【3-代数】10.调整法证明不等式【学生版】
数学-值域的10种求法(学生版)
函数值域1基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.;当a<0时,值域为(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为y y≥4ac−b24a.y y≤4ac−b24a.(3)y=k x(k≠0)的值域是y y≠0(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.2函数值域的求解方法方法归纳观察法根据最基本函数值域(如x2≥0,a x>0及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.方法归纳配方法对于形如y=ax2+bx+c a≠0的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.方法归纳图像法(数形结合)根据所给数学式子的特征,构造合适的几何模型.方法归纳基本不等式法注意使用基本不等式的条件,即一正、二定、三相等.方法归纳换元法(代数换元与三角换元)分为三角换元法与代数换元法,对于形y=ax+b+cx+d的值城,可通过换元将原函数转化为二次型函数.方法归纳分离常数法对某些齐次分式型的函数进行常数化处理,使函数解析式简化内便于分析.方法归纳判别式法把函数解析式化为关于x的-元二次方程,利用一元二次方程的判别式求值域,一般地,形如y=Ax+博观而约取 厚积而薄发B ,ax 2+bx +c 或y =ax 2+bx +cd x 2+ex +f的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).方法归纳单调性法先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如y =ax +b +cx +d 或y =ax +b +cx +d 的函数,当ac >0时可利用单调性法.方法归纳有界性法充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.方法归纳导数法先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域.1.例题精讲题型一:观察法1函数y =1x +1-1的值域是( )A.-∞,-1B.+1,+∞C.-∞,-1 ∪-1,+∞D.-∞,+∞2下列函数中,值域为0,+∞ 的是( )A.y =x 2B.y =2xC.y =2xD.y =log 2x3下列函数中,函数值域为(0,+∞)的是( )A.y =(x +1)2,x ∈(0,+∞) B.y =log 2x ,x ∈(1,+∞)C.y =2x -1D.y =2x -1题型二:配方法1函数的y =-x 2-6x -5值域为()A.0,+∞B.0,2C.2,+∞D.2,+∞2函数y =f x 的图象是如图所示的折线段OAB ,其中A 1,2 ,B 3,0 ,函数g x =x ⋅f x ,那么函数g x 的值域为()Ox y 213ABA.0,2B.0,94C.0,32D.0,43已知正实数a ,b ,c 满足2a +b =1,abc +1=2c ,则c 的最大值为()A.12B.23C.815D.2题型三:图像法(数形结合)数形结合:即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域。
高考数学二轮专题——基本不等式九大题型(学生版)
基本不等式及其应用【九大题型】【新高考专用】【题型1基本不等式及其应用】【题型2直接法求最值】【题型3配凑法求最值】【题型4常数代换法求最值】【题型5消元法求最值】【题型6齐次化求最值】【题型7多次使用基本不等式求最值】【题型8利用基本不等式解决实际问题】【题型9与其他知识交汇的最值问题】1.基本不等式及其应用考点要求真题统计考情分析(1)了解基本不等式的推导过程(2)会用基本不等式解决最值问题(3)理解基本不等式在实际问题中的应用2020年天津卷:第14题,5分2021年乙卷:第8题,5分2022年I 卷:第12题,5分2023年新高考I 卷:第22题,12分基本不等式及其应用是每年高考的必考内容,从近几年的高考情况来看,对基本不等式的考查比较稳定,考查内容、频率、题型难度均变化不大,应适当关注利用基本不等式大小判断、求最值和求取值范围的问题;同时要注意基本不等式在立体几何、平面解析几何等内容中的运用.【知识点1基本不等式】1.两个不等式不等式内容等号成立条件重要不等式a 2+b 2≥2ab (a ,b ∈R )当且仅当“a =b ”时取“=”基本不等式ab ≤a +b2(a >0,b >0)当且仅当“a =b ”时取“=”a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.2.基本不等式与最值已知x,y都是正数,(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值2P;(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值14S2.温馨提示:从上面可以看出,利用基本不等式求最值时,必须有:(1)x、y>0,(2)和(积)为定值,(3)存在取等号的条件.3.常见的求最值模型(1)模型一:mx+nx≥2mn(m>0,n>0),当且仅当x=n m时等号成立;(2)模型二:mx+nx−a =m(x−a)+nx−a+ma≥2mn+ma(m>0,n>0),当且仅当x−a=n m时等号成立;(3)模型三:xax2+bx+c =1ax+b+cx≤12ac+b(a>0,c>0),当且仅当x=c a时等号成立;(4)模型四:x(n−mx)=mx(n−mx)m≤1m⋅mx+n−mx22=n24m m>0,n>0,0<x<n m,当且仅当x=n2m时等号成立.4.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【题型1基本不等式及其应用】1(2023·安徽蚌埠·模拟预测)已知实数a,b,c满足a<b<c且abc<0,则下列不等关系一定正确的是()A.ac<bcB.ab<acC.bc +cb>2 D.ba+ab>22(2023·湖南长沙·一模)已知2m=3n=6,则m,n不可能满足的关系是()A.m+n>4B.mn>4C.m2+n2<8D.(m-1)2+(n-1)2>23(2024·山东枣庄·一模)已知a>0,b>0,则“a+b>2”是“a2+b2>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4(2023·辽宁·二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形△ABC中,点O为斜边AB的中点,点D为斜边AB上异于顶点的一个动点,设AD=a,BD=b,用该图形能证明的不等式为( ).A.a+b2≥ab a>0,b>0B.2aba+b≤ab a>0,b>0C.a+b2≤a2+b22a>0,b>0D.a2+b2≥2ab a>0,b>0【题型2直接法求最值】1(2023·湖南岳阳·模拟预测)已知函数f x =3-x-2x,则当x<0时,f x 有()A.最大值3+22B.最小值3+22C.最大值3-22D.最小值3-222(2023·北京东城·一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.223(22-23高三下·江西·阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+434(23-24高二下·山东潍坊·阶段练习)函数y=3-4x-x(x>0)的最大值为()A.-1B.1C.-5D.5【题型3配凑法求最值】1(2023·山西忻州·模拟预测)已知a>2,则2a+8a-2的最小值是()A.6B.8C.10D.122(2024·辽宁·一模)已知m >2n >0,则m m -2n +mn的最小值为()A.3+22B.3-22C.2+32D.32-23(2023·河南信阳·模拟预测)若-5<x <-1,则函数f x =x 2+2x +22x +2有()A.最小值1B.最大值1C.最小值-1D.最大值-14(23-24高三下·河南·开学考试)已知a >0,b >0,则a +2b +4a +2b +1的最小值为()A.6B.5C.4D.3【题型4常数代换法求最值】1(2024·江苏南通·二模)设x >0,y >0,1x +2y =2,则x +1y 的最小值为()A.32B.22C.32+2 D.32(2024·黑龙江哈尔滨·二模)已知正实数x ,y 满足1x +2y=1,则2xy -3x 的最小值为()A.8B.9C.10D.113(2024·广东湛江·一模)已知ab >0,a 2+ab +2b 2=1,则a 2+2b 2的最小值为()A.8-227B.223C.34D.7-2284(2023·广东广州·模拟预测)已知正实数x ,y 满足2x +y =xy ,则2xy -2x -y 的最小值为()A.2B.4C.8D.9【题型5消元法求最值】1(2024·陕西西安·三模)已知x >0,y >0,xy +2x -y =10,则x +y 的最小值为42-1.2(2023·上海嘉定·一模)已知实数a 、b 满足ab =-6,则a 2+b 2的最小值为12.3(2024·天津河东·一模)若a >0,b >0,ab =2,则a +4b +2b 3b 2+1的最小值为.4(2024·四川德阳·模拟预测)已知正实数x ,y ,z 满足x 2+xy +yz +xz +x +z =6,则3x +2y +z 的最小值是43-2.【题型6齐次化求最值】1(23-24高一上·湖南娄底·期末)已知x >0,则x 2-x +4x 的最小值为()A.5B.3C.-5D.-5或32(23-24高一上·辽宁大连·期末)已知x ,y 为正实数,且x +y =1,则x +6y +3xy的最小值为()A.24B.25C.6+42D.62-33(23-24高二上·安徽六安·阶段练习)设a+b=1,b>0,则1|a|+9|a|b的最小值是()A.7B.6C.5D.44(23-24高三上·浙江绍兴·期末)已知x为正实数,y为非负实数,且x+2y=2,则x2+1x+2y2y+1的最小值为()A.34B.94C.32D.92【题型7多次使用基本不等式求最值】1(2023·河南·模拟预测)已知正实数a,b,满足a+b≥92a+2b,则a+b的最小值为()A.5B.52C.52 D.5222(2023·全国·模拟预测)已知a为非零实数,b,c均为正实数,则a2b+a2c4a4+b2+c2的最大值为()A.12B.24C.22D.343(2024·全国·模拟预测)已知a>0,b>0,c>1,a+2b=2,则1a+2bc+2c-1的最小值为()A.92B.2 C.6 D.2124(23-24高三下·浙江·开学考试)已知a、b、c、d均为正实数,且1a+2b=c2+d2=2,则a+bcd的最小值为()A.3B.22C.3+22D.3+222【题型8利用基本不等式解决实际问题】1(23-24高二下·北京房山·期中)某公园为了美化游园环境,计划修建一个如图所示的总面积为750m2的矩形花园.图中阴影部分是宽度为1m的小路,中间A,B,C三个矩形区域将种植牡丹、郁金香、月季(其中B,C区域的形状、大小完全相同).设矩形花园的一条边长为xm,鲜花种植的总面积为Sm2.(1)用含有x的代数式表示a;(2)当x的值为多少时,才能使鲜花种植的总面积最大?2(23-24高一上·辽宁朝阳·期末)冷链物流是指以冷冻工艺为基础、制冷技术为手段,使冷链物品从生产、流通、销售到消费者的各个环节始终处于规定的温度环境下,以减少冷链物品损耗的物流活动.随着人民食品安全意识的提高及线上消费需求的增加,冷链物流市场规模也在稳步扩大.某冷链物流企业准备扩大规模,决定在2024年初及2025年初两次共投资4百万元,经预测,每年初投资的x百万元在第m(1≤m≤8,且m∈N*)年产生的利润(单位:百万元)G m=mx,m∈N*,1≤m≤44-16-mx2,m∈N*,5≤m≤8,记这4百万元投资从2024年开始的第n年产生的利润之和为f n x .(1)比较f42 与f52 的大小;(2)求两次投资在2027年产生的利润之和的最大值.3(23-24高一上·河南开封·期末)如图,一份印刷品的排版(阴影部分)为矩形,面积为32,它的左、右两边都留有宽为2的空白,上、下两边都留有宽为1的空白.记纸张的面积为S,排版矩形的长和宽分别为x,y.(1)用x,y表示S;(2)如何选择纸张的尺寸,才能使纸张的面积最小?并求最小面积.4(23-24高一上·四川成都·期末)如图所示,一条笔直的河流l(忽略河的宽度)两侧各有一个社区A,B (忽略社区的大小),A社区距离l上最近的点A0的距离是2km,B社区距离l上最近的点B0的距离是1km,且A0B0=4km.点P是线段A0B0上一点,设A0P=akm.现规划了如下三项工程:工程1:在点P处修建一座造价0.1亿元的人行观光天桥;工程2:将直角三角形AA0P地块全部修建为面积至少1km2的文化主题公园,且每平方千米造价为1+92a2亿元;工程3:将直角三角形BB0P地块全部修建为面积至少0.25km2的湿地公园,且每平方千米造价为1亿元.记这三项工程的总造价为W 亿元.(1)求实数a 的取值范围;(2)问点P 在何处时,W 最小,并求出该最小值.【题型9与其他知识交汇的最值问题】1(23-24高三上·江苏南通·阶段练习)已知ΔABC 内接于单位圆,且1+tan A 1+tan B =2,(1)求角C(2)求△ABC 面积的最大值.2(23-24高三上·山东青岛·期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian d u );阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao )指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖膈C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.3(2024·广东珠海·一模)已知A 、B 、C 是ΔABC 的内角,a 、b 、c 分别是其对边长,向量m=a +b ,c ,n =sin B -sin A ,sin C -sin B ,且m ⊥n.(1)求角A 的大小;(2)若a =2,求ΔABC 面积的最大值.4(2024·黑龙江大庆·一模)已知椭圆x 2a 2+y 2b2=1(a >b >0),过点1,32 且离心率为12,A ,B 是椭圆上纵坐标不为零的两点,若AF =λFB λ∈R 且AF ≠FB,其中F 为椭圆的左焦点.(1)求椭圆的方程;(2)求线段AB 的垂直平分线在y 轴上的截距的取值范围.一、单选题1(2023·全国·三模)已知a >0,b >0,且a +b =1,则下列不等式不正确的是()A.ab≤14B.a2+b2≥12C.1a+1b+1>2 D.a+b≤12(2024·甘肃定西·一模)x2+7x2+7的最小值为()A.27B.37C.47D.573(2024·辽宁葫芦岛·一模)已知a>0,b>0,a+b=2,则()A.0<a≤1B.0<ab≤1C.a2+b2>2D.1<b<24(2024·浙江嘉兴·二模)若正数x,y满足x2-2xy+2=0,则x+y的最小值是() A.6 B.62C.22D.25(2024·四川成都·模拟预测)若a,b是正实数,且13a+b+12a+4b=1,则a+b的最小值为()A.45B.23C.1D.26(2024·陕西西安·模拟预测)下列说法错误的是()A.若正实数a,b满足a+b=1,则1a +1b有最小值4B.若正实数a,b满足a+2b=1,则2a+4b≥22C.y=x2+3+1x2+3的最小值为433D.若a>b>1,则ab+1<a+b7(2024·黑龙江哈尔滨·一模)已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m元和n元(m≠n),甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为a1,a2,则()A.a1=a2B.a1<a2C.a1>a2D.a1,a2的大小无法确定8(2024·四川成都·三模)设函数f x =x3-x,正实数a,b满足f a +f b =-2b,若a2+λb2≤1,则实数λ的最大值为()A.2+22B.4C.2+2D.22二、多选题9(2023·全国·模拟预测)已知实数x,y,下列结论正确的是()A.若x+y=3,xy>0,则x2x+1+y2+1y≥3B.若x>0,xy=1,则12x +12y+8x+y的最小值为4C.若x≠0且x≠-1,则yx<y+1x+1D.若x 2-y 2=1,则2x 2+xy 的最小值为1+3210(2023·重庆沙坪坝·模拟预测)某单位为了激励员工努力工作,决定提高员工待遇,给员工分两次涨工资,现拟定了三种涨工资方案,甲:第一次涨幅a %,第二次涨幅b %;乙:第一次涨幅a +b 2%,第二次涨幅a +b2%;丙:第一次涨幅ab %,第二次涨幅ab %.其中a >b >0,小明帮员工李华比较上述三种方案得到如下结论,其中正确的有()A.方案甲和方案乙工资涨得一样多B.采用方案乙工资涨得比方案丙多C.采用方案乙工资涨得比方案甲多D.采用方案丙工资涨得比方案甲多11(2024·全国·模拟预测)已知a >0,b >0且1a +4b =2,则下列说法正确的是()A.ab 有最小值4B.a +b 有最小值92C.2ab +a 有最小值25D.16a 2+b 2的最小值为42三、填空题12(2024·全国·模拟预测)已知x >1,y >0,且x +2y =2,则1x -1+y 的最小值是.13(2024·上海奉贤·二模)某商品的成本C 与产量q 之间满足关系式C =C q ,定义平均成本C=C q ,其中C =C (q )q ,假设C q =14q 2+100,当产量等于时,平均成本最少.14(2024·全国·模拟预测)记max x 1,x 2,x 3 表示x 1,x 2,x 3这3个数中最大的数.已知a ,b ,c 都是正实数,M =max a ,1a +2b c ,c b,则M 的最小值为.四、解答题15(2023·甘肃张掖·模拟预测)已知正实数x ,y 满足等式1x +3y=2.(1)求xy 的最小值;(2)求3x +y 的最小值.16(2023·全国·模拟预测)已知x,y,z∈0,+∞,且x+y+z=1.(1)求证:yx+zy+xz>1+z-z;(2)求x2+y2+z2+5xy+4yz+4xz的最大值.17(2023·陕西安康·模拟预测)已知函数f x =x+a+x-b.(1)当a=2,b=3时,求不等式f x ≥6的解集;(2)设a>0,b>1,若f x 的最小值为2,求1a +1b-1的最小值.18(23-24高一上·贵州铜仁·期末)2020年初至今,新冠肺炎疫情袭击全球,对人民生命安全和生产生活造成严重影响. 在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失. 为降低疫情影响,某厂家拟在2022年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=4-2m+1. 已知生产该产品的固定成本为8万元,生产成本为16万元/万件,厂家将产品的销售价格定为8+16xx万元/万件(产品年平均成本)的1.5倍.(1)将2022年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2022年的促销费用投入多少万元时,厂家的利润最大?19(2023·全国·模拟预测)已知x,y,z∈0,+∞.(1)若x+y=1,证明:4x+4y≤48;(2)若x+y+z=1,证明yx+zy+xz>1+z-z.11。
高三数学备考12利用基本不等式处理最值、证明不等式和实际问题解析版
问题12利用基本不等式处理最值、证明不等式和实际问题一、考情分析不等式问题始终是高考数学的热点题型之一,而基本不等式法是最为常见、应用十分广泛的方法之一.下面笔者以近几年高考试题及模拟题为例,对高考中考查利用基本不等式解题的基本特征和基本类型作一些分类解析,供参考. 二、经验分享(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. (2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(4)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解. (5)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(6)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围. 三、知识拓展 1.(1)若R b a ∈,,则;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则(当且仅当b a =时取“=”);(3)若00a ,b >>,则(当且仅当b a =时取“=”).3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”);若0x ≠,则12x x +≥,即12x x +≥或12x x+≤-(当且仅当b a =时取“=”). 4.若0>ab ,则2≥+a bb a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a b b a+≥或2a bb a+≤-(当且仅当b a =时取“=”). 6.若R b a ∈,,则(当且仅当b a =时取“=”).7.一个重要的不等式链:.8.9.函数图象及性质(1)函数图象如右图所示:(2)函数性质:①值域:;②单调递增区间:;单调递减区间:.10.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”;(2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.四、题型分析(一) 利用基本不等式求最值利用基本不等式求函数最值时,应注意三个条件:“一正,二定,三相等”,这三个条件中,以定值为本.因为在一定限制条件下,某些代数式需经过一定的变式处理,才可利用基本不等式求得最值,而怎样变式,完全取决于定值的作用.主要有两种类型:一类是中条件给出定值式,一类是条件中无定值式.类型一给出定值【例1】【江苏省南通市三县(通州区、海门市、启东市)2019届高三第一学期期末】已知实数,且,则的最小值为____【答案】【解析】由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,当且仅当,即当时,等号成立.因此,的最小值为.故答案为:.【小试牛刀】设,x y 是正实数,且1x y +=,则的最小值是__________.【答案】14. 【分析一】考虑通法,消元化为单元函数,而后可用导数法和判别式法求解函数的最小值; 【解析一】【分析二】考虑整体替换的方法,分母的和为常数. 【解析二】设2x s +=,1y t +=,则4s t +=,类型二 未知定值【例2】已知,x y 为正实数,则433x yx y x++的最小值为 A .53 B .103 C .32D .3 【答案】3 【解析】,当且仅当时取等号.【点评】配凑法是解决这类问题的常用方法,其目的是将代数式或函数式变形为基本不等式适用的条件,对于这种没有明确定值式的求最大值(最小值)问题,要灵活依据条件或待求式合理构造定值式. 【小试牛刀】已知函数在R 上是单调递增函数,则23cb a-的最小值是【答案】1 【解析】 由题意的,因为函数()f x 在R 上单调递增,所以满足,可得23b c a≥,且0a >所以,当且仅当3b a =时等号成立,所以.技巧一:凑项【例3】设0a b >>,则的最小值是【分析】拼凑成和为定值的形式 【解析】4=(当且仅当和1ab ab =,即⎪⎩⎪⎨⎧==222b a 时取等号). 【点评】使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图象,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型. 【小试牛刀】【江苏省无锡市2019届高三上学期期中】设为正实数,且,则的最小值为________. 【答案】27 【解析】因为,所以因此当且仅当时取等号,即的最小值为27.技巧二:凑系数【例4】 当04x <<时,求的最大值.【分析】由04x <<知820x ->,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到为定值,故只需将凑上一个系数即可.【解析】,当282x x =-,即2x =时取等号,∴当2x =时,的最大值为8.【评注】本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值. 【小试牛刀】设230<<x ,求函数的最大值.【解析】∵230<<x ,∴023>-x ,∴,当且仅当232x x =-,即时等号成立.【点评】总的来说,要提高拼凑的技巧,设法拼凑出乘积或和为定值的形式. 技巧三: 分离 【例5】 求的值域.【分析一】本题看似无法运用基本不等式,不妨将分子配方凑出含有()1x +的项,再将其分离. 【解析一】,当,即时,(当且仅当1x =时取“=”号).【小试牛刀】已知a,b 都是负实数,则的最小值是【答案】2(﹣1)【解析】222≥-.技巧四:换元【例6】已知a ,b 为正实数,2b +ab +a =30,求y =1ab 的最小值.【分析】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行.【解法一】由已知得a =30-2b b +1 ,ab =30-2b b +1 ·b =-2 b 2+30bb +1 .∵a >0,∴0<b <15.令t =b +1,则 1<t <16,∴ab =-2t 2+34t -31t =-2(t +16t )+34.∵t +16t ≥2t ·16t =8,∴ab ≤18,∴y ≥118 ,当且仅当t =4,即a =6,b =3时,等号成立.【解法二】由已知得:30-ab =a +2b .∵a +2b ≥22 ab ,∴30-ab ≥2 2 ab .令u =ab ,则 u 2+2 2 u -30≤0,-5 2 ≤u ≤3 2 ,∴ab ≤3 2 ,ab ≤18,∴y ≥118 .【点评】①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.【小试牛刀】设正实数y x ,满足1=+y x ,则的取值范围为【答案】]89,1[ 【解析】因为,所以410≤<xy设,所以当41=t 时,上式取得最大值当21=t 时,上式取得最小值所以的取值范围为]89,1[【点评】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解. 技巧五:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.【例7】已知0,0x y >>,且191x y +=,求x y +的最小值.【错解】Q 0,0x y >>,且191x y+=,∴,故.【错因】解法中两次连用基本不等式,在等号成立条件是x y =,在1992xyxy+≥等号成立条件是19x y=,即9y x =,取等号的条件的不一致,产生错误.因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法. 【正解】,,当且仅当9y x x y=时,上式等号成立,又191x y+=,可得时,.【小试牛刀】【江苏省苏北四市2019届高三第一学期期末】已知正实数满足,则的最小值为____. 【答案】【解析】正实数x ,y 满足1,则:x +y =xy , 则: 4x +3y ,则: 437+4,故的最小值为.故答案为:.技巧六:取平方【例8】已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.【解析】W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20,∴W ≤20 =2 5 . 【小试牛刀】求函数的最大值.【解析】注意到21x -与52x -的和为定值.,又0y >,,当且仅当21x -=52x -,即32x =时取等号,故max 22y =. 【点评】本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件. 技巧七:构造要求一个目标函数),(y x f 的最值,我们利用基本不等式构造一个以),(y x f 为主元的不等式(一般为二次不等式),解之即可得),(y x f 的最值. 【例9】设,x y 为实数,若,则2x y +的最大值是 .【分析】利用基本不等式将已知定值式中224x y ,xy +的均转化成含2x y +的不等式,再求2x y +的最大值.【答案】2105. 【解析】,可解得2x y +的最大值为2105. 【点评】本题的解法过程体现了“消元”的思想,所求目标函数是和的形式,那我们就设法消去条件等式中的乘积,方法就是利用基本不等式,这里它的作用,一个是消元,还有就是把条件的等式变为了不等式. 【小试牛刀】若正实数x ,y ,满足,则x y +的最大值为【分析】构成关于x y +的不等式,通过解不等式求最值 【解析】由,得.即,.计算得出:.y x +∴的最大值是4.技巧八:添加参数【例10】若已知0,,>c b a ,则的最小值为 .【解析】时可取得函数的最小值,此时,此时51=λ,最小值为552. 【小试牛刀】设w z y x ,,,是不全为零的实数,求的最大值.【解析】显然我们只需考虑的情形,但直接使用基本不等式是不行的,我们假设可以找到相应的正参数,αβ满足:故依据取等号的条件得,,参数t 就是我们要求的最大值.消去,αβ我们得到一个方程,此方程的最大根为我们所求的最大值,得到212t +=. 【点评】从这个例子我们可以看出,这种配凑是有规律的,关键是我们建立了一个等式,这个等式建立的依据是等号成立的条件,目的就是为了取得最值.【小试牛刀】设,,x y z 是正实数,求的最小值.【解析】引进参数k ,使之满足,依据取等号的条件,有:,故的最小值4.综上所述,应用均值不等式求最值要注意:一要“正”:各项或各因式必须为正数;二可“定”:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;三能“等”:要保证等号确能成立,如果等号不能成立,那么求出的仍不是最值. (二) 基本不等式与恒成立问题 【例11】已知x >0,y >0,且21+=1x y,若恒成立,则实数m 的取值范围是 .【分析】先求左边式子的最小值 【解析】∵0>x ,0>y ,且21+=1x y,∴,当且仅当4y x =x y ,即y x 2=时取等号,又21+=1x y,∴4=x ,2=y ,∴,要使恒成立,只需,即28>m +2m ,解得24<<-m ,故答案为24<<-m .【点评】恒成立指函数在其定义域内满足某一条件(如恒大于0等),此时,函数中的参数成为限制了这一可能性(就是说某个参数的存在使得在有些情况下无法满足要求的条件),因此,适当的分离参数能简化解题过程.例:要使函数恒大于0,就必须对a 进行限制--令0≥a ,这是比较简单的情况,而对于比较复杂的情况时,先分离参数的话做题较简单.【小试牛刀】若对任意的正实数,x y 恒成立,求a 的最小值. 【解析】对任意的正实数,x y 恒成立,∴对任意的正实数,x y 恒成立.设,由取等号条件:,消去k ,可以得到:210t t --=,解得:512t +=,因此a 的最小值为512+.题型二 基本不等式的实际应用【例12】某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【解析】(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250 =-13x 2+40x -250; 当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x -1 450)-250 =1 200-(x +10 000x ).∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -2500<x <80,1 200-x +10 000xx ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950. 对称轴为x =60,即当x =60时,L (x )最大=950(万元); 当x ≥80时,L (x )=1 200-(x +10 000x ) ≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当年产量为100千件时,年获利润最大.【点评】(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【牛刀小试】 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件. 【答案】80【解析】设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20.当且仅当800x =x8(x >0),即x =80时“=”成立.(2)年平均利润为y x =-x -25x +18=-(x +25x )+18, ∵x +25x ≥2x ·25x =10,∴y x =18-(x +25x )≤18-10=8,当且仅当x =25x ,即x =5时,取等号. 五、迁移运用1.【江苏省南通市通州区2018-2019学年第一学期高三年级期末】对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______. 【答案】【解析】设直角三角形的斜边为c ,直角边分别为a ,b , 由题意知, 则,则三角形的面积,,,则三角形的面积,当且仅当a=b=取等即这个直角三角形面积的最大值等于,故答案为:.2.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟】在平面四边形中,,则的最小值为_____.【答案】【解析】如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为,AB=1,由数量积的几何意义知在方向的投影为3,∴可设C(3,n),又所以,,即,==,当且仅当,即n=1,m=时,取等号,故答案为.3.【江苏省常州市2019届高三上学期期末】已知正数满足,则的最小值为________. 【答案】4【解析】由基本不等式可得,所以,当且仅当,即当y=x2时,等号成立,因此,的最小值为4,故答案为:4.4.【江苏省扬州市2018-2019学年度第一学期期末】已知正实数x,y满足,若恒成立,则实数m的取值范围为_______.【答案】【解析】由于x+4y﹣xy=0,即x+4y=xy,等式两边同时除以xy得,,由基本不等式可得,当且仅当,即当x=2y=6时,等号成立,所以,x+y的最小值为9.因此,m≤9.故答案为:m≤9.5.【江苏省徐州市(苏北三市(徐州、淮安、连云港))2019届高三年级第一次质量检测】已知,,且,则的最大值为_________.【答案】【解析】化为,即,解得:,所以,的最大值为。
不等式证明的常用方法
不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。
高中数学基本不等式(学生版)
第4讲 基本不等式思维导图知识梳理1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).核心素养分析(,0)2a ba b +≤≥。
结合具体实例,能用基本不等式解决简单的求最大值或最小值的问题。
重点提升数学抽象、逻辑推理和数学运算素养.题型归纳题型1 利用基本不等式求最值【例1-1】(2019·济南模拟)(1)已知2x <,求9()2f x x x =+-的最大值; (2)已知x ,y 是正实数,且9x y +=,求13x y+的最小值.【例1-2】(2019·辽宁模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【例1-3】(2019·合肥调研)已知a >b >0,那么a 2+1b (a -b )的最小值为________.【跟踪训练1-1】(2020春•湖北期中)已知32x >,则1()4146f x x x =-+-的最小值为 . 【跟踪训练1-2】(2020•韶关二模)已知0x >,0y >,且121x y+=,则2x y +的最小值是( )A .7B .8C .9D .10【名师指导】1.通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值.3.通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.4.两次利用基本不等式求最值的注意点当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性.题型2 利用基本不等式解决实际问题【例2-1】(2019秋•罗田县期中)小王从甲地到乙地和从乙地到甲地的时速分别为a 和()b a b >,其全程的平均时速为v ,则( )A .a v <<B .b v <<C 2a b v +<D .2a bv += 【例2-2】(2019春•南昌县校级月考)某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( ) A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲乙两食堂的营业额相同D .不能确定甲,乙哪个食堂的营业额较高【跟踪训练2-1】(2019秋•金安区校级月考)近来猪肉价格起伏较大,假设第一周、第二周猪肉价格分别为a 元/斤、b 元/斤,家庭主妇甲和乙买猪肉的方式不同:家庭主妇甲每周买3斤猪肉,家庭主妇乙每周买50元钱的猪肉,试比较谁购买方式更实惠(两次平均价格低视为实惠) (在横线上填甲或乙即可). 【名师指导】有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.题型3 基本不等式的综合应用【例3-1】(2020春•吉林月考)在Rt ABC ∆中,已知90C ∠=︒,3CA =,4CB =,P 为线段AB 上的一点,且||||CA CB CP xy CA CB =+,则11x y +的最小值为( )A .76B .712C .712 D .76【例3-2】(2020春•广陵区校级期中)已知直线22(0,0)mx ny m n +=>>过圆22(1)(2)5x y -+-=的圆心,则12m n+的最小值为( )A .3B .3+C .6D .3+【例3-3】(2020•山东模拟)若(0,)x ∀∈+∞,241x m x+,则实数m 的取值范围为 .【跟踪训练3-1】(2020春•沙坪坝区校级月考)已知向量22(1,1),(94,61)a b x y xy ==++,且向量a 与向量b 平行,则32x y +的最大值为( ) A .1B .2C .3D .4【跟踪训练3-2】(2020•淮南一模)已知函数()exf x ln e x=-,满足220181009()()()()(2019201920192e e ef f f a b a ++⋯+=+,b 均为正实数),则14a b +的最小值为 【名师指导】利用基本不等式解题的策略(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解. (2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.。
几何法证明不等式(精选多篇)
几何法证明不等式(精选多篇)^2(a,b∈r,且a≠b)设一个正方形的边为c,有4个直角三角形拼成这个正方形,设三角形的一条直角边为a,另一条直角边为b,(b>a)a=b,刚好构成,若a不等于b时,侧中间会出现一个小正方形,所以小正方形的面积为(b-a)^2,经化简有(b+a)^2=4ab,所以有((a+b)/2)^2=ab,又因为(a^2+b^2)/2>=ab,所以有((a+b)/2)^2<=(a^2+b^2)/2,又因为a不等与b,所以不取等号可以在直角三角形内解决该问题=^2-(a^2+b^2)/2=/4=-(a-b)^2/4<0能不能用几何方法证明不等式,举例一下。
比如证明sinx不大于x(x范围是0到兀/2,闭区间)做出一个单位圆,以o为顶点,x轴为角的一条边任取第一象限一个角x,它所对应的弧长就是1*x=x那个角另一条边与圆有一个交点交点到x轴的距离就是sinx因为点到直线,垂线段长度最小,所以sinx小于等于x,当且尽当x=0时,取等已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;能给出其他方法的就给分(a1+a2+...+an)/n≥(a1a2...an)^(1/n)一个是算术,一个是几何。
人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^搞笑归搞笑,我觉得可以这样做,题目结论相当于证(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。
我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)我们考虑各元偏导都等于0,得到方程组,然后解出a1=a2=……=an再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。
三元齐次不等式问题的数学竞赛讲义——均值不等式与柯西不等式应用拓广 学生版
三元齐次不等式问题的解答讲义-均值不等式与柯西不等式应用拓广众所周知,三元齐次不等式是一类基本型不等式问题,证明所需技巧性简单,本文通过几个例题梳理证明的一般步骤:通常只要展开分析,考察展开式,能否首先使用均值不等式,均值不等式的元可以任意,其次考虑应用柯西不等式,能否配方,能否使用同一类型的3-u -v 法证明。
一、基本三元齐次不等式问题1原始问题:已知a ,b ,c >0,求证:a 2b 2+b 2c 2+c 2a2≥a b +b c +c a .2问题的加强1:已知a ,b ,c >0,求证:a 2b 2+b 2c 2+c 2a2≥a b +b c +c a +3a -b 2+b -c 2+c -a 2ab +bc +ca .3问题的加强2:已知a ,b ,c >0,求证:a 2b +b 2c +c 2a ≥a +b +c +2a -b 2+b -c 2+c -a 2a +b +c.根据上述两个题,增加字母次数,变形改编一题,1加强变形题1:已知a,b,c>0,求证:a(a2−b2)b +b(b2−c2)c+c(c2−a2)a≥3(a−b)4+(b−c)4+c−a4a2+b2+c2.舍掉一部分元素,使得题目条件难度加大,改编题目,2加强变形题2:问题[2023-06-2500:00]:已知a,b,c>0,,求证:a(a2−b2)b +b(b2−c2)c+c(c2−a2)a≥4c−a4a2+b2+c2.二、复杂一点的三元齐次不等式问题:这类问题看能否使用均值不等式,凑一组不等式问题,使用均值不等式,若使用过程出现困难,则展开证明.1问题1:已知a,b,c>0,求证:b+c4a+b+c+c+a4b+c+a+a+b4c+a+b≥3.2问题2:已知a,b,c>0,求证:a2(b+c)4a+b+c +b2(c+a)4b+c+a+c2(a+b)4c+a+b≥29bc+ca+ab.3问题3:已知a,b,c>0,求证:b(b+c)c(4a+b+c)+c(c+a)a(4b+c+a)+a(a+b)b(4c+a+b)≥13.4问题4:已知a,b,c>0,求证:a(b+c)b(4a+b+c)+b(c+a)c(4b+c+a)+c(a+b)a(4c+a+b)≥13.5问题5是多元均值不等式的应用问题.再看一个题8次不等式的展开证明:已知a,b,c≥0,β∈0,31,求证:cyc [(b4+c4)(3b+c)(b+3c)(b2+c2-2a2)]≥42cyc a2⋅cyca2-c2+βcycc-a 2⋅cycc-a 2.三、思考问题:6①已知a ,b ,c >0,求证:2cyc a 4 cyc a 3(a +b ) 5a −c (4a +3b −7c )−20cyc a 2b 3(a −c )≥cyc bc (a −b )8 +cyc (c −a )2⋅ cyc(b −c )2(c −a )2 .7②已知a ,b ,c >0,求证:a 2+b 2+c 2≥a b 2−bc +c 2+b c 2−ca +a 2+c a 2−ab +b 2≥ab +bc +ca .。
高三数学不等式的性质、不等式证明的几种常见方法
高 三 数 学---------不等式复习【教学内容】不等式的性质、不等式证明的几种常见方法 比拟法、综合法、分析法、换元法和放缩法等。
【教学目标】不等式的性质是不等式证明和求解不等式的理论根底和前提条件。
比拟法是证明不等式的最根本的方法,它思维清晰,可操作性强,适用X 围广泛,在不等式证明中常常采用。
比拟法通常分两类:第一、作差与零比拟,作差后常需要把多项式因式分解,再由各因式的符号来确定差与零的大小;第二、作商与1比拟,但要注意除式的符号,作商后常需把分子分母因式分解后约分再与1进展大小比拟。
综合法常常用到如下公式:〔1〕22b a +≥2ab(a,b ∈R) (2)2b a +≥),(+∈R b a ab (3)baa b +≥2(a .b>0) (4)222b a +≥),()2(2R b a b a ∈+(5)3c b a ++≥),,(3+∈R c b a abc 利用综合法证明不等式时常需要进展灵活的恒等变形,创造条件去运用公式。
对于不能直接分析出如何用综合法来证明的不等式,我们可以采用分析法,执果索因,从要证明的结论出发,去追逆它要成立的条件,得到要证明的结论就是条件或已有的公式,从而说明所证不等式成立。
另外,换元法、放缩法等对较复杂的不等式的证明也很有帮助。
【知识讲解】例1、 设1>2a>0,试比拟A=1+a 2与B=a-11的大小。
解:A-B=aa a a a a ----+=--+111111322=1)1(1223-+-=--+-a a a a a a a a∵01,2>+-∈+a a R a 恒成立.由条件知0<21<a ,∴a-1<0,∴A-B<0 即A<B.例2、设a.b ∈R +,求证a a b b ≥a b b a分析:这里所证的不等式的左、右两边均正,且都为乘积的形式,所以可以考虑作商与1比拟,转化为运用指数函数的性质来证明。
不等式
(一)不等式的概念作为表达同类量之间的大小关系的一种数学形式,不等式必须在定义了大小关系的有序集合上研究.由于复数域没有定义大小,所以不等式中的数或字母表示的数都是实数.1.不等式用符号>或<联结两个解析式所成的式子,称为不等式.不等号>或<叫做严格不等号,≥或≤叫做非严格不等号(相应的不等式分别叫做严格不等式和非严格不等式).例如b a ≥表示“b a >或b a =有一个成立,”因此1≥0或1≤1都是真的.另外,日常还使用一种只肯定不等关系但不区分孰大孰小的不等号,即“≠”.下面主要讨论严格不等式的性质.常如下定义不等式: 形如),,,(),,,(z y x g z y x f ∨(2-1)的式子,称为关于变数z y x ,,, 的不等式(符号“∨”表示不等号“>”,“<”中的任一个).在(2-1)式中,),,,(),,,(z y x g z y x f 与定义域的交集,叫做不等式(2-1)的定义域.在不等式(2-1)的定义域中,能使不等式成立的数值组,叫做不等式(2-1)的解,不等式(2-1)解的全体组成的集合,叫做不等式(2-1)的解集.求出不等式解集的过程,叫做解不等式.如果不等式(2-1)的定义域中一切值组都使不等式(2-1)成立,那么不等式(2-1)叫做绝对不等式.如果不等式(2-1)的定义域中一切值组都使不等式(2-1)不成立,那么不等式(2-1)叫做矛盾不等式.如果不等式(2-1)的定义域中一些值组使不等式(2-1)成立,而另一些值组使不等式(2-1)不成立,那么不等式(2-1)叫做条件不等式.在不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是代数式,那么就叫它代数不等式;如果),,,(),,,(z y x g z y x f 和中至少有一个为超越式,那么就叫它超越不等式. 在代数不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是有理式,那么就叫它有理不等式;如果),,,(),,,(z y x g z y x f 和至少有一个为无理式,那么就叫它无理不等式.在有理不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是整式不等式,那么就叫它整式不等式;如果),,,(),,,(z y x g z y x f 和至少有一个是分式,那么就叫它分式不等式.2.不等式组含有未知数z y x ,,, 的几个不等式所组成的一组不等式⎝⎛∨∨∨),,,(),,,(),,,(),,,(),,,(),,,(2211z y x g z y x f z y x g z y x f z y x g z y x f k k(2-2)称为不等式组.不等式组(2-2)中,),,2,1)(,,,(),,,(k i z y x g z y x f i i =定义域的交集,叫做不等式组(2-2)的定义域.不等式组(2-2)中,各个不等式的解集的交,叫做不等式组(2-2)的解集.求出不等式组的解集的过程,叫做解不等式组.(二)不等式的性质实数的三条运算比较性质: ①0>-⇔>b a b a ②0<-⇔<b a b a ③0=-⇔=b a b a为不等式性质的证明提供了依据.不等式有如下10条性质.(1)对逆性如b a >,则a b <;反之如a b <,则b a >.(2)传递性 若,,c b b a >>则c a >. (3)加法单调性若b a >,则c b c a +>+.(4)乘法单调性若0,>>c b a ,则bc ac >;若0,<>c b a 则bc ac <.(5)相加法则若,,d c b a >>则d b c a +>+.(6)相减法则若d c b a >≥,,则d b c a ->-.(7)相乘法则若0,0>>>>d c b a ,则bd ac >.(8)相除法则若d c b a <<>≥0,0,则db c a >. (9)乘方法则+∈R b a ,,若b a >,整数1>n ,则n n b a >.(10)开方法则+∈R b a ,,若b a >,整数1>n ,则n n b a >.注意 性质(1),(3),(4),(9)和(10)是可逆的,因此这些性质可以用于证明不等式,也可用作解不等式.其余各条作为解不等式的依据,可以用于证明不等式(当不需可逆推理时).(三)不等式的证明方法 1.比较法比较法是直接求出所证不等式两边的差或商,然后推演结论的方法.欲证B A >(或B A <),可以直接将差式B A -与0比较大小;或者+∈R B A ,时,直接将商式BA与1比较大小.在什么情况下用比较法较好呢?一般地,当移项后容易分解成因式或配成完全平方时,可考虑用比较法;或当不等式两边都是乘积结构(或可化成乘积结构,成虽为商式结构,但分子、分母都可化为乘积结构)时,可考虑比较法;另外,能化成便于放大或缩小的商式,也可考虑用比较法.例1 设b a ,为不等的实数,求证)(46224224b a ab b b a a +>++证明 因为=++-+=+-++222222224224)2()(4)()(46ab b a ab b a b a ab b b a a=-+222)2(ab b a )(0)(4b a b a ≠>-所以)(46224224b a ab b b a a +>++例2 若0>>>c b a ,求证b a ac c b c b a c b a c b a +++>222证明 考虑用商式.因为=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛>+++c a a c b c c b a b b a b a a c c b cb a ac a c c b c b b a b a c b a c b a 222 1>⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛---ca cb ba c a cb b a所以b a ac c b c b a c b a c b a +++>2222.综合法综合法是“由因导果”,即从已知条件出发,依据不等式的性质、函数性质或熟知的基本不等式,逐步推导出要证明的不等式.常利用不等式的性质或借助于现成的不等式.因此,掌握的不等式越多,应用这种方法就越方便.例3 试证:若0,,>∀c b a ,则有abc b a c a c b c b a 6)()()(222222≥+++++证明方法1 因为0)(2≥-b a ,所以ab b a 2)(22≥+.又0>c ,所以abc b a c 2)(22≥+同理有 abc a c b abc c b a 2)(,2)(2222≥+≥+ 由相同加法则,三式相加即得结论. 方法2 欲证不等式等价于6≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+a b b a c a a c b c c b 因为2,2,2≥+≥+≥+abb ac a a c b c c b ,三式相加,即得结论. 说明 将所要证不等式分成几个同向不等式,然后将各式相加或相乘,这是证明不等式的常用手法.3.分析法分析法是“执因索果”,即从所要证明的结论出发,步步推求使不等式能成立的充分条件(或充分必要条件),直至归结到已知条件或已知成立的结论为止.例4 已知1,≥∈n N n ,求证⎪⎭⎫⎝⎛+++≥⎪⎭⎫ ⎝⎛-+++++n n n n 21412111215131111 (1)证明 欲证不等式(1),只需证⎪⎭⎫ ⎝⎛++++≥⎪⎭⎫ ⎝⎛-++++n n n n 214121)1(12151311(2)(2)式左边即⎪⎭⎫ ⎝⎛-+++++121513122n n n n (3)(2)式右边即=⎪⎭⎫ ⎝⎛+++++++n n n 214121214121 ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++n n n n 21412141212(4)比较(3)与(4)式,显然nn 2161411215131+++≥-+++ . 可知要证(2)式成立,只需证nn 2141212+++≥ (5)当1=n 时,(5)式成立;若k n =时,(5)式成立.则1+=k n 时22121412121221+++++≥+=+k k k k )1(21214121+++++=k k 即(5)式成立,结论得证.应用分析法的基本思路是“要C成立,只要B成立即可;要B成立,只要A成立…”,一直追溯到已知条件或已知的不等式为止.用形式符号表示出来,就是“ ←←←C B A ”.如果分析的每一步都是充分必要的,即“B A ⇔”则更好.应该强调的是,分析的思想和分析的方法是研究一切问题的一个基本方法.无论是数学,自然科学,还是经济学或社会科学,多半是以分析为先导.没有中肯的分析,就不会有正确的综合.所以在数学教育中培养学生分析问题的能力是有意义的.4.数学归纳法数学归纳法是由皮亚诺公理派生出来的一个重要数学方法.它对于等式或不等式的证明同样是有效的.主要用于与自然数n 有关的不等式命题.例5 求证对于任意的自然数n ,有121212654321+<-∙∙n n n 证明方法1 当n =1时,有3121<,不等式成立. 假设n =k 时,不等式为真,那么当n =k +1时,有221222121212212212654321++=++∙+<++∙-∙∙k k k k k k k k k 又)32)(12(3212212++⇔+<++k k k k k2)22()32)(12(22+<++⇔+<k k k k末式成立,故原不等式对1+=k n 成立.结论得证.方法2 构造数列 记122765432,212654321+∙∙=-∙∙=n n b n n a n n 显然),2,1( =<n b a n n1212+=<n b a a n n n所以121+<n a n 即得结论121212654321+<-∙∙n n n 说明 这个不等式的左边有明显的特点,不等式右式成平方根的形式.5.反证法前面几种方法都是直接证法,而反证法是一种间接证法,其中包括归谬法和穷举法. 反证法从否定所要证的结论入手,假设结论的否定为真,那么由此所引出的结论与已知条件或已知公理、定理、定义域性质之一相矛盾,或自相矛盾,因而结论的否定不成立,故原结论是真实的.当给定不等式不便于用直接法证明时,或其自身是一种否定式命题时,可考虑用反证法.例6 设+∈R z y x ,,,且1sin sin sin 222=++z y x ,求证2π>++z y x 证明 假如2π≤++z y x(1)则有220ππ≤-≤+<z y x因为正弦函数在区间⎪⎭⎫⎝⎛2,0π上是增函数,所以 z z y x cos )2sin()sin(=-≤+π(2)(2)式两边均为正数,两边平方,有x y y x x y y x cos sin cos sin 2cos sin cos sin 2222++y x z z 2222sin sin sin 1cos +=-=≤整理得0)cos(sin sin ≤+y x y x(3)但是,由(1)式可知⎪⎭⎫⎝⎛∈+2,0,,πy x y x ,表明(3)式不可能成立. 因此2π>++z y x6.换元法换元法是根据不等式的结构特征,选择适当的变量代换,从而化繁为简,化难为易,化未知为已知,或实现某种转化,达到证明的目的.换元法有时称为变换法.例7 设1=++z y x ,试证31222≥++z y x 证明 当31===z y x 时,不等式中的等号成立.于是引进参数v u ,,作变换: ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=+=+=v u z v y u x 313131实际上这是平面1=++z y x 的一个参数表示形式.代入不等式的右端,得到=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++222222313131v u v u z y x3131)(222≥++++v u v u 7.放缩法放缩法又称传递法,它是根据不等式的传递性,将所求证的不等式的一边适当地放大或缩小,使不等关系变得明朗化,从而证得不等式成立.这是不等思维的一个显著特征,其依据是实数集R的阿基米德性质.放缩法的具体做法要依据原不等式的结构来确定.例如,对于和式,采用将某些项代之以较大(或较小)的数,以得到一个较大(或较小)的和;或者用舍去一个或几个正项的办法,以得到较小的和.对于分式,则采取缩小(或放大)分母或者放大(或缩小)分子的办法来增值(或减值).总之,放缩法使用的是不等量代换,这与换元法使用等量代换有着明显的区别.例8 设),,2,1(0n i a i =>,求证123212321322121)()()(a a a a a a a a a a a a a n n <++++++++++ 证明左边+++++++<))(()(3212132112a a a a a a a a a a=++++++++-))((3211321n n na a a a a a a a a++⎪⎪⎭⎫ ⎝⎛++-++⎪⎪⎭⎫ ⎝⎛+- 321212111111a a a a a a a a=⎪⎪⎭⎫ ⎝⎛+++-+++-n n a a a a a a 21121111211111a a a a a n <+++- 说明 用放缩法证明不等式时,以下式子很有用: (1))1(111)1(11)1(11112>--=-<<+=+-n nn n n n n n n n (2)1121111-+<<++=-+n n n n n n n)1(1>--=n n n(3))1(212)1(≥+<+<n n n n n (4))(211N n n n n n ∈++<+ 不等式的证明方法还有构造法、判别式法、排序法、调整法、凸函数法以及微积分法等,这里不再一一列举.(四)解不等式1.同解不等式若两个不等式的解集相等,则称这两个不等式为同解不等式. 对于同解不等式,有以下重要结论:(1)不等式)()(x g x f >与不等式)()(x g x f <同解.(2)如果对于不等式)()(x g x f >定义域中的一切值)(x h 都有意义,则不等式)()()()(x h x g x h x f +>+与)()(x g x f >同解.(3)如果对于不等式)()(x g x f >定义域中的一切值都有0)(>x h ,则不等式)()()()(x h x g x h x f >与)()(x g x f >同解;如果0)(<x h ,则不等式)()()()(x h x g x h x f <与)()(x g x f >同解.(4)不等式)()(x g x f >在其定义域中的某个子集上恒有0)()(>>x g x f ,则原不等式)()(x g x f >与)()(x g x f n n >在这个子集上同解,其中1,≥∈n n N .(5)不等式)()(x g x f >在其定义域中的某个子集上恒有0)()(>>x g x f ,则不等式n nx g x f )()(>在这个子集上与原不等式)()(x g x f >同解,其中1,≥∈n n N .(6)不等式0)()(>x g x f 与下面两个不等式组同解:⎩⎨⎧<<⎩⎨⎧>>0)(0)(0)(0)(x g x f x g x f (7) 不等式0)()(<x g x f 与下面两个不等式组同解:⎩⎨⎧><⎩⎨⎧<>0)(0)(0)(0)(x g x f x g x f (8) 不等式0)()(>x g x f 与下面两个不等式组同解: ⎩⎨⎧<<⎩⎨⎧>>0)(0)(0)(0)(x g x f x g x f (9) 不等式0)()(<x g x f 与下面两个不等式组同解: ⎩⎨⎧><⎩⎨⎧<>0)(0)(0)(0)(x g x f x g x f (10) 不等式)()(x g x f <与不等式组)()()(x g x f x g <<-或⎩⎨⎧-><)()()()(x g x f x g x f同解;不等式)()(x g x f >与不等式组⎩⎨⎧-<>)()()()(x g x f x g x f 同解.2.不等式的解法 (1)一元一次不等式任何一元一次不等式都可以经过恒等变形整理成b ax > (2-3)的形式.不等式(2-3)的解集,视a 而定.若0>a 解集为}{a b x x >;若0<a ,解集为}{abx x <;若0=a ,不等式b ax >变成为b x >0,它不是一元一次不等式.此时如果0>b ,则b x >0无解;如果b x b ><0,0是绝对不等式,解集为),(+∞-∞.(2)一元一次不等式组解不等式组,首先要分别求出组内每个不等式的解集,然后求它们的交集.求交集时,可先在数轴上画出每个不等式的解集,然后根据重合部分找出它们的交集.设一元一次不等式组⎩⎨⎧>>dcx bax (2-4)中每个不等式都有解,则归纳为下列四种情形之一;⎩⎨⎧>>βαx x ⎩⎨⎧<<βαx x ⎩⎨⎧<>βαx x ⎩⎨⎧><βαx x 假设βα<,则以上四组的解集依次是:βααβ<<<>x x x空解(无解)(3)一元二次不等式任何一个一元二次不等式都可经过恒等变形整理成)0(02≠∨++a c bx ax(2-5)的形式,两边同除以非0实数a ,即可归纳成下面两种情形之一:第一种情形:02>++q px x①如果042<-=∆q p ,不等式①的解集为),(+∞-∞;如果042=-=∆q p ,不等式①的解集为}2{p x x ≠; 如果042>-=∆q p ,则02=++q px x 有两个实根21,x x ,设21x x <,那么不等式①的解集为}{21x x x x x ><或.第二种情形:02<++q px x②如果042≤-=∆q p ,不等式②无解;如果042>-=∆q p ,不等式②的解集为}{21x x x x <<,其中21,x x 是02=++q px x 的两个根.(4)一元二次不等式组一元二次不等式组可经过恒等变形整理成⎩⎨⎧∨++∨++0022221121c x b x a c x b x a的形式.其中21a a 和至少有一个不为0.这时可分别求出不等式(2-6)①和(2-6)②的解集.然后求出这两个解集的交集,即为原不等式的解.(5)一元高次不等式一元高次不等式的标准形式是)0(0)(0111≠∨++++=--n n n n n a a x a x a x a x f(2-7)其中),,1,0(n i a i =∈R .当3≥n 时,不等式(2-7)称为一元高次不等式.由高等代数知道,在实数域上多项式f (x )总可以分解成一次因式或既约二次因式的乘积,所以f (x )总可以表成)()()(21x f x f a x f n =.其中)(1x f 是f (x )中所有首项系数为1的一次因式的乘积,)(2x f 是所有首项系数为1的二次既约因式的乘积.由于首项系数为1的二次既约因式恒为正值,所以当0>n a 时,不等式f (x )>0或0)(1>x f 同解;当0<n a 时,不等式0)(>x f 与0)(1<x f 同解.0)(1∨x f 的解法有以下两种情形:第一种情形 当)(1x f 中没有重因式时,按以下步骤求解: 第一步,将)(1x f 表示成0)())(()(211∨---=k x x x x x x x f的形式,其中x i 是)(1x f 的零点,并有k x x x <<< 21.第二步,将)(1x f 的各个零点k x x x ,,,21 在数轴上标出,从而将数轴划分为k +1个子(2-6)① ②区间.从最右一个子区间),(+∞k x 开始,向左在各个子区间上依次相间地标出“+”,“-”标志.第三步,所有“+”的子区间(开区间)的并集,就是0)(1>x f 的解集;所有“-”的子区间(开区间)的并集,就是0)(1<x f 的解集.第二种情形 当)(1x f 中有重因式时,可将奇次重因式改为一次单因式,并将偶次重因式弃去,这样就可以按照没有重因式的情形处理.但是应将所得解集去掉偶次重因式的零点.这种解法叫做“零点分区法”.当用此法求解0)(1≥x f 或0)(1≤x f 时,要将开区间改为闭区间;同时,在弃去偶次重因式后,不必去掉偶次重因式的零点.(6)一元分式不等式一元分式不等式的一般形式为0)()(∨x g x f (2-8)由同解不等式的重要结论(7)可知,解不等式(2-8)只需解不等式0)()(∨x g x f . (7)无理不等式一元无理不等式的一般形式为0)(∨x f(2-9)其中f (x )是x 的无理函数.解无理不等式的基本方法是:利用同解不等式的重要结论(4),将所给无理不等式转化为与它同解的有理不等式组.解无理不等式常按如下步骤进行: 第一步,求出f (x )的定义域.第二步,解无理方程f (x )=0,即求出f (x )的零点[或判断f (x )没有零点].零点由小到大依次为k x x x ,,,21 ,将它们在数轴上标出,从而将定义域划分为k +1个子区间.第三步,在各个子区间内各任取一值α,使得0)(>αf [或0)(<αf ]的α所在的区间就是不等式0)(>x f [或0)(<x f ]解的区间.在解无理不等式的过程中,经常会因为在不等式的两边实施乘方运算而出现增根,所以必须检查所得解是否超出原不等式的定义域.另外,有些不等式的一边允许取负值,忽略这一点可能导致失解.(8)绝对值不等式绝对值号内含有未知元(或变元)的不等式称为含绝对值的不等式,简称绝对值不等式.解绝对值不等式的关键是去掉绝对值符号,使其转化为普通不等式.其主要依据是绝对值的定义和同解不等式的重要结论(10).(9)初等超越不等式指数不等式)1,0()(≠>∨a a ba x f若0≤b ,则不等式b ax f >)(为绝对不等式;不等式b a x f <)(无解.若0>b ,则当1>a 时,b x f a log )(>;当10<<a 时b x f a log )(<.指数不等式的常用解法:先将不等式两边化为同底的幂,然后区分1>a 和10<<a 两种情形,据此比较它们的指数.对数不等式)1,0(log ≠>∨a a bx a对数不等式的常用解法:先将不等式两边化为同底的对数,然后区分1>a 和10<<a 两种情形,据此比较它们的真数.解题时应注意不等式的定义域.三角不等式 含有变元(未知元)的三角函数不等式称为三角不等式. 解三角不等式一般都要归结到最简单三角不等式,形如)(tan ,cos ,sin R ∈∨∨∨a a x a x a x的不等式,叫做最简三角不等式.解最简三角不等式,可先在所给三角函数的一个周期内求出其特解,然后加上该函数的最小周期的整数倍,即为它的一般解.对于可以用初等方法求解的三角不等式,通常使用变量代换、因式分解等方法化繁为简,归结为最简三角不等式。
单变量不等式的三种证明方法
单变量不等式的三种证明方法方法一 移项作差构造法证明不等式[例1] 已知函数f (x )=1-ln x x ,g (x )=a e e x +1x-bx (e 为自然对数的底数),若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)求证:当x ≥1时,f (x )+g (x )≥2x .[解] (1)因为f (x )=1-ln x x ,所以f ′(x )=ln x -1x 2,f ′(1)=-1. 因为g (x )=a e e x +1x -bx ,所以g ′(x )=-a e e x -1x 2-b . 因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1,即g (1)=a +1-b =1,g ′(1)=-a -1-b =1,解得a =-1,b =-1.(2)证明:由(1)知,g (x )=-e e x +1x +x , 则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x +x ≥0. 令h (x )=1-ln x x -e e x -1x +x (x ≥1), 则h ′(x )=-1-ln x x 2+e e x +1x 2+1=ln x x 2+e e x+1. 因为x ≥1,所以h ′(x )=ln x x 2+e e x +1>0, 所以h (x )在[1,+∞)上单调递增,所以h (x )≥h (1)=0,即1-ln x x -e e x -1x +x ≥0, 所以当x ≥1时,f (x )+g (x )≥2x .【方法小结】待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二 隔离审查分析法证明不等式[例2] (2019·长沙模拟)已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e. [证明] 要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x. 令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x 2, 易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x,故原不等式成立. 【方法小结】若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三 放缩法证明不等式[例3] 已知函数f (x )=ax -ln x -1.(1)若f (x )≥0恒成立,求a 的最小值;(2)求证:e -x x+x +ln x -1≥0; (3)已知k (e -x +x 2)≥x -x ln x 恒成立,求k 的取值范围.[解] (1)f (x )≥0等价于a ≥ln x +1x. 令g (x )=ln x +1x (x >0),则g ′(x )=-ln x x 2, 所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1,即t ≥ln t +1(t >0).令e -x x =t ,则-x -ln x =ln t ,所以e -x x≥-x -ln x +1, 即e -x x+x +ln x -1≥0. (3)因为k (e -x +x 2)≥x -x ln x 恒成立,即k ⎝⎛⎭⎫e -x x +x ≥1-ln x 恒成立, 所以k ≥1-ln x e -x x +x =-e -x x +x +ln x -1e -x x +x+1, 由(2)知e -x x +x +ln x -1≥0恒成立,所以-e -x x +x +ln x -1e -x x +x+1≤1,所以k ≥1. 故k 的取值范围为[1,+∞).【方法小结】导数的综合应用题中,最常见就是e x 和ln x 与其他代数式结合的难题,对于这类问题,可以先对e x 和ln x 进行放缩,使问题简化,便于化简或判断导数的正负.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)e x ≥e x ,当且仅当x =1时取等号;(3)当x ≥0时,e x ≥1+x +12x 2, 当且仅当x =0时取等号; (4)当x ≥0时,e x ≥e 2x 2+1, 当且仅当x =0时取等号; (5)x -1x ≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号;(6)当x ≥1时,2(x -1)x +1≤ln x ≤x -1x ,当且仅当x =1时取等号.。
数学课件不等式的性质及比较法证明不等式
第1节 不等式的性质及比较法证 明不等式
要点·疑点·考点
1.不等式的性质是证明不等式和解不等式的理论基础,通 过本节复习,要求理解不等式的性质,会讨论有关不等式 命题的充分性和必要性,正确判断命题的真假. 不等式有如下8条性质: 1.a>b b<a.(反身性) 2.a>b,b>c =>a>c.(传递性) 3.a>b a+c>b+c.(平移性) 4.a>b,c>0 => ac>bc; a>b,c<0 => ac<bc.(伸缩性) 5.a>b≥0 => n a n b ,n∈N,且n≥2.(乘方性) 6.a>b≥0 => a>nb,n∈N,且n≥2.(开方性) 7.a>b,c>d => a+c>b+d.(叠加性) 8.a>b≥0,c>d≥0 => ac>bd.(叠乘性)
课前热身
ab 1.“a>0且b>0”是“ ab 2
(A)充分而非必要条件 A( ”成立的 ) (B)必要而非充分条件
(C)充要条件
(D)既非充分又非必要条件
2.甲、乙两车从A地沿同一路线到达B地,甲车一半时间的速 度为a,另一半时间的速度为 b;乙车用速度 a行走了一半路 程,用速度b行走了另一半路程,若a≠b,则两车到达B地的 情况是( ) A
第2节 用综合法、分析法证明不等式
要点·疑点·考点
1. 不等式证明的分析法和综合法是从整体上处理不等 式的不同形式.分析法的实质是从欲证的不等式出发寻 找使之成立的充分条件 .综合法是把整个不等式看成一 个整体,根据不等式的性质、基本不等式,经过变形、 运算,导出欲证的不等式.
2.综合法的难点在于从何处出发进行论证并不明确, 因此我们常常用分析法寻找解题的思路,再用综合法 表述.分析法是“执果索因”,综合法是“由因导果”. 要注意用分析法证明不等式的表述格式.对于较复杂的 不等式的证明,要注意几种方法的综合使用.
2021_2022学年新教材高中数学第3章不等式3.1不等式的基本性质学案苏教版必修第一册
3.1 不等式的基本性质学习任务核心素养1.结合已有的知识,理解不等式的6个基本性质.(重点)2.会用不等式的性质证明(解)不等式.(重点)3.会用不等式的性质比较数(或式)的大小和求取值范围.(难点)1.通过大小比较,培养逻辑推理素养.2.通过不等式性质的应用,培养逻辑推理素养.3.借助不等式求实际问题,提升数学运算素养.和你的同桌做个游戏:假设有四只盛满水的圆柱形水桶A,B,C,D,桶A,B的底面半径均为a,高分别为a和b,桶C,D的底面半径为b,高分别为a和b(其中a≠b).你们各自从中取两只水桶,得水多者为胜.如果让你先取,你有必胜的把握吗?知识点1不等式(1)不等式的定义用数学符号“>”“<”“≥”“≤”“≠”连接两个数或代数式,含有这些不等号的式子叫作不等式.(2)关于a≥b和a≤b的含义①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b或a=b中有一个正确,则a≤b正确.(3)不等式中常用符号语言大于小于大于或等于小于或等于至多至少不少于不多于><≥≤≤≥≥≤①如果a-b是正数,那么a>b;即a-b>0⇔a>b;②如果a-b等于0,那么a=b;即a-b=0⇔a=b;③如果a-b是负数,那么a<b;即a-b<0⇔a<b.任意两个实数都能比较大小吗?[提示]能.利用作差法比较.1.设a=2x2,b=x2-x-1,则a与b的大小关系为________.a>b[a-b=2x2-(x2-x-1)=x2+x+1=⎝⎛⎭⎫x+122+34>0,∴a>b.]知识点2不等式的基本性质性质1: 若a >b ,则b <a ;(自反性),a >b ⇔b <a . 性质2:若a >b ,b >c ,则a >c ;(传递性) 性质3:若a >b ,则a +c >b +c ;(加法保号性) 性质4:若a >b ,c >0,则ac >bc ;(乘正保号性) 若a >b ,c <0,则ac <bc ;(乘负改号性)性质5:若a >b ,c >d ,则a +c >b +d ;(同向可加性) 性质6:若a >b >0,c >d >0,则ac >bd ;(全正可乘性) 性质7:如果a >b >0,那么a n >b n (n ∈N *).(拓展)不等式的基本性质是不等式变形的依据,也是解不等式的根据,同时还是证明不等式的理论基础.(1)在应用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件. (2)要注意每条性质是否具有可逆性.2.思考辨析(正确的打“√”,错误的打“×”)(1)若ac >bc ,则a >b .( )(2)若a +c >b +d ,则a >b ,c >d .( ) (3)若a >b ,则1a <1b .( )[答案] (1)× (2)× (3)×类型1 利用不等式的性质判断和解不等式 【例1】 (1)对于实数a ,b ,c ,给出下列命题: ①若a >b ,则ac 2>bc 2; ②若a <b <0,则a 2>ab >b 2; ③若a >b ,则a 2>b 2; ④若a <b <0,则a b >ba.其中正确命题的序号是________.(2)求解关于x 的不等式ax +1>0(a ∈R ),并用不等式的性质说明理由. (1)②④ [对于①,∵c 2≥0,∴只有c ≠0时才成立,①不正确; 对于②,a <b <0⇒a 2>ab ;a <b <0⇒ab >b 2,∴②正确;对于③,若0>a >b ,则a 2<b 2,如-1>-2,但(-1)2<(-2)2,∴③不正确; 对于④,∵a <b <0,∴-a >-b >0,∴(-a )2>(-b )2,即a 2>b 2.又∵ab >0,∴1ab >0,∴a 2·1ab >b 2·1ab ,∴a b >ba ,④正确.所以正确答案的序号是②④.](2)[解] 不等式ax +1>0(a ∈R )两边同时加上-1得 ax >-1 (不等式性质3),当a =0时,不等式为0>-1恒成立,所以x ∈R , 当a >0时,不等式两边同时除以a 得 x >-1a(不等式性质4),当a <0时,不等式两边同时除以a 得 x <-1a(不等式性质4).综上:当a =0时,不等式的解集为R ,当a >0时,不等式的解集为⎝⎛⎭⎫-1a ,+∞,当a <0时,不等式的解集为⎝⎛⎭⎫-∞,-1a .1.利用不等式判断正误的2种方法①直接法:对于说法正确的,要利用不等式的相关性质证明;对于说法错误的只需举出一个反例即可.②特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质解不等式,要求步步有据,特别是解含有参数的不等式更加要把握好分类讨论的标准.因为参数的范围不同,不等式的解集不同,所以对于参数的不同范围得到的解集都是独立的,不能求并集.[跟进训练]1.已知a <b <c 且a +b +c =0,则下列不等式恒成立的是( ) A .a 2<b 2<c 2 B .ab 2<cb 2 C .ac <bcD .ab <acC [∵a +b +c =0且a <b <c ,∴a <0,c >0,∴ac <bc ,故选C.]2.若关于x 的不等式ax +b >0的解集为{x |x <2},则不等式bx -a >0的解集为________.⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12 [因为关于x 的不等式ax +b >0的解集为{x |x <2},所以a <0,且x =2是方程ax +b =0的实数根,所以2a +b =0,即b =-2a ,由bx -a >0得-2ax -a >0,因为a <0,所以x >-12,即不等式bx -a >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12.] 类型2 利用不等式的性质比较代数式的大小 【例2】 已知x ≤1,比较3x 3与3x 2-x +1的大小. [解] 3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1) =3x 2(x -1)+(x -1)=(3x 2+1)(x -1). ∵x ≤1,得x -1≤0.而3x 2+1>0, ∴(3x 2+1)(x -1)≤0. ∴3x 3≤3x 2-x +1.1.将本例中“x ≤1”改为“x ∈R ”,再比较3x 3与3x 2-x +1的大小. [解] 3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1) =(3x 2+1)(x -1), ∵3x 2+1>0,当x >1时,x -1>0,∴3x 3>3x 2-x +1. 当x =1时,x -1=0,∴3x 3=3x 2-x +1. 当x <1时,x -1<0,∴3x 3<3x 2-x +1. 2.已知a >0, b >0, 比较1a +1b 与1a +b的大小.[解] 法一:(作差法)⎝⎛⎭⎫1a +1b -1a +b =(ab +b 2)+(a 2+ab )-ab ab (a +b )=a 2+ab +b 2ab (a +b ), 因为a >0, b >0,所以a 2+ab +b 2ab (a +b )>0,所以1a +1b >1a +b.法二:(作商法)因为a >0, b >0,所以1a +1b 与1a +b 同为正数,所以1a +1b 1a +b=(a +b )2ab ,所以(a +b )2ab -1=a 2+ab +b 2ab >0,即(a +b )2ab >1,因为1a +b>0,所以1a +1b >1a +b .法三:(综合法)因为a >0, b >0,所以a +b >0,所以⎝⎛⎭⎫1a +1b (a +b )=a +b a +a +b b =2+b a +a b >1,所以1a +1b >1a +b.1.作差法比较两个数大小的步骤及变形方法 (1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④分母或分子有理化(针对无理式中的二次根式);⑤分类讨论.2.作商法比较大小的三个步骤 (1)作商变形; (2)与1比较大小; (3)得出结论.提醒:作商法比较大小仅适用同号的两个数.3.综合法需要结合具体的式子的特征实施,本题思路为:A >B >0⇔A ·1B>1.[跟进训练]3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2, ∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .故选A.] 4.已知a ,b ∈R ,试比较a 2-ab 与3ab -4b 2的大小.[解] 因为a ,b ∈R ,所以(a 2-ab )-(3ab -4b 2)=a 2-4ab +4b 2=(a -2b )2, 当a =2b 时,a 2-ab = 3ab -4b 2, 当a ≠2b 时,a 2-ab > 3ab -4b 2. 类型3 证明不等式【例3】 若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. [思路点拨] 可结合不等式的基本性质,分析所证不等式的结构,有理有据地导出证明结果.[证明] ∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0.两边同乘以1(a -c )2(b -d )2,得1(a -c )2<1(b -d )2. 又e <0,∴e (a -c )2>e(b -d )2.本例条件不变的情况下,求证: e a -c >e b -d. [证明] ∵c <d <0,∴-c >-d >0. ∵a >b >0,∴a -c >b -d >0, ∴0<1a -c <1b -d, 又∵e <0,∴e a -c >eb -d.利用不等式的性质证明不等式的注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.[跟进训练]5.已知c >a >b >0,求证:a c -a >bc -b .[证明] ∵c >a >b >0.∴c -a >0,c -b >0.⎭⎪⎬⎪⎫由a >b >0⇒1a <1b c >0 ⇒c a <c b ⇒c -a a <c -b b .又c -a >0,c -b >0,∴a c -a >bc -b .类型4 利用不等式求取值范围【例4】 已知1<a <4,2<b <8.试求2a +3b 与a -b 的取值范围.[思路点拨] 欲求a -b 的范围,应先求-b 的范围,再利用不等式的性质求解. [解] ∵1<a <4,2<b <8,∴2<2a <8,6<3b <24, ∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2,又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2), 即-7<a -b <2,故8<2a +3b <32,-7<a -b <2. 即2a +3b 的取值范围为(8,32), a -b 的取值范围为(-7,2).1.在本例条件下,求 ab 的取值范围.[解] ∵2<b <8,∴18<1b <12,又1<a <4,∴18<a b <2. 即ab的取值范围为⎝⎛⎭⎫18,2. 2.若本例改为:已知1≤a +b ≤5,-1≤a -b ≤3,求3a -2b 的范围. [解] 法一:设x =a +b ,y =a -b , 则a =x +y 2,b =x -y 2,∵1≤x ≤5,-1≤y ≤3,∴3a -2b =12x +52y .又12≤12x ≤52,-52≤52y ≤152, ∴-2≤12x +52y ≤10.即-2≤3a -2b ≤10.所以3a -2b 的范围是[-2,10].法二:设3a -2b =m (a +b )+n (a -b )=(m +n )a +(m -n )b =3a -2b ,所以⎩⎪⎨⎪⎧m +n =3,m -n =-2,解得⎩⎨⎧m =12,n =52,即3a -2b =12(a +b )+52(a -b ),因为1≤a +b ≤5,-1≤a -b ≤3, 所以12≤12(a +b )≤52,-52≤52(a -b )≤152,所以-2≤12(a +b )+52(a -b )≤10,即3a -2b 的范围是[-2,10].1.同向不等式具有可加性,同正具有可乘性,但是不能相减或相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.2.已知两个二元一次代数式的范围,求第三个二元一次式的范围,可以用双换元的方法,也可以通过待定系数法,先用已知的两个二元一次代数式表示未知的二元一次式.[跟进训练]6.已知-π2≤α<β≤π2,求α+β2,α-β2的取值范围.[解] ∵已知-π2≤α<β≤π2.∴-π4≤α2≤π4,-π4<β2≤π4,两式相加得-π2<α+β2<π2.∵-π4<β2≤π4,∴-π4≤-β2<π4.∴-π2≤α-β2<π2,又知α<β,∴α-β2<0,∴-π2≤α-β2<0.7.已知-4≤a -c ≤-1,-1≤4a -c ≤5,求9a -c 的取值范围.[解] 令⎩⎪⎨⎪⎧a -c =x ,4a -c =y ,得⎩⎨⎧a =13(y -x ),c =13(y -4x ),∴9a -c =83y -53x ,∵-4≤x ≤-1,∴53≤-53x ≤203,①∵-1≤y ≤5,∴-83≤83y ≤403,②①和②相加,得-1≤83y -53x ≤20,∴-1≤9a -c ≤20.1.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-bB [选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以,否则如a =-1,b =0时不成立,故选B.]2.设a =3x 2-x +1,b =2x 2+x ,则( ) A .a >b B .a <b C .a ≥bD .a ≤bC [a -b =(3x 2-x +1)-(2x 2+x )=x 2-2x +1=(x -1)2≥0,∴a ≥b .] 3.若-1<α<β<1,则α-β的取值范围为________. (-2,0) [由-1<α<1,-1<β<1,得-1<-β<1. 所以-2<α-β<2,但α<β, 故知-2<α-β<0.]4.已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是________.(-π,2π) [结合题意可知3α-β=2(α-β)+(α+β),且2(α-β)∈(-π,π),α+β∈(0,π),利用不等式的性质可知3α-β的取值范围是(-π,2π).]5.已知12<a <60,15<b <36.则a -b 的取值范围为________,ab 的取值范围为________.(-24,45) ⎝⎛⎭⎫13,4 [∵15<b <36, ∴-36<-b <-15,又12<a <60,∴12-36<a -b <60-15,即-24<a -b <45, ∵136<1b <115,∴1236<a b <6015.∴13<a b<4.]回顾本节知识,自我完成以下问题.1.两个代数式的大小关系有哪些?比较大小的方法有哪些? [提示] 大于、小于、等于.作差法、作商法. 2.作差法比较大小的具体步骤有哪些? [提示] 作差、变形、定号. 3.不等式的证明有哪些方法?[提示] 可以用比较法(作差或作商法),也可利用不等式的性质(综合法).。
第01讲 等式性质与不等式性质(学生版)
第1讲 等式性质与不等式性质知识点01 等式的性质等式的基本性质性质1 如果a =b ,那么b =a ;性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ;性质4 如果a =b ,那么ac =bc ;性质5 如果a =b ,c ≠0,那么a c =b c .【微点拨】利用等式的相关性质来处理与相等关系有关的问题,比如说:等式的变形(化简)、解方程与方程组等.【即学即练1】方程2312360x x --+= 的解为 .知识点02 不等关系及不等式【微点拨】用数学式子表达不等关系时,一定要在读懂题的要求下用准确的不等关系表达变量间的关系,特别要注意的是等号的包含与不包含.【即学即练2】一般认为,民用住宅窗户面积a 与地板面积b 的比应不小于10%,即1110a b≤<,而且比值越大采光效果越好,若窗户面积与地板面积同时增加m ,采光效果变好还是变坏?请将你的判断用不等式表示__________【即学即练3】为了庆祝我们伟大祖国70周年华诞,某市世纪公园推出优惠活动.票价降低到每人5元;且一次购票满30张,每张再少收1元.某班有27人去世纪公园游玩,当班长王小华准备好了零钱到售票处买票时,爱动脑筋的李敏喊住了王小华,提议买30张票.但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?那么,李敏的提议对不对呢?是不是真的浪费?谈谈你们的看法.知识点03 不等式的相关性质不等式的一些常用性质(1)倒数的性质①a>b ,ab>0⇒1a <1b . ②a<0<b ⇒1a <1b . ③a>b>0,0<c<d ⇒a c >b d .④0<a<x<b 或a<x<b<0⇒1b <1x <1a . (2)有关分数的性质若a>b>0,m>0,则①b a <b +m a +m ;b a >b -m a -m (b -m>0). ②a b >a +m b +m ;a b <a -m b -m(b -m>0). 3.不等式的基本性质【微点拨】运用不等式的性质判断时,要注意不等式成立的条件,不要弱化条件,尤其是不能凭想当然随意捏造性质.解有关不等式选择题时,也可采用特殊值法进行排除,注意取值一定要遵循如下原则:一是满足题设条件;二是取值要简单,便于验证计算.【即学即练4】对于实数a ,b ,c ,下列命题中的真命题是A. 若a >b ,则ac 2>bc 2B. a >b >0,则C. a <b <0,则D. a >b ,,则a >0,b <0【即学即练5】下面是甲、乙、丙三位同学做的三个题目,请你看看他们做得对吗?如果不对,请指出错误的原因.甲:因为-6<a <8,-4<b <2,所以-2<a -b <6.乙:因为2<b <3,所以13<1b <12, 又因为-6<a <8,所以-2<a b <4. 丙:因为2<a -b <4,所以-4<b -a <-2.又因为-2<a +b <2,所以0<a <3,-3<b <0,所以-3<a +b <3.考法01不等关系的表示:【典例1】a 克糖水中含有b 克塘(0)a b >>,若在糖水中加入x 克糖,则糖水变甜了.试根据这个事实提炼出一个不等式: .【典例2】【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.比较大小:两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧ a -b>0⇔a > b a -b =0⇔a = ba -b<0⇔a <b (a ,b ∈R );一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法⎩⎪⎨⎪⎧ a b >1⇔a > b a b =1⇔a = ba b <1⇔a < b(a ∈R ,b>0). 一般步骤是:①作商;②变形;③判断商与1的大小;④结论.(3)特值法: 若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.注意:用作商法时要注意商式中分母的正负,否则极易得出相反的结论.【典例3】1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M<NB .M>NC .M =ND .不确定2)设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( )A .A≤B B .A≥BC .A<BD .A>B3)若0a b >>, 0c d <<,则一定有( ) A. a b d c > B. a b c d < C. a b c d > D. a b d c< 4)若a =1816,b =1618,则a 与b 的大小关系为________.5)已知a b c >>且0a b c ++=,则下列不等式恒成立的是( )A. 222a b c >>B. a b c b >C. ac bc >D. ab ac >考法03不等式的性质的运用:【典例4】已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b >0;②若ab >0,c a -d b>0,则bc -ad >0; ③若bc -ad >0,c a -d b>0,则ab >0.其中正确的命题是________.考法04。
第二节证明不等式的基本方法、数学归纳法证明不等式
(2)某个命题与正整数n有关,如果当n=k时该命题成立.那么可
推导出当n=k+1时也成立.现已知n=12时,该命题不成立.那么 可推得n=______时,该命题不成立. 【解析】∵n=12时,命题不成立.∴n=11时命题不成立.同理 n=10、9、8、…、2、1时命题均不成立. 答案:1、2、3、…、11
往往用分析法找思路,用综合法写步骤,由此可见,分析法与综
合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,
可以拓宽解题思路,开阔知识视野.
2.分析法的应用
当所证明的不等式不能使用比较法,且和重要不等式、基本不 等式没有直接联系,较难发现条件和结论之间的关系时,可用 分析法来寻找证明途径,使用分析法证明的关键是推理的每一 步必须可逆.
4 4 4 1 64 . 1 4 ,
三式同向相乘,得(1-a)a(1-b)b(1-c)c> 又 1 a a
1 c c
( ( 1 a a 2 )
2
) 1 4 .
2
1 4
, 1 b b (
1 b b 2
)
2
1 c c 2
∴(1-a)a(1-b)b(1-c)c≤
1 2
) 2+
1 2
]≥0,
∴1+2x4≥2x3+x2.
方法二:(1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x-1)2·x2+(x2-1)2≥0 ∴1+2x4≥2x3+x2.
(2)
a b
a
b
ab
ba
ab
ab 2
a
2023年人教版高考数学总复习第一部分考点指导第二章不等式第一节不等式性质与基本不等式
a+b 3.基本不等式 ab ≤ 2 【1】 (1)基本不等式成立的条件:a>0,b>0.
y-9
y-9
y-9
y-9
以 y-9>0,
所以 y-9+y-9 9 ≥2 (y-9)·y-9 9 =6. 当且仅当 y-9= 9 ,即 y=12 时等号成立,此时 x=4,所以当 x=4,y=12
y-9
时,x+y 取得最小值 16.
方法三:(配凑法)由1x +9y =1,得 y+9x=xy, 所以(x-1)(y-9)=9.所以 x+y=10+(x-1)+
A.若 a>b,则a1 <1b
B.若 a>b,则 ac2≥bc2
C.若 a>0>b,则 a2<-ab
D.若 c>a>b>0,则 a > b c-a c-b
【解析】选 BD.A.根据 a>b,取 a=1,b=-1,则1a <1b 不成立,故 A 错误;
B.因为 a>b,所以由不等式的基本性质知 ac2≥bc2 成立,故 B 正确;
配凑法就是将相关代数式进行适当的变形,通过_添__项__、___拆__项____等方法凑成_和__ 为定值或_积___为定值的形式,然后利用基本不等式求解最值的方法.配凑法的实
质是代数式的灵活变形,拼系数、凑常数是关键.
2.常数代换法求最值的步骤 (1)根据已知条件或其变形确定定值(常数).
m+n=3
3α-β=(m+n)α+(n-m)β.所以
不等式常见考试题型总结
当时,
当时,若解集为任意实数;
若,无解
当时,
【典型例题】
题型一:与整数解个数有关的不等式
2.作商(常用于分数指数幂的代数式);
3.分析法;
4.平方法;
间量或放缩法;
8.图象法。
(4)不等式求函数最值
技巧一:凑项
例:已知,求函数的最大值。
技巧二:凑系数
例。 当时,求的最大值.
技巧三:分离
例. 求的值域。
技巧四:换元
例。 求的值域。
∴W≤ =2
变式: 求函数的最大值.
解析:注意到与的和为定值。
又,所以
当且仅当=,即时取等号. 故。
评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件.
总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。
应用二:利用基本不等式证明不等式
(5)证明不等式
常用方法:比较法、分析法、综合法和放缩法。
基本不等式—最值求法的题型
基础题型一:指数类最值的求法
1.已知,求的最小值。
变式1.已知,求的最小值.
变式2.已知,求的最小值。
变式3。已知,求的最小值。
变式4。已知点在直线上,求的最小值。
基础题型二:对数类最值的求法
2.已知,且,求的最大值。
4。若,则(当且仅当时取“=”)
注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.
初中数学重点梳理:不等式的证明和应用
不等式的证明和应用知识定位不等式是数学竞赛的热点之一。
由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。
而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。
证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。
但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
知识梳理1. 不等式三个基本性质:① 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
② 不等式两边都乘(或除以)同一个正数,不等号的方向不变。
③ 不等式两边都乘(或除以)同一个负数,不等号的方向改变。
2. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
设a>b,不等式组⎩⎨⎧>>b x ax 的解集是x>a ⎩⎨⎧<<b x ax 的解集是x<b ⎩⎨⎧<>ax bx 的解集是 b<x<a ⎩⎨⎧<>bx ax 的解集是空集 3.不等式证明的基本方法:(1)比较法比较法可分为差值比较法和商值比较法。
差值比较法:原理 A - B >0A >B .商值比较法:原理 若>1,且B>0,则A>B 。
3.不等式的应用:(1)几何中证明线段或角的不等关系常用以下定理①三角形任意边两边的和大于第三边,任意两边的差小于第三边。
②三角形的一个外角等于和它不相邻的两个内角和。
③在一个三角形中,大边对大角,大角对大边。
直角三角形中,斜边大于任一直角边。
④有两组边对应相等的两个三角形中如果这两边的夹角大,那么第三边也大;如果第三边大,那么它所对的角也大。
⑤任意多边形的每一边都小于其他各边的和(2)不等式(组)的应用主要表现在:作差或作商比较数的大小;求代数式的取值范围;求代数式的最值,列不等式(组)解应用题.其中,不等式(组)解应用题与列方程解应用题的步骤相仿,一般步骤是:(1)弄清题意和题中的数量关系,用字母表示未知数;(2)找出能够表示题目全部含义的一个或几个不等关系;(3)列出不等式(组);(4)解这个不等式(组),求出解集并作答.例题精讲【试题来源】【题目】已知x<0,-1<y<0,将x,xy,xy2按由小到大的顺序排列.【答案】x<xy2<xy.【解析】分析用作差法比较大小,即若a-b>0,则a>b;若a-b<0,则a<b.解因为x-xy=x(1-y),并且x<0,-1<y<0,所以x(1-y)<0,则x<xy.因为xy2-xy=xy(y-1)<0,所以xy2<xy.因为x-xy2=x(1+y)(1-y)<0,所以x<xy2.综上有x<xy2<xy.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】2【试题来源】【题目】若试比较A,B的大小.【答案】A>B【解析】显然,2x>y,y>0,所以2x-y>0,所以A-B>0,A>B.【知识点】不等式的证明和应用【适用场合】当堂练习题【难度系数】3【试题来源】【题目】若正数a,b,c满足不等式组试确定a,b,c的大小关系.【答案】b<c<a【解析】解①+c得②+a得③+b得由④,⑤得所以c<a.同理,由④,⑥得b<c.所以a,b,c的大小关系为b<c<a.【知识点】不等式的证明和应用【适用场合】当堂例题【难度系数】3【试题来源】【题目】当k取何值时,关于x的方程3(x+1)=5-kx分别有(1)正数解;(2)负数解;(3)不大于1的解.【答案】k≥-1或k<-3.【解析】解将原方程变形为(3+k)x=2.(1)当 3+k>0,即k>-3时,方程有正数解.(2)当3+k<0,即k<-3时,方程有负数解.(3)当方程解不大于1时,有所以1+k,3+k应同号,即得解为k≥-1或k<-3.注意由于不等式是大于或等于零,所以分子1+k可以等于零,而分母是不能等于零的。
【3-代数】10.调整法证明不等式【讲师版】
自招竞赛秋季数学讲义调整法证明不等式学生姓名 授课日期 教师姓名授课时长量的项放在不等号的左侧,常数项放在右侧,通过严格求出左侧的最值来证明不等号的成立性。
一般可以通俗地分为两种类型:往中间调整和往两侧调整。
本章将深入介绍两种调整办法的适用场合和使用方法以及其他的调整法。
知识梳理与例题精讲一、 对于()ifx ∑类的不等式的调整如果()f x 在区间D 中二阶可导,12,,,n x x x D ∈,则我们有如下的方法求()if x ∑的最大值、最小值:(1)()0f D ''≥,则有121()()nni i x x x f x nf n=+++≥∑(琴生不等式)设1122x x x x x x D -∆≤≤≤+∆∈,0x ∆≥,有 1212()()()()f x f x f x x f x x +≤-∆++∆(2)()0f D ''≤,则有121()()nni i x x x f x nf n=+++≤∑(琴生不等式)设1122x x x x x x D -∆≤≤≤+∆∈,0x ∆≥,有 1212()()()()f x f x f x x f x x +≥-∆++∆通俗地讲,就是下凸函数往中间调函数值变小,往两侧调函数值变大;上凸函数往中间调函数值变大,往两侧调函数值变小。
对于往中间调的函数值变化由琴生不等式保证,而往两侧调的函数值变化我们以(1)为例给出证明:证明:1111()()()x x xf x f x x f x dx -∆'--∆=⎰21212212()()()()x xx x x xf x x f x f x dx f x x x x dx +∆-∆''+∆-==-++∆⎰⎰因为()0f D ''≥,所以12()()f x f x x x x ''≤-++∆,故111112()()x x x xx xf x dx f x x x x dx -∆-∆''≤-++∆⎰⎰,故1212()()()()f x f x f x x f x x +≤-∆++∆,得证。
【3-代数】10.调整法证明不等式【学生版】
自招竞赛秋季数学讲义调整法证明不等式学生姓名 授课日期 教师姓名授课时长量的项放在不等号的左侧,常数项放在右侧,通过严格求出左侧的最值来证明不等号的成立性。
一般可以通俗地分为两种类型:往中间调整和往两侧调整。
本章将深入介绍两种调整办法的适用场合和使用方法以及其他的调整法。
知识梳理与例题精讲一、 对于()ifx ∑类的不等式的调整如果()f x 在区间D 中二阶可导,12,,,n x x x D ∈,则我们有如下的方法求()if x ∑的最大值、最小值:(1)()0f D ''≥,则有121()()nni i x x x f x nf n=+++≥∑(琴生不等式)设1122x x x x x x D -∆≤≤≤+∆∈,0x ∆≥,有1212()()()()f x f x f x x f x x +≤-∆++∆(2)()0f D ''≤,则有121()()nni i x x x f x nf n=+++≤∑(琴生不等式)设1122x x x x x x D -∆≤≤≤+∆∈,0x ∆≥,有1212()()()()f x f x f x x f x x +≥-∆++∆通俗地讲,就是下凸函数往中间调函数值变小,往两侧调函数值变大;上凸函数往中间调函数值变大,往两侧调函数值变小。
对于往中间调的函数值变化由琴生不等式保证,而往两侧调的函数值变化我们以(1)为例给出证明:证明:1111()()()x x xf x f x x f x dx -∆'--∆=⎰21212212()()()()x xx x x xf x x f x f x dx f x x x x dx +∆-∆''+∆-==-++∆⎰⎰因为()0f D ''≥,所以12()()f x f x x x x ''≤-++∆,故111112()()x x x xx xf x dx f x x x x dx -∆-∆''≤-++∆⎰⎰,故1212()()()()f x f x f x x f x x +≤-∆++∆,得证。
不等式的基本性质
不等式的基本性质一、教材解析【教材的地位和作用】不等式的基本性质是中职数学的主要内容之一,在中职数学中占重视要地位。
它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,有重视要的本质意义。
同时,不等式的基本性质也为学生今后顺利学习解一元一次不等式和解一元一次不等式组的相关内容,起到重要的确定作用。
【授课结构】课本建议授课时间为约一课时。
针对所带学生的特点,为使学生更好地理解性质、深入知识研究过程,将课时调整为 2 节。
第一节:集中研究不等式的三个基本性质并作简单应用;第二节:不等式的基本性质的运用,办理例题和习题。
本稿为第一节。
依照课程标准,我将授课重难点确定以下:【授课重难点】授课要点:不等式的三条基本性质及其应用。
授课难点:不等式的基本性质 3 的研究与运用。
二、【学情解析】基础能力:数学基础知识相对单薄,学习目标也不明确,但是具备必然的观察动手能力。
认知现状:经过初中的学习,学生对不等式的性质多多少稀有所理解,并且经过上节课的学习,已初步掌握应用作差比较法比较两个实数及两个代数式的大小。
感情特点:学习兴趣冷淡,缺乏自信及成功的体验,有好奇心,愿意试一试新事物及联系生活三、授课目的依照上述对教材内容的解析,并结合学生的认知水平和思想特点,我确定以下授课目的。
【授课目的】知识与技术: 1. 掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题; 2. 进一步掌握应用作差比较法比较实数的大小。
过程与方法:经过观察、操作、猜想、研究等合情推理活动,归纳出不等式的基本性质,体验数学发现和创立的历程。
感情、态度价值观:经过授课,培养学生合作交流的意识和英勇猜想、乐于研究的优异思想质量。
四、教法学法【教法】主要采用讲练结合,启示式、研究式授课方法,坚持“以学生为主体,以教师为主导”的原则,依照学生的心理发展规律,经过引导学生回顾玩跷跷板的经验,师生共同研究天平两侧物体的质量的大小,引导学生理性地认识不等式的三条基本性质,并运用作差比较法来证明之。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自招竞赛秋季数学讲义
调整法证明不等式
学生姓名 授课日期 教师姓名
授课时长
量的项放在不等号的左侧,常数项放在右侧,通过严格求出左侧的最值来证明不等号的成立性。
一般可以通俗地分为两种类型:往中间调整和往两侧调整。
本章将深入介绍两种调整办法的适用场合和使用方法以及其他的调整法。
知识梳理与例题精讲
一、 对于
()i
f
x ∑类的不等式的调整
如果()f x 在区间D 中二阶可导,12,,,n x x x D ∈,则我们有如下的方法求
()i
f x ∑的最大值、最小值:
(1)()0f D ''≥,则有
121
()(
)n
n
i i x x x f x nf n
=++
+≥∑
(琴生不等式)
设1122x x x x x x D -∆≤≤≤+∆
∈,0x ∆≥,有 1212()()()()f x f x f x x f x x +≤-∆++∆
(2)()0f D ''≤,则有
121
()(
)n
n
i i x x x f x nf n
=++
+≤∑
(琴生不等式)
设1122x x x x x x D -∆≤≤≤+∆
∈,0x ∆≥,有 1212()()()()f x f x f x x f x x +≥-∆++∆
通俗地讲,就是下凸函数往中间调函数值变小,往两侧调函数值变大;上凸函数往中间调函数值变大,往两侧调函数值变小。
对于往中间调的函数值变化由琴生不等式保证,而往两侧调的函数值变化我们以(1)为例给出证明:
证明:1
111()()()x x x
f x f x x f x dx -∆'--∆=
⎰
21
2
12212()()()()x x
x x x x
f x x f x f x dx f x x x x dx +∆-∆''+∆-=
=-++∆⎰
⎰
因为()0f D ''≥,所以12()()f x f x x x x ''≤-++∆,
故
1
1
1112()()x x x x
x x
f x dx f x x x x dx -∆-∆''≤-++∆⎰
⎰
,
故1212()()()()f x f x f x x f x x +≤-∆++∆,得证。
事实上,在处理实际问题中,不一定能找到这样一个区间D 有这样的性质且包含所有的i x ,那就需要我们灵活运用其他如分类讨论等方法辅助处理。
有时D 在不具有二阶导数恒不变号的性质,但仍然有上述调整法成立,所以我们在实际做题的过程中往往可以直接用具体的()f x 来证明这样调整的合理性而不依赖于其凹凸性。
在不等式中没有具体的()f x 存在但每个变量地位对称的时候,这种考虑往中间调整、往两侧调整的方法也是极为重要的,这就需要直接拿两项来看,究竟是往中间调整总体变大呢,还是往两侧调整总体变大呢,然后给出严格的证明,接着就能用两项的调整法逐步将n 项向两侧或中间调整,求得最值。
【例1】 【题目来源】
【题目】设,,a b c R +
∈,3a b c ++=9≤
【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】1 【例2】 【题目来源】
【题目】设,,0a b c ≥,3a b c ++=7≥ 【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】2
对
()i
f x ∑类不等式的调整法已经较为成熟,且已形成常规套路,所以这里就举这两个
例题帮助理解前面的两种调整法,不再过多赘述。
下面着重介绍几个利用向中间、两侧调整思想的题。
【例3】 【题目来源】
【题目】若干个正整数和为2005,求它们积的最大值。
【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】3 【例4】 【题目来源】 【题目】设12,,
,,
n a a a 是一个不减的正整数数列,对于1m ≥,定义
{}min ,m n b n a m =≥,若已知1985a =,求12191285a a a b b b +++++++的最大值。
【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】4
【题目来源】
【题目】对于满足条件121n x x x +++=的非负实数i x (1,2,
,)i n =,
求45
1
()n
j j j x x =-∑的最大值。
【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】4
二、 对于其他代数式的调整
累次求极值法:局部调整,固定一些变量,考察另一些变量在满足什么条件下(与被固定的变量有关)整个代数式取得最值,从而一步一步直至求出目的最值。
【例6】
【题目来源】2003年新加坡数学奥林匹克 【题目】若,,x y z 是正实数,求函数(15)(43)(56)(18)
xyz
x x y y z z ++++的最大值
【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】2
【题目来源】
【题目】若,,a b c 为非负实数且1a b c ++=,试求3S ab bc ca abc =++-的最大值 【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】3 【例8】 【题目来源】
【题目】设非负数,,αβγ满足2
π
αβγ++=
,求函数
cos cos cos cos cos cos (,,)cos cos cos f αββγγα
αβγγαβ
=
++的最小值 。
【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】4。