定积分基本公式
积分学四大公式
积分学四大公式积分学四大公式是数学中非常重要的一部分,它们是求解积分的基础公式,也是数学中的基础知识。
在本文中,我们将详细介绍积分学四大公式的概念、应用和推导过程。
一、定积分的定义定积分是积分学中最基本的概念之一,它是对函数在一定区间内的面积进行求解。
定积分的定义如下:设函数f(x)在区间[a,b]上连续,则[a,b]上f(x)的定积分为:∫a^b f(x)dx其中,dx表示自变量x的微小增量,f(x)表示函数在x处的函数值。
二、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是积分学中最重要的公式之一,它将定积分与原函数联系起来,使得我们可以通过求解原函数来求解定积分。
牛顿-莱布尼茨公式的表达式如下:∫a^b f(x)dx = F(b) - F(a)其中,F(x)是f(x)的原函数。
三、换元积分法换元积分法是积分学中常用的一种方法,它通过变量代换的方式将积分式子转化为更容易求解的形式。
换元积分法的公式如下:∫f(g(x))g'(x)dx = ∫f(u)du其中,u=g(x)。
四、分部积分法分部积分法是积分学中常用的一种方法,它通过将积分式子分解为两个函数的乘积,然后对其中一个函数求导,对另一个函数求积分,最后将两个结果相乘得到原积分式子的解。
分部积分法的公式如下:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx其中,u(x)和v(x)是两个可导函数。
以上就是积分学四大公式的概念、应用和推导过程。
这些公式是积分学中最基本的知识,掌握它们对于学习高等数学和物理学等学科都非常重要。
在实际应用中,我们可以根据具体问题选择不同的公式进行求解,以达到最优的效果。
《高等数学》第二节 定积分基本公式
例 1 设f (x) sin 2t d t, 求f (x) 0 x 2 2 解:f (x) sin 2t d t sin 2x 0
2
x
如果函数f (x)在区间[a, b]上连续,则 I (x) f (t )dt
a x
是f (x)在[a, b]上的一个原函数.
或记作
证明
b f ( x ) d x F ( x ) a F (b) F ( a ). b a
b a
F (x)是f (x)的一个原函数, 而I (x) f (t )dt也是f (x)的一个原函数,
a x
F (x) I (x) C.
令x a有 F (a) I (a) C.
1 1 1 x2 1 lim . 2 x 0 1 2
I I' ( x) lim lim f ( ) f (x), x 0 x x
即
d x I ' (x ) f (t )dt f (x ). dx a
a
结论:变上限积分所确定的函数 x f (t )dt 对积分上限 x的导数等于被积函数f(t)在积分上限x处的值f(x).
注意:积分上限x与被积表达式f(x)dx中的积分变量x 是两个不同的概念,在求积时(或说积分过程中)上限 x是固定不变的,而积分变量x是在下限与上限之间 变化的,因此常记为
x a
x
f (t )dt.
定理1
如果函数f (x)在区间[a, b]上连续,则变上限 I (x) f (t )dt
1 1 dx arctan x 1 2 1 x
1 1
arctan 1 arctan( 1) π π ( ) 4 4 π . 2
定积分基本计算定律-定积分的计算定律
2x
x
0
f
(t )dt
1在[0,1]上只有一个解.
证
令
F(x)
2x
x
0
f
(t )dt
1,
f ( x) 1, F ( x) 2 f ( x) 0,
F ( x)在[0,1]上为单调增加函数. F (0) 1 0,
F (1)
1
1
0
f
(t )dt
1
0 [1
f
(t )]dt
0,
所以F ( x) 0即原方程在[0,1]上只有一个解.
y x
x2 2 x 0
2
o 1 2x
x
0 x1 ,
x
2
1 x2
原式
0 x2dx
1
xdx
2 x2dx 11.
2
0
1
2
例7 求 1 1dx.
2 x
解 当 x 0时, 1 的一个原函数是ln | x |,
x
1
2
1dx x
ln |
x
| 1 2
ln1
ln 2
ln 2.
例 8 计算曲线 y sin x在[0, ]上与 x轴所围
x a t , x 0 t 0,
2
原式 2
a cos t
dt
0 a sin t a2 (1 sin2 t)
2 0
cos t dt sin t cos t
1 2
2 0
1
cos t sin t
sin cos
t t
dt
1 2
2
1 2
ln
sin
t
cos
t
定积分公式大全
定积分公式大全定积分是微积分中的重要概念,它在数学和物理学中都有着广泛的应用。
本文将介绍定积分的基本概念和常见的定积分公式,帮助读者更好地理解和运用定积分。
1. 定积分的基本概念。
定积分是微积分中的一个重要概念,它可以用来计算曲线下面的面积、求解曲线的弧长、计算物体的质量和质心等。
在几何学中,定积分可以用来计算曲线与坐标轴之间的面积;在物理学中,定积分可以用来描述物体的质量、质心和转动惯量等。
2. 定积分的基本性质。
定积分具有一些基本的性质,包括线性性、区间可加性和保号性等。
其中,线性性是指定积分对于常数的线性性质,即∫[a, b] (cf(x) + g(x))dx = c∫[a, b] f(x)dx + ∫[a, b] g(x)dx;区间可加性是指定积分在区间上的可加性质,即∫[a, b] f(x)dx + ∫[b, c] f(x)dx = ∫[a, c] f(x)dx;保号性是指定积分的结果与被积函数的正负性有关,即若f(x)在[a, b]上非负,则∫[a, b] f(x)dx ≥ 0。
3. 定积分的常见公式。
在定积分的计算中,有一些常见的定积分公式可以帮助我们简化计算过程,如换元积分法、分部积分法、定积分的性质公式等。
(1)换元积分法。
换元积分法是定积分中常用的一种积分方法,它通过引入新的变量来简化被积函数的形式,从而使积分计算更加容易。
换元积分法的基本思想是利用复合函数的求导和积分的性质,通过代换变量来简化被积函数的形式,然后进行积分计算。
(2)分部积分法。
分部积分法是定积分中另一种常用的积分方法,它通过对被积函数进行分解,然后利用积分的性质进行计算。
分部积分法的基本思想是利用积分的乘积法则,将被积函数进行分解,然后利用分部积分公式进行积分计算。
(3)定积分的性质公式。
定积分具有一些常见的性质公式,如定积分的线性性质、定积分的区间可加性和保号性等。
这些性质公式在定积分的计算中经常被使用,可以帮助我们简化积分的计算过程,提高计算的效率。
定积分公式大全24个
定积分公式大全24个在微积分中,定积分是一个非常重要的概念,它在数学和物理学等领域有着广泛的应用。
定积分公式作为定积分的重要工具,可以帮助我们解决各种复杂的问题。
在本文中,我们将介绍24个常见的定积分公式,希望对大家的学习和工作有所帮助。
1. 基本积分公式。
定积分的基本公式是。
\[ \int_{a}^{b} f(x)dx=F(b)-F(a) \]其中,\(F(x)\)是\(f(x)\)的不定积分。
这个公式是定积分的基础,我们可以通过它来求解更复杂的积分问题。
2. 定积分的线性性质。
如果\(f(x)\)和\(g(x)\)在区间\([a,b]\)上可积,\(k\)是任意常数,那么有。
\[ \int_{a}^{b} [kf(x)+g(x)]dx=k\int_{a}^{b} f(x)dx+\int_{a}^{b} g(x)dx \]这个公式可以帮助我们简化定积分的计算过程,尤其是在处理复杂的函数时非常有用。
3. 定积分的换元积分法。
如果\(u=g(x)\)在\([a,b]\)上具有连续导数,\(f(u)\)在对应区间上可积,那么有。
\[ \int_{a}^{b} f(g(x))g'(x)dx=\int_{g(a)}^{g(b)} f(u)du \]这个公式可以帮助我们将原来的积分转化为更容易处理的形式,从而简化计算。
4. 定积分的分部积分法。
如果\(u=f(x)\)和\(v=g(x)\)都在\([a,b]\)上具有连续导数,那么有。
\[ \int_{a}^{b} u dv=uv|_{a}^{b}-\int_{a}^{b} v du \]这个公式可以帮助我们将原来的积分转化为更容易处理的形式,从而简化计算。
5. 定积分的换限积分法。
如果\(f(x)\)在\([a,b]\)上可积,\(F(x)\)是\(f(x)\)的一个原函数,那么有。
\[ \int_{a}^{b} f(x)dx=-\int_{b}^{a} f(x)dx \]这个公式可以帮助我们简化定积分的计算过程,尤其是在处理对称函数时非常有用。
高数定积分公式大全
高数定积分公式大全在高等数学中,定积分是通过积分来求解某一特定函数的不定积分的一种特殊方法,是计算物理量变化,寻找函数极值点以及在区间内求定积分的有效工具。
定积分的定义如下:如果函数f(x)在给定区间[a,b]上可导,那么定积分的定义为:∫a^bf(x)dx = F(b) - F(a)其中F(x)是f(x)的某个不定积分,解析法求解定积分的步骤为:首先将函数f(x)分解为常数、x、x^2、x^n多项式,其次对于每一项分别求解其不定积分,最后再将每一项求得的不定积分相加,即可得出整体定积分的解析解。
定积分中常见的公式有:一、定积分中的基本公式1. 不定积分的基本公式:∫x^ndx = 1/n+1*x^n+1 + C2. 二次方程不定积分的公式:∫x^2dx = 1/3*x^3 + C3.用的其他不定积分的公式:(1)∫sinx dx = -cosx + C(2)∫cosx dx = sinx + C(3)∫1/(1+x^2)dx = arctanx + C(4)∫lnx dx = xlnx - x + C二、高阶定积分的公式1. 一阶定积分:∫ax+b dx = 1/a*(ax+b) + C2. 二阶定积分:∫ax^2 + bx + c dx = 1/3a*x^3 + 1/2b*x^2 + cx + C3.用的其他高阶定积分的公式:(1)∫sinax dx = -1/a*cosax + C(2)∫e^x dx = e^x + C(3)∫lnax dx = xlnax - x + C三、复合定积分的公式定积分可以复合求解,以求解复合定积分为例,复合定积分公式为:∫a^b f(x)dx =a^x f(x)dx +x^b f(x)dx其中f(x)为一个标量函数,[a,b]为被积函数的定积区间,求解步骤如下:1.根据f(x)的表达式求出该函数的不定积分F1(x);2.复合定积分拆分成两部分,先求∫a^x f(x)dx,即F1(x)的定积分,再求∫x^b f(x)dx,即F2(x)的定积分;3.后将两部分求得的结果相加,即可得出复合定积分的解析解,解析解为F1(b) - F1(a) + F2(b) - F2(a)。
定积分基本计算公式
定积分基本计算公式定积分是微积分中的一种重要的概念。
它是对连续函数在一定区间上的积分运算,可以用于计算曲线下的面积、曲线的弧长、曲线的平均值等。
在求定积分时,可以使用一些基本的计算公式来简化运算过程。
下面将介绍一些定积分基本计算公式。
1.基本积分公式(1) 常数积分:∫kdx=kx+C (k为常数,C为常数)(2) 幂函数积分:∫x^ndx=1/(n+1)·x^(n+1)+C (n≠-1,C为常数)(3) 指数函数积分:∫e^xdx=e^x+C (C为常数)(4) 对数函数积分:∫1/xdx=ln,x,+C (C为常数)(5)三角函数积分:∫sinxdx=-cosx+C (C为常数)∫cosxdx=sinx+C (C为常数)∫sec^2xdx=tanx+C (C为常数)∫csc^2xdx=-cotx+C (C为常数)2.基本定积分公式(1)以x为变量的定积分:∫kdx=kx (其中k为常数)∫x^ndx=1/(n+1)·x^(n+1) (其中n≠-1)∫e^xdx=e^x∫1/xdx=ln,x∫sinxdx=-cosx∫cosxdx=sinx∫sec^2xdx=tanx∫csc^2xdx=-cotx∫secx·tanxdx=secx (其中x≠π/2+kπ,k为整数)∫cscx·cotxdx=-cscx (其中x≠kπ,k为整数)(2)基本函数的定积分:∫sin(ax+b)dx=-1/a·cos(ax+b)+C (C为常数)∫cos(ax+b)dx=1/a·sin(ax+b)+C (C为常数)∫e^(ax+b)dx=1/a·e^(ax+b)+C (C为常数)(3)积分的线性性质:若f(x)和g(x)都是可积函数,k为常数,则有:∫(kf(x)+g(x))dx=k∫f(x)dx+∫g(x)dx3.牛顿-莱布尼茨公式若函数F(x)是连续函数f(x)的一个原函数,即F'(x)=f(x),则有:∫f(x)dx=F(x)+C (C为常数)4.分部积分法若函数u(x)和v(x)都是可导函数,则有:∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx5.代换法当计算定积分过程中,可以进行变量代换,将原来的积分变为更简单的形式。
定积分的基本公式和运算法则
定积分的基本公式和运算法则定积分是微积分中的重要概念,它在数学和实际应用中都有着广泛的用途。
那咱们就来好好聊聊定积分的基本公式和运算法则。
先来说说定积分的基本公式。
这就好比是我们在数学世界里的一把神奇钥匙,可以打开很多难题的大门。
比如,牛顿-莱布尼茨公式,这可是个相当重要的家伙。
它告诉我们,如果函数 F(x) 是函数 f(x) 在区间 [a, b] 上的一个原函数,那么定积分∫[a,b] f(x)dx = F(b) - F(a) 。
这就像是找到了一个直接通往答案的捷径,让复杂的计算变得简单了许多。
再谈谈定积分的运算法则。
加法法则就像是搭积木,两个函数的定积分之和等于它们分别定积分的和。
比如说,∫[a,b] [f(x) + g(x)]dx =∫[a,b] f(x)dx + ∫[a,b] g(x)dx 。
这就好像你有两堆糖果,要算它们加起来的总数,分别算出每一堆的数量再相加就好啦。
还有乘法法则,这个稍微有点复杂,但也不难理解。
就像是做乘法运算一样,只不过是在定积分的世界里。
给大家讲个我曾经遇到的事儿吧。
有一次我给学生们讲定积分的运算,有个学生怎么都搞不明白。
我就拿分糖果打比方,假如有一堆糖果,我们要按照不同的规则来分配,这就好比是不同函数的定积分运算。
然后我一步一步地带着他分析,最终他恍然大悟,那种开心的表情让我也特别有成就感。
在实际应用中,定积分的这些公式和法则用处可大了。
比如计算图形的面积、计算物体的体积、求解物理问题等等。
就拿计算图形面积来说吧,通过定积分,我们可以把不规则的图形分割成很多小的部分,然后利用公式和法则算出每一部分的面积,最后加起来就得到了整个图形的面积。
这就像是拼图,一块一块地拼起来,最终呈现出完整的画面。
再比如在物理中,计算变力做功的问题。
力不是恒定的,而是随着位置或者时间变化的,这时候定积分就派上用场啦。
通过对力函数进行积分,就能算出力在一段距离或者一段时间内所做的功。
总之,定积分的基本公式和运算法则是我们解决各种数学和实际问题的有力工具。
定积分基本计算公式-定积分的计算公式
x
1
2
1dx x
ln |
x
| 1 l1 n l2 n l2 . n 2
例 8 计算曲线 y sin x在[0, ]上与 x轴所围
成的平面图形的面积.
解
面积
A
sinxdx
0
y
cos x 2. o 0
x
.
二 定积分的换元公式 定理 假设
(1) f ( x)在[a, b]上连续;
(2)函数 x (t)在[ , ]上是单值的且有连续
.
定理1 如果 f ( x)在[a, b]上连续,则积分上限的函
数( x)
x
a
f
(t)dt 在[a, b]上具有导数,且它的导
数是
(
x)
d dx
x
a
f (t)dt
f (x)
(a x b)
证 (x x)a x xf(t)dyt
( x x ) ( x )
(x)
x x
x
a
f(t)d t f(t)dt a
.
牛顿—莱布尼茨公式
a bf(x)d x F (b )F (a)
F
x
b a
基本公式表明
一个连续函数在区间[a, b]上的定积分等于它
的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.
牛顿-莱布尼茨公式沟通了微分学与积分学之 间的关系.
注意
当a
b
时,
b
a
f
(
x)dx
F
(b)
导数;
(3)当t 在区间[ , ]上变化时,x (t)的值在 [a,b]上变化,且 ( ) a、 ( ) b,
定积分必背公式
定积分必背公式定积分是指求一定区间内某函数的积分,即求某函数在某一区间上的极限。
它在学习数学的时候经常会用到,而且随着不同的讨论题目,定积分的必背公式会有不同的变化。
在本文中,我们将介绍几个定积分必背的公式,以便在处理定积分的题目的时候能够顺利的进行推导。
首先,我们介绍一下常见的定积分必背公式,即原函数*原区间变化量 =分函数*积分区间变化量。
其中原函数指求定积分的函数,而积分函数指在讨论定积分时可以用到的一些函数,比如常见的三角函数、双曲型函数等。
这条必背公式的意义是:求定积分的函数在原区间上的变化量等于积分函数在积分区间上的变化量,也就是说积分值就是函数变化量的乘积。
其次,我们来看看定积分的贝塞尔公式,也被称为贝塞尔积分法,它是一种定积分的必背公式,用于计算某个函数在某一区间上的积分值。
贝塞尔积分公式的形式如下:积分结果= f(a)+f(b)+∫[a,b](f(x)+f(x))dx,其中f(a)和f(b)分别表示函数在节点a和b 上的函数值,f(x)和f(x)表示函数在某点x处的一阶和二阶导数,而∫[a,b]部分则是求解定积分的实际计算部分。
第三,我们来谈谈归纳法,它可以通过对函数的多次求积分,最终根据归纳法的公式(∑n(i=1)((-1)^(i+1))[f(n)f(n-1)-f(n-1)f(n-2)]),求出最后的积分结果。
该归纳法的公式的意义是:首先开始求多次积分,然后将每次积分的结果按照上述公式推导出最后的积分结果。
最后,在讨论定积分的必背公式的时候要提一下洛必达法,它是一种用于计算不定积分的必背公式,它的公式为:I=∫(a,b)(f(x)+f(x))dx,其中I代表不定积分的结果,f(x)和f(x)分别表示函数在某点x处的函数值和一阶导数。
该公式的实际意义是:把函数f(x)和它的一阶导数在区间[a,b]上积分起来,最终结果就是洛必达法所求的不定积分值。
以上就是定积分必背公式的介绍,以帮助大家能够更好的掌握定积分的基本概念,推导其中的公式,帮助我们能够更好的认识数学的科学精神。
积分表24个公式
积分表24个公式积分是微积分中的重要概念之一,它用于计算曲线下的面积,解决各种数学和物理问题。
在本文中,我将介绍24个与积分相关的常见公式。
这些公式涵盖了微积分中的不同应用领域,帮助我们理解积分的重要性和灵活性。
1. 定积分的定义公式:∫[a, b] f(x) dx表示函数f(x)在[a, b]区间内的定积分,表示曲线下的面积。
2. 反导数公式:若F'(x) = f(x),则∫f(x) dx = F(x) + C,其中C为常数。
3. 线性性质公式:∫[a, b] (f(x) + g(x)) dx = ∫[a, b] f(x) dx + ∫[a, b] g(x) dx。
4. 反函数求积分公式:若F(x)是f(x)的一个反函数,则∫f(x) dx = F^{-1}(x) + C。
5. 分部积分公式:∫u(x) v'(x) dx = u(x)v(x) - ∫v(x)u'(x) dx,可以将一个积分转化为另一个积分。
6. 第一类换元积分公式:∫f(g(x))g'(x) dx = ∫f(u) du,u = g(x)。
7. 第二类换元积分公式:∫f(g(x)) dx = ∫f(u) |g'(x)| dx,u = g(x)。
8. 倒置积分公式:∫[a, b] f(x) dx = -∫[b, a] f(x) dx,改变积分区间时改变积分符号。
9. 对称性公式:若f(x)在某区间关于x轴对称,则∫[-a, a] f(x) dx = 0。
10. 积分中值定理公式:若f(x)在[a, b]上连续,则存在c∈(a, b),使得∫[a, b] f(x) dx = f(c)(b-a)。
11. 反常积分定义公式:若f(x)在[a, b]上有界,则∫[a, b] f(x) dx = lim_{n→∞} ∫[a,b] f(x) dx。
12. 曲边梯形面积公式:∫[a, b] f(x) dx ≈ (b-a)((f(a)+f(b))/2),对应梯形近似法则。
常用的求导和定积分公式
常用的求导和定积分公式在微积分中,求导和定积分是两个最基本的运算。
求导用于确定一个函数的导数,而定积分则用于计算一个函数在给定区间上的面积。
下面是一些常用的求导和定积分公式:求导公式:1. 常数法则:若c为常数,则导数为0,即:d/dx (c) = 0。
2. 幂法则:若f(x) = x^n,则导数为n*x^(n-1),即:d/dx (x^n)= n*x^(n-1)。
3. 对数函数法则:若f(x) = ln(x),则导数为1/x,即:d/dx(ln(x)) = 1/x。
4. 指数函数法则:若f(x) = e^x,则导数为e^x,即:d/dx (e^x)= e^x。
5. 乘法法则:若f(x) = u(x) * v(x),则导数为u'(x) * v(x) +u(x) * v'(x),即:d/dx (u(x) * v(x)) = u'(x) * v(x) + u(x) *v'(x)。
6. 除法法则:若f(x) = u(x) / v(x),则导数为(u'(x) * v(x) -u(x) * v'(x)) / (v(x))^2,即:d/dx (u(x) / v(x)) = (u'(x) * v(x) - u(x) * v'(x)) / (v(x))^27. 链式法则:若f(x) = g(h(x)),则导数为g'(h(x)) * h'(x),即:d/dx (g(h(x))) = g'(h(x)) * h'(x)。
8. 反函数法则:若f(x) = g^(-1)(x),其中g为一个可逆函数,则导数为1 / g'(g^(-1)(x)),即:d/dx (g^(-1)(x)) = 1 / g'(g^(-1)(x))。
定积分公式:1. 基本定积分:∫1 dx = x + C。
2. 幂函数定积分:∫x^n dx = x^(n+1) / (n+1) + C,其中n不等于-13. 指数函数定积分:∫e^x dx = e^x + C。
定积分公式表
1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数的积分,应分为与.当时,,积分后的函数仍是幂函数,而且幂次升高一次.特别当时,有.当时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清.当时,有.是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式.解:(为任意常数 )例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)。
定积分的基本概念
定积分的基本概念
定积分的基本概念
定积分(Definite Integral)是一种积分形式,它可以用来求解一部分定义域上函数的积分。
它的定义域一般以闭区间[a,b]表示,其中a和b都是定义域内的定点,也就是说,它是定义在 [a,b] 上的函数f(x)的积分。
定积分的计算公式是:
∫a b f (x)dx=F(b)-F(a)
其中F(x)是以f(x)为基础的任何可求得的积分函数,a和b分别是定义域的两个端点。
定积分可以用来计算函数在某一定义域上的积分,也可以用来求解函数在某一定义域上的导数。
举例来说,令f(x)=2x,定义域为[1,2],则定积分计算公式就可以写为:
∫1 2 2x dx=F(2)-F(1)=F(2)-5
于是得出定积分值:
∫1 2 2x dx=F(2)-5=7
定积分也可以用来求解函数的导数,例如,令f(x)=2x,定义域为[1,2],则定积分的偏导数可以写为:
∫1 2 d/dx(2x)dx=F'(2)-F'(1)=f(2)-f(1)=4-2=2
同样也可以得出偏导数:
d/dx(2x)=2
因此,定积分可以用来计算函数在某一定义域上的积分,也可以
用来求解函数在某一定义域上的导数。
定积分的计算公式例题讲解
定积分的计算公式例题讲解在微积分中,定积分是一个重要的概念,它可以用来计算曲线下面积、求解体积和质量等问题。
定积分的计算公式是一种基本的工具,掌握这些公式可以帮助我们更好地理解和应用微积分知识。
本文将通过例题讲解的方式,详细介绍定积分的计算公式及其应用。
首先,我们来回顾一下定积分的定义。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b] f(x) dx。
其中,f(x)是被积函数,dx表示自变量x的微元。
定积分的计算公式可以帮助我们求解这个积分,从而得到曲线在区间[a, b]上的面积。
下面,我们通过几个例题来讲解定积分的计算公式。
例题1,计算定积分∫[0, 2] x^2 dx。
解:根据定积分的计算公式,我们可以将被积函数展开成一个无穷小区间上的和:∫[0, 2] x^2 dx = lim(n→∞) Σ(i=1→n) f(xi)Δx。
其中,Δx = (b-a)/n,xi是区间[a, b]上的任意一点,f(xi)是函数在xi处的取值。
在这个例题中,我们可以将区间[0, 2]等分成n个小区间,每个小区间的长度为Δx。
然后,在每个小区间上取一个点xi,计算出f(xi)的值,最后将这些值相加并取极限即可得到定积分的值。
具体来说,我们可以取n=4,将区间[0, 2]等分成4个小区间,每个小区间的长度为Δx=2/4=0.5。
然后,在每个小区间上取一个点xi,分别计算出f(xi)的值:x1 = 0.25, f(x1) = (0.25)^2 = 0.0625。
x2 = 0.75, f(x2) = (0.75)^2 = 0.5625。
x3 = 1.25, f(x3) = (1.25)^2 = 1.5625。
x4 = 1.75, f(x4) = (1.75)^2 = 3.0625。
将这些值相加并乘以Δx,得到定积分的近似值:Σ(i=1→4) f(xi)Δx = 0.06250.5 + 0.56250.5 + 1.56250.5 + 3.06250.5 = 2.25。
定积分基本计算公式
b( x)
f
dx a( x )
证:
如果 f (t)连续,a( x)、b( x)
F ( x) b( x) f (t )dt 的导数F( x)为 a( x)
例1 求
解
分析:这是 型 不定式,应用洛 必达法则.
d 1et2dt
lim dx x0
cos x
x2
.
cos x et2 dt , 1 .
1
2e
d 1 et2 dt
dx cos x
sin x ecos2 x
lim 1 et2dt
lim
x0
cos x
x2
x0
2x
证
F ( x)
x
x
xf ( x)0 f (t )dt f ( x)0 tf (t )dt
x
2
0 f (t )dt
d dx
x
0
f
(t )dt
例 2 设 f ( x)在(,)内连续,且 f ( x) 0.
解
1 ln(1 x)
0 (2 x)2 dx
1 0
ln(1
x)d
2
1
x
ln(1 x 2 x
)
1 0
1
0
2
1
x
d
ln(1
x)
ln 2 1 1 1 dx
3 0 2 x 1 x
ln 2 3
ln(1
x)
ln(2
x)10
5 3
ln
2
ln
3.
f (x)
x2
1
sin t t
dt ,
因为 sin
一 定积分计算的基本公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分基本公式
定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等.
第二节 微积分基本公式
一、变上限的定积分
设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x
a f x x
⎰是一个定数,
这种写法有一个不方便之处,就是
x 既表示积分上限,又表示积分变量.为避免
t ,于是这个积分就写成了
()d x a
f t t
⎰
.
x 值,积分()d x
a
f t t
⎰就有一个确定的的一个函数,记作 ()Φx =()d x a
f t t
⎰
( a ≤x ≤
b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示.
定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分
()Φx =()d x
a f t t ⎰在[,]a
b 上可导,且其导数是
d ()()d ()d x
a
Φx f t t f x x '=
=⎰( a ≤x ≤ b ).
推论 连续函数的原函数一定存在. 且函数()Φx =()d x
a f t t ⎰即为其原函数.
例1 计算()Φx =2
0sin d x
t t
⎰在x =0 ,处的导数.
解 因为2
d sin d d x t t x ⎰=2sin x ,故
2
(0)sin 00Φ'==;
πsin 242Φ'==.
例2 求下列函数的导数:
(1)
e ln ()d (0)x a
t
Φx t a t =>⎰
;
解 这里()Φx 是x 的复合函数,其中中间变量e x
u =,所以按复合函数求导
法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x
x u t x ===⎰.
(2)
2
1()(0)
x Φx x θ=>⎰
.
解 21d d d d x Φx
x θ=-⎰2
2()x
x ='=2sin 2sin 2x x
x x x =-
⋅=-.
二、牛顿-莱布尼茨(Newton-Leibniz )公式
定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()()
b a
f x x F b F a =-⎰
.
证 由定理1知,变上限积分
()()d x
a
Φx f t t
=⎰也是()f x 的一个原函数,于
是知0()()Φx F x C -=, 0C 为一常数, 即 0
()d ()x a f t t F x C =+⎰.
我们来确定常数 0C 的值,为此,令 x a =,有0()d ()a
a f t t F a C =+⎰,得0()C F a =-.
因此有 ()d ()()
x
a
f t t F x F a =-⎰.
再令x b =,得所求积分为 ()d ()()
b
a
f t t F b F a =-⎰.
因此积分值与积分变量的记号无关,仍用x 表示积分变量,即得
()d ()()
b a
f x x F b F a =-⎰
,其中()()F x f x '=.
上式称为牛顿-莱布尼茨公式,也称为微积分基本公式.为计算方便,该公式常采用下面的格式:
()d ()()()
b b a a
f x x F x F b F a ==-⎰
.
例1 求定积分:
(1)
2
21
1d ()x
x x +⎰;(2
)
2
312
⎰;(3
)1
x
-⎰.
解 (1)
2
2
2221111d (2)d ()x x x x x x =+++⎰⎰2
3
115(2)436x x x =+-=. (2
)
223112
2
=⎰
⎰
d
x
212
2=⎰
=0.3398.=≈
(3
x
=在[1,1]-上写成分段函数的形式
,10,(),01,x x f x x x --≤<⎧=⎨
≤≤⎩
于是1
1
10()d d x x x x x --=-+⎰⎰
⎰
2201
1
1022x x =-+=-.
例2 计算2
cos 1
2
e d lim
x t x t
x -→⎰.
解 因为 0x →时,cos 1x →,故本题属 0
0 型未定式,可以用洛必达法
则来求.这里2
cos 1
e d x
t t
-⎰是 x 的复合函数,其中cos u x =,所以
222cos cos cos 1d e d e (cos )'sin e d x t x x
t x x x ---==-⎰,于是
有
2
2
2cos cos
1
cos 2
00e d sin e sin lim
lim lim e 22x t x
x
x x x t
x x x x
x
---→→→-⋅-==⎰111
e 22e -=-=-
.
思考题
1.若
2
2()sin d x x
f x t t
=⎰,()?f x '=
2.在牛顿-莱布尼茨公式中,要求被积函数()f x 在积分区间[,]a b 上连续. 问当()f x 在[,]a b 区间上有第一类间断点时,还能否用牛顿-莱布尼茨公式计算定积分?并计算
2
2()d ,f x x -⎰ 其中 22
,21,10,
1,(),10,21,0 2.x x x f x x x x x ⎧-<<-⎪
=-⎪=⎨-<<⎪⎪+≤≤⎩。