铁碳平衡相图实用性分析
铁碳合金相图分析
1点以上
1~2点
2~3点
图3-3 共析钢结晶过程示意图
3点~室温
共析钢的室温组织全部为P,呈层片状,其室温下的显微组织如图3-4 所示。
图3-4 共析钢室温下的显微组织
(二)亚共析钢的结晶过程 图 3-2 中的合金Ⅱ为 wC 0.45% 的亚共析钢,其结晶过程如图 3-5 所示。
1点以上
1~2点
A3 线 合金冷却时从奥氏体中开始析出铁素体的析出线
三、铁碳合金的结晶过程
图3-2 简化后的Fe-Fe3C相图
根据碳的质量分数和室温显微组织不同,铁碳合金可以分为工业纯 铁、钢和白口铸铁三大类,具体如下。
(一)共析钢的结晶过程 在图 3-2 中,合金Ⅰ为 wC 0.77% 的共析钢,其结晶过程如图 3-3 所示。
图3-12 亚共晶白口铸铁室温下的显微组织
(六)过共晶白口铸铁的结晶过程 图 3-2 中的合金Ⅵ为 wC 5.0% 的过共晶白口铸铁,其结晶过程如图 3-13
所示。
1点以上
1~2点
2~3点
图3-13 过共晶白口铸铁的结晶示意图
3点~室温
过共晶白口铸铁室温下的显微组织如图 3-14 所示,图中白色条状为 Fe3CⅠ , 黑白 相间的 基 体 为 Ld′ 。所 有过共 晶 白口 铸铁 的 室温 组织 均 为 Ld Fe3CⅠ,只是随着碳含量的增加, Fe3CⅠ量增加。
0.09
碳在 δ-Fe 中的最大溶解度
J
1 495
K
727
0.17 6.69
包晶点 LB δH
A 1495℃ J
Fe3C 的成分
符号 N P S Q
温度 T/℃ 1 394 727
727 室温
铁碳合金相图及平衡组织分析
实验三铁碳合金相图及平衡组织分析一、实验目的1.认识和熟悉铁碳合金平衡状态下的显微组织特征;2.了解含碳量对铁碳合金平衡组织的影响,建立Fe-Fe3C状态图与平衡组织的关系3.了解平衡组织的转变规律并能应用杠杆定律4.掌握金相显微镜用铁碳合金样品的制备二、实验原理通常将碳含量小于2.11%的铁碳合金称为钢,碳含量大于2.11%的Fe-C合金称为铁,根据铁碳二元相图(图1),它们在室温下组成相都是铁素体和渗碳体,但是它们在纤维组织上却有很大的差异。
按组织分区的Fe-Fe3C相图(一)铁碳合金中的几种基本相和组织(1)铁素体(F)。
它是碳在α-Fe中的固溶体,为体心立方晶格。
具有磁性及良好的塑性,硬度较低。
用3%-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形晶粒。
亚共析钢中,铁素体呈现块状分布;当碳含量接近共析成分时,铁素体则呈现断续的网状分布于珠光体(共析体)周围。
(2)渗碳体(Fe3C,又称Cementite),它是铁与碳形成的一种化合物,其碳含量为6.69%。
用3%-4%的硝酸酒精溶液寝蚀后,呈现亮白色;若用热苦味酸钠溶液寝蚀,则渗碳体呈现黑色而铁素体仍为白色,由此可以区别铁素体与渗碳体。
此外,按铁碳合金成分和形成条件不同,渗碳体呈现不同的的形态:一次渗碳体,从液相中析出,呈现条状;二次渗碳体(次生相),从奥氏体中析出,呈现网络状,沿奥氏体晶界分布,经球化退火,渗碳体呈现颗粒状;三次渗碳体,从铁素体中析出,常呈现颗粒状;共晶渗碳体与奥氏体同时生长,称为莱氏体;共析渗碳体与铁素体同时生长,称为珠光体。
(3)珠光体(P),它是铁素体和渗碳体的机械混合物,是共析转变的产物。
由杠杆定律可以求得铁素体和渗碳体的含量比为8:1。
因此,铁素体后,渗碳体薄。
硝酸酒精寝蚀后可观察到两种不同的组织形态。
1)片状珠光体,它是由铁素体与渗碳体交替排列形成的层状组织,腈硝酸酒精溶液寝蚀后,在不同放大倍数下,可以观察到具有不同特征的层片状组织。
(完整word版)铁碳相图分析
二、铁碳合金相图的分析Fe-Fe3C相图如图3-25所示。
可以看出,Fe-Fe3C相图由三个基本相图(包晶相图、共晶相图和共析相图)组成。
相图中有五个基本相:液相L,高温铁素体相δ,铁素体相α,奥氏体相γ和渗碳体相Fe3C。
这五个基本相构成五个单相区(其中Fe3C为一条垂线),并由此形成七个两相区:L+δ、L+γ、L+ Fe3C、δ+γ、γ+ Fe3C 、γ+α和α+ Fe3C。
图3-25 以相组成物标注的铁碳合金相图在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。
相图中各特征点的温度、成分及其含义如表3-2所示。
Fe- Fe3CHJB水平线(1495︒C)为包晶线,与该线成分(0.09%~0.53%C)对应的合金在该线温度下将发生包晶转变:L0.53+ δ0.09→γ0.17(式中各相的下角标为相应的含碳量),转变产物为奥氏体。
ECF水平线(1148︒C)为共晶线,与该线成分(2.11%~6.69%C)对应的合金在该线温度下将发生共晶转变:L4.3→γ2.11 + Fe3C。
转变产物为奥氏体和渗碳体的机械混合物,称为莱氏体,用符号“Le”表示。
莱氏体的组织特点为蜂窝状,以Fe3C为基,性能硬而脆。
PSK水平线(727︒C)为共析线,与该线成分(0.0218%~6.69%C)对应的合金在该线温度下将发生共析转变:γ0.77→α0.0218 + Fe3C。
转变产物为铁素体和渗碳体的机械混合物,称为珠光体,用符号“P”表示。
珠光体的组织特点是两相呈片层相间分布,性能介于两相之间。
共析线又称为A1线。
此外,Fe- Fe3C相图中还有六条固态转变线:GS、GP为γ⇄α固溶体转变线,HN、JN为δ⇄γ固溶体转变线,例如,GS线是冷却时铁素体从奥氏体中析出开始、加热时铁素体向奥氏体转变终了的温度线。
GS线又称为A3线,JN线又称为A4线。
ES线为碳在γ-Fe中的固溶线。
在1148︒C,碳的溶解度最大,为2.11%,随温度降低,溶解度下降,到727︒C 时溶解度只有0.77%。
铁碳合金相图分析
第四章铁碳合金第一节铁碳合金的相结构与性能一、纯铁的同素异晶转变δ-Fe→γ-Fe→α-Fe体心面心体心同素异晶转变——固态下,一种元素的晶体结构随温度发生变化的现象.特点:是形核与长大的过程重结晶将导致体积变化产生内应力通过热处理改变其组织、结构→ 性能二、铁碳合金的基本相基本相定义力学性能溶碳量铁素体 F碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大%奥氏体 A碳在γ-Fe中的间隙固溶体硬度低,塑性好最大%渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=0%第二节铁碳合金相图一、相图分析两组元:Fe、 Fe3C上半部分图形二元共晶相图共晶转变:1148℃ 727℃→ + Fe3C →P + Fe3C莱氏体Ld Ld′2、下半部分图形共析相图两个基本相:F、Fe3C共析转变:727℃→ + Fe3C珠光体P二、典型合金结晶过程分类:三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.工业纯铁<%C钢——亚共析钢、共析钢%C、过共析钢白口铸铁——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁L → L+A → A → PF+Fe3CL → L+A → A → A+F →P+FL → L+A → A → A+ Fe3CⅡ→P+ Fe3CⅡ4、共晶白口铸铁L → LdA+Fe3C →LdA+Fe3C+ Fe3CⅡ → Ld′P+Fe3C+Fe3CⅡ5、亚共晶白口铸铁L → LdA+Fe3C + A →Ld+A+ Fe3CⅡ → Ld′+P+ Fe3CⅡ6、过共晶白口铸铁L → LdA+Fe3C + Fe3C → Ld + Fe3C→ Ld′+ Fe3C三、铁碳合金的成分、组织、性能之间的关系1、含碳量对铁碳合金平衡组织的影响2、含碳量对铁碳合金力学性能的影响四、铁碳合金相图的应用1、选材方面的应用2、在铸造、锻造和焊接方面的应用3、在热处理方面的应用第三节碳钢非合金钢碳钢是指ωc≤%,并含有少量锰、硅、磷、硫等杂质元素的铁碳合金.铁碳合金具有良好的力学性能和工艺性能,且价格低廉,故广泛应用.一、杂质元素对碳钢性能的影响1、锰Mn + FeO → MnO + Fe 脱氧Mn+ S → MnS 炉渣去硫Mn溶入铁素体→ 固溶强化Mn溶入Fe3C → 形成合金渗碳体Fe, Mn3C Mn <%,对性能影响不大2、硅Si + FeO → SiO2 + Fe 脱氧Si溶入铁素体→ 固溶强化Si<%,对性能影响不大3、硫钢中S+Fe → FeS.FeS与Fe形成低熔点的共晶体985℃分布在晶界上,当钢在热加工1000~1200℃时,共晶体熔化,导致开裂——热脆消除热脆:Mn+ S → MnS熔点高1620℃并有一定塑性硫是一种有害元素4、磷钢中磷全部溶于铁素体,产生强烈固溶强化,低温时更加严重——冷脆磷是一种有害元素二、碳钢的分类按含碳量分:低碳钢~、中碳钢~、高碳钢~%按质量分类:普通碳钢、优质碳钢、特殊碳钢S、P含量按用途分类:碳素结构钢、碳素工具钢三、碳钢的牌号、性能和应用1、碳素结构钢GB700-88 Q195, Q215, Q235, Q255, Q275五大类,20个钢种GB700-79 A1, A2, A3, A4, A5Q235-AF表示:σs≥235Mpa,质量等级为A,沸腾钢.应用:Q195, Q215——塑性高,用于冲压件、铆钉、型钢等; Q235——强度较高,用于轴、拉杆、连杆等;Q255, Q275——强度更高,用于轧辊、主轴、吊钩等.2、优质碳素结构钢优质碳素结构钢:优质钢、高级优质钢A、特级优质钢E 牌号:08F ——冲压件;45——齿轮、连杆、轴类;65 Mn——弹簧、弹簧垫圈、轧辊等.3、碳素工具钢牌号:T8、T8A——木工工具;T10、T10A——手锯锯条、钻头、丝锥、冷冲模;T12、T12A——锉刀、绞刀、量具.4、铸钢表示方法:用力学性能表示ZG200-400σs≥200Mpa,σb≥400Mpa用化学成分表示ZG30%C用于制作形状复杂且强度和韧性要求较高的零件,如轧钢机架、缸体、制动轮、曲轴等.. 状态图中的特性点Fe- Fe3C相图中各点的温度、浓度及其含义Fe-Fe3C 相图中各特性点的符号及意义二. 状态图中的特性线Fe-C合金相图中的特性线三. 状态图中的相区在Fe-Fe3C相图中共有五个单相区、七个两相区和三个三相区.五个单相区是:ABCD以上——液相区LAHNA——δ固溶体区δα、δNJESGN——奥氏体区γ或AGPQG——铁素体区α或FDFKL——渗碳体区Fe3C或Cm两相区是:L+δ、L+γ、L+ Fe3C、δ+γ、α+γ、γ+ Fe3C和α+ Fe3C.三个三相区是:HJB线、ECF线和PSK线.1. 工业纯铁含C≤%——其显微组织为铁素体+Fe3CⅢ.2. 钢含C在~%——其特点是高温组织为单相奥氏体具有良好的塑性因而适于锻造.根据室温组织的不同钢又可分为三类:① 亚共析钢< C <%——其组织是铁素体+珠光体② 共析钢C=%——其组织为珠光体③ 过共析钢< C≤%——其组织为珠光体+渗碳体3. 铁在1538ºC结晶为δ-FeX射线结构分析表明它具有体心立方晶格.当温度继续冷却至1394ºC时δ-Fe转变为面心立方晶格的γ- Fe通常把δ-Fe←→γ- Fe的转变称为A4转变转变的平衡临界点称为A4点.当温度继续降至912ºC时面心立方晶格的γ- Fe又转变为体心立方晶格的α-Fe把γ- Fe←→α-Fe的转变称为A3转变转变的平衡临界点称为A3点.4. 三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727ºC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300ºC以下溶碳量小于%.因此当铁素体从727ºC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.四. 名词1. 铁素体:是碳在α-Fe中形成的固溶体常用“δ”或“F”表示.铁素体在770ºC以上具有顺磁性在770ºC以下时呈铁磁性.通常把这种磁性转变称为A2转变把磁性转变温度称为铁的居里点.碳溶于δ-Fe中形成的固溶体叫δ铁素体在1495ºC时其最大溶碳量为%.2. 顺磁性:就是在顺磁物质中分子具有固有磁矩无外磁场时由于热运动各分子磁矩的取向无规宏观上不显示磁性;在外磁场作用下各分子磁矩在一定程度上沿外场排列起来宏观上呈现磁性这种性质称为顺磁性.3. 铁磁性:就是磁性很强的物质在未磁化时宏观上不显示出磁性但在外加磁场后将会显示很强的宏观磁性.4. 奥氏体:是碳溶于γ-Fe中所形成的固溶体用“γ”或“A”表示.奥氏体只有顺磁性而不呈现铁磁性.碳在γ-Fe 中是有限溶解其最大溶解度为%1148ºC.5. 渗碳体:是铁与碳的稳定化合物Fe3C 用“C”表示.其含碳量为%.由于碳在α-Fe中的溶解度很小所以在常温下碳在铁碳合金中主要是以渗碳体的形式存在.渗碳体于低温下具有一定的铁磁性但是在230ºC以上铁磁性就消失了所以230ºC是渗碳体的磁性转变温度称为A0转变.渗碳体的熔点为1227ºC.它不能单独存在总是与铁素体混合在一起.在钢中它主要是强化相它的形态、大小及分布对钢的性能有很大的影响.另外渗碳体在一定的条件下可以分解形成石墨状的自由碳.即Fe3C——→3Fe+C石墨6. 珠光体:是由铁素体和渗碳体所组成的机械混合物常用“P”表示.珠光体存在于727ºC以下至室温.五. 铁碳合金相图的应用一在选材方面的应用若需要塑性、韧性高的材料应选用低碳钢含碳为~%;需要强度、塑性及韧性都较好的材料应选用中碳钢含碳为~%;当要求硬度高、耐磨性好的材料时应选用高碳钢含碳为~%.一般低碳钢和中碳钢主要用来制造机器零件或建筑结构.高碳钢主要用来制造各种工具.二在制定热加工工艺方面的应用铁碳相图总结了不同成分的合金在缓慢加热和冷却时组织转变的规律即组织随温度变化的规律这就为制定热加工及热处理工艺提供了依据.钢处于奥氏体状态时强度较低、塑性较好便于塑性变形.因此钢材在进行锻造、热轧时都要把坯料加热到奥氏体状态.各种热处理工艺与状态图也有密切的关系退火、正火、淬火温度的选择都得参考铁碳相图.六. 应用铁碳相图应注意的几个问题1. 铁碳相图不能说明快速加热或冷却时铁碳合金组织的变化规律.2. 可参考铁碳相图来分析快速加热或冷却的问题但还应借助于其他理论知识.3. 相图告诉我们铁碳合金可能进行的相变但不能看出相变过程所经过的时间.相图反映的是平衡的概念而不是组织的概念.铁碳相图是由极纯的铁和碳配制的合金测定的而实际的钢铁材料中还含有或有意加入许多其他元素.其中有些元素对临界点和相的成分都有很大的影响此时必须借助于三元或多元相图来分析和研究.第二部分晶体结构一. 金属键1. 金属键:金属原子依靠运动于其间的公有化的自由电子的静电作用而结合起来这种结合方式叫金属键.2. 在固态金属及合金中众多的原子依靠金属键牢固的结合在一起.二. 晶体结构1. 晶体:凡是原子或离子、分子在三维空间按一定规律呈周期性排列的固体均是晶体.液态金属的原子排列无周期规则性不为晶体.2. 晶体结构:是指晶体中原子或离子、分子、原子集团的具体排列情况也就是晶体中这些质点原子或离子、分子、原子集团在三维空间有规律的周期性的重复排列方式.3. 三种典型的金属晶体结构a. 体心立方晶格:晶胞的三个棱边长度相等三个轴间夹角均为90º构成立方体.除了在晶胞的八个角上各有一个原子外在立方体的中心还有一个原子.b. 面心立方晶格:在晶胞的八个角上各有一个原子构成立方体在立方体6个面的中心各有一个原子.c. 密排六方晶格:在晶胞的12个角上各有一个原子构成六方柱体上底面和下底面的中心各有一个原子晶胞内还有3个原子.三. 固溶体1. 固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体.2. 置换固溶体:是指溶质原子位于溶剂晶格的某些结点位置所形成固溶体.3. 间隙固溶体:是指溶质原子不是占据溶剂晶格的正常结点位置而是填入溶剂原子间的一些间隙中.4. 金属化合物:是合金组元间发生相互作用而形成的一种新相又称为中间相其晶格类型和性能均不同于任一组元一般可以用分子式大致表示其组成.除了固溶体外合金中另一类相是金属化合物.四. 金属的结晶1. 金属的结晶:金属由液态转变为固态的过程称为凝固由于凝固后的固态金属通常是晶体所以又将这一转变过程称之为结晶.2. 杠杆定律的应用.在合金的结晶过程中合金中各个相的成分以及它们的相对含量都在发生着变化.为了了解相的成分及其相对含量就需要应用杠杆定律.对于二元合金两相共存时两个平衡相的成分固定不变.五. 同素异构转变当外部条件如温度和压强改变时金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变.六. 晶体的各向异性各向异性是晶体的一个重要特性是区别于非晶体的一个重要标志.晶体具有各向异性的原因是由于在不同的晶向上的原子紧密程度不同所致.原子的紧密程度不同意味着原子之间的距离不同从而导致原子之间的结合力不同使晶体在不同晶向上的物理、化学和机械性能不同.第三部分元素的影响1. 锰和硅的影响:锰和硅是炼钢过程中必须加入的脱氧剂用以去除溶于钢液中的氧.它还可以把钢液中的F eO还原成铁并生成MnO和SiO2.脱氧剂中的锰和硅总会有一部分溶于钢液中冷至室温后即溶于铁素体中提高铁素体的强度.锰对钢的机械性能有良好的影响它能提高钢的强度和硬度当含锰量低于%时可以稍微提高或不降低钢的塑性和韧性.碳钢中的含硅量一般小于%它也是钢中的有益元素.硅溶于铁素体后有很强的固溶强化作用显著的提高了钢的强度和硬度但含量较高时将使钢的塑性和韧性下降.2. 硫的影响:硫是钢中的有害元素.硫只能溶于钢液中在固态中几乎不能溶解而是以FeS夹杂的形式存在于固态钢中.硫的最大危害是引起钢在热加工时开裂这种现象称为热脆.防止热脆的方法是往钢中加入适量的锰形成MnS可以避免产生热脆.硫能提高钢的切削加工性能.在易切削钢中含硫量通常为%~%同时含锰量为%~%.3. 磷的影响:一般来说磷是有害的杂质元素.无论是高温还是低温磷在铁中具有较大的溶解度所以钢中的磷都固溶于铁中.磷具有很强的固溶强化作用它使钢的强度、硬度显著提高但剧烈地降低钢的韧性尤其是低温韧性称为冷脆磷的有害影响主要就在于此.4. 氮的影响:一般认为钢中的氮是有害元素但是氮作为钢中合金元素的应用已日益受到重视.5. 氢的影响:氢对钢的危害是很大的.一是引起氢脆.二是导致钢材内部产生大量细微裂纹缺陷——白点在钢材纵断面上呈光滑的银白色的斑点在酸洗后的横断面上则成较多的发丝壮裂纹.存在白点时钢材的延伸率显著下降尤其是断面收缩率和冲击韧性降低的更多有时可接近于零值.因此具有白点的钢是不能用的.6. 氧及其它非金属夹杂物的影响:氧在钢中的溶解度非常小几乎全部以氧化物夹杂的形式存在于钢中如FeO、AL2O3、SiO2、MnO、CaO、MgO等.除此之外钢中往往存在FeS、MnS、硅酸盐、氮化物及磷化物等.这些非金属夹杂物破坏了钢的基体的连续性在静载荷和动载荷的作用下往往成为裂纹的起点.它们的性质、大小、数量及分布状态不同程度地影响着钢的各种性能尤其是对钢的塑性、韧性、疲劳强度和抗腐蚀性能等危害很大.因此对非金属夹杂物应严加控制.第四部分热处理一. 热处理的作用1. 热处理:是将钢在固态下加热到预定的温度保温一定的时间然后以预定的方式冷却下来的一种热加工工艺.钢中组织转变的规律是热处理的理论基础称为热处理原理.热处理原理包括钢的加热转变、珠光体转变、马氏体转变、贝氏体转变和回火转变.在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体.钢在加热和冷却时临界温度的意义如下:Ac1——加热时珠光体向奥氏体转变的开始温度;Ar1——冷却时奥氏体向珠光体转变的开始温度;Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;Ar3——冷却时奥氏体开始析出先共析铁素体的温度;Accm——加热时二次渗碳体全部溶入奥氏体的终了温度;Arcm——冷却时奥氏体开始析出二次渗碳体的温度.通常把加热时的临界温度加注下标“C”而把冷却时的临界温度加注下标“r”.2. 珠光体转变——是过冷奥氏体在临界温度A1以下比较高的温度范围内进行的转变.珠光体转变是单相奥氏体分解为铁素体和渗碳体两个新相的机械混合物的相变过程因此珠光体转变必然发生碳的重新分布和铁的晶格改组.由于相变在较高温度下发生铁、碳原子都能进行扩散所以珠光体转变是典型的扩散型相变.无论珠光体、索氏体还是屈氏体都属于珠光体类型的组织.它们的本质是相同的都是铁素体和渗碳体组成的片层相间的机械混合物.它们之间的差别只是片层间距的大小不同而已.珠光体的片层间距:450~150 nm形成于A1~650℃温度范围内.索氏体的片层间距:150~80nm形成于650~600℃温度范围内.屈氏体的片层间距:80~30nm形成于600~550℃温度范围内.3. 马氏体转变——是指钢从奥氏体化状态快速冷却抑制其扩散性分解在较低温度下低于Ms点发生的转变.马氏体转变属于低温转变.钢中马氏体是碳在α-Fe中的过饱和固溶体具有很高的强度和硬度.由于马氏体转变发生在较低温度下此时铁原子和碳原子都不能进行扩散马氏体转变过程中的Fe的晶格改组是通过切变方式完成的因此马氏体转变是典型的非扩散型相变.二. 热处理工艺1. 退火和正火:将金属及其合金加热保温和冷却使其组织结构达到或接近平衡状态的热处理工艺称为退火或回火.A. 低温退火去应力退火:是指钢材及各类合金为消除内应力而施行的退火.加热温度< A1 碳钢及低合金钢550~650℃高合金工具钢600~750℃B. 再结晶退火:加热温度> Tr Tr+150~250℃C. 扩散退火:是指为了改善和消除在冶金过程中形成的成分不均匀性而实行的退火.1 通过扩散退火可以使在高温下固溶于钢中的有害气体主要是氢脱溶析出这时称为脱氢退火.2 均匀化退火的任务在于消除枝晶成分偏析改善某些可以溶入固溶体夹杂物如硫化物的状态从而使钢的组织与性能趋与均一.扩散退火的加热温度> Ac3 Acm 在固相线以下高温加热同时也要考虑不使奥氏体晶粒过于长大.碳钢1100~1200℃D. 完全退火:是指将充分奥氏体化的钢缓慢冷却而完成重结晶过程的退火.加热温度 Ac3+30~50℃E. 等温退火:是指将奥氏体用较快的速度冷却到临界点以下较高温度范围进行珠光体等温转变的退火. 加热温度 Ac3~Ac12. 正火:是指将碳合金加热到临界点Ac3以上适当温度并保持一定时间然后在空气中冷却的工艺方法.过共析钢正火后可消除网状碳化物而低碳钢正火后将显著改善钢的切削加工性.所有的钢铁材料通过正火均可使锻件过热晶粒细化和消除内应力.正火比退火的冷却速度快正火后的组织比退火后的组织细.3. 淬火与回火1. 淬火:是指将钢通过加热、保温和大于临界淬火速度Vc的冷却是过冷奥氏体转变为马氏体或贝氏体组织的工艺方法.2. 钢的淬透性:就是钢在淬火时能够获得马氏体的能力它是钢材本身固有的一个属性.3. 当淬火应力在工件内超过材料的强度极限时在应力集中处将导致开裂.4. 回火:本质上是淬火马氏体分解以及碳化物析出、聚集长大的过程.它与淬火不同点是由非平衡态向平衡态稳定态的转变.4. 化学热处理:是将工件放在一定的活性介质中加热使非金属或金属元素扩散到工件表层中、改变表面化学成分的热处理工艺.如:渗入碳、氮、硼、钒、铌、铬、硅等元素第五部分宏观检验一. 宏观检验主要可分为低倍组织及缺陷酸蚀检验、断口检验、硫印检验等.二. 酸蚀试验在宏观检验领域中酸蚀检验是最常用的检验金属材料缺陷、评定钢铁产品质量的方法.如果一批钢材在酸蚀中显示出不允许存在的缺陷或超过允许程度的缺陷时其它检验可不必进行.1. 酸蚀试验:是用酸蚀方法来显示金属或合金的不均匀性.1 热酸浸蚀实验方法2 冷酸浸蚀实验方法3 电解腐蚀实验方法2. 酸蚀试验所检验的常见组织和缺陷A:偏析:是钢中化学成分不均匀现象的总称.在酸蚀面上偏析若是易蚀物质和气体夹杂物析集的结果将呈现出颜色深暗、形状不规则而略凹陷、底部平坦的斑点;若是抗蚀性较强元素析集的结果则呈颜色浅淡、形状不规则、比较光滑微凸的斑点.根据偏析的位置和形状可分为中心偏析、锭型偏析或称方框偏析、点状偏析、白斑和树枝状组织.中心偏析:出现在试面中心部位形状不规则的深暗色斑点.锭型偏析:具有原钢锭横截面形状的、集中在一条宽窄不同的闭合带上的深暗色斑点.B. 疏松:这种缺陷是钢凝固过程中由于晶间部分低熔点物最后凝固收缩和放出气体而产生的孔隙.在横向酸蚀面上这种孔隙一般呈不规则多边形、底部尖狭的凹坑这种凹坑多出现在偏析斑点之内.根据疏松分布的情况可分为中心疏松和一般疏松.C. 夹杂:宏观夹杂可分为外来金属、外来非金属和翻皮三大类.D. 缩孔:由于最后凝固的钢液凝固收缩后得不到填充而遗留下来的宏观孔穴.E. 气泡:由于钢锭浇注凝固过程中所产生和放出气体所造成的.一般可分为皮下气泡和内部气泡两类.a. 皮下气泡: 由于浇注时钢锭模涂料中的水分和钢液发生作用而产生的气体.b. 内部气泡:又可分为蜂窝气泡和针孔气泡.蜂窝气泡是由于钢液去气不良所导致一般为不允许存在的缺陷存在钢坯内部在试面上较易浸蚀象排列有规律的点状偏析但颜色更深暗些;针孔是因为较深的皮下气泡在锻轧过程中未焊合而被延伸成细管状在横试面上呈孤立的针状小孔.白点:也称发裂是由于氢气脱溶析集到疏松孔中产生巨大压力和钢相变时所产生的局部内应力联合造成的细小裂缝.在横试面上呈细短裂缝三. 硫印检验是一种定性检验是用来直接检验硫元素并间接检验其它元素在钢中偏析或分布情况的操作.硫印检验时先用5~10%的稀硫酸水溶液浸泡相纸5分钟左右后取出去除多余的硫酸溶液把湿润的相纸感光面贴到受检表面上应确保相纸与试样面的紧密接触不能发生任何滑动排除相纸与试样面的气泡和液滴.其化学反应大致为:MnS+H2SO4→MnSO4+H2S↑FeS+H2SO4→FeSO4+H2S↑H2S+2AgBr→2HBr+Ag2S↓几秒到几分钟后将从试面上揭下的相纸在水中冲洗约10分钟然后放入定影液中定影10分钟以上取出后在流动水中冲洗30分钟以上干燥后既成.四. 断口检验1. 脆性断口:通常工程上把没有明显塑性变形的断裂统称为脆性断裂发生脆性断裂的断口为脆性断口.脆性断口也称晶状断口是指出现大量晶界破坏的耀眼光泽断口断口中晶状区的面积与断口原始横截面积的百分比则是脆性断面率也称晶状断面率.2. 结晶状断口:此种断口具有强烈的金属光泽有明显的结晶颗粒断面平齐而呈银灰色.是一种正常的断口.属于脆性断口.3. 纤维状断口:这种断口呈无光泽和无结晶颗粒的均匀组织.通常在断口的边缘有明显的塑性变形.一般情况下是允许存在的.属于韧性断口.4. 瓷状断口:是一种类似瓷碎片的断口呈亮灰色、致密、有绸缎的光泽和柔和感.是一种正常的断口.5. 台状断口:这种断口出现在纵向断面上呈比基体颜色略浅、变形能力稍差、宽窄不同、较为平坦的片状平台状.多分布在偏析内.6. 撕痕状断口:这种断口出现在纵向断面上沿热加工方向呈灰白色、变形能力差致密而光滑的条带.7. 层状断口:这种断口出现在纵向断面上呈劈裂的朽木状或高低不平的、无金属光泽的、层次起伏的条带条带中伴有白亮或灰色线条.8. 缩孔残余断口:出现在纵向断口的轴心区是非结晶状条带或疏松区有时伴有非金属夹杂物或夹杂沿条带常带有氧化色.9. 石状断口:在断口表面呈现粗大而凹凸不平的沿晶界断裂的粗晶颜色暗灰而无金属光泽象有棱角的沙石颗粒堆砌在一起.。
铁碳合金相图及平衡组织分析
实验三铁碳合金相图及平衡组织分析一、实验目的1.认识和熟悉铁碳合金平衡状态下的显微组织特征;2.了解含碳量对铁碳合金平衡组织的影响,建立Fe-Fe3C状态图与平衡组织的关系3.了解平衡组织的转变规律并能应用杠杆定律4.掌握金相显微镜用铁碳合金样品的制备二、实验原理通常将碳含量小于2.11%的铁碳合金称为钢,碳含量大于2.11%的Fe-C合金称为铁,根据铁碳二元相图(图1),它们在室温下组成相都是铁素体和渗碳体,但是它们在纤维组织上却有很大的差异。
按组织分区的Fe-Fe3C相图(一)铁碳合金中的几种基本相和组织(1)铁素体(F)。
它是碳在α-Fe中的固溶体,为体心立方晶格。
具有磁性及良好的塑性,硬度较低。
用3%-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形晶粒。
亚共析钢中,铁素体呈现块状分布;当碳含量接近共析成分时,铁素体则呈现断续的网状分布于珠光体(共析体)周围。
(2)渗碳体(Fe3C,又称Cementite),它是铁与碳形成的一种化合物,其碳含量为6.69%。
用3%-4%的硝酸酒精溶液寝蚀后,呈现亮白色;若用热苦味酸钠溶液寝蚀,则渗碳体呈现黑色而铁素体仍为白色,由此可以区别铁素体与渗碳体。
此外,按铁碳合金成分和形成条件不同,渗碳体呈现不同的的形态:一次渗碳体,从液相中析出,呈现条状;二次渗碳体(次生相),从奥氏体中析出,呈现网络状,沿奥氏体晶界分布,经球化退火,渗碳体呈现颗粒状;三次渗碳体,从铁素体中析出,常呈现颗粒状;共晶渗碳体与奥氏体同时生长,称为莱氏体;共析渗碳体与铁素体同时生长,称为珠光体。
(3)珠光体(P),它是铁素体和渗碳体的机械混合物,是共析转变的产物。
由杠杆定律可以求得铁素体和渗碳体的含量比为8:1。
因此,铁素体后,渗碳体薄。
硝酸酒精寝蚀后可观察到两种不同的组织形态。
1)片状珠光体,它是由铁素体与渗碳体交替排列形成的层状组织,腈硝酸酒精溶液寝蚀后,在不同放大倍数下,可以观察到具有不同特征的层片状组织。
铁碳合金平衡组织观察与分析报告
实验四铁碳合金平衡组织观察与分析一、实验目的1、熟悉掌握铁碳合金(碳钢及白口铸铁)在平衡状态下的显微组织。
2、分析成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织与性能之间的相互关系。
二、实验原理铁碳合金的显微组织是研究和分析钢铁材料性能的基础,所谓平衡状态的显微组织是指合金在极为缓慢的冷却条件下(如退火状态,即接近平衡状态)所得到的组织。
可根据以组织组成物标注的Fe-Fe3C合金相图来分析铁碳合金在平衡状态下的显微组织,如图4–1所示。
图4–1以组织组成物标注的Fe-Fe3C合金相图铁碳合金的平衡组织主要是指碳钢和白口铸铁组织,其中碳钢是工业上应用最广的金属材料,它们的性能与其显微组织密切相关。
此外,对碳钢和白口铸铁显微组织的观察和分析,有助于加深对Fe-Fe3C相图的理解。
从Fe-Fe3C相图上可以看出,所有碳钢和白口铸铁的室温组织均由铁素体(F)和渗碳体(Fe3C)这两个基本相所组成。
但是由于含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况均有所不同,因而呈现各种不同的组织形态。
在Fe-Fe3C相图中,ABCD为液相线,AHJECF为固相线。
相图中各特征点的温度、成分及其含义见表4–1。
表4–1铁碳相图中各特征点的说明点的符号温度/℃含碳量/% 说明A 1538 0 纯铁熔点B 1495 0.53 包晶反应时液态金属的成分点C 1148 4.3 共晶点L C →A E+ Fe3C,共晶产物称莱氏体D 1227 6.69 渗碳体的熔点E 1148 2.11 碳在γ–Fe中的最大溶解度F 1148 6.69 共晶反应渗碳体的成分点G 912 0 α–Fe⇋γ–Fe同素异构转变点H 1495 0.09 碳在δ–Fe中的最大溶解度J 1495 0.17 包晶点L B+ δH→A JK 727 6.69 共析反应时渗碳体成分点N 1394 0γ–Fe⇋δ–Fe同素异构转变点P 727 0.0218 碳在α–Fe中的最大溶解度S 727 0.77 共析点A S →F P体+ Fe3C,共析产物,称珠光体Q 室温0.0008 室温下碳在F体中的溶解度Fe- Fe3C相图中有二条水平线(此处不介绍包晶线及包晶反应):ECF水平线(1148C)为共晶线,在该线温度下将发生共晶转变:L4.3 A2.11 + Fe3C 。
铁碳合金相图及平衡组织分析
T8钢(4%硝酸酒精溶液)
P
T12钢(4%硝酸酒精溶液)
P Fe3CⅡ
T12钢(碱性苦味酸钠水溶液)
Fe3CⅡ P
共晶白口铁(4%硝酸酒精溶液)
L'd
亚共晶白口铁(4%硝酸酒精溶液)
Fe3CⅡ
P
L'd
过共晶白口铁(4%硝酸酒精溶液)
Fe3CⅠ L'd
小结: 不同含碳量旳铁碳合金平衡组织形貌特征
腐蚀剂
4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液
碱性苦味酸钠水溶液
4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液
工业纯铁(4%硝酸酒精溶液)
F 晶 界
15钢(4%硝酸酒精溶液)
F P
45钢(4%硝酸酒精溶液)
F
P
65钢(4%硝酸酒精溶液)
铁碳合金相图及平衡组织分析
一、试验目旳: 1. 熟练利用铁碳相图,提升分析铁碳合金平衡结晶过程 及组织变化旳能力; 2. 掌握碳钢和白口铁旳显微组织特征。
二、试验概述: 1. 铁碳相图旳分析; 2. 铁碳合金中常见旳固态组织及特征; 3. 工业纯铁、碳钢和白口铁旳显微组织特征。
三、试验内容、措施及要求: 1. 讨论Fe-Fe3C相图(相、组织、性能与含碳量旳关系); 2. 借助显微镜和电脑对金相试样实物及其电子组织图片进行 观察,分析不同成份铁碳合金旳室温平衡组织形貌特征; 3. 随堂完毕电子试验报告。
为确保工业用钢应具有 足够旳σb 和一定旳δ 、Ak , 故其碳含量一般都不超出 Wc1.3% ~1.4%。
Ψ HB σb
δ Ak
1.0
试样名称 工业纯铁
铁碳平衡相图详解
奥氏体(Austenite——A或γ相)
奥氏体系碳溶于γ-Fe中所形成的间隙固溶体,面心立方晶格。碳在γ-Fe中的溶碳量较高,1148℃时为2.11%;其强度和硬度比铁素体高,塑性、韧性也好。其晶粒呈多边形,晶界较铁素体平直。
2.6.3 渗碳体(Cementite—Fe3C) 渗碳体系铁与碳形成的化合物,碳含量为6.69%,具有复杂的晶体结构。其硬度很高,塑性和韧性很差,δ、Ak值接近于零,脆性很大。图中平直的白色条状物即为铁碳合金凝固时的一次渗碳体。
5)GS线
4)ES线
7)GP线 0< W(c) <0.0218%的铁碳合金,缓冷时,由奥氏体中析出铁素体的终了线。
6)PSK水平线 共析线,通常称为A1线。奥氏体冷却到共析线温度(727℃)时,将发生共析转变生成珠光体(P), W(c) >0.0218%的铁碳合金均会发生共析转变。
工业纯铁 钢 白口铸铁
铁碳合金*
*—— 按含碳量和室温组织分类
W(c) =0.0218%
工业纯铁 钢 白口铸铁
铁碳合金*
共晶白口铸铁 亚共晶白口铸铁 过共晶白口铸铁
共析钢 亚共析钢 过共析钢
典型铁碳合金的结晶过程分析——以钢为例
1
1点温度以上,合金处于液态;
2
缓冷到1点温度时,开始从液相结晶出奥氏体,温度继续下降,奥氏体量逐渐增加;
铁碳平衡相图是铁碳合金在平衡状态时的组织组成图,图中标注的所有参数仅仅针对碳钢和铸铁,且不揭示它们的非平衡组织如马氏体、贝氏体等的转变规律。
合金钢和合金铸铁的平衡状态图由于添加了其它合金元素,与二元铁碳平衡相图差别很大。
即使对于碳钢和铸铁,在实际应用中,也不可直接在铁碳平衡图上读取成分-温度的对应参数值。因为实际成分和加热条件往往偏离或远离平衡状态图,须根据工程实际参考相关手册中钢的加热温度参数。
铁碳相图原理及应用
4. 珠光体( P )
珠光体( P ):铁素体和渗碳体的机械混合 物(F+Fe3C) ① 由一片铁素体,一片渗碳体相间呈片层 状形成 ② 其性能介于 Fe 和 Fe3C之间 ③ 由成分为0.77%的A缓冷至727℃分解 得到
5.莱氏体(ld)
莱氏体(ld):奥氏体和渗碳体的机械混合物( A+ Fe3C ) ① 由成分为 4.3% 的铁碳合金,在1148℃时从液 相结晶得到 ② 727℃ 以上的莱氏体称高温莱氏体,用ld表示 727℃ 以下的莱氏体称低温莱氏体,用 ld´表示 ③ 性能接近于渗碳体,硬度 >700HB,塑性很差.
1、铁素体(α-Fe)
铁素体( F ):C 溶在 α—Fe中的一种间隙固 溶体 ① 晶体结构:体心立方晶格 ② 溶碳能力:较小,常温下0.008%以下,在 727℃时溶碳能力达到最大0.0218%。 ③ 组织形态:多边形等轴晶粒 ④ 机械性能:与纯 Fe 性能相似,属软韧相, 强度和 硬度不高,塑性、韧性好。 ⑤ 表示方法:一般用 F 表示,也有用α—Fe、 α 、φ等
典型合金平衡结晶过程和组织
1.工业纯铁(0.01%C,合金①)
工业纯铁的平衡凝固过程及组织 组织 F+(Fe3C)III
1.工业纯铁(0.01%C,合金①)
2.共析钢(0.77%C,合金②)
共析转变 转变产物为珠光体 ,转变过程 L → L+A → A → P ( Fe3C +F )
1.2.2相图中的点、线、区及其意义
Fe-Fe3C相图中各点的成分、温度及其特性综合
铁碳合金相图分析要点
铁碳合金相图分析要点一、铁碳合金中的基本相铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。
铁存在着同素异晶转变,即在固态下有不同的结构。
不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。
由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。
1、铁素体(ferrite)铁素体是碳在α-Fe中的间隙固溶体,用符号"F"(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性。
铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。
2、奥氏体(Austenite )奥氏体是碳在γ-Fe中的间隙固溶体,用符号"A"(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有2.11%(1148℃时),727℃时为0.77%。
在一般情况下,奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,故奥氏体的硬度低,塑性较高,通常在对钢铁材料进行热变形加工,如锻造、热轧等时,都应将其加热成奥氏体状态,所谓"趁热打铁"正是这个意思。
另外奥氏体还有一个重要的性能,就是它具有顺磁性,可用于要求不受磁场的零件或部件。
奥氏体的组织与铁素体相似,但晶界较为平直,且常有孪晶存在。
3、渗碳体(Cementite)渗碳体是铁和碳形成的具有复杂结构的金属化合物,用化学分子式"Fe3C"表示.,它的碳质量分数Wc=6.69%,熔点为1227℃。
铁碳合金相图分析应用
铁碳合金相图在实际生产中应用之我见摘要:铁碳相图是研究钢和铸铁的基础,实际应用中对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。
铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。
关键词:相图分析结晶应用一、铁碳合金基本相1、铁素体δ相高温铁素体:C固溶到δ-Fe中,形成δ相。
α相铁素体(用F表示):C固溶到α-Fe中,形成α相。
F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)。
2、奥氏体γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形3、渗碳体 Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物,渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。
渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。
二、Fe-Fe3C相图分析1、相图中的点、线、面三条水平线和三个重要点(1)包晶转变线HJB,J为包晶点。
1495摄氏度,C%=0.09-0.53% L+δ→A(2)共晶转变线ECF, C点为共晶点。
冷却到1148℃时, C点成分的L发生共晶反应:L →A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。
共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。
(3)共析转变线PSK,S点为共析点。
合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:A →F(0.0218%C)+Fe3C(6.69%C、共析渗碳体)—P(珠光体)。
共析反应在恒温下进行, 反应过程中, A、F、Fe3C三相共存。
共析反应的产物是铁素体与渗碳体的共析混合物, 称珠光体, 以符号P表示。
Fe-C相图具体分析
Fe-C 相图分析一. Fe-C 双重相图铁碳合金是铁与碳组成的合金,在合金中当碳含量超过固溶体的溶解限度后,剩余的碳以两种存在方式:渗碳体Fe 3C 或石墨。
在通常情况下,铁碳合金是按Fe-Fe 3C 系进行转变。
但在极为缓慢冷却或加入促进石墨化的元素的条件下碳才以石墨的形式存在,因此Fe-石墨系是更稳定的状态。
按照这样情况,铁碳相图常表示为Fe-Fe 3C 和Fe-石墨双重相图,如图6.1所示。
Fe 3C T /0CD 'K 'δC wt.%图6.1 Fe-C 双重相图图中实线部分为Fe-Fe 3C 相图,虚线表示Fe-C 相图,实线与虚线重合的部分以实线表示。
尽管Fe-Fe 3C 相图是一个亚稳相图,但一般情况下铁碳合金中的相变化遵循Fe-Fe 3C 相图,所以通常也将其称为平衡相图,在Fe-Fe 3C 相图中的相或反应生成的各种组织都分别称为平衡相或平衡组织。
二. Fe-Fe3C相图分析1.相区五个单相区:ABCD(液相线)—液相区(L) AHNA—δ相区NJESGN—奥氏体区(γ或A) GPQG—铁素体区(α或F)DFK—渗碳体区(Fe3C或Cm)ABCD为固相线,AHJECF为液相线。
七个两相区:L+δ、L+γ、L+ Fe3C、δ+γ、γ+α、γ+Fe3C、α+ Fe3C五条水平线:HJB—包晶转变线、ECF—共晶转变线、PSK—共析转变线770℃(MO)虚线—铁素体的磁性转变线(又称为A2线)230℃虚线—渗碳体的磁性转变线2. 三个恒温转变(1)包晶转变(1495℃HJB水平线):凡成分贯穿HJB恒温线的铁碳合金(w(C)=0.09-0.53%),冷却到1495℃,w(C)=0.53%的液相与w(C)=0.09%的δ相发生包晶反应,生成w(C)=0.17%的γ相即奥氏体A。
包晶反应式记为1495CB H JLδγ︒+→,其中的下标字母表示该相的成分点。
(2)共晶转变(1148℃ECF水平线):反应式为11483CC EL Fe Cγ︒↔+,w(C)=2.11-6.69%的合金冷却时,在1148℃都发生共晶转变。
浅谈Fe-Fe3c相图的应用
工业技术科技创新导报 Science and Technology Innovation Herald131DOI:10.16660/ki.1674-098X.2018.18.131浅谈Fe-Fe 3C 相图的应用张艳(江苏省无锡交通高等职业技术学校 江苏无锡 214151)摘 要:Fe- Fe 3C 相图在生产实际中应用非常广泛,Fe-Fe 3C 相图反映了随着成分和温度的变化,铁碳合金的组织和性能发生相应变化的规律,本文阐述了Fe-Fe 3C 相图在材料选择方面、制定热加工工艺方面以及热处理方面的具体应用原理和方法,这对工艺人员在实践工作中应用Fe-Fe 3C 相图解决实际问题有一定的借鉴意义。
关键词:Fe- Fe 3C 相图 选材 热加工工艺 热处理 应用中图分类号:G434 文献标识码:A 文章编号:1674-098X(2018)06(c)-0131-03在金属材料与热处理中,铁碳合金相图是研究钢铁材料的基础,由于铁和碳可以形成不同的化合物,比如有Fe 3C ,Fe 2C 和FeC等等,其中有实用价值的是Fe-Fe 3C 这一部分,通常称其为Fe-Fe 3C 相图(图1),在具体的生产实际中,Fe-Fe 3C 相图的应用是非常广泛的,它一方面可以作为选材的重要依据,另一方面还可以作为制定铸、锻和热处理等热加工工艺的重要依据,本文即从这几个方面来谈谈Fe-Fe3C相图的应用。
1 Fe-Fe 3C 相图在选材方面的应用Fe-Fe 3C 相图具体、形象地反映出随着成分、温度的变化,铁碳合金的组织发生相应变化的一般规律。
因此,在实践中当需要根据工件的性能、要求来选择合适的制造材料时,Fe-Fe 3C 相图就成为很重要的工具。
例如,钢的部分的选用,在Fe-Fe 3C 相图中,0.0218%<C<2.11%是钢的部分,当制造的构件需要有良好的塑性和韧性时,就应该选用含碳量小于0.25%的钢材料;对于制造普通的机械零件和建筑上用的构件时,往往选用低碳钢和中碳钢;如果制造的构件在强度、塑性、韧性方面都有较高的要求,含碳量应稍高一些,就应该选用含碳量0.3%~0.5%的钢材料。
铁碳相图的分析及应用
铁碳相图的分析及应用铁碳相图是描述铁和碳混合体系中不同组织和组分相变关系的图表。
在该图中,横轴表示碳含量,纵轴表示温度。
铁碳相图可以分为三个区域:铁铁素体区、铁奥氏体区和铁珠光体区。
铁铁素体区是指碳含量低于2.11%的区域。
在这一区域内,铁的晶体结构主要是针状的铁素体。
随着碳含量的增加,铁的晶体结构会逐渐变为面心立方结构的奥氏体。
铁奥氏体区是指碳含量在2.11%至6.7%之间的区域。
在这一区域内,铁的晶体结构主要是面心立方结构的奥氏体。
随着碳含量的增加,奥氏体中的碳溶解度也会增加。
铁珠光体区是指碳含量大于6.7%的区域。
在这一区域内,铁的晶体结构主要是珠光体。
随着碳含量的增加,铁的硬度和脆性都会增加。
铁碳相图在冶金学和材料科学中有广泛的应用,主要包括以下几个方面:1. 理解和预测材料的相变行为:铁铁素体区、铁奥氏体区和铁珠光体区的存在和相变关系,可以帮助科学家和工程师理解和预测材料在不同温度和碳含量下的相变行为。
比如,通过铁碳相图可以确定钢材的相变温度和相变组织,从而指导钢材的热处理工艺。
2. 材料强度和韧性的控制:铁碳相图可以指导材料的合金化和热处理工艺,从而控制材料的强度和韧性。
以钢材为例,通过在铁铁素体区添加合适的合金元素,可以提高钢材的强度和硬度;通过在铁奥氏体区进行适当的热处理,可以提高钢材的韧性和塑性。
3. 材料组织和性能的调控:铁碳相图可以帮助科学家和工程师预测不同温度和碳含量下材料的组织和性能,并通过调控温度、合金元素和热处理工艺等手段来实现所需的材料性能。
比如,在航空航天领域,通过对铁碳相图的研究和应用,可以开发出高温和高强度的铁基合金材料,以满足航空发动机等高温工作环境的需求。
4. 材料失效分析和改进:铁碳相图可以帮助科学家和工程师分析材料失效的原因,并提出改进措施。
比如,通过分析钢材中的碳含量和组织变化,可以了解钢材的强度和韧性是否满足设计要求,并根据需要进行相应的材料改进。
关于铁碳相图的简要分析
关于铁碳相图的简要分析今天,我写一些关于铁碳相图的简要分析,如果哪里有不合适或遗漏的,还望业内人士多多指教,并留下您宝贵的意见铁碳平衡图是研究铁碳合金在加热和冷却在不同温度时产生的结晶过程以及组织转变过程的图解及依据。
当然铁碳平衡图也是研究碳钢,铸铁,合金的基础。
它的许多基本的特点,即便是对于复杂的合金钢也是具有重要的指导意义的。
因此,研究所有钢铁的组成和组织问题都必须从铁碳平衡图开始。
铁碳平衡图又简称“铁碳相图”,它是以含碳量为横坐标,以温度为纵坐标,来表示在接近平衡条件(铁—石墨)和亚稳条件(铁—碳化铁)下或者极缓慢的冷却条件下,以碳和铁为组元的二元合金在不同温度下所呈现出来的相与相之间的平衡关系。
简单的说,铁碳相图是由包晶,共晶,和析晶三个基本反应组成的。
1.当温度达到1495摄氏度时,发生包晶反应,此时液相,碳素体和奥氏体三相共存。
在此时冷凝形成奥氏体。
2.在1148摄氏度时晶间发生共晶反应,此时液相,奥氏体,渗碳体三相共存,冷凝时反应的结果形成奥氏体与渗碳体的混合物,俗称莱氏体。
3. 在727摄氏度发生共析反应,此时的奥氏体,铁素体,渗碳体三相共存,冷却反应的结果形成铁素体与渗碳体的混合物,统称为珠光体。
共析反应的温度常标为A1。
其他几条线的含义如下:我做个简要阐述①GS线,奥氏体中开始析出铁素体或铁素体全部溶入奥氏体的转变线,称A3温度。
②ES线,碳在奥氏体中的溶解限度线,称Acm温度。
在1148℃时,碳在奥氏体中的最大溶解度为2.11%,而在727℃时只为0.77%。
所以凡是碳含量大于0.77%的铁碳合金,在Acm温度以下时,奥氏体中将析出渗碳体,称为二次渗碳体,以区别于从液态中析出的一次渗碳体。
③PQ线,碳在铁素体中的溶解限度线。
在727℃时,碳在铁素体中最大溶解度为0.0218%,600℃时为0.0057%,400℃时为0.00023%,200℃以下时小于0.0000007%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义
铁碳平衡相图,又称铁碳相图或铁碳状态图。
它以温度为纵坐标,铁碳含量为横坐标,表示在接近平衡条件和亚稳条件下(或极缓慢的冷却条件下)以铁、碳为组元的二元合金在不同温度下所呈现的相和这些相之间的平衡关系。
实用性分析
铁碳平衡相图是铁碳合金在平衡状态时的组织组成图,而不是获得非平衡的马氏体、贝氏体等组织的转变图。
铁碳相图的临界温度参数仅仅局限在碳钢和铸铁,非合金钢和合金铸铁。
合金钢和合金铸铁的平衡状态图由于添加了其它合金元素,与铁碳平衡状态图相差还是很大的。
即使对于碳钢,直接在铁碳平衡图上读取成分----温度之间的对应关系参数值,也是不够精确的。
实际上是借助于钢的加热温度临界参数手册而不是从相图上直接获得,那样得到的数值要精确和直观,对应关系明确。
铁碳平衡相图是加热和冷却过程中的速度是及其缓慢的结果,而且又局限于铁碳合金钢种,这个理论状态,是不可能在实际生产中大量运用,实际淬火等热处理加热冷却过程中组织转变都是在一定加热速度和冷却速度下进行的,不是完全达到平衡状态。
所以说铁碳平衡相图仅仅是研究热处理、学习热处理的必备基础知识和出发点,而不是直接在热处理工艺过程中运用的相图。
铁碳相图的用途究竟是什么?(转自汪庆华文章)
在很多资料中说明铁碳平衡相图在热处理中是十分重要的知识,是制定钢铁材料加热工艺的依据,而且指出:尤其是热处理工必须熟练掌握铁碳平衡相图。
但是在实际生产运用中,例如:淬火、回火过程中,铁碳相图的直接应用是十分有限的,直接实用的是各种钢材的CCT、TTT、以及各种钢材的淬透性参数(曲线)、临界加热参数、临界冷却速度参数曲线,回火硬度曲线等。
铁碳相图是铁碳合金在平衡状态时的组织组成图,而不是获得非平衡的马氏体、贝氏体等组织的转变图。
铁碳相图的临界温度参数仅仅局限在碳钢和铸铁,非合金钢和合金铸铁。
合金钢和合金铸铁的平衡状态图由于添加了其它合金元素,与铁碳平衡状态图相差还是很大的。
即使对于碳钢,直接在铁碳平衡图上读取成分----温度之间的对应关系参数值,也是不够精确的。
实际上是借助于钢的加热温度临界参数手册而不是从相图上直接获得,那样得到的数值要精确和直观,对应关系明确。
另外,铁碳平衡相图是加热和冷却过程中的速度是及其缓慢的结果,而且又局限于铁碳合金钢种,这个理论状态,是不可能在实际生产中大量运用,实际淬火等热处理加热冷却过程中组织转变都是在一定加热速度和冷却速度下进行的,不是完全达到平衡状态。
所以,铁碳平衡相图仅仅是研究热处理、学习热处理的必备基础知识和出发点,而不是直接在热处理工艺过程中运用的相图。
热处理工熟练掌握了铁碳平衡相图知识只是热处理学习的开端,不能达到使用铁碳平衡相图来处理工艺实际问题的境界。
在分析问题时可以使用铁碳平衡相图,但是也只能是做定性的判断,不能做定量准确的分析。