七年级数学上册 第二章 有理数及其运算 2.7 有理数的乘法 第1课时 有理数的乘法法则课件 北师大
北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)
乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)
-
5 6
+
3 8
-24;
(2)
-7
-
4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3
之
值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);
七年级数学上册第二章有理数及其运算 有理数的加减混合运算第1课时有理数的加减混合运算课件新版北师大版
课堂小结
有理数的 加减混合
运算
加减混合算式的读 法与写法
(1)将减法转化为加法运算;
有理数的加减混合运 算
练一练: 下列式子可读作“负1、负3、正6、负8的和”
的是( B )
A.-1+(-3)+(+6)-(-8) B.-1-3+6-8 C.-1-(-3)-(-6)-(-8) D.-1-(-3)-6-(-8)
课程讲授
2 有理数的加减混合运算
例1 计算:(-2)+(+30)-(-15)-(+27)
方法一:减法变加法 解:原式=(-2)+(+30)+(+15)+(-27) 减法转化成加法
(2)省略加号和括号;
(3)运用加法交换律和结合律,将同号 两数相加;
(4)按有理数加法法则计算.
随堂练习
2.6,-13,2的和比它们的绝对值的和小( D )
A.-26 B.-4 C.4 D.26
随堂练习
3.武汉市某中学举行秋季运动会,七年级(1)班和七年级(2)班进行拔河比 赛,比赛规定标志物红绸向某班方向移动2 m或2 m以上,该班就获胜.比赛 中红绸先向七年级(2)班移动0.2 m,又向七年级(1)班移动0.5 m,相持几秒 后,红绸向七年级(2)班移动0.8 m,随后又向七年级(1)班移动1.4 m,在一片 欢呼声中,红绸再向七年级(1)班移动1.3 m,裁判员一声哨响,比赛结束.请 你用计算的方法说明最终获胜的是哪个班.
2.7.1有理数的乘法北师大版七年级数学上册点拨训练习题PPT课件
B.负数
第二章 有理数及其运算
C.零 第二章 有理数及其运算
第二章 有理数及其运算
D.无法确定
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第二章 有理数及其运算
6.如图,数轴上的 A,B,C 三点所表示的数分别为 a,b,c.根 据图中各点的位置,下列式子正确的是( D )
18.一辆出租车在一条东西走向的大街上营运.一天上午,这辆车 一共连续送客 10 次,其中 4 次向东行驶,每次行驶 10 km;6 次向西行驶,每次行驶 7 km.问:
(1)该出租车连续送客 10 次后,停在离出发点的什么地方? 解:规定向东为正,则 10×4+(-7)×6=40+(-42)=-2(km). 所以该出租车停在出发点的西边 2 km 处.
2.(2019·温州)计算:(-3)×5 的结果是( A )
A.-15
B.15
C.-2
D.2
3.下列运算结果为负数的是( C )
A.-11×(-2)
B.0×(-2 019)
C.(-6)-(-4)
D.(-7)+18
4.一个有理数和它的相反数之积为负
C.一定不大于 0
第二章 有理数及其运算
2.7 有理数的乘法 第1课时 有理数的乘法
提示:点击 进入习题
1 见习题 2 A
3C
4C
答案显示
5B
6 D 7 A 8 -20;15 9 1;0;±1 10 A
11 D
12 B
13 C
14 D
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题
北师大版七年级数学上册《有理数的乘法(第1课时)》教学教案
二、例题:
三、小结:
促进了学 生的表达 与交流,为 后续学习 打下基础。 课件展示 归纳使知 识更系统 化,便于学 生记忆。
理数的乘
(raciprocal),也称这两个有理数互为倒数 教师追问:同学们你知道怎样求一个的道数吗? 1.非零整数——直接写成这个数分之一 2.分数——把分子、分母颠倒位置即可 带分数要化成假分数,小数化为分数再求
法法则解 决两个例 题,且明确 倒数的定 义在有理 数范围内
例 2:(3)(-4)×5 ×(-0.25)(从左向右依次运算)
仍有意义。
(4)( 3)( 5)( 2)
5
6
[(3 5)] (2) 56
1 (2) 2
1
根据上面例题,教师提问:几个有理数相乘,因数都不为 0 时, 积的符号怎样确定? 有一个因数为 0 时,积是多少? 积的符号又负数的个数确定,若是奇数,结果为负, 若是偶数,结果为正 有一个因数为 0 时,积是 0 3、出示课件: 试一试 : 教师鼓励学生主动解决问题
加法法则引出有理数的乘法来解决了一些实际问题。
1、培养学生的动态观察 、对比、分析生活问题的能力;让学生能综合运用有理数及其加、
减法的有关知识灵活地解决简单的实际问题。
学习 2、在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的
目标 灵活处理。使学生感受到折 线统计图确实可以直观地反映事物的变化情况。
1、11 8 1 (1) 4 22 2
11 8 1 4 22 2
1 2
2、0×(-3) ×(-4) ×(-5) ×(-6)
=0
几个有理数相乘有一个因数为 0 时,积是 0
课堂 1、两个数的积为正,那么这两个数( C )
北师大版七年级数学2.7 有理数的乘法(1)教案
有理数的乘法〔第1课时〕1 教材说明北师大版七年级上册第二章“有理数及其运算〞第7节“有理数的乘法〞2 学情分析本节课的主要内容是“有理数的乘法法则〞,在此之前学生已经学习了有理数加法法则和减法法则,也对“几个相同的数连加形式可以写成乘法形式〞有较深刻的认识,所以本节课可以类比“有理数加法法则〞对乘法法则进行归纳总结;而本节课要为接下来的“有理数的除法〞“有理数的乘法〞做铺垫,所以对符号的处理尤为关键。
2 重难点重点:有理数的乘法法则的探索与归纳难点:有理数的乘法法则的探索与归纳3 教学目标〔1〕归纳有理数乘法法则,并能准确判断结果的正负〔2〕通过类比、找规律的方法,体会归纳获得数学结论的过程〔3〕体验数学探究的乐趣,增强数学学习的信心和兴趣4 教学设计环节1 类比发现甲水库的水位每天升高3cm,乙水库的水位每天下降3cm,4天后甲、乙水库水位的总变化量各是多少?【设计】通过水库这个具体情境,帮助学生列出正数×负数的算式,初步感知符号对结果的影响。
环节2 探索规律【设计】一正一负两数相乘有实际情景作为载体,两个负数相乘的情景学生较难理解,从找规律的角度来解释学生更容易接受。
一正一负、两负相乘都可在规律中寻找答案,并能将与0相乘的情况也列出。
环节3 归纳总结有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,积仍为0.【设计】归纳法则,使学生对运算算理和方法固定化。
环节4 应用提升【设计】简单运用乘法法则,再次稳固符号对结果的影响;将倒数的概念扩大到有理数范围,能快速说出任意有理数的倒数;能进行2个以上有理数的计算,并能快速判断结果的正负。
2024秋七年级数学上册第2章有理数及其运算2.7有理数的乘法1有理数的乘法教案(新版)北师大版
设计实践活动或计算练习,让学生在实践中体验有理数乘法的应用,提高运算能力。
在有理数乘法新课呈现结束后,对乘法运算的规则进行梳理和总结。
强调乘法运算的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对有理数乘法知识的掌握情况。
5.培养学生的沟通能力和团队合作能力,能够在小组讨论和合作交流中解决问题。
6.培养学生的创新意识和探索精神,能够关注学科前沿动态。
7.培养学生的社会责任感,能够思考数学与生活的联系。
8.学生能够积极分享学习有理数乘法的体会和心得,增进师生之间的情感交流。
课堂
1.课堂评价:
2.作业评价:
对学生的作业进行认真批改和点评,及时反馈学生的学习效果,鼓励学生继续努力。在布置的课后作业中,教师应关注学生的计算准确性、解题思路和创新能力。在批改作业时,教师应及时纠正学生的错误,并提供详细的解题指导和鼓励性的评语。同时,教师还可以根据学生的作业表现,了解学生对有理数乘法的掌握情况,为课堂教学提供依据。
(5)5 × (2 + 3) - 2 × (5 - 2)
答案:
(1)4 - 2 × 3 = 4 - 6 = -2
(2)3 × (5 - 2) = 3 × 3 = 9
(3)2 × 2 × 2 = 8
(4)-3 × 4 + 2 × 3 = -12 + 6 = -6
(5)5 × (2 + 3) - 2 × (5 - 2) = 5 × 5 - 2 × 3 = 25 - 6 = 19
(3)-6 ÷ 3 × 2
(4)12 ÷ 3 × (-2)
(5)-8 ÷ 4 × 3
七年级数学上册第二章 有理数及其运算知识点
第二章有理数及其运算一、有理数1.用正、负数表示具有相反意义的量2.有理数的分类(1)按定义分类(2)按符号分类二、数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴.2.用数轴上的点表示有理数任何一个有理数都可以用数轴上的一个点来表示.3.比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,0大于负数,正数大于负数.三、绝对值1.相反数的概念及性质(1)只有符号不同的两个数叫做互为相反数(2)互为相反数的两个数到原点的距离相等2.绝对值的概念及性质(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值(2)一个正数的绝对值是它本身.(3)一个负数的绝对值是它的相反数.(4)0的绝对值是0.3.比较两个负数的大小两个负数,绝对值大的反而小.三、有理数的运算1.有理数的加法(1)加法法则同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数。
(2)加法的运算律加法的交换律加法的结合律2.有理数的减法减法法则:减去一个数,等于加上这个数的相反数.3.有理数的乘法(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.(2)乘法的运算律乘法的交换律乘法的结合律乘法对加法的分配律4.有理数的除法除法法则:除以一个数,等于乘以这个数的倒数.5.有理数的乘方乘方运算规律:(1)正数的任何次幂都是正数.(2)负数的偶次幂是正数,负数的奇次幂是负数.(3)0的任何正整数次幂都是0.(4)a的偶次幂是正数,即a n≥0(其中n为偶数).6.有理数的混合运算有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.四、科学记数法1.科学记数法的概念一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.2.a与n的取法在a×10n形式中,n的值是原数整数位数减1,a 则是将原数保留一位整数得来的.。
《有理数的乘法(第1课时)教学设计与反思》.docx
北师大版七年级上册第二章《有理数及其运算》第7节《有理数的乘法》教学设计与反思(第1课时)一、学情分析有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.二、教学目标知识与技能:1、理解掌握有理数的乘法法则.2、会进行有理数的乘法运算.过程与方法:1、通过有理数乘法法则的推导,发展学生的逻辑思维能力.2、通过有理数的乘法运算,培养学生的运算能力.情感态度与价值观:逐步形成积极参与、合作交流的主体意识和主动探索、勇于发现的科学精神,使学生养成乐于了解数学、应用数学的学习态度.三、教学重难点1、重点:应用有理数的乘法法则正确的进行有理数乘法计算.2、难点:有理数乘法运算中符号确定的理解.四、教学问题诊断分析有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.五、教学过程设计1、新课引入:由已学过的内容“用有理数的加减混合运算解决实际问题”,引导学生解决P49的“水库水位变化问题”,并通过解决该问题的过程,引入新课.提出问题:甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米,4天后,列式计算甲水库水位的变化量是________.乙水库水位的变化量是________.如果规定用正数表示水位升高,用负数表示水位下降,上面问题的答案你得到了吗?你能明确加法与乘法的联系吗?与同伴交流。
北师大版七年级上册数学 第二章 有理数及其运算 有理数的乘法(第1课时)
巩固练习
变式训练
计算:
解: (1)原式
(2)原式
= 4.
连接中考
1. 计算:(-3)×9的结果等于( A )
A.-27
B.-6
C.27
D.6
2. ﹣7的倒数是( C )
A.
B.7
C.
D.﹣7
课堂检测
基础巩固题
1.如果-5x是正数,那么x的符号是( C )
A. x>0 B. x≥0 C. x<0 D. x≤0
例 计算:
解: (1)(-5)×(+3)=-5×3=-15; (2)(-8)×(-7)=8×7=56;
(4)(-2)×6=-12.
方法点拨:第一步是确定积的符号;第二步是确定积的绝对值.
巩固练习
变式训练
计算填空,并说明计算依据:
(1)(-3)×5= -15 ; ( 异号得负,并把绝对值相乘)
(2)(-2)×(-6)= ;(
)
(3) 0×(-4)=
. 12 ( 同号得正,并把绝对值相乘 )
0
一个数与0相乘,结果为0
探究新知
知识点 2 倒数
先计算,再观察算式和结果的特征,得出结论.
计算: (1)
(2)
解:
1;
1.
从以上两题的求解中你发现了什么?
乘积为1的两个有理数互为倒数.
探究新知
素养考点 倒数
例 -3的倒数是( A )
2.若a·b=0,则 ( B ) A. a = 0 B. a = 0或b = 0 C. b = 0 D. a = 0且b = 0
课堂检测
基础巩固题
3.两个有理数的积是负数,则这两个数之和是( D )
A. 正数 C. 零
七年级数学北师大版(上册)2.7有理数的乘法法则课件
例2 已知a与b互为相反数,c与d互为倒数,m的绝对值为
6,求
a
m
b
-cd+|m|的值.
解:由题意得a+b=0,cd=1,|m|=6.
∴原式=0-1+6=5;
ab m
故
-cd+|m|的值为5.
1. 若 ab>0,则必有 ( D )
A. a>0,b>0 B. a<0,b<0 C. a>0,b<0 D. a>0,b>0或a<0,b<0
解:(1)原式 (3 5 9 1 ) 27 .
654
8
(2)原式 5 6 4 1 6. 54
(+2)×(+3)= 6 (-2)×(-3)= 6
同号两数相乘
(+2)×(-3)= - 6 异号两数相乘
(-2)×(+3)= - 6
0 × 5= (0 -5)× 0 = 0
一数与0相乘
你能从中发现规律吗?结果的符号怎么定?绝对值怎么算?
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,积仍为0.
= −(4×5)
=+(5×7)
=−20 ;
(3)(
3 8
)
(
8 3
);
(3 8) 83
=1 ;
=35;
(4) (3)( 1 ); 3
= +(3× 1 ) 3
=1 .
观察(3)、(4)两题你有什么发现?
2.倒数
我们把乘积为1的两个有理数称为互为倒数, 其中的一个数是另一个数的倒数.
(1)正数的倒数是正数,负数的倒数是负数; (2)分数的倒数是Байду номын сангаас子与分母颠倒位置; (3)求小数的倒数,先化成分数,再求倒数; (4)0没有倒数.
有理数的乘法教学设计
北师大版七上第二章有理数及其运算2.7有理数的乘法“2.7.1有理数的乘法法则”教学设计一、教学内容及其解析1.教学内容“有理数的乘法法则”是北师大版《义务教育教科书数学》七年级上册,第二章“有理数及其运算”第七节“有理数的乘法”第一课时内容.主要是让学生借助有理数的加法归纳出有理数的乘法法则;利用法则进行简单的有理数乘法运算、解决实际问题.2.内容解析有理数的加减法和小学的加减法区别在于引入了负数,原有的运算法则保持不变,只是扩大了其适用的范围.基于此原则,有理数的乘法在小学乘法的基础上进行生长,从而让学生体会知识的延续性.小学的乘法是从加法的简便运算的角度引入的,引入负数后有理数的乘法也可以从这个角度引导学生分析和思考,加深学生对法则的认同.此外,有理数的乘法是继有理数的加减法之后的又一基本运算,既是对前面加减法运算学习的延续,又为后续学习有理数的除法、乘方运算奠定基础,在有理数的运算中有着重要的地位,对后续的代数学习非常重要.因此,本节课的教学重点为:有理数的乘法法则的理解及应用.二、教学目标解析1.教学目标课程标准对本节课的具体要求是在理解有理数的概念,掌握有理数的加法法则的基础上,能进行有理数的乘法运算.依据课标、根据七年级学生的年龄特征和知识结构确定本节课教学目标如下:(1)类比有理数的加法法则,使学生明确两个有理数相乘的运算对象,以及要获得两个有理数相乘的结果(积),要从积的符号和积的绝对值两方面来探究.(2)经历探究有理数乘法法则的过程中,培养学生观察、分析、归纳、总结的能力. 培养学生的合作意识,让学生在收获中获得满足感、成就感.(3)利用有理数的乘法法则解决简单的有理数的乘法问题.学生耳熟能详的负负得正,要经历着这样的细致的探究过程,目的是让学生养成言必有据的学科的理性精神.2.目标解析:达成目标(1)的标志是:归纳总结出有理数的乘法法则.达成目标(2)的标志是:归纳变号规律的过程、有理数乘法法则的得出的过程.达成目标(3)的标志是:变号规律的得出、例题的练习、学生活动题目的解决.三、学生学情分析学生在小学已经学习过非负有理数的四则运算以及运算律.在本章前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混合运算的方法,对符号问题也有了一定的认识。
北师大版初一上册数学第二章有理数及其运算:有理数的乘法第1课时教案
重点
有理数乘法的运算.
难点
有理数乘法中的符号法则.
教
学
过
程
一、创设情境
1.运算(-2)+(-2)+(-2).
2.有理数加减运算中,关键问题是什么?和小学运算中最要紧的不同点是什么?(符号问题)
二、探究问题
问题1甲水库的水位每天升高3厘米,4天升高了多少厘米?3+3+3+3=3×4=12(厘米)
3.已知a的倒数是它本身,b是-10的相反数,负数c的绝对值是8,求式子4a-b+3c的值.
想一想:三个有理数相乘,你会运算吗?
例2 运算: (1)(-4)×5×(-0.25);
(2)
(3)7.8×(-8.1) ×0 ×(-19.6).
问题:观看上面的运算结果,当几个有理数相乘,因数都不为0时,积的符号如何样确定?有一个因数为0时,积是多少?
(2)
(3)
做一做2:课本P51页随堂练习1;
四、课堂小结
师:今天要紧学习了有理数的乘法法则:
1Байду номын сангаас要牢记两个负数相乘得正数,简单地说确实是“负负得正”.
2.几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定“奇负偶正”。
五、布置作业
1.习题2.10: 1、2题
二备记录:
教学反思
明晰: 有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.
注意:先定符号后定值.
三、应用、拓展
例1运算:(1)(-4)×5; (2)(-5)×7;
(3)(- )×(- );(4)(-3)×(- )
观看发觉:以上(3)、(4)题有什么特点?你想到了什么?
2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版
3.解决实际问题:提供几个涉及有理数的实际问题,要求学生运用所学知识解决这些问题。
4.有理数在生活中的应用:鼓励学生观察和思考日常生活中涉及有理数的问题,如购物时的打折、优惠等,尝试用所学的有理数知识解决实际问题。
-参与数学竞赛:鼓励学生参加数学竞赛,提高学生的数学水平和竞赛能力,培养学生的团队合作精神。
教学反思与改进
回过头来看,今天的内容感觉学生掌握得怎么样?我在讲解有理数运算规则时,是否讲解得足够清晰?学生在课堂上的参与度如何?这些问题都需要我在课后进行反思。
首先,我意识到在讲解有理数的概念时,有些学生似乎还是有些模糊。下次我在讲解时,可以结合更多的实际例子,让学生更好地理解有理数在日常生活中的应用。此外,我也可以让学生在课堂上更多的互动,比如通过小组讨论,让学生互相解释有理数的定义,这样也许能帮助他们更清晰地理解。
作业反馈:
1.对于有理数的定义和分类的作业,我会检查学生是否能够准确识别各种类型的有理数,并针对存在的问题给出改进建议。
2.对于有理数的运算的作业,我会检查学生的计算是否正确,并指出存在的问题,如运算错误、计算粗心等,给出改进建议。
3.对于解决实际问题的作业,我会检查学生是否能够运用所学知识解决这些问题,并针对存在的问题给出改进建议。
-设计预习问题:围绕有理数的定义和分类,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解有理数的基本概念。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
七年级数学上册 第二章 有理数及其运算 第1节 有理数教案 (新版)北师大版
课题:有理数●教学目标:一、知识与技能目标:1.知道什么是负数,并能用正、负数表示实际问题中的数量.2.能说出负数表示的意义.3.能说出有理数的概念,能将有理数正确分类.二、过程与方法目标:1.体验对有理数分类的探索过程,初步感受分类讨论的思想.2.通过教师引导,学生自主探究,体验从实际问题中抽象出数学问题的过程,初步学会数学的类比方法思想方法.三、情感态度与价值观目标:通过对负数和有理数的学习,体会到数学和现实的密切联系,能用所学解决实际问题.●重点:掌握有理数的分类●难点负数表示的意义、有理数的分类及分类标准●教学流程:一、回顾旧知,情景导入通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“数”够用了吗?师:同学们,今天老师在来学校的路上,行驶了14.7km,遇到0只小狗、5个老人,其中一个高1.76m.那么同学们想一下,老师刚才说的一句话中,出现了哪些数,分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).那在生活中,仅有整数和分数够用了吗?请同学们完成课本第23页的表格,并思考老师刚才的问题.师:(一起分析完表格之后)以前学过的数已经不够用了,我们需要一种前面带有“-”的新数来解决生活中的问题.那大家相互讨论一下生活中还有哪些用负数表示的量.学生活动:讨论二、解答困惑,讲授新知学生回答,老师补充.那么我们在生活中在表示温度、方向、价格时会有“零上摄氏度和零下摄氏度”、“向东和向西”“上涨和下降”等词,这些都是表示相反意义的量,在数学中表示相反意义的量,可以规定其中一个为正,用正数表示;相反意义的量规定为负,用负数表示.强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.三、实例演练深化认识判断下列说法是否正确1.零上5℃与零下5℃意思一样,都是5℃.(×)2.正整数集合与负整数集合并在一起是整数集合. (×)3.若-a是负数,则a是正数.(√)4.若+a是正数,则-a是负数. (√)5.收入-2000元表示支出2000元.(√)1.某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?沿顺时针转了12圈记作-12圈.2.在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02g记作+0.02g,那么-0.03g 表示什么?-0.03g表示乒乓球的质量低于标准质量0.03g.3.某大米包装袋上标注着“净含量:10kg±150kg”这里的“10kg±150kg”表示什么?每袋大米的标准质量应为10kg,但实际每袋大米可能有150g的误差,即最多超出标准质量150g,最少少于标准质量150g.四、提出问题,启发引导现在我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.问题:那么,有没有一种既不是正数又不是负数的数呢?学生思考并讨论.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数.五、延伸知识,分类思想我们现在对学过的数进行分类,在上课开始的时候,大家说学过的数有整数和分数,那么在学习了正数和负数之后,整数可以分为什么?分数可以分为什么?正整数正分数整数 0 分数负整数负分数整数和分数统称为有理数思考:有理数还可以怎么分类呢?可以按照定义和符号性质分。
第二章 有理数及其运算2.7有理数的乘法知识点
第七节有理数的乘法考点一:有理数的乘法法则1、法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0。
2、方法导引:(1)几个有理数相乘,先确定积的符号,再把绝对值相乘。
(2)当几个因数中有一个为0时,不用再判断符号,直接得0. 3、总结提升:(1)两个有理数相乘,积的符号是由两个因数的符号确定,同号(++,或--)得正,异号(+-或-+)得负。
(2)0与任何数相乘,积都是0.(3)1乘任何数得原数,-1乘任何数得原数的相反数。
4、题型解析:例1 (1)已知两个数a,b在数轴上对应的点如图所示,下列结论正确的是()A、-a<-bB、a+b>0C、ab<0D、b-a>0(2)一个有理数与它的相反数的积是()A 、正数B 、负数C 、非正数D 、非负数 (3)计算3×(-2)的结果是(4)计算 ①-2×(-5) ②34×(83-) ③-3×0 ④(-312)×(-3)考点二:倒数1、定义:如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个有理数互为倒数,如54和45,-7和71-互为倒数。
2、 求法:求带分数的倒数时,先把带分数化成假分数,再求倒数;求小数的倒数时,先把小数化成分数,在求倒数;求整数的倒数时,先把整数看作是分母为1的分数,在求倒数。
3、辨析:(1)0没有倒数。
(2)互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数。
(3)若两个数互为倒数,则它们的成绩为1. (4)倒数等于它本身的数是1和-1. 4、题型解析:例2 (1)有理数51-的倒数为( )A 、5B 、51C 、-51 D 、-5 (2)2017的倒数为( ) A 、20171 B 、2017 C 、-2017 D-20171(3)相反数是其本身的是 ,倒数是其本身的是 。
(4)若a,b 互为相反数,c,d 互为倒数,m 的绝对值是3,求:cd m ba -++35的值。