人教版七年级数学上册期末复习总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学七年级上册
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数.
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”).
【说明】1.有理数由“符号”和“数值”两部分组成.(符号问题是我们在今后的学习中经常忘记的问题.)
2.正数前面的符号可以省略,负数前面的符号不能省略.
3.正数大于0,负数小于0,正数大于负数.
4. 0既不是正数,也不是负数.
5.正、负数通常表示相反意义的量,这些量包括:向东与向西;收入与支出;盈利与亏损;(温度)零上与零下;(水位)上升与下降;高于与低于(水平面);(出口)增长与减少……例如:向东走2米,记作:+2米;那么向西走3米,记作—3米.
6.用正负数表示加工允许误差 例如:①图纸
上注明一个零件的直径是2
.03.030+-Φmm ,表示零件
的直径标准是30mm ,但是,在生产的过程中,由于生产工艺存在的误差,因此直径可以比30mm 大0.2mm ,也可以比30mm 小0.3mm.即零件的直径在29.7mm~30.2mm 之间都合格.但在这个范围以外的就不合格了.
【例1】下列说法不正确的是( ) A .0小于所有正数 B .0大于所有负数 C .0既不是正数也不是负数 D .0没有绝对值
1.2 有理数 1.
2.1 有理数
有理数的概念:整数和分数统称有理
数.
⎪⎪⎪
⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩
⎪⎨⎧负分数正分数分数负整数正整数
整数有理数0⎪⎪⎪⎩
⎪⎪
⎪⎨⎧⎩⎨⎧⎩⎨
⎧负分数负整数负有理数正分数正整数
正有理数有理数0
【说明】1.整数分为正整数、0、负整数.
2.分数分为正分数、负分数.
1
3.无限循环小数是有理数,它可以化成分数.如0.333…=
3
4.无限不循环小数是无理数,如:π.
5.没有最大的有理数,也没有最小的有理数.
6.最大的负整数是-1,最小的正整数是1。
7.几个常见的概念:非负数:指正数和零;非正数:负数和零;
【例2】在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()
A.1个B.2个C.3个D.4个
1.2.2 数轴
规定了原点、正方向、单位长度的直线叫做数轴;
【说明】1.数轴有三要素:原点、正方向、单位长度。
2.数轴的性质:
①数轴上的点与有理数一一对应关系;
②正数都大于0,负数都小于0,正数大于负数;
③数轴上的点表示的数从左往右依次增大,从右往左依次减小。
④数轴上到原点的距离相等的点有2个,一个在原点左边,一个在原点右边,他们互为相反数.
4.利用数轴比较数的大小:数轴上的点表示的数,右边的总比左边大.
5.数轴上点的移动用数形结合的思维方法,通过画图分析,解决问题
1.2.3 相反数
只有符号不同的两个数叫做互为相反数。或者说:如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数;
【说明】1.正数的相反数是负数;负数的相反数是正数;0的相反数是0.
2.相反数的代数意义:互为相反数的两个数相加,和为0.
3.相反数的几何意义:互为相反的两上数,在数轴上位于原点的两则,并且与原点的
距离相等.
4.相反数的读法:-(-2)读作负2的相反数.从数轴上看-2的相反数是2,因此-(-2)=2.
5.一般地,数a 的相反数是-a.
【例3】若两个数的和为正数,则这两个数( )
A .至少有一个为正数
B .只有一个是正数
C .有一个必为0
D .都是正数
1.2.4 绝对值
在数轴上表示数a 的点到原点的距离叫做数a 的绝对值.
【说明】1.几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.
2.代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的
相反数,可用字母a 表示如下:
⎪⎩
⎪⎨⎧<-=>=)0()0(0)0(a a a a a
a
即: 如果a >0,那么a =a ;如果a <0,那么a =-a ;如果a=0,那么a =0.
3.绝对值等于a (a ≠0)的数有两个,一个在原点左边,一个在原点右边,它们互为相
反数.例如:|a|=2,则22-==a a 或(2±=a ).
4.|a|是重要的非负数,即|a|≥0;
5.理解:
0a 1a
a >⇔= ;
0a 1a
a <⇔-=;
6.两个负数比较大小,绝对值大的反而小.
7.理解几个特殊的绝对值所表示的意义:
【例4】 |x-2|+|y-3| = 0, 则x x +y y = .
【例5】 ﹣1的相反数是 ,倒数是 ,绝对值是 .
1.3 有理数的加减法 1.3.1 有理数的加法
加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不等的异号两数相加,
取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;③一个数同0相加,仍得这个数。
加法的交换律:两个数相加,交换加数的位置,和不变.
加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
1.3.2有理数的减法
几个正数或负数的和称为代数和.加减混合运算可以统一为加法运算,写成代数和的形式.例
如:)(c b a c b a -++=-+.c b a -+可以读作:a 加b 减c ,也可以读作:a ,b ,-c 的代数和.有理数加减混合运算:先把减法变成加法,再按有理数加法法则进行运算.
1.4 有理数的乘除法:先确定符号 1.4.1 有理数的乘法
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0. 倒数的定义:乘积是1的两个有理数互为倒数.若ab=1,则a 和b 互为倒数.
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数. 乘法运算律:
乘法交换律:两个数相乘,交换因数的位置,积相等.用字母表示为:ab=ba.
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.用字母表示
为:(ab)c=a(bc).
乘法交换律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用
字母表示为:a(b+c) =ab+ac.
【说明】1.常见错误仍是符号问题,做题时,先定符号,再定值.
2.求一个数的倒数的方法:①求一个分数的倒数,就是把这个分数的分子、分母颠倒位置. ②求一个整数的倒数:可以把整数看成是分母为1的分数,再把分子、分母颠倒位置. ③带分数要先画成假分数,再将分子、分母颠倒位置. 1.4.2 有理数的除法
除法法则:除以一个数不等于0的数,等于乘这个数的倒数.
两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 【说明】1.除法法则可以把除法转化为乘法.
【例5】计算:(﹣+
)×(﹣36)