方根
B .一个有理数
C .m 的算术平方根
D .一个正数
10.用数学式子表示“
9
的平方根是
16
3 ”应是( ) 4
A . 9
3 B .
16
4
9
C .
3 16
4
9
D

3 16
4
9
16
3 4
11.算术平方根等于它本身的数是( )
A 、 1和 0
B 、 0
C
、1 D

1和 0
12. (
的平方根是(

5)
2
A 、 5
B 、 5
C 、
5
D 、
5
13.若数 a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是(

A .
a B .
a
C .
a
D .
2
3
a
2
2
a
1 1 a
14. 若 a 、b 为实数,且 b
4,则 a b 的值为(

a 7
A . 1 B. 4 C. 3或5 D. 5
2 b
2
15. 若4, 9
a ,且a
b 0,则a b的值为()
A. 2
B. 5
C. 5
D. 5
二、填空题:
1.(= ,
8)
2
2
( 8) = 。

2.9 的算术平方根是,16 的算术平方根是;10 2 的算术平方根是,(的平方根是;
5)
3.化简:2
(3)。

4.当x _______时,
1
1 x
有意义;当x ________时,式子
x
x
1
2
有意义;
5. 若4a 1 有意义,则a能取的最小整数为______________.
6. 若
7.16 2.676 , a 26.76 ,则a的值等于,
7.若2a 2 与|b +2| 是互为相反数,则(a-b)2=______.8.若一个正数的平方根是2a 1和 a 2,则a____,这个正数是;三.利用平方根解下列方程.
(1)(2x-1 )2-169=0 ;(2)4(3x+1)2-1=0 ;
四、取值范围的运用
1
(1).当x 是多少时,2x 3 + x在实数范围内有意义?
1
(2)如果 2
(x-2) =2-x 那么x 取值范围是()
A、x ≤ 2 B. x <2 C. x ≥ 2 D. x >2
x
(3) 已知y= 2 x + x 2 +5,求y的值.
五.实数非负性的应用
1. 已知2a b +|b
2
2-10| =0,求a+b 的值.
2. 已知:=0,求实数a, b 的值。

3. 已知的整数部分为a,小数部分为b,求a
2-b
2-b 2
的值.
4.若,则________;若,则________。

5.若x 为一个两位整数,则的取值范围是________。

6.若的整数部分是,则其小数部分用表示为________。

7.探究题,若;,则
________,________,________,________。

8.解答题
(1)当x 取何值时,有意义?
(2)求使有意义的x 的值的范围。

(3),求。

相关文档
最新文档