二次函数中特殊四边形的存在性问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网课:二次函数中特殊四边形的存在性问题
学习目标:
1、通过二次函数中的特殊四边形存在性问题的探究、学习,获取解决这类问题的基本方法;经历解决二次函数中的特殊四边形存在性问题的探索过程,培养学生的理解能力,抽象能力,能正确认识问题的本质,提高知识迁移能力,积累解决问题的经验,感受数学知识对解决问题的价值;
2、通过函数中的特殊四边形存在性问题的解决,渗透“转化”、“分类”、“方程”、“数形结合”等数学思想,并在问题解决中体验成功的快乐,感受数学的魅力.
学习重点:利用“特殊四边形的性质”,或者“点在函数上”来建立等量关系,解决“点是否存在的问题”.
学习难点:从复杂的函数背景中提炼问题的本质,利用“特殊四边形的性质”,或者“点在函数上”来建立等量关系,解决“点是否存在的问题”.
背景问题:
如图,抛物线中,点A在x轴的正半轴上,点C在y轴的正半轴上,
OC=3,点D是直线AC与抛物线的交点。
问题一:在平面内是否存在一点B,使得以A、B、O、D为顶点的
四边形是平行四边形?
若存在,请直接写出B点的坐标;若不存在,请说明理由。
归纳:_________________________________________________
问题二:若点M在抛物线上,点N在x轴上,是否存在以A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;
(备图1)(备图2)
归纳:
_____________________________________________________________________________
问题三:若点E(2,3)在抛物线上,点F、P在直线AC上,当EF所在直线与x轴垂直时,平面内是否存在一点Q,使得以点E、F、P、Q为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由;
(备图1)(备图2)
归纳:
______________________________________________________________________________
问题四:点是直线AC上一点,若点N是平面内一点,M是抛物线对称轴上的一点,是否存在一点M使得以点A,P,M,N为顶点的四边形是矩形?若能,求出点M的坐标;若不能,请说明理由.
归纳:
_______________________________________________________________________
课后练习:
如图1,抛物线y=﹣﹣x+2与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.
(1)如图1,点P是直线BE上方抛物线上一动点,连接PD,PF,当△PDF的面积最大
时,在线段BE上找一点G,使得PG﹣EG的值最小,求出PG﹣EG的最小值;(2)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以点A、M、N、K为顶点的四边形是正方形时,直接写出点N的坐标.