北师大版版八年级上册数学 一次函数培优训练(详细,经典)

合集下载

北师大版2020八年级数学上册第四章一次函数单元综合培优训练题(附答案)

北师大版2020八年级数学上册第四章一次函数单元综合培优训练题(附答案)

○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………北师大版2020八年级数学上册第四章一次函数单元综合培优训练题(附答案) 一、单选题1.如图,过点A 0(2,0)作直线l :y=33x 的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,,这样依次下去,得到一组线段:A 0A 1,A 1A 2,A 2A 3,,则线段A 2018A 2019的长为( )A .(32)2018B .(33)2018C .(32)2019D .(33)20192.若正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…在直线l 上,直线l 与x 轴的夹角为45°和点C 1,C 2,C 3,…在x 轴上,已知点A 1 (0,1), 则A 2018的坐标是( ).A .20172017(21,21)+-B .20172017(2,21)-C .20172017(21,2)-D .20182018(21,2)-3.如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线15y x b =+和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2019的纵坐标是( )A .(3)2019B .(3)2018C .(2)2019D .(2)2018○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………4.在平面直角坐标系中,点P 的坐标为(a ,b ),点P 的“变换点”P`的坐标定义如下:当a b ≥时,P`点坐标为(a ,-b );当a b <时,P`点坐标为(b ,-a ).线段l :()13282y x x =-+-≤≤上所有点按上述“变换点”组成一个新的图形,若直线4y kx =+与组成的新的图形有两个交点,则k 的取值范围是( )A .132k -≤≤-B .3k >-或12k <-C .338k -≤<- D .1328k -<<- 5.已知:实数x 满足2a ﹣3≤x ≤2a +2,y 1=x +a ,y 2=﹣2x +a +3,对于每一个x ,p 都取y 1,y 2中的较大值.若p 的最小值是a 2﹣1,则a 的值是( ) A .0或﹣3 B .2或﹣1C .1或2D .2或﹣3二、填空题6.菱形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,按照如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx+b 和x 轴上.已知∠A 1OC 1=60°,点B 1(3,3),B 2(8,23),则A n 的坐标是______(用含n 的式子表示)7.如图,在平面直角坐标系中,已知点(1,3)A ,(2,0)B ,(1,0)C ,E 是线段AB 上的一个动点(点E 不与点A ,B 重合).若OE CE +的值最小,则点E 的坐标为__________8.如图,已知点()6,0A -,()2,0B ,点C 在直线334y x =-+上,则使ABC 是直角三角形的点C 的个数为______.○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………9.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.10.如图,在平面直角坐标系中,半径均为1个单位长度的半圆1O ,2O ,3O ,…组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒4π个单位长度,则第2002秒时点P 的坐标为____.11.已知点M(-3,0),点N 是点M 关于原点的对称点,点A 是函数y= -x+1 图象上的一点,若△AMN 是直角三角形,则点A 的坐标为_______三、解答题12.在平面直角坐标系中,O 为坐标原点,直线3y kx k =+交x 轴负半轴)轴正半轴于,A B 两点, AOB ∆的面积为4.5;()1如图1.求k 的值;()2如图2.在y 轴负半轴上取点C .点D 在第一象限,BD y ⊥连接..AD AC CD ,过点A 作AP BD ⊥交DB 的延长线于点P ,若DP CD CO =+,求sin CAD ∠的值;○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………()3如图3,在()2的条件下.AF AB ⊥交y 轴于点.//F FG x 轴交NC 的延长线于点C ,设AD 与y 轴交于点E ,连接EG ,当5EG OE =时,求点D 的坐标.13.平面直角坐标系在代数和几何之间架起了一座桥梁,实现了几何方法与代数方法的结合,使数与形统一了起来,在平面直角坐标系中,已知点A (x 1,y 1)、B (x 2,y 2),则A 、B 两点之间的距离可以表示为AB =()()221212x x y y -+-,例如A (2,1)、B (﹣1,2),则A 、B 两点之间的距离AB =22(21)(12)++-=10;反之,代数式22(51)(12)-++也可以看作平面直角坐标系中的点C (5,1)与点D (1,﹣2)之间的距离.(1)已知点M (﹣7,6),N (1,0),则M 、N 两点间的距离为 ; (2)求代数式2222(1)(07)(4)(05)x x ++-+-+- 的最小值; (3)求代数式|22174134x x x x -+-++| 取最大值时,x 的取值. 14.如图,在平面直角坐标系中,点A 的坐标为(0,6),点B 在x 轴的正半轴上.若点P 、Q 在线段AB 上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P 、Q 的“涵矩形”。

北师大版八年级数学上册《一次函数》专题培优、拔高练习

北师大版八年级数学上册《一次函数》专题培优、拔高练习

北师大版八年级数学上册《一次函数》专题培优、拔高复习1.下列图象中,y 不是x 的函数的是()A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.若一次函数()()120y k x k k =--≠的函数值y 随x 的值增大而增大,且此函数的图象不经过第二象限,则k 的取值范围是()A.12k <B.102k <<C.102k ≤<D.0k ≤或12k >4.如图,在平面直角坐标系xOy 中,一次函数142y x =-+的图象与x 轴、y 轴分别相交于点A ,B ,点P 的坐标为(1,1)m m +-,且点P 在ABO △的内部,则m 的取值范围是()A.13m <<B.15m <<C.51<>m m 或D.1m >或3m <5.如图,函数4y x =-和y kx b =+的图象相交于点(8)A m -,,则关于x 的不等式()40k x b ++>的解集为()6.2x >B.02x <<C.8x >-D.2x <6.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h)之间的关系如图所示.根据图象所提供的信息,下列说法正确的是()A.甲队开挖到30m 时,用了2hB.开挖6h 时,甲队比乙队多挖了60mC.乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D.当x 为4h 时,甲、乙两队所挖河渠的长度相等7.已知点()1,2M -,()2,1N ,直线y x m =+与线段MN 有交点,则m 的取值范围是___________.8.为节约用水,某市居民生活用水按级收费,具体收费标准如下表:用水量(吨)不超过17吨的部分超过17吨不超过31吨的部分超过31吨的部分收费标准(元/吨)35 6.8设某户居民家的月用水量为x 吨()1731x <≤,应付水费为y 元,则y 与x 的关系式为___________.9.如图,已知一次函数y =kx +b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.10.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h ,然后按原路原速返回,快车比慢车晚1h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为_________________km ;快车的速度为_________________km/h ;慢车的速度为______________km/h ;(2)出发________________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发______________h 相距250km .11.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点()1,P b .(1)求关于x ,y 的方程组1y x y mx n =+⎧⎨=+⎩的解;(2)已知直线2l 经过第一、二、四象限,则当x ______时,1x mx n +>+.12.如图,长方形ABCD中,点P沿着边按B C D A→→→方向运动,开始以每秒m个单位匀速运动、a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,ABP△的面积S与运动时间t的函数关系如图所示.(1)直接写出长方形的长和宽;(2)求m,a,b的值;(3)当P点在AD边上时,直接写出S与t的函数解析式.13.某网店销售单价分别为60元/筒、45元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200简.且甲种羽毛球的数量大于乙种羽毛球数量的35.已知甲、乙两种羽毛球的进价分别为50元/筒、40元/筒.若设购进甲种羽毛球m简.(1)该网店共有几种进货方案?(2)若所购进羽毛球均可全部售出,求该网店所获利润W(元)与甲种羽毛球进货量m(简)之间的函数关系式,并求利润的最大值.14.直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1;(1)求直线BC的解析式;(2)直线EF:y=kx﹣k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD =S△FBD?若存在,求出k的值;若不存在,说明理由;(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.【分析】代入点的坐标求出解析式y=3x+6,利用坐标相等求出k的值,用三角形全等的相等关系求出点的坐标.【解答】解:(1)由已知:0=﹣6﹣b,∴b=﹣6,∴直线AB的解析式是:y=﹣x+6,∴B(0,6),∴OB=6,∵OB:OC=3:1,,∴C(﹣2,0)设BC的解析式是Y=ax+c,代入得;,解得:,∴BC:y=3x+6.直线BC的解析式是:y=3x+6;(2)存在,理由是:过E、F分别作EM⊥x轴,FN⊥x轴,则∠EMD=∠FND=90°,∵S△EBD=S△FBD,∴DE=DF.又∵∠NDF=∠EDM,∴△NFD≌△EDM,∴FN=ME.联立得y E=,联立得.∵FN=﹣y F,ME=y E,∴=,解得:k=,k=0(舍去),所以k=,即存在,此时k=.(3)不变化K(0,﹣6).过Q作QH⊥x轴于H,∵△BPQ是等腰直角三角形,∴∠BPQ=90°,PB=PQ,∵∠BOA=∠QHA=90°,∴∠BPO=∠PQH,∴△BOP≌△HPQ,∴PH=BO,OP=QH,∴PH+PO=BO+QH,即OA+AH=BO+QH,又OA=OB,∴AH=QH,∴△AHQ是等腰直角三角形,∴∠QAH=45°,∴∠OAK=45°,∴△AOK为等腰直角三角形,∴OK=OA=6,∴K(0,﹣6).【点评】此题是一个综合运用的题,关键是正确求解析式和灵活运用解析式去解.15.在平面直角坐标系上,已知点A(8,4),AB⊥y轴于B,AC⊥x轴于C,直线y=x交AB于D.(1)直接写出B、C、D三点坐标;(2)若E为OD延长线上一动点,记点E横坐标为a,△BCE的面积为S,求S与a的关系式;(3)当S=20时,过点E作EF⊥AB于F,G、H分别为AC、CB上动点,求FG+GH的最小值.【分析】(1)首先证明四边形ABOC是矩形,再根据直线y=x是第一象限的角平分线,可得OB=BD,延长即可解决问题;(2)根据S=S△OBE+S△OEC﹣S△OBC计算即可解决问题;(3)首先确定点E坐标,如图二中,作点F关于直线AC的对称点F′,作F′H⊥BC于H,交AC于G.此时FG+GH 的值最小;【解答】解:(1)∵AB⊥y轴于B,AC⊥x轴于C,∴∠ABO=∠ACO=∠COB=90°,∴四边形ABOC是矩形,∵A(8,4),∴AB=OC=8,AC=OB=4,∴B(0,4),C(8,0),∵直线y=x交AB于D,∴∠BOD=45°,∴OB=DB=4,∴D(4,4).(2)由题意E(a,a),∴S=S△OBE+S△OEC﹣S△OBC=×4×a+×8×a﹣×4×8=6a﹣16.(3)当S=20时,20=6a﹣16,解得a=6,∴E(6,6),∵EF⊥AB于F,∴F(6,4),如图二中,作点F关于直线AC的对称点F′,作F′H⊥BC于H,交AC于G.此时FG+GH的值最小.∵∠ABC=∠F′BH,∠BAC=∠F′HB,∴△ABC∽△HBF′,∴=,∵AC=4,BC==4,BF′=AB+AF′=8+2=10,∴=,∴F′H=2,∴FG+GH的最小值=F′H=2.【点评】本题考查一次函数综合题、矩形的判定和性质、三角形的面积、相似三角形的判定和性质、轴对称最短问题等知识,解题的关键是学会利用分割法求三角形的面积,学会利用轴对称解决最短问题,属于中考压轴题.。

八年级数学(北师大版)一次函数培优测试题

八年级数学(北师大版)一次函数培优测试题

一次函数培优测试题一. 选择题1. 下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -=2.点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,则1y 和2y 的大小关系是( ) A. 1y >2y B. 1y < 2y C. 1y =2y D.不能确定3.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( ) A. 1b >2b B. 1b <2b C. 1b =2b D.不能确定4.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )4.平分坐标轴夹角的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=5.弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,可知不挂物体时弹簧的长度为( )A.7cmB.8cmC.9cmD.10cm6.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =_____________.7.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,则k ____________________.8.某公司现在年产值为150万元,计划今后每年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.9.直线2-=kx y 经过点),4(1y ,且平行于直线12+=x y ,则1y =___________,k =______. 10.已知直线4+=kx y 与两坐标围成的三角形面积为8,求k 的值.11.南方的A 城有化肥200吨,B 城有化肥300吨,现要把化肥运往甲、乙两个农场,若从A 城运往甲、乙两个农场的运费分别为20元/吨和25元/吨,从B 城运往甲、乙两个农场的运费分别为15元/吨和22元/吨,现已知甲农场需要220吨,乙农场需要280吨,如果你承包了这项运输任务,怎样调运花钱最少?12.A 、B 两辆汽车从相距120千米的甲、乙两地同时同向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时间.如图,1l 、2l 分别表示两辆汽车的s 与t 的关系.(1)2l 表示那辆汽车离甲地的距离与行驶时间的关系? (2)汽车B 的速度是多少?(3)2小时后,A 、B 两辆汽车相距多少千米? (4)行使多长时间后,A 、B 两辆汽车相遇?13、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬1.5元,超过100个,超过部分每个产品付酬增加0.3元,超过200个,超过部分除按上述规定外,每个产品再增加0.4元,求一个工人:(1)完成100个以内所得报酬y (元)与产品数x (个)之间的函数关系式。

北师大版八年级上册一次函数与几何解答题 培优专题(解析版)

北师大版八年级上册一次函数与几何解答题 培优专题(解析版)

2019-2020一次函数与几何解答题培优专题(解析版)1.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD=13S△BOC,求点D的坐标.2.如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.3.如图,已知一次函数y=mx+3的图象经过点A(2,6),B(n,-3).求:(1)m,n的值;(2)△OAB的面积.4.已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线-3y x ,且经过点(2,-3). (1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.5.长方形OABC ,O 为平面直角坐标系的原点,OA =5,OC =3,点B 在第三象限.(1)求点B 的坐标;(2)如图,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标.6.如图,在平面直角坐标系xOy 中,正比例函数y =x 的图象与一次函数y =kx -k 的图象的交点坐标为A(m ,2).(1)求m 的值和一次函数的解析式;(2)设一次函数y =kx -k 的图象与y 轴交于点B ,求△AOB 的面积;(3)直接写出使函数y =kx -k 的值大于函数y =x 的值的自变量x 的取值范围.7.如图,已知直线y =-2x +6与x 轴交于点A ,与y 轴交于点B.(1)点A 的坐标为________,点B 的坐标为________.(2)求△AOB 的面积.(3)直线AB 上是否存在一点C(点C 与点B 不重合),使△AOC 的面积等于△AOB 的面积?若存在,求出点C 的坐标;若不存在,请说明理由.8.已知:直线24y x =+与x 轴交于点A ,与y 轴交于点B ,坐标原点为O .(1)求点A ,点B 的坐标.(2)求直线24y x =+与x 轴、y 轴围成的三角形的面积.(3)求原点O 到直线24y x =+的距离.9.如图,一次函数y =2x +3与x 轴相交于点A ,与y 轴相交于点B.(1)求点A ,B 的坐标;(2)求当x =-2时,y 的值,当y =10时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.10.如图,一次函数334y x =-+的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB 沿直线CD 对折,使点A 与点B 重合,直线CD 与x 轴交于点C ,与AB 交于点D .(1)求A 、B 两点的坐标;(2)求OC 的长;(3)点P 是x 轴上一动点,若△P AB 是等腰三角形,写出点P 的坐标(不需计算过程).11.如图,直线l 1的解析式为33y x =-,且l 2与x 轴交于点D ,直线2l 经过点A 、B ,直线l 1,2l 相交于点C .()1求点D 的坐标;()2求ADC 的面积.12.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.13.已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.14.如图,在平面直角坐标系中,为坐标原点,直线:与直线:交于点,与轴交于,与轴交于点.(1)求△的面积;(2)若点在直线上,且使得△的面积是△面积的,求点的坐标.15.已知一次函数y=(m﹣2)x﹣3m2+12,问:(1)m 为何值时,函数图象过原点?(2)m 为何值时,函数图象平行于直线y=2x ?(3)m 为何值时,函数图象过点(0,﹣15),且y 随x 的增大而减小?16.已知函数y =(m -2)x 3-|m|+m +7,当m 为何值时,y 是x 的一次函数.17.如图,一次函数y=-x+m 的图象与x 轴和y 轴分别交于点A 和点B ,与正比例函数32y x =图象交于点P(2,n).(1)求m 和n 的值;(2)求△POB 的面积;(3)在直线OP 上是否存在异与点P 的另一点C ,使得△OBC 与△OBP 的面积相等?若存在,请求出C 点的坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,直线3y x =-+过点(5,)A m 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与2y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.19.如图,直线1y x =-+与直线3y x =- ,两直线与x 轴的交点分别为A 、B .(1)求两直线交点C 的坐标;(2)求ABC ∆的面积.20.如图,已知一次函数y=kx+b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求一次函数的解析式;(2)求点C 和点D 的坐标;(3)求△AOB 的面积.21.已知一次函数y =kx +b 的图象经过点A (−1,−1)和点B (1,−3).求:(1)求一次函数的表达式;(2)求直线AB 与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得P A+PB最小,并求出P的坐标.22.如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).(1)求m的值及一次函数的解析式;(2)求△ACD的面积。

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册一、选择题1.已知A点坐标为A()点B在直线y=﹣x上运动,当线段AB最短时,B点坐标()A.(0,0)B.(,﹣)C.(1,﹣1)D.(﹣,)2.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是()A.(﹣,﹣)B.(,)C.(﹣,)D.(,﹣)3.如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是()A.B.C.D.二、填空题4.在平面直角坐标系中,一次函数y=x+4的图象分别与x轴,y轴交于点A,B,点P在一次函数y=x的图象上,则当△ABP为直角三角形时,点P的坐标是.5.直线y=kx+1与两坐标轴围成的三角形周长为6,则k=.6.如图,正方形OA1B1C1,C1A2B2C2,C2A3B3C3,…的顶点A1,A2,A3,…在直线y=kx+b上,顶点C1,C2,C3,…在x轴上,已知B1(1,1),B2(3,2),那么点A4的坐标为,点A n的坐标为.7.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是.8.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于.9.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC 于点F,连接EF,若AF平分∠DFE,则k的值为.10.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.11.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.12.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(﹣8,0).(1)k的值为;(2)点M为直线BC上一点,若∠MAB=∠ABO,则点M的坐标是.三、解答题13.如图,直线与x轴、y轴分别交于B、C两点.(1)求B、C两点的坐标.(2)若点A(x,y)是第一象限内的直线上的一个动点,则当点A运动到什么位置(求出点A的坐标)时,△AOB的面积是3.(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l交x轴于点A(﹣1,0)、交y轴于点B(0,3).(1)求直线l对应的函数表达式;(2)在x轴上是否存在点C,使得△ABC为等腰三角形,若存在,请求出点C的坐标,若不存在,请说明理由.15.如图,在平面直角坐标系中,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(2,4).(1)求m的值及l2的解析式;(2)若点M是直线上的一个动点,连接OM,当△AOM的面积是△BOC面积的2倍时,请求出符合条件的点M的坐标;(3)一次函数y=kx+2的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.16.已知:如图1,直线AB:y=﹣x+2分别交x,y轴于点A,B.直线AC与直线AB关于x轴对称,点D为x轴上一点,E为直线AC上一点,BD=DE.(1)求直线AC的函数解析式;(2)若点D的坐标为(3,0),求点E的坐标;(3)如图2,将“直线AB:y=﹣x+2”改为“直线AB:y=kx+2”,∠E=∠ABO+∠ADB,x E=3,其他不变,求k的值.17.在平面直角坐标系中,点O为坐标原点,直线y=kx+3交x轴负半轴于点A,交y轴于点B,AB+OB=2OA.(1)如图1,求k值;(2)如图2,点C在y轴正半轴上,OC=2OA,过点C作AB的垂线交x轴于点D,点E为垂足,点P在BE的延长线上,点P的横坐标为t,连接PO,PD,△POD的面积为S,求S与t之间的函数关系式,不要求写出自变量t的取值范围;(3)在(2)的条件下,点F在OD上,连接FB,FP,若∠OBF+∠BPF=∠FPD=45°,求t值.18.在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是米,乙的步行速度是米/分;(2)图中a=,b=,c=;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?20.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?21.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?。

(完整版)北师大版初二(八年级上册)数学一次函数练习题

(完整版)北师大版初二(八年级上册)数学一次函数练习题

北师版初二一次函数专题一、选择题1.一次函数y=kx+2经过点(1,1),那么这个一次函数( ). A 、y 随x 的增大而增大 B 、y 随x 的增大而减小 C 、图像经过原点 D 、图像不经过第二象限2.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( ) A 、 P(2,0) B 、 P(-2,0) C 、 P(0,2) D 、 P(0,-2)3.直线 y=43x +4与 x 轴交于 A,与y 轴交于B, O 为原点,则△AOB 的面积4.直线y =-43x +4和x 轴、y 轴分别相交于点A 、B ,在平面直角坐标系内,A 、B 两点到直线a 的距离均为2,则满足条件的直线a 的条数为( ) A .1 B .2 C. 3 D .45.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )6.已知x 满足-5≤x ≤5,y1=x+1,y2=-2x+4对任意一个x ,m 都取y1,y2中的较小值,则m 的最大值是( ) A 、1 B 、2 C 、24 D 、-97.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A.0k >,0b > B.0k >,0b < C.0k <,0b > D.0k <xyO32y x a =+1y kx b =+8.一次函数y1=kx+b 与y2=x+a 的图象如图,则下列结论 ①0k <;②0a >;③当3x <时,12y y <中,正确的个数 是( )A .0B .1C .2D .39.甲、乙两辆摩托车分别从A 、B 两地出发相向而行,右图中12l l 、分别表示甲、乙两辆摩 托车与A 地的距离s(千米)与行驶时间t(小时)之 间的函数关系.则下列说法: ①A 、B 两地相距24千米;②甲车比乙车行完全程多用了0.1小时; ③甲车的速度比乙车慢8千米/小时; ④两车出发后,经过311小时两车相遇.其中正确的有( ) A .1个 B . 2个 C . 3个 D .4个 二、填空题10. 一次函数y=-2x+4的图象经过的象限是____,它与x 轴的交点坐标是____,与y 轴的交点坐标是____.11.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k= ,b= .。

2022-2023学年北师大版八年级数学上册《二元一次方程与一次函数》课时培优练

2022-2023学年北师大版八年级数学上册《二元一次方程与一次函数》课时培优练

北师大版八年级数学上册5.6二元一次方程与一次函数课时培优练一、单选题1.函数y =ax +b 与函数y =cx +d 的图象是两条相交直线,则二元一次方程组{y =ax +by =cx +d 有( )解. A .0个B .1个C .2个D .3个2.如图所示,直线 y x b =-+ 与直线 2y x = 都经过点 ()1,2A -- ,则方程组 2y x by x =-+⎧⎨=⎩的解为( )A .12x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =-⎧⎨=-⎩3.如图,在平面直角坐标系中,一次函数 y kx b =+ 和 y mx n =+ 相交于点 (21)-,,则关于 x y , 的方程组 y kx by mx n =+⎧⎨=+⎩的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩4.如图,直线131l y x =+:与直线2l y mx n =+:相交于点(1)P b ,,则关于x ,y 的方程组31y x y mx n=+⎧⎨=+⎩的解为( )A .14x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .12.5x y =⎧⎨=⎩5.如图,一次函数y =2x +1的图象与y =kx +b 的图象相交于点A ,则方程组21x y kx y b -=-⎧⎨-=-⎩的解是( )A .37x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .23x y =⎧⎨=⎩6.已知一次函数y =k 1x+b 1和一次函数y 1=k 2x+b 2的自变量x 与因变量y 1,y 2的部分对应数值如表所示,则关于x 、y 的二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解为( )x… ﹣2 ﹣1 0 1 2 … y 1…﹣1123…y 2 … ﹣5 ﹣3 ﹣1 1 3 …A .2y ⎧⎨=-⎩B .5y ⎧⎨=⎩C .3y ⎧⎨=⎩D .3y ⎧⎨=-⎩二、填空题7.已知关于 x , y 的二元一次方程组 1,mx y y nx -=⎧⎨=⎩ 的解是 1,2x y =⎧⎨=⎩ 则直线 1y mx =- 与直线y nx = 的交点坐标是 ;8.已知:如图,若函数y x b =+和y=ax+m 的图象交于点P ,则关于x 、y 的方程组{y =x +by =ax +m 的解为 .9.如图,一次函数y =kx+b 与y =﹣x+4的图象相交于点P (m ,1),则关于x 、y 的二元一次方程组4y kx by x =+⎧⎨=-+⎩ 的解是10.已知直线 1l : y 3x b =-+ 与直线 2l : y kx 1=+ 在同一坐标系中的图象交于点 (1,2)- ,那么方程组 {3x +y =by −kx =1的解是 . 11.已知一次函数y =ax+b 和y =kx 的图象交于点P (﹣4,2),则关于x 、y 的二元一次方程组y ax by kx=+⎧⎨=⎩ 的解是 . 12.如图,已知直线l 1:y =3x+1和直线l 1:y =mx+n 交于点P (1,b ),则关于x ,y 的二元一次方程组31y mx ny x =+⎧⎨=+⎩的解是 .13.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (a ,2),则关于x 的方程组1y x y mx n =+⎧⎨=+⎩的解为 .三、解答题14.已知直线 2y x k =+ 与直线 2y kx =- 的交点横坐标为2,求 k 的值和交点纵坐标.15.已知:一次函数y=3x ﹣5与y=2x+b 的图象的交点的坐标为P (1,﹣2).求:方程组 352y x y x b =-⎧⎨=+⎩的解和b 的值.16.解方程组(1) 25543x y x y -=⎧⎨+=-⎩(2) 421x y x y +=⎧⎨-=-⎩(用作图方法求解)17.如图,直线y=﹣2x+6与直线y=mx+n相交于点M(p,4).(1)求p的值;(2)直接写出关于x,y的二元一次方程组26y xy mx n=-+⎧⎨=+⎩的解;(3)判断直线y=3nx+m﹣2n是否也过点M?并说明理由.18.在直角坐标系中,直线l1经过点(1,﹣3)和(3,1),直线l2经过(1,0),且与直线l1交于点A(2,a).(1)求a的值;(2)A(2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点B,直线l2与y轴交于点C,求△ABC的面积.答案解析部分1.【答案】B【解析】【解答】解:函数y=ax+b 与函数y=cx+d 的图象是两条相交直线,∴只有一个交点,∴二元一次方程组{y =ax +b y =cx +d 有唯一解,即1个解,故答案为:B .【分析】根据一次函数的图象与二元一次方程组的关系求解即可。

2019-2020北师大版八年级数学上册第四章一次函数单元培优试卷教师版

2019-2020北师大版八年级数学上册第四章一次函数单元培优试卷教师版

2019-2020北师大版八年级数学上册第四章一次函数单元培优试卷一、选择题(每小题3分,共30分)1.一次函数y=-3x+1的图象一定经过点( )A. B. C. D.解:A.∵ -3x+1=-3×2+1=-5,∴在函数图像上;B. ∵ -3x+1=-3×1+1=-2,∴不在函数图像上;C. ∵ -3x+1=-3×(-2)+1=7,∴不在函数图像上;D. ∵ -3x+1=-3×0+1=1,∴不在函数图像上;故答案为:A.2.直线y=2x﹣6与x轴的交点坐标是()A. (0,3)B. (3,0)C. (0,﹣6)D. (﹣3,0)解:当y=0时,2x-6=0,解得:x=3,所以,与x轴的交点坐标是(3,0),故答案为:B。

3.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A. (6,2)B. (4,4)C. (2,6)D. (12,﹣4)解:△OPA的面积为S==12,所以,y=4,由x+y=8,得x=4,所以,P(4,4),故答案为:B。

4.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中. 设小明出发第分钟的速度为米/分,离家的距离为米. 与之间的部分图象、与之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A. 4.5B. 8.25C. 4.5 或8.25D. 4.5 或8.5解:当2≤t≤5时,设s=kt+b, 得200=2k+b, 680=5k+b, 解得k=160, b=-120, ∴s=160t-120,∴600=160t-120, 解得t=4.5;由图像分析可得,5-16分钟,小明经过的路程是11×80=880m, 故小明全程经过的路程是680+880=1560m, 则单程距离为780m, 故小明从5分钟后开始跑完单程,又回到600m, 还需跑780-680+180=280m, 所用的时间为280÷80=3.5min, 故所用的时间为(5+3.5)min=8.5min.故答案为:D5.一次函数y1=kx+b与y2=x+a的图象如图所示,有下列结论:①k<0;②a>0;③当x<3时,y1<y2.其中正确结论的个数是()A. 0个B. 1个C. 2个D. 3个解:①y1=kx+b图象向右下降,y1随x增加而减小,则k<0, 符合题意;②y2=x+a的图象与y轴的交点在x轴下方,则a<0,不符合题意;③当x<3时,y1=kx+b的图象在y2=x+a的图象上方,则y1>y2;综上,只有①正确;故答案为:B.6.已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是()A. B. C. D.解:∵正比例函数,且随的增大而减少,.在直线中,,,∴函数图象经过一、三、四象限.故答案为:D.7.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A. B.C. D.解:A、兔子后出发,先到了,不符合题意;B、乌龟比兔子早出发,而早到终点,符合题意;C、乌龟先出发后到,不符合题意;D、乌龟先出发,与兔子同时到终点,不符合题意。

最新-八年级数学上册 一次函数培优辅导 北师大版 精品

最新-八年级数学上册 一次函数培优辅导 北师大版 精品

一次函数一、一次函数图像和性质例1:设b >a ,将一次函数b ax y a bx y +=+=与的图像画在平面直角坐标系内,则有一组a 、b 的取值,例2:一个一次函数的图像与直线44+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点 (-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个例3:一次函数b kx y +=的自变量取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,求这个函数的解析式例4、画出函数x x y 22+-=的图像,并求出此函数的最小值二、一次函数的面积问题 例5、设直线2)1(=++y n nx (n 为自然数)与两坐标轴围成的三角形面积为()2000,,2,1⋅⋅⋅=n S n则200021S S S +⋅⋅⋅++的值为 . 例6、如图6,已知·两直线12,332-=+-=x y x y , 求它们与y 轴所围成的三角形的面积例7、如图,直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC=90°,如果在第二象限内有一点⎪⎭⎫⎝⎛21,a P ,且△ABP 的面积与△ABC 的面积相等,求a 的值三、一次函数的实际应用例8.一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1(km ),出租车离甲地的距离为y 2(km ),客车行驶时间为x (h ),y 1,y 2与x 的函数关系图象如图12所示:(1)根据图象,直接写出....y 1,y 2关于x 的函数关系式; (2)分别求出当x=3,x=5,x=8时,两车之间的距离;(3)若设两车间的距离为S (km ),请写出S 关于x 的函数关系式; (4)甲、乙两地间有A 、B 两个加油站,相距200km ,若客车进入A 站加油时,出租车恰好进入B 站加油。

一次函数(全章分层练习)(培优练)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数(全章分层练习)(培优练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.27一次函数(全章分层练习)(培优练)一、单选题本大题共10小题,每小题3分,共30分)1.(2023春·八年级单元测试)无论m 为什么实数时,直线2y mx m =+-总经过点().A .(0,2)-B .(1,2)-C .(1,2)--D .(2,0)2.(2023秋·北京西城·九年级北京市第一六一中学校考开学考试)如图,有一个球形容器,小海在往容器里注水的过程中发现,水面的高度h 、水面的面积S 及注水量V 是三个变量.下列有四种说法:①S 是V 的函数;②V 是S 的函数;③h 是S 的函数;④S 是h 的函数.其中所有正确结论的序号是()A .①③B .①④C .②③D .②④3.(2023·浙江丽水·统考一模)将一圆柱体从水中匀速提起,从如图所示开始计时,直至其下表面刚好离开水面,停止计时.用x 表示圆柱体运动时间,y 表示水面的高度,则y 与x 之间函数关系的图象大致是()A .B .C .D .4.(2022秋·四川成都·八年级校考期中)如图,直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),下列说法正确的是()A .k >0,b <0B .直线y =bx +k 经过第四象限C .关于x 的方程kx +b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,若x 1<x 2,则y 1>y 25.(2023春·四川南充·八年级期末)如图,是李林周末骑自行车离家出游的图象,图中t 表示时间,s 表示李林离家的距离.则下列说法错误的是()A .60min 时李林离家8kmB .前20min 骑行速度为12km/hC .20min 30min -骑行的距离为4kmD .45min 时李林离家6km6.(2023春·浙江·八年级期末)如图,()()1122,,,A x y B x y 分别是直线21,4y x y x =+=-+上的动点,若121x x -≤时,都有124y y -≤,则1x 的取值范围为()A .1103x -≤≤B .102x ≤≤C .17133x -≤≤-D .1223x -≤≤7.(2023春·浙江台州·八年级统考期末)已知一次函数()0y kx b k =+≠的图象与2y x =-的图象交于点(),4m -.则对于不等式2kx b x -<- ,下列说法正确的是()A .当2k <-时,2x >B .当2k <-时,2x <C .当2k >-且0k ≠时,2x >-D .当2k >-且0k ≠时,<2x -8.(2023春·广东深圳·八年级统考期中)如图,点P 为直线1y x =+上一点,先将点P 向左移动2个单位,再绕原点O 顺时针旋转90︒后,它的对应点Q 恰好落在直线34y x =-+上,则点Q 的横坐标为()A.13-B.12C.13D.12-9.(2022秋·江苏无锡·八年级期末)如图,直线y=2x+2与直线y=﹣x+5相交于点A,将直线y=2x+2绕点A旋转45°后所得直线与x轴的交点坐标为()A.(﹣8,0)B.(3,0)C.(﹣11,0),(73,0)D.(﹣10,0),(2,0)10.(2021秋·重庆北碚·九年级西南大学附中校考期中)小明和小李住在同一个小区,暑假期间,他们相约去缙云山某地露营;小明先出发5分钟后,小李以65米/分的速度从小区出发,小明到达相约地点后放下装备,休息了10分钟,立即按原路以另一速度返回,途中与小李相遇,随后他们一起步行到达目的地.小李与小明之间的距离y(米)与小明出发的时间x(分)之间的关系如图,则下列说法正确的是()A.小明首次到达目的地之前的速度是75米/分B.小明首次到达目的地时,小李距离目的地还有200米C.从小区到目的地路程为2800米D .小明返回时的速度是33米分二、填空题(本大题共8小题,每小题4分,共32分)11.(2022秋·八年级课时练习)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =.12.(2021春·湖北武汉·八年级统考期末)直线l :y kx b =+(k 、b 是常数,0k ≠)经过()0,2A 、()1,B m -两点,其中0m <,下列四个结论:①方程0kx b +=的解在1-和0之间;②若点()111,P x y 、()2121,Px y +在直线l 上,则12y y >;③2k >;④不等式kx b m +>-的解集为13x >-时,3k =,其中正确的结论有.(只需填写序号)13.(2022秋·江苏镇江·八年级统考期末)已知点Р在直线l :y =kx ﹣3k (k ≠0)上,点Q 的坐标为(0,4),则点Q 到直线l 的最大距离是.14.(2023春·全国·七年级期末)平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()2,4-,点P 的坐标为(),a b ,其中a ,b 满足方程组21223b a m b a m -+=⎧⎨--=⎩,已知点P 在直线AB 的下方,且点P 不在第三象限,则m 的取值范围为.15.(2022秋·安徽蚌埠·八年级校考期中)已知{}max ,,a b c ⋅⋅⋅表示a ,b ,c …几个数中最大的那个数,{}min ,,a b c ⋅⋅⋅表示a ,b ,c …几个数中最小的那个数,例如{}min 5,3,03-=-,则:(1){}max 2,4,1-=;(2)已知函数min 152,28,44y x x x ⎧⎫=+-++⎨⎬⎩⎭,则max y =;16.(2023·全国·八年级假期作业)在平面直角坐标系中,直线4:4AB y x m =-+与直线:4m OC y x =交于点P ,N 为直线4x =上的一个动点,(2,0)M ,则+MN NP 的最小值为.17.(2023春·八年级课时练习)甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地,设乙行驶的时间为t (h ),甲、乙行驶的路程分别为,S S 甲乙,路程与时间的函数关系如图所示,丙与乙同时出发,从N 地沿同一条公路匀速前往M 地.当丙与乙相遇时,甲、乙两人相距20km ,问丙出发后小时后与甲相遇.18.(2023春·湖北武汉·八年级校联考阶段练习)已知一次函数()0y kx b k =+<的图象与y 轴正半轴交于点A ,且2k b +=,则下列结论:①函数图象经过一、二、四象限;②函数图象一定经过定点()1,2;③不等式()20k x b -+>的解集为1x <;④直线y bx k =--与直线y kx b =+交于点P ,与y 轴交于点B ,则PAB 的面积为2.其中正确的结论是.(请填写序号)三、解答题(本大题共6小题,共58分)19.(8分)(2023春·山东济南·七年级统考期中)如图1,在长方形ABCD 中,动点P 以1厘米/秒的速度,由A 点出发,沿A B C D →→→匀速运动,到点D 停止运动.设运动的时间为t 秒,三角形ADP 的面积为S 平方厘米.图2为运动过程中,S 与t 的关系图象.(1)由图2可知,AB =______厘米;(2)当点P 在AB 上运动时,求S 与t 的关系式;(3)在整个运动过程中,当三角形ADP 的面积为10平方厘米时,求t 的值.20.(8分)(2023春·福建龙岩·八年级统考期末)如图,已知直线1l :112y x =--与x 轴交于点A ,直线2l :4y kx =+经过点A ,与y 轴交于点B .(1)求点A 的坐标和k 的值;(2)点E 在线段AB 上,点F 在直线AC 上,若EF y ∥轴,且52EF =,求点E 坐标.21.(10分)(2023春·云南临沧·八年级统考期末)如图,直线1l 与x 轴交于点()5,0A ,与y 轴交于点()0,5B ,直线2l 的解析式为33y x =-.(1)求直线1l 的解析式.(2)点P 在x 轴上,过点P 作直线x a =平行于y 轴,分别与直线1l 、2l 交于点M 、N ,当点M 、N 、P 三点中的任意两点关于第三点对称时,求a 的值.22.(10分)(2023·四川眉山·校考三模)“双减”政策实施后,学生有了更多体验生活、学习其它知识的时间,为丰富学生的课外生活,某学校计划购入A 、B 两种课外书,已知用300元购进A 种书的数量与用400元购进B 种书的数量相同,B 种书每本价格比A 种书每本价格多10元.(1)求A 种书、B 种书的单价;(2)若学校一次性购进A 、B 两种书共200本,且要求购进A 种书的本数不超过B 种书本数的2倍,则学校怎样购书,才能使购书款最少?请你求出最少的购书款及相应的购买方案.23.(10分)(2023春·湖南邵阳·八年级统考期末)如图,过点C 的直线6y x -=与坐标轴相交于A 、B 两点,已知点(),C x y 是第二象限的点,设AOC 的面积为S .(1)写出S 与x 之间的函数关系,并写出x 的取值范围;(2)当AOC 的面积为6时,求出点C 的坐标;(3)在(2)的条件下,坐标轴上是否存在点M ,使得M 与A 、O 、C 中任意两点形成的三角形面积也为6,若存在,请直接写出点M 的坐标.24.(12分)(2023·河南商丘·统考三模)某火锅店为吸引客户,推出两款双人套餐,下表是近两天两种套餐的收入统计:数量收入A 套餐B 套餐第一天20次10次2800元第二天15次20次3350元(1)求这两款套餐的单价;(2)A 套餐的成本约为45元,B 套餐的成本约为50元,受材料和餐位的限制,该火锅店每天最多供应50个套餐,且A 套餐的数量不少于B 套餐数量的15,求火锅店每天在这两种套餐上的最大利润;(3)火锅店后续推出增值服务,每个套餐可选择再付10元即可加料,即在鱼豆腐、面筋、川粉和蘑菇中任选两种涮菜.小明是这个火锅店的常客,2022年他共花费1610元购买两个套餐,其中A 套餐不加料的数量占总数量的14,则小明选择B 套餐加料的数量为______个.参考答案1.C【分析】把解析式变形得到关于m 的不定方程形式得到y =(x +1)m -2,根据无论m 为什么实数时,直线总过定点得出,x +1=0,求出经过的点即可.解:∵y =mx +m ﹣2,∴y =(x +1)m -2,∵无论m 为什么实数时,直线总过定点,∴x +1=0,解得x =﹣1,代入解析式得,y =﹣2,∴直线y =mx +m ﹣2总经过点(﹣1,﹣2).故选:C .【点拨】本题考查了一次函数过定点问题,解题关键是把解析式适当变形,根据所含参数系数为0求出点的坐标.2.B【分析】由函数的概念求解即可.解:①:由题意可知,对于注水量V 的每一个数值,水面的面积S 都有唯一值与之对应,所以V 是自变量,S 是因变量,所以S 是V 的函数,符合题意;②:由题意可知,对于水面的面积S 的每一个数值,注水量V 的值不一定唯一,所以V 不是S 的函数,不符合题意;③:由题意可知,对于水面的面积S 的每一个数值,水面的高度h 的值不一定唯一,所以h 不是S 的函数,不符合题意;④:由题意可知,对于水面的高度h 的每一个数值,水面的面积S 都有唯一值与之对应,h 是自变量,S 是因变量,所以S 是h 的函数,符合题意;所以正确的的序号有①④,故选:B .【点拨】此题考查了函数的概念,解题的关键是熟记函数的概念.3.C【分析】设刚开始时水高为h ,大水桶底面积为1S ,圆柱体底面积为2S ,速度为v ,当圆柱体上表面未离开水面时,体积不变,水高不变,y h =,当上表面开始离开水面,直至其下表面刚好离开水面时,由题意得,112S y S h S vx =-,整理得,21S v y x h S =-+,根据函数解析式确定函数图象即可.解:设刚开始时水高为h ,大水桶底面积为1S ,圆柱体底面积为2S ,速度为v ,当圆柱体上表面未离开水面时,体积不变,水高不变,y h =,当上表面开始离开水面,直至其下表面刚好离开水面时,由题意得,112S y S h S vx =-,整理得,21S v y x h S =-+,∵210S v S -<,∴y 随x 的增大而减小,∴可知y 与x 之间函数关系的图象大致为y 先保持不变,然后y 随x 的增大而减小,故选:C .【点拨】本题考查了一次函数的图象.解题的关键在于正确的表示数量关系.4.C【分析】由一次函数的图象经过一,二,三象限,所以0,0,k b >>从而可判断A ,B ,由直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),可判断C ,由0k >结合一次函数的性质可判断D ,从而可得答案.解:由一次函数的图象经过一,二,三象限,所以0,0,k b >>故A 不符合题意;直线y =bx +k 经过一,二,三象限,故B 不符合题意;直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),∴关于x 的方程kx +b =0的解为x =﹣5,故C 符合题意;若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,而0,k >y 随x 的增大而增大,若x 1<x 2,则y 1<y 2,故D 不符合题意;故选C【点拨】本题考查的是一次函数的图象与性质,一次函数与一元一次方程的关系,掌握“一次函数的图象与性质”是解本题的关键.5.C【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.解:由图可得,A.60min 时李林离家8km ,故选项A 说法正确,不符合题意;B.前20min 骑行速度为h 204261/0km ÷=,故选项B 说法正确,不符合题意;C.20min 30min -骑行的距离为0km ,故选项C 说法错误,符合题意;D.设3060t ≤≤时,s 与t 之间的函数关系式为s mt n =+,把()()30,4,60,8代入得,304608m n m n +=⎧⎨+=⎩,解得,2150m n ⎧=⎪⎨⎪=⎩,∴s 与t 之间的函数关系式为215s t =,∴当45t =时,2456km 15s =⨯=,故选项D 说法正确,不符合题意;故选:C .【点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.6.B【分析】将()11,,A x y 向右平移1个单位得到点C ,过点C 作x 的垂线,交4y x =-+于点B ,交21y x =+于点D ,当4BC ≤时,符合题意,同理将点A 向左平移一个单位得到C ,进而即可求解.解:如图,将()11,,A x y 向右平移1个单位得到点C ,过点C 作x 的垂线,交4y x =-+于点B ,交21y x =+于点D ,当4BC ≤时,符合题意,()111,21C x x ∴++,()()111,14B x x +-++即()111,3B x x +-+,()11121332BC x x x ∴=+--+=-1324x ∴-≤解得12x ≤如图,将点A 向左平移一个单位得到C ,∴()11121C x x -+,,()()111,14B x x ---+即()111,5B x x --+,()11521BC x x ∴=-+-+134x =-+4≤解得10x ≥综上所述,102x ≤≤,故选B【点拨】本题考查了一次函数的性质,坐标与图形,根据题意作出图形分析是解题的关键.7.D【分析】根据正比例函数可求出交点坐标,进一步可得出k 与b 的关系,利用函数图象可得出正确结论.解:由题意可得交点坐标为()2,4-故有:24k b +=-,24b k ∴=--令24y kx b kx k '=-=++,可知函数24y kx k '=++的图象恒过点()2,4-()2,4-也在2y x =-的图象上对于A 、B 选项,当2k -<时画出函数图象,如图所示:可得:2x ->,故A 、B 错误;对于C 、D 选项,当2k ->且0k ≠时画出函数图象,如图所示:无论20k -<<还是0k >,均有2x -<故C 错误,D 正确故选:D【点拨】本题考查函数的交点问题以及不等式与函数的联系.利用数形结合思想是解决此类问题的关键.8.B【分析】可将点的平移和旋转转化为直线的平移和旋转,求出解析式后,联立两个函数解析式即可求出交点的横坐标.解:∵点P 为直线1y x =+上一点,∴点P 向左移动2个单位后的解析式为213y x x =++=+,∵3y x =+绕原点O 顺时针旋转90︒后解析式为3y x =-+∴334y x y x =-+⎧⎨=-+⎩,可得12x =,∴点Q 的横坐标为12.故选:B【点拨】此题考查一次函数,解题关键是将点的平移和旋转转化为函数平移和旋转,然后求函数的交点坐标.9.C【分析】先求出点A 的坐标;设直线y =2x +2与x 轴交于点B ,过点A 作AC ⊥x 轴于点C ,可求出AC 和BC 的长;若将直线y =2x +2绕点A 旋转45°,则需要分两种情况:当直线AB 绕点A 逆时针旋转45°时,如图1,设此时直线与x 轴的交点为P ;过点B 作BD ⊥AB 交直线AP 于点D ,过点D 作DE ⊥x 轴于点E ,可得△ACB ≌△BED ,进而可得点D 的坐标,用待定系数法可求出直线AP 的表达式,进而求出点P 的坐标;当直线AB 绕点A 顺时针旋转45°时,如图2,设此时直线与x 轴的交点为Q ,延长DB 交AQ 于点F ,则△ADF 是等腰直角三角形,根据中点坐标公式可求出点F 的坐标,进而求出直线AQ 的表达式,最后可求出点Q 的坐标.解:令2x+2=-x+5,解得x=1,∴A(1,4).设直线y=2x+2与x轴交于点B,过点A作AC⊥x轴于点C,∴OC=1,AC=4,令y=2x+2=0,则x=-1,∴OB=1,∴BC=2.将直线y=2x+2绕点A旋转45°,需要分两种情况:①当直线AB绕点A逆时针旋转45°时,如图1,设此时直线与x轴的交点为P,此时∠BAP=45°,过点B作BD⊥AB交直线AP于点D,过点D作DE⊥x轴于点E,∴∠ACO=∠ABD=90°,∴∠ABC+∠DBE=∠DBE+∠BDE=90°,∴∠ABC=∠BDE,∵∠ABD=90°,∠BAP=45°,∴∠BDA=∠BAP=45°,∴AB=BD,∴△ACB≌△BED(AAS),∴BC=DE=2,BE=AC=4,∴OE=3,∴D(3,-2),设直线AP的解析式为y=kx+b,∴432k bk b+⎧⎨+-⎩==,解得37kb-⎧⎨⎩==,∴直线AP的解析式为y=-3x+7,令y =0,则x =73,∴P (73,0);②当直线AB 绕点A 顺时针旋转45°时,如图2,设此时直线与x 轴的交点为Q ,延长DB 交AQ 于点F,则∠BAQ =45°,∵∠ABF =∠ABD =90°,∴∠BAF =∠BFA =45°,∴BF =BA =BD ,即点B 为DF 的中点,∵B (-1,0),D (3,-2),∴F (-5,2),设直线AQ 的解析式为:y =mx +n ,∴524m n m n -+⎧⎨+⎩==,解得13113m n ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AQ 的解析式为:y =13x +113.令y =0,则x =-11,∴Q (-11,0),综上所述,将直线y =2x +2绕点A 旋转45°后所得直线与x 轴的交点坐标为(-11,0),(73,0).故选:C .【点拨】本题属于一次函数与几何综合题目,涉及全等三角形的性质与判定,图象的交点,等腰三角形的性质等内容,解题的关键是根据45°角作出垂线构造全等.本题若放在九年级可用相似解决.10.C【分析】根据图象可知,小明5分钟行走400米,可求速度,到达目的地用时35分,可求总路程,再根据小李行走时间可知小李走的路程,利用两人相向而行时,两分钟相遇可求小明返回时速度,即可得出答案.解:A 、小明首次到达目的地之前的速度是400805=米/分,A 不正确;B 、两地间的距离为:80×35=2800(米).小李在小明到达目的地时行走的路程为:65×(35-30)=1950(米).2800-1950=850(米),此时,小李距目的地还有850米,B 不正确;C 正确;D 、850-65×10=200(米),200÷(47-45)=100(米/分),100-65=35(米/分).D 不正确;故选:C .【点拨】本题考查了行程问题的数量关系的运用,一次函数的解析式的运用,点的坐标的运用,解答时认真分析函数图象的意义是关键.11.0【分析】令x =1和x =-1,得到()1212f f ⎛⎫+= ⎪⎝⎭①,()1212f f ⎛⎫-= ⎪⎝⎭②,两个等式相减,即可得到答案.解:∵对于所有的实数x ,都有()()222x x f xf x -+=,∴当x =1时,()1212f f ⎛⎫+= ⎪⎝⎭①,当x =-1时,()1212f f ⎛⎫-= ⎪⎝⎭②,①-②,得:()220f =,解得:()2f =0.故答案是:0.【点拨】本题主要考查抽象函数求值,掌握赋值法以及等式的性质,是解题的关键.12.①③④【分析】根据图象可对①进行判断;根据题意b =2,m =−k +2<0,解得k >2,可对③进行判断;根据一次函数的性质可对②进行判断;由b =2,m =−k +2,不等式kx +b >−m 化为kx +2>k −2,得到413k k -=-,解得k =3,于是可对④进行判断.解:∵直线l :y =kx +b (k 、b 是常数,k ≠0)经过A (0,2)、B (−1,m )两点,其中m <0,∴直线与x 轴的交点横坐标在−1和0之间,故①正确;∵直线l :y =kx +b (k 、b 是常数,k ≠0)经过A (0,2)、B (−1,m )两点,其中m <0,∴b =2,∴m =−k +2<0,∴k>2,故③正确;∵k>0,y随x的增大而增大,∵x1<x1+1,∴y1<y2,故②错误;∵b=2,m=−k+2,∴不等式kx+b>−m化为kx+2>k−2,∴kx>k−4,∵不等式kx+b>−m的解集为x>−1 3,∴413 kk-=-,解得k=3,故④正确;故答案为①③④.【点拨】本题考查了一次函数的性质,一次函数与一元一次不等式,一次函数与一元一次方程,根据题意得出k>0,b=2是解题的关键.13.5【分析】由题意得直线l一定过点(3,0),在过(3,0)的直线中,当点Q和(3,0)的连线垂直于直线l时,点P到直线l的距离最大,根据勾股定理求解即可.解:∵直线l:y=kx﹣3k=k(x-3)∴当x=3时,y=0,故点(3,0)再直线l上令点P(3,0)连接PQ,当PQ垂直与直线l垂足为点P时,点Q到直线l的距离最大PQ5=故答案为:5【点拨】本题主要考查了一次函数图像和点到直线的距离,过一点作已知直线的垂线,这条垂线段的长度是点到直线的距离;明确当PQ ⊥直线l 时,点Q 到直线的距离最大是解题的关键.14.1122m ≤<【分析】求出直线AB 的解析式2y x =-+,再根据21223b a m b a m -+=⎧⎨--=⎩求出点P 的坐标为()7,2P m m --,然后过P 作'∥PP y 轴,交直线AB 于点P ',确定()7,9P m m '--,再分两步:点P 在直线AB 的下方;点P 不在第三象限,分别确定m 的取值范围,然后确定公共部分即可。

八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

可编辑修改精选全文完整版一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.九、一次函数的应用1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?十、一次函数综合题1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。

北师大版八年级数学上册 第四章一次函数解答题 提优训练

北师大版八年级数学上册  第四章一次函数解答题 提优训练

一次函数提优训练一.解答题(共23小题)1.如图,平面直角坐标系中,Q(0,6),直线y=x﹣4交y轴、x轴于A、B两点,P为直线AB上一动点.(1)求证:以PQ为直径的圆过定点,并求定点坐标;(2)记(1)中的定点为D,把∠AQD绕点Q顺时针旋转α(0°<α<90°),得到∠A'QD',射线QA'交x轴于E,作EF⊥QD'于F,求AF的最小值.2.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.3.如图1,在直角坐标系中,过A(2,0),B(0,﹣4)两点的直线与直线y=﹣x+5交于点E,直线y=﹣x+5分别交x轴、y轴于C,D两点,(1)求直线AB的解析式和点E的坐标;(2)在射线EB上有一点M,使得点M到直线DC的距离为3,求点M的坐标;(3)在(1)的基础上,过点O,A,P,Q(0,2)作正方形OAPQ如图2,将正方形OAPQ沿x轴正方向平移,得到正方形O′A′P′Q′,当点A与点C重合时停止移动.设点A'的坐标为(t,0),正方形O′A′P′Q′与△ACE重叠部分的面积为S,直接写出S与t之间的函数关系式和相应t的取值范围.4.已知直线y=2x+b与x轴交于点A,与y轴交于点B,将线段BO绕着点B逆时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,四边形OBCD的面积为36.(1)求直线AB的解析式;(2)点P为线段OD上一点,连接CP,点H为CP上一点,连接BH,且BH=BC,过点H作CP的垂线交CD、OB于E、F,连接AE、AC,设点P的横坐标为t,△ACE的面积为S,求S与t的函数解析式;(3)在(2)的条件下,连接OH,过点F作FK⊥OH交x轴于点K,若PD=PK,求点P的坐标.5.如图1,直线y=x+4与x轴、y轴分别交于A、B两点,以A为顶点,以AB为腰在第二象限内作等腰直角△ABC.(1)求点C的坐标;(2)如图2,若M为x轴上的一个动点,N为直线AB上的一个动点,以A、C、M、N 为顶点的四边形是平行四边形,请直接写出满足条件的M点、N点坐标;(3)如图3,P为y轴负半轴上的一个动点,当P点沿y轴负方向向下运动时,以P为顶点,以AP为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求证:OP﹣DE为定值.6.如图1,在平面直角坐标系中OABC为矩形,OA=2,OC=3,AD=1,点E(﹣1,0),直线l1过点C,D,过点E作直线l2∥l1交y轴于点F.(1)求直线l2的解析式;(2)如图1,点P,G分别为线段BC、DC上的动点,求AP+PG+EF的最小值;(3)如图2,将△OEF绕着原点O顺时针旋转α°(15<α<180)得到△OE1F1,旋转过程中直线E1F1与直线l1交于点M,直线OF1与直线l1交于点N,当△F1MN为等腰三角形时,请直接写出等腰△F1MN腰的长度及α的值.(附参考数据:如图,在Rt△KHR中,若∠H=75°,∠R=90°,则对应的边HK:HR=+.)7.如图矩形COAB,点B(4,3),点H位于边BC上.直线l1:2x﹣y+3=0直线l2:2x﹣y﹣3=0(1)若点N为l2上第一象限的点,△AHN为等腰Rt△,求N坐标.(2)若把l1、l2上的点构成的图形称为图形V.已知矩形AJHI的顶点J在图形V上,I 为平面系上的点,且J(x,y),求x的范围(写出过程).8.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y 轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.9.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点A、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H的坐标.10.我市某风景区门票价格如图所示,有甲、乙两个旅行团队,计划在端午节期间到该景点游玩,两团队游客人数之和为100人,乙团队人数不超过40人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为y元.(1)直接写出y关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过80人,计算甲、乙两团队联合购票比分别购票最多可节约多少钱?(3)端午节之后,该风景区对门票价格作了如下调整:人数不超过40人时,门票价格不变,人数超过40人但不超过80人时,每张门票降价a元;人数超过80人时,每张门票降价2a元.在(2)的条件下,若甲、乙两个旅行团端午节之后去游玩联合购票比分别购票最多可节约3900元,求a的值.11.某校九年级决定购买学习用具对在本次适应性考试中数学成绩进步较大的同学进行奖励,其中计划购买甲、乙两款圆规套装,已知甲款圆规套装所需费用y(元)与购买数量x(套)之间的函数关系如图所示,乙款圆规套装单价为每套11元,(1)求出y与x的函数关系式;(2)若购买计划中,甲、乙两款圆规套装共需65套,甲款圆规套装的数量不超过50套,但不少于乙款圆规套装的数量,请设计购买方案,使总费用最低,并求出最低费用.12.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?13.某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C 处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.14.D县举办运动会需购买A,B两种奖品,若购买A种奖品5件和B种奖品2件,共需80元;若购买A种奖品3件和B种奖品3件,共需75元.(1)求A、B两种奖品的单价各是多少元?(2)大会组委会计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.15.某手工艺人用A,B两种规格的绒布片拼制成甲、乙两款玩具进行销售,拼制每款玩具所需不同规格绒布片用量如表所示.该艺人制作甲款玩具x个,乙款玩具y个,共用去A 种绒布3000片.玩具款式A种绒布(片)B种绒布(片)甲款玩具3020乙款玩具1530(1)求y关于x的函数表达式;(2)已知每个甲款玩具的利润为a元(8≤a≤14),每个乙款玩具的利润为6元,假设两款玩具均能全部卖出;①当a=8时,若要获得总利润不少于850元,则至少要用去B绒布多少片?②该艺人现有B种绒布数量在4800~5200片,求他加工这批玩具所获利润的取值范围.16.某商店准备销售甲、乙两种商品共80件,已知甲种商品进货价为每件70元,乙种商品进货价为每件35元,在定价销售时,2件甲种商品与3件乙种商品的售价相同,3件甲种商品比2件乙商品的售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?(3)若这批商品全部售完,该商店至少盈利多少元?17.甲、乙两辆汽车沿同一路线赶赴出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修),请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)18.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?19.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?20.某校为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个(其中乙种书柜的数量不少于甲种书柜的数量的).设该校计划购进甲种书柜m个,资金总额为w元.求w与m的函数关系式,并请你为该校设计资金最少的购买方案.21.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10至25人,甲乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给予每位游客七五折优惠乙旅行社表示可先免去一位游客的旅游费用,然后给予其余游客八折优惠若单位参加旅游人数为x人,甲乙两家旅行社支付的费用分别为y1和y2元.(1)写出y1,y2与x的关系式;(2)该单位选择哪一家旅行社支付的旅游费用较少?22.某商场销售A、B两种型号的电风扇,进价及售价如表:品牌A B进价(元/台)120180售价(元/台)150240(1)该商场4月份用21000元购进A、B两种型号的电风扇,全部售完后获利6000元,求商场4月份购进A、B两种型号电风扇的数量;(2)该商场5月份计划用不超过42000元购进A、B两种型号电风扇共300台,且B种型号的电风扇不少于50台;销售时准备A种型号的电风扇价格不变,B种型号的电风扇打9折销售.那么商场如何进货才能使利润最大?23.十一期间,王老师一家自驾游去了离家170km的某地,下面他们离家的距离y(km)与汽车行驶是时间x(h)之间的函数图象.(1)求他们出发0.5小时,离家多少千米?(2)求线段AB的函数解析式;(3)他们出发2小时,离目的地还有多少千米?参考答案与试题解析一.解答题(共23小题)1.如图,平面直角坐标系中,Q(0,6),直线y=x﹣4交y轴、x轴于A、B两点,P为直线AB上一动点.(1)求证:以PQ为直径的圆过定点,并求定点坐标;(2)记(1)中的定点为D,把∠AQD绕点Q顺时针旋转α(0°<α<90°),得到∠A'QD',射线QA'交x轴于E,作EF⊥QD'于F,求AF的最小值.【分析】(1)证法一:如图1,过Q作QD⊥AB于D,过D作DM⊥y轴于M,先根据圆周角定理可知:D在以PD为直径的圆上,即以PQ为直径的圆过定点D,证明△DMQ ∽△AMD,列比例式,可得D的坐标;证法二:如图2,连接BQ,可证明△ABQ是等腰三角形,到AB的中点D,则QD⊥AB,根据中点坐标公式可得定点D的坐标;(2)如图3,过F作GH∥y轴,交y轴于H,过E作EG⊥GH于G,确定F在直线y =x上,知道AF与直线y=x垂直时AF有最小值,并根据等角的三角函数列比例式解决问题.【解答】(1)证明:证法一:如图1,过Q作QD⊥AB于D,过D作DM⊥y轴于M,∴∠PDQ=90°,∵以PQ为直径的圆过定点D,∵∠MAD+∠ADM=∠ADM+∠QDM=90°,∴∠MAD=∠QDM,∵∠AMD=∠DMQ=90°,∴△DMQ∽△AMD,∴,即DM2=AM•MQ,设D(m,m﹣4),∴m2=(m﹣4+4)(6﹣m+4),m2=m(10﹣m),5m2﹣20m=0,m1=0(舍),m2=4,∴定点D(4,﹣2);证法二:如图2,连接BQ,直线y=x﹣4,当y=0时,x﹣4=0,∴x=8,∴OB=8,当x=0时,y=﹣4,∴OA=4,∵Q(0,6),∴AQ=6+4=10,BQ==10,∴AQ=BQ,取AB的中点D,连接DQ,则QD⊥AB,∴以PQ为直径的圆过定点D,∵A(0,﹣4),B(8,0),∴定点D(4,﹣2);(2)解:∵△AQD旋转得到△A'QD',∴∠A'QD'=∠AQD,由图1知:tan∠AQD===,∴tan∠A'QD'=tan∠AQD=,∴=,过F作GH∥y轴,交y轴于H,过E作EG⊥GH于G,∵EF⊥FQ,∴∠EFG+∠QFH=∠EFQ=90°,∵∠EFG+∠FEG=90°,∴∠QFH=∠FEG,∵∠EGF=∠FHQ=90°,∴△EGF∽△FHQ,∴,设EG=n,则,∴FH=2n,∴F(﹣2n,﹣n),∴F在直线y=x上,∴AF的最小值即是A到直线y=x的距离,如图4,过F作FM⊥y轴于M,∵F(﹣2n,﹣n),∴OF=n,∴tan∠MOF=,∵∠MOF+∠AOF=∠AOF+∠OAF=90°,∴∠MOF=∠OAF,∴tan∠OAF=,∴sin∠OAF==,∴,OF=,∴AF=2OF=.【点评】此题是一次函数和几何变换综合题,主要考查了待定系数法求直线解析式,直线与坐标轴的交点坐标的求法,旋转的性质,相似三角形的判定和性质以及解直角三角形等知识,解本题的关键是熟练掌握圆周角定理和三角函数的定义.2.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)求出点D的坐标,利用待定系数法求解即可.(2)求出直线OE的解析式,利用方程组确定点H的坐标即可解决问题.(3)根据菱形的判定方法,分四种情形讨论求解即可.【解答】解:(1)∵四边形ABCO是矩形,B(﹣,4),△ODE是由△OCB旋转得到,∴OC=OD=4,∴D(4,0),设直线BD的解析式为y=kx+b,则有,解得,∴直线BD的解析式为y=﹣x+3.(2)∵E(4,),∴直线OE的解析式为y=x,由,解得,∴H(,),∴OH==,∵OB==,∴S△BOH=•OB•OH=××=.(3)如图,由题意F(0,3),D(4,0),∴OF=3,OD=4,∴DF==5,当DM1为菱形的对角线时,M1(﹣4,0),N1(0,﹣3).当DM=DF时,M2(﹣1,0)或M3(9,0),可得N2(﹣5,3),3(5,3),当DF为对角线时,M4(,0),可得N4(,3),综上所述,满足条件的点N的坐标为(0,﹣3)或(﹣5,3)或(5,3)或(,3).【点评】此题是一次函数的综合题,主要考查了待定系数法、旋转的性质、矩形的性质、相似三角形的性质等.在(1)中求得D坐标是解题的关键,在(2)中求点H的坐标是解题的关键,在(3)中确定出M点的坐标是解题的关键,注意分类讨论思想的应用,属于中考压轴题.3.如图1,在直角坐标系中,过A(2,0),B(0,﹣4)两点的直线与直线y=﹣x+5交于点E,直线y=﹣x+5分别交x轴、y轴于C,D两点,(1)求直线AB的解析式和点E的坐标;(2)在射线EB上有一点M,使得点M到直线DC的距离为3,求点M的坐标;(3)在(1)的基础上,过点O,A,P,Q(0,2)作正方形OAPQ如图2,将正方形OAPQ沿x轴正方向平移,得到正方形O′A′P′Q′,当点A与点C重合时停止移动.设点A'的坐标为(t,0),正方形O′A′P′Q′与△ACE重叠部分的面积为S,直接写出S与t之间的函数关系式和相应t的取值范围.【分析】(1)联立直线AB表达式与直线CD表达式即可求解;(2)如图,设点M(m,2m﹣4),求出点N(,),由MN2=(m﹣)2+(﹣2m+4)2=(3)2,即可求解;(3)分0≤t≤1、1<t≤3两种情况,分别求解即可.【解答】解:(1)将点A、B坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=2x﹣4,直线CD的表达式为:y=﹣x+5…①,则点C、D的表达式分别为:(5,0)、(0,5),联立直线AB表达式与直线CD表达式:y=﹣x+5并解得:x=3,故点E(3,2);(2)如图,设点M(m,2m﹣4),过点M作MN⊥CD交于点N,则MN=3,∵MN⊥CD,∴直线MN表达式中的k值为1,设直线MN的表达式为:y=x+b′,将点M坐标代入上式并解得:直线MN的表达式为:y=x+(m﹣4)…②,联立①②并解得:x=,则点N(,),MN2=(m﹣)2+(﹣2m+4)2=(3)2,解得:m=1或5(舍去),故点M(1,﹣2);(3)①如图2(左侧图),当2≤t≤3时,图象到达O′Q′P′A′的位置,OA=2,OB=4,∵GA′∥OB,则=2,则GA′=2AA′则S=AA′×A′G=AA′×AA′tanα=(t﹣2)2;②3<t≤4时,如图3,设A′P′交直线CD于点H,此时,点A′(t,0),则A′C=5﹣t=A′H,∴P′H=P′E=2﹣A′H=3﹣(5﹣t)=t﹣3,∴S=S梯形AA′P′E﹣S△EHP′=(t﹣3+t﹣2)×2(t﹣3)2=﹣t2+5t﹣;③如图4,4<t≤5时,图象到达O′′Q′′P′′A′′的位置,直线BE交O″Q″于点H′,直线CD交A″P″于点G′,AA''=t﹣2,AO''=t﹣4,A''C=5﹣t,H'O''=2AO''=2(t﹣4)=2t﹣8,G'A''=A''C=5﹣t,S△AO″H′=×AO''×O''H'=(t﹣4)2,同理S△A″CG′=(5﹣t)2,S=S△ACE﹣S△AO″H′﹣S△A″CG′=3﹣(t﹣4)2﹣(5﹣t)2=﹣t2+13t﹣.则AA″=t,AO″=t﹣2,A″C=3﹣t,H′O″=2AO″=2(t﹣2),G′A″=A″C=3﹣t,S△AO″H′=×AO″×O″H′=(t﹣2)2,同理:S△A″CG′=(3﹣t)2,S=S△ACE﹣S△AO″H′﹣S△A″CG′=3﹣(t﹣2)2﹣(3﹣t)2=﹣t2+7t﹣,故:S=.【点评】本题考查的是一次函数综合运用,涉及到勾股定理的运用、正方形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.4.已知直线y=2x+b与x轴交于点A,与y轴交于点B,将线段BO绕着点B逆时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,四边形OBCD的面积为36.(1)求直线AB的解析式;(2)点P为线段OD上一点,连接CP,点H为CP上一点,连接BH,且BH=BC,过点H作CP的垂线交CD、OB于E、F,连接AE、AC,设点P的横坐标为t,△ACE的面积为S,求S与t的函数解析式;(3)在(2)的条件下,连接OH,过点F作FK⊥OH交x轴于点K,若PD=PK,求点P的坐标.【分析】(1)证明四边形OBCD为正方形,可得B(0,6),由待定系数法可求得直线AB的解析式;(2)过点B作BL⊥CP,垂足为L,交CD于点M,CL=HL.BM∥EF,CM=ME,证得△BCM≌△CDP,分别表示CE和AD的长,根据三角形面积公式可得结论;(3)过点E作ER⊥EF交射线FK于点R,则△EFR为等腰直角三角形,过点F作FG ⊥CD于点G,过点R作x轴的平行线交y轴于点Q,交CD的延长线于点N,证明△EFG ≌△REN,连接KE,设PD=a,ED=b,表示各边长,根据平行线分线段成比例定理列比例式,可得a=b,从而得结论.【解答】解:(1)∵将线段BO绕着点B逆时针旋转90°得到线段BC,∴OB=BC,∠OBC=90°,∵CD⊥x轴于点D,∴∠CDO=90°,∵∠BOD=90°,∴四边形OBCD为正方形,∵四边形OBCD的面积为36.∴OB=6,∴B(0,6),∵直线y=2x+b与y轴交于点B,∴b=6,∴直线AB的解析式为y=2x+6;(2)∵直线y=2x+6与x轴交于点A,∴A(﹣3,0),如图1,过点B作BL⊥CP,垂足为L,交CD于点M,∵BH=BC,∴CL=HL,∵BL⊥CP,EF⊥CP,∴BM∥EF,∴CM=ME,∵∠CBM+∠BMC=∠BMC+∠MCL=90°∴∠CBM=∠PCD,∵∠BCM=∠PDC,BC=CD,∴△BCM≌△CDP(ASA),∴CM=PD,∴PD=CM=ME=6﹣t,∴CE=2CM=2(6﹣t),∵AD=OA+OD=9,∴S===﹣9t+54(0≤t≤6);(3)设PD=a,如图2,∵BF∥CD,BM∥EF,∴四边形BFEM是平行四边形,∴BF=EM=PD=a,∴OF=OP,连接FP,设FK与OH交于A',∴∠OFP=45°,∵∠FOP+∠FHP=180°,∴F、O、P、H四点共圆,∴∠OFP=∠OHP=45°,∴∠OHF=45°,∵FK⊥OH,∴∠F A'H=90°,∴∠EFK=45°,如图3,过点E作ER⊥EF交射线FK于点R,∴△EFR为等腰直角三角形,∴EF=ER,过点F作FG⊥CD于点G,过点R作x轴的平行线交y轴于点Q,交CD的延长线于点N,连接KE、∴∠RNE=∠FGE=90°,∠FEG=∠ERN,∴△EFG≌△REN(AAS),∴EN=FG,EG=RN=PD=a,∵CG=BF=a,GE=a,设ED=b,∴DN=CE=2a=OQ,OF=a+b,∵PD=PK=a,OD=CD=2a+b,∴OK=b,∵OK∥QR,∴,即,∴b(3a+b)=(a+b)2,∴a=b,∴3a=6,∴a=2,∴P(4,0).【点评】本题为一次函数综合运用题,涉及到三角形全等、一次函数表达式的求解,其中(3),求解△EFR为等腰直角三角形是本题的难点,本题相等线段较多,利用参数表示线段的长,是解决此类问题的关键.5.如图1,直线y=x+4与x轴、y轴分别交于A、B两点,以A为顶点,以AB为腰在第二象限内作等腰直角△ABC.(1)求点C的坐标;(2)如图2,若M为x轴上的一个动点,N为直线AB上的一个动点,以A、C、M、N 为顶点的四边形是平行四边形,请直接写出满足条件的M点、N点坐标;(3)如图3,P为y轴负半轴上的一个动点,当P点沿y轴负方向向下运动时,以P为顶点,以AP为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求证:OP﹣DE为定值.【分析】(1)要求点C的坐标,则求C的横坐标与纵坐标,因为AC=AB,则作CM⊥x 轴,即求CM和AM的值,容易得△MAC≌△OBA,根据已知即可求得C点的值;(2)分两种情形:点N在x轴上方或下方分别求解即可.(3)求OP﹣DE的值则将其放在同一直线上,过D作DQ⊥OP于Q点,即是求PQ的值,由图易求得△AOP≌△PDQ(AAS),即可求得PQ的长;【解答】解:(1)过点C作CM⊥x轴于M点,如图1,∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°则∠MAC=∠OBA在△MAC和△OBA中,,∴△MAC≌△OBA(AAS)则CM=OA=3,MA=OB=4,则点C的坐标为(﹣7,3).(2)如图2中,当点N在x轴上方时,CN∥x轴,此时N(﹣,3),可得M(﹣,0)或M′(,0).当点N′在x轴下方时,可得N′(﹣,﹣3),此时M(﹣,0).综上所述,满足条件的点N(﹣,3),M(﹣,0)或N(﹣,3),M(,0)或N(﹣,﹣3),M(﹣,0).(3)如图3中,过点D作DQ⊥OP于Q点,则OP﹣DE=PQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS)∴OP﹣DE=PQ=OA=3.【点评】本题属于一次函数综合题,考查了三角形全等的判定和性质一次函数的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图1,在平面直角坐标系中OABC为矩形,OA=2,OC=3,AD=1,点E(﹣1,0),直线l1过点C,D,过点E作直线l2∥l1交y轴于点F.(1)求直线l2的解析式;(2)如图1,点P,G分别为线段BC、DC上的动点,求AP+PG+EF的最小值;(3)如图2,将△OEF绕着原点O顺时针旋转α°(15<α<180)得到△OE1F1,旋转过程中直线E1F1与直线l1交于点M,直线OF1与直线l1交于点N,当△F1MN为等腰三角形时,请直接写出等腰△F1MN腰的长度及α的值.(附参考数据:如图,在Rt△KHR中,若∠H=75°,∠R=90°,则对应的边HK:HR=+.)【分析】(1)易求D,C两点坐标,利用待定系数法可求解直线l1的解析式,由l1∥l2,可设直线l2的解析式为,利用待定系数法可求解关系式;(2)利用勾股定理可求解EF的长,即EF=2,要求AP+PG+EF的最小值,即求AP+PG的最小值,过点A作关于BC所在直线的对称点A1,过A1作A1G⊥l1于G,当点A1,P,G在一条直线上时A1G为AP+PG的最小值,利用含30°角的直角三角形的性质可求解;(3)可分三种情况讨论解决:当MF1=MN=2时;当F1M=F1N=时;当NF1=NM时.【解答】解:(1)∵OA=2,OC=3,AD=1,∴D(1,﹣2),C(3,0),设直线l1为y=kx+b,把C(3,0),D(1,﹣2),代入解析式得,解得,∴直线l1的解析式为,∵l1∥l2,∴设直线l2的解析式为,将E(﹣1,0)代入上式可得,解得,∴直线l2的解析式为;(2)当x=0时,,∴F(0,),∴EF=,∴EF=2,要求AP+PG+EF的最小值,即求AP+PG的最小值,如图,过点A作关于BC所在直线的对称点A1,过A1作A1G⊥l1于G,则A1B=AB=OC =3,∵AP+PG=A1P+PG,当点A1,P,G在一条直线上时A1G为AP+PG的最小值,∵四边形OABC为矩形,OA=2,OC=3,AD=1,∴BD=2,BC=,∠ABC=90°,∴DC=,A1D=5,∴∠DCB=30°,∴∠CDB=60°,∵∠A1GD=90°,∴∠GA1D=30°∴DG=,A1G=,∴AP+PG+EF的最小值为;(3)如图①,当MF1=MN=2时,α=60°;如图②,当F1M=F1N=时,α=105°;如图③,当NF1=NM=时,α=150°.【点评】本题主要考查的是一次函数的综合题,涉及的知识点有一次函数的应用,轴对称的性质,含30°角的直角三角形的性质,矩形的性质,勾股定理等知识的综合运用,注意分类讨论思想的运用.7.如图矩形COAB,点B(4,3),点H位于边BC上.直线l1:2x﹣y+3=0直线l2:2x﹣y﹣3=0(1)若点N为l2上第一象限的点,△AHN为等腰Rt△,求N坐标.(2)若把l1、l2上的点构成的图形称为图形V.已知矩形AJHI的顶点J在图形V上,I为平面系上的点,且J(x,y),求x的范围(写出过程).【分析】(1)分三种情况:①若点A为直角顶点时,点N在第一象限;若点H为直角顶点时,点N在第一象限;③若点N为直角顶点时,点N在第一象限;进行讨论可求点N 的坐标;(2)根据矩形的性质可求J点的横坐标x的取值范围.【解答】解:(1)①若点A为直角顶点时,点N在第一象限,连结AC,如图1,∠AHB>∠ACB>45°,∴△AHN不可能是等腰直角三角形,∴点M不存在;②若点H为直角顶点时,点N在第一象限,如图1,过点N作MN⊥CB,交CB的延长线于点M,则Rt△ABH≌Rt△HMN(HL),∴AB=HM=4,MN=HB,设N(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴N(,);③若点N为直角顶点时,点N在第一象限,如图2,设N1(x,2x﹣3),过点N1作N1G1⊥OA,交BC于点P1,则Rt△AN1G1≌Rt△HM1P1,∴AG1=N1P1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴N1(2,1);设N2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴N2(,);综上所述,点N的坐标为(,);(2,1);(,);(2)当点J在直线l2上时,∵点J的横坐标为x,∴N(x,2x﹣3),当点H和点B重合时,H(4,3),∴AH的中点G坐标为(2,3),∵四边形AJHI是矩形,∴∠AJB=90°,∴JG=AP=2,∴(x﹣2)2+(2x﹣3﹣3)2=4,∴x=(点J在AB上方的横坐标)或x=2(点J在AB下方的横坐标),当点H和点C重合时,H(4,0),AH的中点G'坐标为(2,),同理:NG'=AP=,∴(x﹣2)2+(2x﹣3﹣)2=,∴x=(和点J在AB上方构成的四边形是矩形的横坐标)或x=(和点J在AB下方构成的四边形是矩形的横坐标)∴≤x≤或≤x≤2.当点J在l1上时,同理:﹣≤x<0或0<x≤.综上所述,x的取值范围为﹣≤x<0或0<x≤或≤x≤2或≤x≤.【点评】考查了一次函数综合题,涉及的知识点有:坐标轴上点的坐标特征,等腰直角三角形的性质,矩形的性质,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.8.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y 轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=AF,求点P的坐标.【分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD(用a表示)即可解决问题.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR =6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,GQ﹣FG=AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得=,由(2)可知DE=3a,PD=12a,推出=,可得DH=6a,推出tan∠PHD===2,由∠PHD=∠FHT,可得tan∠FHT==2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.【解答】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,∴SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠F AR=90°﹣45°=45°,∴∠F AR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),。

2019-20学年度北师大版八年级上册第四章一次函数与几何图形面积培优题( 解析版)

2019-20学年度北师大版八年级上册第四章一次函数与几何图形面积培优题( 解析版)

2019-2020一次函数与几何图形面积培优题(含解析)1.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.2.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为( )A.y= x+2 B.y= ﹣x+2 C.y= x+2或y=﹣x+2 D.y= - x+2或y = x-23.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()A.5B.4C.3D.24.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2C.52D.255.直线y=﹣2x+b与两坐标轴围成的三角形的面积为1,则b的值为_________.6.已知一次函数y=kx+b(k≠0)的图象经过点(3,﹣3),且与直线y=﹣43x平行,求此一次函数的图象与两坐标轴围成的三角形的面积_____.7.如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积;(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.8.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=8.(1)求点B的坐标和直线AB的函数表达式;(2)直线a垂直平分OB交AB于点D,交x轴于点E,点P是直线a上一动点,且在点D的上方,设点P的纵坐标为m.①用含m的代数式表示△ABP的面积;②当S△ABP=6时,求点P的坐标;③在②的条件下,在坐标轴上,是否存在一点Q,使得△ABQ与△ABP面积相等?若存在,直接写出点Q的坐标,若不存在,请说明理由.9.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.10.已知:如图,一次函数334y x=+的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为;(直接写出结果)(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,试求点Q的坐标;②将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上,请直接写出点Q的坐标: .11.如图,在平面直角坐标系xOy中,已知正比例函数43y x=与一次函数7y x=-+的图像交于点A.(1)求点A的坐标;(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;(3)如图,设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交43 y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC =145OA ,求△ABC 的面积及点B 、点C 的坐标; (4)在(3)的条件下,设直线7y x =-+交x 轴于点D ,在直线BC 上确定点E ,使得△ADE 的周长最小,请直接写出点E 的坐标.12.如图,一次函数y=kx+b 的图象经过点A(8,0),直线y=-3x+6与x 轴交于点B,与y 轴交于点D,且两直线交于点C(4,m).(1)求m 的值及一次函数的解析式;(2)求△ACD 的面积。

2019-2020学年度北师大版八年级上册第四章一次函数 一次函数图像与性质培优题(解析版)

2019-2020学年度北师大版八年级上册第四章一次函数  一次函数图像与性质培优题(解析版)

2019-2020一次函数图像与性质培优题(解析版)一、单选题1.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( ) A . B . C . D . 2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A.2k <B.2k >C.0k >D.k 0<3.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A.24y x =-B.24y x =+C.22y x =+D.22y x =- 4.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A.5B.2C.52D.255.在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是( )A.5B.4C.3D.26.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+37.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A. B. C. D.8.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A. B.C. D.9.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是( )A .B .C .D .10.两个一次函数y=ax+b 与y=bx+a (a ,b 为常数,且ab≠0),它们在同一个坐标系中的图象可能是( )A. B. C. D. 11.如图, 直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点, 点P 为OA 上一动点, 当PC PD +最小时, 点P 的坐标为 ()A .(3,0)-B .(6,0)-C .3(2-,0)D .5(2-,0)二、填空题 12.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是_____.13.如图,已知()0,2A ,()6,0B ,()2,C m ,当1ABC S ∆=时,m =______.14.将直线33y x =-向右平移2个单位,所得的直线的与坐标轴所围成的面积是_______. 15.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 16.已知直线y kx b =+与25y x =-平行且经过点(1,3),则y kx b =+的表达式是__________.三、解答题17.如图,A 点的纵坐标为3,过A 点的一次函数的图象与正比例函数2y x =的图象相交于点B .(1)求该一次函数的解析式.(2)若该一次函数的图象与x 轴交于D 点,求BOD 的面积.18.如图,点A、B的坐标分别为(0,2),(1,0),直线132y x=-与y轴交于点C、与x轴交于点D.(1)直线AB解析式为y kx b=+,求直线AB与CD交点E的坐标;(2)四边形OBEC的面积是________;(3)求证:AB CD⊥.19.如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.参考答案1.C【解析】分析:对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求.详解:A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;B、若经过第一、二、四象限的直线为y=ax+b,则a<0,b>0,所以直线y=bx+a经过第一、三、四象限,所以B选项错误;C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,所以直线y=bx+a经过第一、二、四象限,所以C选项正确;D、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以D选项错误;故选:C.点睛:本题考查了一次函数图象:一次函数y=kx+b经过两点(0,b)、(-bk,0).注意:使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.2.B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3.A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.4.C【解析】【详解】分析:通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.详解:过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a.∴12DE•AD=a.∴DE=2.当点F 从D 到B 时,用5s.∴BD=5.Rt △DBE 中, BE=()2222=521BD DE --=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 2=22+(a-1)2.解得a=52. 故选:C .点睛:本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.5.C【解析】【分析】设直线l 解析式为:y=kx+b ,由l 与x 轴交于点A (-b k,0),与y 轴交于点B (0,b ),依题可得关于k 和b 的二元一次方程组,代入消元即可得出k 的值,从而得出直线条数.【详解】设直线l 解析式为:y=kx+b ,则l 与x 轴交于点A (-b k,0),与y 轴交于点B (0,b ),∴2142AOBk bbS bk+=⎧⎪⎨=⨯-⨯=⎪⎩,∴(2-k)2=8|k|,∴k2-12k+4=0或(k+2)2=0,∴k=6±42或k=-2,∴满足条件的直线有3条,故选C.【点睛】本题考查了一次函数图象与坐标轴交点问题,三角形的面积等,解本题的关键是确定出直线y=kx+b与x轴、y轴的交点坐标.6.D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.7.D【解析】【分析】根据正比例函数y kx =的图象经过第一,三象限可得: 0k >, 因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解.【详解】根据正比例函数y kx =的图象经过第一,三象限可得:所以0k >,所以一次函数y kx k =-中0k >, 0b k =-<,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.8.A【解析】试题分析:A .正比例函数y=abx 过第二、四象限,所以a <0,b >0,而y=ax+b 过第一、二、四象限,所以a <0,b >0,故A 正确;B .正比例函数y=abx 过第一、三象限,所以a >0,b <0,而y=ax+b过第一、二、四象限,所以a <0,b >0,所以矛盾,故B 错误;C .正比例函数y=abx 过第二、四象限,所以a <0,b >0,而y=ax+b 过第一、二、三象限,所以a >0,b >0,所以矛盾,故C 错误;D .正比例函数y=abx 过第一、三象限,所以a >0,b <0,而y=ax+b 过第一、三、四象限,所以a <0,<0,所以矛盾,故D 错误,故选:A .考点:一次函数的图象性质.9.A【解析】【分析】先根据函数图象得出其经过的象限,由一次函数图象与系数的关系即可得出结论.【详解】解:因为y随x的增大而减小,可得:k<0,因为kb<0,可得:b>0,所以图象经过一、二、四象限.故选:A.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.10.B【解析】【分析】本题主要考查一次函数的图象与性质,根据函数图象得出一次函数各系数的正负是解题的关键;【详解】解:(1)对于y=ax+b,当a>0时,图像经过一三象限,则b>0,y=bx+a也要过一三象限,即A错误.(2) 对于y=ax+b,当a>0时,图像经过一三象限,且b<0,y=bx+a经过二四象限,与y轴交点在x轴上方,即B正确.(3) 对于y=ax+b,当a>0时,图像经过一三象限,且b>0,y=bx+a经过一三象限,即C错误.(4) 对于y=ax+b,当a<0时,图像经过二四象限,若b>0,则y=bx+a经过一三象限,即D错误.【点睛】掌握一次函数的图像与性质,根据函数猜图像时要善于抓住增减性,特殊值等重点.11.C【解析】【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【详解】解:(方法一)如图所示作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,令y=23x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=-6,∴点A的坐标为(-6,0).∵点C、D分别为线段AB、OB的中点,∴点C(-3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(-3,2),D′(0,-2),∴有232k bb==-+⎧⎨-⎩,解得:432kb⎧-⎪⎨⎪-⎩==,∴直线CD′的解析式为y=42 3x--,令y=423x--中y=0,则0=423x--解得:x=32-,∴点P的坐标为3 (0)2 -,.故选C.(方法二)如图所示连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,令y=243x+中x=0,则y=4,∴点B的坐标为(0,4);令y=243x+中y=0,则243x+=0,解得:x=-6,∴点A的坐标为(-6,0).∵点C、D分别为线段AB、OB的中点,∴点C(-3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(32,-).故选:C.【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.12.x=2【解析】【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2,故答案为:x=2.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x 轴的交点的横坐标的值.13.1或5 3【解析】【分析】求出直线AB的解析式,设直线x=2交直线AB于点E,可得4(2,)3E,再根据三角形面积公式列出方程求解即可.【详解】解:如图,∵A(0,2),B(6,0),∴直线AB的解析式为123y x=-+设直线x=2交直线AB于点E,则可得到4 (2,)3 E,由题意:1461 23m⋅-⋅=解得m=1或5 3故答案为:1或53【点睛】本题考查了坐标与图形的性质,解题的关键是学会构建一次函数解决问题,学会利用参数构建方程解决问题,属于中考常考题型.14.272【解析】 【分析】先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果. 【详解】解:直线33y x =-向右平移2个单位后的解析式为3(2)339y x x =--=-, 令x =0,则y =-9,令y =0,则3x -9=0,解得x =3,所以直线39y x =-与x 轴、y 轴的交点坐标分别为(3,0)、(0,-9),所以直线39y x =-与坐标轴所围成的三角形面积是1273922⨯⨯=. 故答案为:272. 【点睛】本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键. 15.32y x =-- 【解析】 【分析】设一次函数解析式为y=kx+b ,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式. 【详解】解:设一次函数解析式为y=kx+b , 把(0,-2)代入得b=-2,∵直线y=kx+b 与直线y=2-3x 平行, ∴k=-3,∴一次函数解析式为y=-3x-2. 故答案为:y=-3x-2. 【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同. 16.21y x =+ 【解析】 【分析】先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b 中求出b 即可. 【详解】∵直线y=kx+b 与y=2x+1平行, ∴k=2,把(1,3)代入y=2x+b 得2+b=3,解得b=1, ∴y=kx+b 的表达式是y=2x+1. 故答案为:y=2x+1. 【点睛】此题考查一次函数中的直线位置关系,解题关键在于求k 的值. 17.(1)3y x =-+;(2)3BODS =.【解析】 【分析】(1)利用正比例函数,求得点B 坐标,再利用待定系数法即可求得一次函数解析式; (2)利用一次函数解析式求得点D 坐标,即可求BOD 的面积. 【详解】(1)把1x =代入2y x =中,得2y =, 所以点B 的坐标为()1,2, 设一次函数的解析式为y kx b =+,把()0,3A 和()1,2B 代入,得32b k b =⎧⎨+=⎩,解得13k b =-⎧⎨=⎩,所以一次函数的解析式是3y x =-+;(2)在3y x =-+中,令0y =,则03x =-+, 解得3x =,则D 的坐标是()3,0,所以13232BODS=⨯⨯=. 【点睛】本题为考查一次函数基础题,考点涉及利用待定系数法求一次函数解析式以及求一次函数与坐标轴交点坐标,熟练掌握一次函数相关知识点是解答本题的关键. 18.(1)(2,2)E - (2)4 (3)证明见解析【解析】 【分析】(1)运用待定系数法即可得到直线AB 解析式,再根据方程组的解,即可得到直线AB 与CD 交点E 的坐标;(2)根据坐标轴上点的特征求出C 、D 两点的坐标,然后根据S OBEC S DOC S DBE ∆∆=-Y 面积公式计算即可;(3)作EF ⊥y 轴于点F ,根据勾股定理分别求出222AE CE AC 、、,利用勾股定理的逆定理判断即可. 【详解】解:(1)点A 、B 的坐标分别为(0,2),(1,0),∴02k b b +=⎧⎨=⎩,解得22k b =-⎧⎨=⎩,故直线AB 的解析式是22y x =-+,则22132y x y x =-+⎧⎪⎨=-⎪⎩,解得22x y =⎧⎨=-⎩ ∴(2,2)E -;(2直线CD 的解析式为132y x =-, 当x=0时,y=-3,当y=0时,x=6,则点C 的坐标是(0,-3),点D 的坐标是(6,0).S OBEC S DOC S DBE ∆∆=-Y =11635222⨯⨯-⨯⨯=4;(3)作EF y ⊥轴于点F ,由(0,2)A ,(2,2)E -,(0,3)C - ∴4AF =,1CF =,2EF =,5AC =222224220AE AF EF =+=+=, 22222215CE CF EF =+=+=, 22525AC ==,∴222AE CE AC +=,∴ACE ∆是直角三角形,且90AEC ∠=︒ ∴AB CD ⊥.【点睛】此题考查一次函数的综合运用,解题关键在于运用待定系数法,勾股定理的逆定理. 19.(1); ;(2)10;(3) 或 或 或【解析】 【分析】(1)根据点A 坐标,可以求出正比例函数解析式,再求出点B 坐标即可求出一次函数解析式. (2)如图1中,过A 作AD ⊥y 轴于D ,求出AD 即可解决问题.(3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.【详解】解:(1)正比例函数的图象经过点,,,正比例函数解析式为如图1中,过作轴于,在中,,解得一次函数解析式为(2)如图1中,过作轴于,(3))如图2中,当OP=OA时,P(−5,0 ,P(5,0),当AO=AP时,P(8,0),当PA=PO时,线段OA的垂直平分线为y=−,∴P,∴满足条件的点P的坐标或或或【点睛】此题考查一次函数综合题,解题关键在于作辅助线.。

北师大版数学八年级上学期期末备考压轴题培优:一次函数(含答案)

北师大版数学八年级上学期期末备考压轴题培优:一次函数(含答案)

期末备考压轴题培优:一次函数1.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P 为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.证明:【模型建立】(1)∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=∠CBE,且CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)【模型运用】(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:【模型迁移】(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,P A=PB ∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)2.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为:(2,1)或(2,4)或(﹣2,8).3.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.解:(1)∵x2﹣14x+48=0,解得:x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴A(8,0),C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,A(8,0),C(0,6),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),过A、C两点作x轴、y轴的垂线相交于B点,∴B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6),当以点P,B,C三点为顶点的三角形是等腰三角形时,分三种情况讨论:如图所示:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=82,解得:a=±,则P(﹣,)或(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得:a=,则﹣a+6=﹣,∴P(,﹣).综上所述,P点的坐标为(4,3)或(﹣,)或(,)或(,﹣).4.如图,直线y=2x+4分别与x轴,y轴交于B,A两点(1)求△ABO 的面积;(2)如果在第三象限内有一点P (﹣1,m ),请用含m 的式子表示四边形AOPB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOPB 的面积是△ABO 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.解:(1)当x =0时,y =4,∴OA =4,当y =0时,2x +4=0,x =﹣2,∴OB =2,∴△ABO 的面积===4;(2)四边形AOPB 的面积=S △AOB +S △BOP =4+=4﹣m ;(3)存在满足条件的点P .∵S 四边形AOPB =2S △ABO ,∴4﹣m =8,∴m =﹣4,∴存在点P (﹣1,﹣4),使得S 四边形ABOP =2S △ABO .5.如图,直线y =kx +6与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为(﹣8,0),点A的坐标为(﹣6,0),点P是直线EF上的一个动点.(1)求k的值;(2)点P在第二象限内的直线EF上的运动过程中,写出△OP A的面积S与x的函整表达式,并写出自变量x的取值范围;(3)探究,当点P在直线EF上运动到时,△OP A的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.解:(1)点E的坐标为(﹣8,0),且在直线y=kx+6上,则﹣8k+6=0,解得,;(2)∵点P(x,y)是第二象限内的直线上的一个动点,∴,∴;(3)当点P在x轴的上方时,由题意得,=15,整理,得,解得,,则.此时点P的坐标是;当点P在x轴的下方时,y=﹣5,此时综上所述,△OP A的面积是15时,点P的坐标为或.6.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A﹣B﹣C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线D B1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入,得.解得k=﹣3,b=﹣4.故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为(,0).②存在,D点的坐标为(﹣1,3)或(,).附:当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D 点的坐标为(﹣1,3);当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组,解得.∴交点D的坐标为(,).7.如图,在平面直角坐标系中,点A在y轴上,其坐标为(0,4),x轴上的一动点P从原点O出发,沿x轴正半轴方向运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)填空:当t=2时,点B的坐标为(6,2).(2)在P点的运动过程中,当AB∥x轴时,求t的值;(3)通过探索,发现无论P点运动到何处,点B始终在一直线上,试求出该直线的函数解析式.解:(1)将点P的坐标向右平移2个单位到达点O,此时,点A的坐标为:(﹣2,4),将点A围绕点O顺时针旋转90°,此时点B的坐标为:(4,2),将点B的坐标向右平移2个单位,即为此时的点B(6,2),故答案为:(6,2);(2)过点B作BC⊥x轴于点C,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠P AB=∠PBA=45°,∴∠OAP=90°﹣∠P AB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4,t=4÷1=4(秒);(3)∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠P AO+∠APO=90°,∴∠P AO=∠BPC.∠P AO=∠BPC,在△P AO和△BPC中,∠AOP=∠PCB=90°,∴△P AO≌△BPC(AAS).AP=BP,∴AO=PC,BC=PO.∵点A(0,4),点P(t,0),点B(x,y),∴PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,∴y=x﹣4.8.【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A 逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.解:(1)如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD+∠BEC=90°,又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,x轴⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠ABO+∠ABC+∠CBD=180°,∴∠ABO+∠CBD=90°,又∵∠BAO+∠ABO=90°,∴∠BAO=∠CBD,又∵∠BAC=45°,∴∠ACB=45°,∴AB=CB,在△ABO和∠BCD中,,∴△ABO≌∠BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,∴点A、B两点的坐标分别为(﹣2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(﹣3,5),设l2的函数表达式为y=kx+b(k≠0),点A、C两点在直线l2上,依题意得:,解得:,∴直线l2的函数表达式为y=﹣5x﹣10;(3)能成为等腰直角三角形,依题意得,①若点P为直角时,如图3甲所示:设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠CPM+∠CDP+∠PDH=180°,∴∠CPM+∠PDH=90°,又∵∠CPM+∠DPM=90°,∴∠PCM=∠PDH,在△MCP和△HPD中,,∴△MCP≌△HPD(AAS),∴CM=PH,PM=PD,∴点D的坐标为(7+m,﹣3+m),又∵点D在直线y=﹣2x+1上,∴﹣2(7+m)+1=﹣3+m,解得:m=﹣,即点D的坐标为(,﹣);②若点C为直角时,如图3乙所示:设点P的坐标为(3,n),则PB的长为4+n,CA=CD,同理可证明△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴点D的坐标为(4+n,﹣7),又∵点D在直线y=﹣2x+1上,∴﹣2(4+n)+1=﹣7,解得:n=0,∴点P与点A重合,点M与点O重合,即点D的坐标为(4,﹣7);③若点D为直角时,如图3丙所示:设点P的坐标为(3,k),则PB的长为4+k,CD=PD,同理可证明△CDM≌△PDQ(AAS),∴MD=PQ,MC=DQ,∴点D的坐标为(4+K,﹣3+K),又∵点D在直线y=﹣2x+1上,∴﹣2(4+K)+1=﹣3+K,解得:k=﹣,∴点P与点A重合,点M与点O重合,即点D的坐标为(,﹣);综合所述,点D的坐标为(,﹣)或(4,﹣7)或(,﹣).9.如图,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于N,设点Q横坐标为m,△PBQ的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(﹣4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:解得:∴直线BC解析式为:y=﹣2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,﹣2m+8)∴HQ=2m﹣8,CH=m﹣4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m﹣4,PG=HQ=2m﹣8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠P AE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF =S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB 的面积,∴S =S △ABC ﹣S △P AE =×8×8﹣×(2m ﹣8)×(2m ﹣8)=16m ﹣2m 2; (3)如图2,连接AM ,CM ,过点P 作PE ⊥AC ,∵AB =BC ,BO ⊥AC ,∴BO 是AC 的垂直平分线,∴AM =CM ,且AP =CQ ,PM =MQ ,∴△APM ≌△CQM (SSS )∴∠P AM =∠MCQ ,∠BQM =∠APM =45°,∵AM =CM ,AB =BC ,BM =BM ,∴△ABM ≌△CBM (SSS )∴∠BAM =∠BCM ,∴∠BCM =∠MCQ ,且∠BCM +∠MCQ =180°,∴∠BCM =∠MCQ =∠P AM =90°,且∠APM =45°, ∴∠APM =∠AMP =45°,∴AP =AM ,∵∠P AO +∠MAO =90°,∠MAO +∠AMO =90°,∴∠P AO =∠AMO ,且∠PEA =∠AOM =90°,AM =AP , ∴△APE ≌△MAO (AAS )∴AE =OM ,PE =AO =4,∴2m ﹣8=4,∴m =6,∴Q(6,﹣4),P(﹣2,4)设直线PQ的解析式为:y=ax+c,∴解得:∴直线PQ的解析式为:y=﹣x+2.10.如图,一次函数y=﹣x+4的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(8,0),点B的坐标为(0,4);(2)在直线AB上是否存在点P使得△APO的面积为12?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)求OC的长度.解:(1)令x=0,则y=4,∴B(0,4),令y=0,则0=﹣x+4,∴x=8,∴A(8,0),故答案为:(8,0),(0,4);(2)设点P(x,﹣x+4)∵△APO的面积为12,∴12=×8×|﹣x+4|∴x=2或14,∴点P(2,3)或(14,3)(3)设点C(a,0),则OC=a,∴AC=8﹣a,由折叠知,BC=AC=8﹣a,在Rt△BOC中,OB=4,根据勾股定理得,BC2﹣OC2=OB2,∴(8﹣a)2﹣a2=16,∴a=3,即:OC=3,11.如图,已知直线y=﹣x+3与x轴、y轴分别交于A、C,以OA、OC为边在第一象限内作长方形OABC.(1)将△ABC沿B′D对折,使得点A与点C重合,折痕交AB于点D,求直线CD的关系;(2)若在x轴上存在点P,使△ADP为等腰三角形,求出符合条件的点P坐标.解:(1)令y=0,则﹣x+3=0,解得x=2,∴A(2,0),令x=0,则y=3,∴C(0,3);由折叠可知:CD=AD,设AD=x,则CD=x,BD=3﹣x,由题意得,(3﹣x)2+22=x2,解得x=,此时AD=,∴D(2,),设直线CD为y=kx+3,把D(2,)代入得=2k+3,解得k=﹣,∴直线CD的解析式为y=﹣x+3;(2)∵A(2,0),D(2,),∴AD=.∵∠DAP=90°,∴△ADP是等腰直角三角形,∴当AD=AP=时,P点的坐标是(﹣,0)或(,0).12.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y =﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.=22;(1)直接写出直线BD的解析式为y=﹣2x﹣3,S△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,=×11×4=22.∴S△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).13.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP =S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B 的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP =S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=yN=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).14.在平面直角坐标系中,直线y1=kx+b经过点P(2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.解:(1)把P(2,2)和点Q(0,﹣2)分别代入y1=kx+b,得.解得.则直线y1=kx+b的解析式为:y1=2x﹣2;(2)如图所示,P(2,2).所以,当x<2时,y1<y2.(3)解:过点P作PM⊥x轴,交于点M.由题意可知A(1,0),M(2,0),AP=,AM=1当m>0时,点B有3种位置使得△P AB为等腰三角形①当AP=AB时,AB=,∴B(+1,0)②当P A=PB时,AB=2AM=2,∴B(3,0)③当BA=BP时,设AB=x,由等面积法可得S△ABP=2x=解得x=2.5,∴B(3.5,0)当m<0时,点B有1种位置使得△P AB为等腰三角形.当AB=AP时,OB=﹣1,∴B(1﹣,0).综上所述,点B有4种位置使得△P AB为等腰三角形,坐标分别为(+1,0)、(3,0)、(3.5,0)、(1﹣,0).15.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y =4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=4;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.解:(1)d(S,T)=|﹣1+2|+|6﹣3|=4,故答案为4;(2)直线y=﹣2x+3上的“互助直线”为:y=3x﹣2,设点H(a,﹣2a+3),将点H坐标代入y=3x﹣2得:﹣2a+3=3a﹣2,解得:a=1,故点H(1,1);(3)M(m,n)在y=ax+b上,则n=am+b…①,点N在“互助直线”y=bx+a上,则2m﹣3n=3bm+a…②,联立①②并整理得:m(2﹣3a﹣3b)=a+3b,对于任意一点M(m,n)都等式均成立,故:a+3b=0,2﹣3a﹣3b=0,解得:a=1,b=﹣,故函数的表达式为:y=x﹣,设点P(x,x﹣)是函数上的点d(L,P)=|5﹣x|+|x﹣+1|=|x﹣5|+|x+|,则d(L,P)的最小值为5.。

八年级数学(北师大版)一次函数培优测试题

八年级数学(北师大版)一次函数培优测试题

一次函数培优测试题一. 选择题1.下列关于x 的函数中,是一次函数的是( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y 2.下列各点在直线13-=x y 上的是( )A.)0,1(-B. )0,1(C. )1,0(-D. )1,0(3. 下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 4.已知长方形的周长为25,设它的长为x ,宽为y ,则y 与x 的函数关系为( )A.x y -=25B. x y +=25C. x y -=225D. x y +=225 5.点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,则1y 和2y 的大小关系是( )A. 1y 2yB. 1y 2yC. 1y =2yD.不能确定6.直线63+=x y 与两坐标轴围成的三角形的面积是( )A.4B.5C.6D.77.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( )A. 1b 2bB. 1b 2bC. 1b =2bD.不能确定8.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )9.平分坐标轴夹角的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=10.弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,可知不挂物体时弹簧的长度为( )A.7cmB.8cmC.9cmD.10cm二. 填空题11.对于函数63-=x y ,当x =2-时,y =_______,当y =6时,x =_________.12.若y 是x 的一次函数,且当x =2时y =7,当x =3时y =9,则这个一次函数的关系式是_______.13. 一次函数b kx y +=的图象与两坐标轴的交点坐标分别为)0,3(和)2,0(-,则=k ____,=b ____.14.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =_____________.15.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,则k ____________________.16.某公司现在年产值为150万元,计划今后每年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.17.直线2-=kx y 经过点),4(1y ,且平行于直线12+=x y ,则1y =___________,k =______.18.如图是一次函数b kx y +=的大致图像,由图可知:k _________,b _______(填“ ”、“ ”或“=”).三. 解答题19.已知直线4+=kx y 与两坐标围成的三角形面积为8,求k 的值.20.一次函数的图像过点)6,1(),2,3(--N M 两点.(1)求该函数的表达式;(2)画出该函数的图像.21. 石家庄至北京300千米,火车从距石家庄站15千米的正定站出发,以每小时90千米/小时的速度向北京方向行驶,求火车与石家庄站间路程s (千米)和时间t (小时)的函数关系式,并指出自变量的取值范围.( 正定站位于北京与石家庄之间)22.南方的A 城有化肥200吨,B 城有化肥300吨,现要把化肥运往甲、乙两个农场,若从A 城运往甲、乙两个农场的运费分别为20元/吨和25元/吨,从B 城运往甲、乙两个农场的运费分别为15元/吨和22元/吨,现已知甲农场需要220吨,乙农场需要280吨,如果你承包了这项运输任务,怎样调运花钱最少?23.A 、B 两辆汽车从相距120千米的甲、乙两地同时同向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时间.如图,1l 、2l 分别表示两辆汽车的s 与t 的关系.(1)2l 表示那辆汽车离甲地的距离与行驶时间的关系?(2)汽车B 的速度是多少?(3)2小时后,A 、B 两辆汽车相距多少千米?(4)行使多长时间后,A 、B 两辆汽车相遇?。

一次函数的图像和性质—2024学年八年级数学上册培优题型(北师大版)(教师版)

一次函数的图像和性质—2024学年八年级数学上册培优题型(北师大版)(教师版)

一次函数的图像和性质(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.51一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•道里区开学)若把直线y=2x+3向上平移3个单位长度,得到图象对应的函数解析式是()A.y=2x+9 B.y=2x﹣3 C.y=2x+6 D.y=2x解:由“上加下减”的原则可知,将直线y=2x+3,向上平移3个单位所得的直线的解析式是y=2x+3+3,即y=2x+6.故选:C.2.(2分)(2023春•丰润区期末)若k<0,则一次函数y=﹣2x﹣k的图象大致是()A.B.C.D.解:∵k<0,∴﹣k>0,∴直线y=﹣2x﹣k的图象经过第第一、二、四象限,∴该直线不经过第三象限;故选:A.3.(2分)(2022秋•平遥县期末)如图,直线与x轴,y轴分别交于点A和点B,点C在线段AB 上,且点C坐标为(m,2),点D为线段OB的中点,点P为OA上一动点,当△PCD的周长最小时,点P 的坐标为()A.(﹣3,0)B.C.D.解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选:B.4.(2分)(2022秋•相山区校级期末)一次函数y1=mx+n(m,n是常数)与y2=nx+m在同一平面直角坐标系中的图象可能是()A.B.C.D.解:由一次函数y1=mx+n图象可知m<0,n>0,由一次函数y2=nx+m可知n<0,m=0,矛盾,故A不合题意;由一次函数y1=mx+n图象可知m>0,n<0,由一次函数y2=nx+m可知n<0,m>0,一致,故B符合题意;由一次函数y1=mx+n图象可知m<0,n>0,由一次函数y2=nx+m可知n>0,m>0,矛盾,故C不合题意;由一次函数y1=mx+n图象可知m>0,n>0,由一次函数y2=nx+m可知n<0,m>0,矛盾,故D不合题意;故选:B.5.(2分)(2022秋•兴化市期末)若点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣x+1图象上的点,则()A.y3<y2<y1B.y1<y2<y3C.y1<y3<y2D.y2<y3<y1解:∵k=﹣1<0,∴y随x的增大而减小,∵﹣1<1<2,∴y3<y2<y1,故选:A.6.(2分)(2021秋•沂源县期末)关于函数y=(k﹣3)x+k,给出下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(﹣1,3);③若图象经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是0<k<3.其中正确结论的序号是()A.①②③B.①③④C.②③④D.①②③④解:①根据一次函数定义:k≠0函数为一次函数,故正确;②y=(k﹣3)x+k=k(x+1)﹣3x,故函数过(﹣1,3),故正确;③图象经过二、三、四象限,则k﹣3<0,k<0,解得:k<0,故正确;④函数图象与x轴的交点始终在正半轴,则x=>0,解得:0<k<3,故正确.故选:D.7.(2分)(2020秋•苏州期末)如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB 于点A.若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或+1 B.3或C.2或D.3或+1解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故选:D.8.(2分)(2020•鹿城区校级模拟)如图,平面直角坐标系中,直线l:y=﹣x+2分别交x轴、y 轴于点B、A,以AB为一边向右作等边△ABC,以AO为一边向左作等边△ADO,连接DC交直线l于点E.则点E的坐标为()A.(,)B.(,)C.(,)D.(,)解:y=﹣x+2①,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(0,2)、(2,0),即OB=2,AO=2=OD,则AB=4=BC,tan∠ABO==,故∠ABO=60°,而△ABC为等边三角形,则BC与x轴的夹角为180°﹣∠ABC﹣∠ABO=180°﹣60°﹣60°=60°,则y C=BC sin60°=4×=2,x C=x B+BC cos60°=2+4×=4,故点C(4,2),同理可得点D的坐标为:(﹣3,),设直线CD的表达式为y=kx+b,则,解得:,故直线CD的表达式为:y=x+②,联立①②并解得:x=,y=,故点E的坐标为:(,),故选:A.9.(2分)(2023•灞桥区校级模拟)已知直线l1:y=kx+b(k≠0)与直线l2:y=k1x﹣6(k1<0)在第三象限交于点M,若直线l1与x轴的交点为B(3,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2解:∵直线l1与x轴的交点为B(3,0),∴3k+b=0,∴y=kx﹣3k,直线l2:y=k1x﹣6(k1<0)与y轴的交点坐标为(0,﹣6),若直线l1与x轴的交点为B(3,0),则l1与y轴交点(0,﹣3k)在原点和点(0,﹣6)之间,即:﹣6<﹣3k<0,解得:0<k<2,故选:D.10.(2分)(2019秋•龙岗区校级期末)如图,已知直线AB:y=分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE.当BD+BE 的值最小时,则H点的坐标为()A.(0,4)B.(0,5)C.D.解:由题意A(0,),B(﹣3,0),C(3,0),∴AB=AC=8,取点F(3,8),连接CF,EF,BF.∵C(3,0),∴CF∥OA,∴∠ECF=∠CAO,∵AB=AC,AO⊥BC,∴∠CAO=∠BAD,∴∠BAD=∠ECF,∵CF=AB=8,AD=EC,∴△ECF≌△DAB(SAS),∴BD=EF,∴BD+BE=BE+EF,∵BE+EF≥BF,∴BD+BE的最小值为线段BF的长,∴当B,E,F共线时,BD+BE的值最小,∵直线BF的解析式为:y=x+4,∴H(0,4),∴当BD+BE的值最小时,则H点的坐标为(0,4),故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•晋中期末)已知在平面直角坐标系中,点A(3,m),B(5,n)是直线y=﹣2x上的两点,则m,n的大小关系是m n.(填“<”,“>”或“=”)解:∵点A(3,m),B(5,n)是直线y=﹣2x上的两点,又∵k=﹣2<0,∴y随着x增大而减小,∵3<5,∴m>n,故答案为:>.12.(2分)(2022秋•磁县期末)如图,在平面直角坐标系中,点A(3,m)在第一象限,若点A关于x 轴的对称点B在直线y=﹣x+1m的值为.解:∵点A(3,m),∴点A关于x轴的对称点B(3,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣3+1=﹣2,∴m=2,故答案为:2.13.(2分)(2023春•昌吉市期末)已知一次函数y=kx+3(k为常数,且k≠0),y随x的增大而减小,当﹣1≤x≤2时,函数有最大值5,则k的值是.解:∵一次函数y=kx+3(k为常数,且k≠0),y随x的增大而减小,当﹣1≤x≤2时,函数有最大值5,∴当x=﹣1时,函数有最大值5,∴﹣k+3=5,解得k=﹣2.故答案为:﹣2.14.(2分)(2022秋•法库县期末)关于一次函数y=kx﹣k(k≠0)有如下说法:①当k>0时,y随x的增大而减小;②当k>0时,函数图象经过二、三、四象限;③函数图象一定经过点(1,0);④将直线y=kx﹣k(k≠0)向下移动2个单位长度后所得直线表达式为y=(k﹣2)x﹣k(k≠0).其中说法正确的序号是.解:①当k>0时,y随x的增大而增大;不符合题意;②当k>0时,则﹣k<0,函数图象经过一、三、四象限,不符合题意;③当x=1时,则y=0,∴函数图象一定经过点(1,0),符合题意;④将直线y=kx﹣k(k≠0)向下移动2个单位长度后所得直线表达式为y=kx﹣k﹣2(k≠0),不符合题意;故答案为:③.15.(2分)(2023春•漳平市期末)如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB 于点A,若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为.解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故答案为1+或3.16.(2分)(2023春•昌吉市期末)如图,直线与x轴、y轴分别交于点B和点A,点C是线段OA上的一点,若将△ABC沿BC折叠,点A恰好落在x轴上的A处,若P是y轴负半轴上一动点,且△BCP 是等腰三角形,则P的坐标为.解:当x=0时,=8,∴点A的坐标为(0,8);当y=0时,=0,解得:x=﹣6,∴点B的坐标为(﹣6,0).∴AB==10.∵AB=A′B,∴OA′=10﹣6=4.设OC=m,则AC=A′C=8﹣m.在Rt△A′OC中,A′C2=A′O2+OC2,即(8﹣m)2=42+m2,解得:m=3,∴点C的坐标为(0,3),∴BC==3,∴当BC=BP时,P1(0,﹣3);当BC=CP时,则OP+OC=3,∴OP=3﹣3,∴P2(0,3﹣3);当CP=BP时,设P(0,﹣n),则BP=CP=3+n,∴(3+n)2=62+n2,解得n=,∴此时P3(0,﹣);综上,P点的坐标为(0,﹣3)或(0,3﹣3)或(0,﹣);故答案为:(0,﹣3)或(0,3﹣3)或(0,﹣).17.(2分)(2022秋•丹徒区期末)如图,平面直角坐标系中,x轴上一点A(4,0),过点A作直线AB ⊥x轴,交正比例函数的图象于点B.点M从点O出发,以每秒1个单位长度的速度沿射线OB运动,设其运动时间为t(秒),过点M作MN⊥OB交直线AB于点N,当△MBN≌△ABO时,t=秒(写出所有可能的结果).解:如图1所示,当点M在线段OB上时,∵A(4,0),AB⊥x,∴点B的横坐标为4,当x=4时,,∴B(4,3),∴OA=4,OB=3,∴,∵△MBN≌△ABO,∴BM=AB=3,∴OM=OB﹣BM=2,∴t=2;如图2所示,当点M在OB延长线上时,∵△MBN≌△ABO,∴BM=AB=3,∴OM=OB+BM=8,∴t=8;综上所述,当t=2或t=8时△MBN≌△ABO,故答案为:2或8.18.(2分)(2022秋•南京期末)如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,将直线AB顺时针旋转90°,则旋转后的直线的函数表达式为.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,∴A(2,0),B(0,4),∴AO=2,BO=4,将直线AB绕点A顺时针旋转90°,交y轴于C,根据旋转的性质得到△BAO∽△ACO,∴=,即=,∴OC=1.∴C(0,1),设直线AC为y=kx﹣1,代入A(2,0)得2k﹣1=0,解得k=,∴旋转后的直线的函数表达式为y=x﹣1.故答案为:y=x﹣1.19.(2分)(2022秋•成华区期末)如图,直线y=x+4与x轴,y轴分别交于点A,B,点C是AO的中点,点D,E分别为直线y=x+4和CDE的周长最小时,线段DE的长是.解:在y=x+4中,令y=0得x=﹣4,∴A(﹣4,0),∵C是OA中点,∴C(﹣2,0),作C(﹣2,0)关于y轴的对称点G(2,0),作C(2,0)关于直线y=x+4的对称点F,连接AF,连接FG交AB于D,交y轴于E,如图:∴DF=CD,CE=GE,∴CD+CE+DE=DF+GE+DE=FG,此时△CDE周长最小,由y=x+4得A(﹣4,0),B(0,4),∴OA=OB,△AOB是等腰直角三角形,∴∠BAC=45°,∵C、F关于AB对称,∴∠FAB=∠BAC=45°,∴∠FAC=90°,∵AC=OA﹣OC=2=AF,∴F(﹣4,2),由F(﹣4,2),G(2,0)可得直线FG解析式为y=﹣x+,在y=﹣x+中,令x=0得y=,∴E(0,),由得,∴D(﹣,),∴DE==,故答案为:.20.(2分)(2022秋•锦江区期末)如图,在平面直角坐标系xOy中,已知∠AOB=90°,∠A=60°,点A的坐标为(﹣2,2),若直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是.解:过点A作AE⊥x轴于点E,过点B作BF⊥x于点F,如图,∵,∴,根据勾股定理得,,∴∠AOE=30°,∵∠AOB=90°,∠CAO=60°,∴∠ABO=30°,∴AB=2AO=8,∴,又∠BOF=180°﹣∠AOE﹣∠AOB=60°,∴∠OBF=30°,∴,∴,∴,对于y=﹣2x+2,当y=0时,﹣2x+2=0,∴x=1,∴直线y=﹣2x+2与x轴的交点坐标为(1,0);设过点A且与直线y=﹣2x+2平行的直线解析式为y=﹣2x+p,把代入y=﹣2x+p,得:,∴,∴,当y=0时,,∴,∴直线与x轴的交点坐标为,设过点B且与直线y=﹣2x+2平行的直线解析式为y=﹣2x+q,把代入y=﹣2x+q,得:,∴,∴,当y=0时,,∴,∴与x轴的交点坐标为,∴直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是,即.故答案为:.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023春•柘城县期末)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.(2)∵AC=AB=5,∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)存在,理由如下:∵S△PAB=S△OCD,∴S△PAB=××6×8=12.∵点P在y轴上,S△PAB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).22.(6分)(2022秋•沙坪坝区校级期末)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与x 轴、y轴分别交于点A和点B(0,3),直线l2:y=2x+6与x轴交于点C,且与直线l1交于点D(﹣1,m).(1)求直线l1的表达式;(2)将直线l1向下平移4个单位长度得到直线l3,直线l2、l3交于点E,连接AE,求△ADE的面积.解:(1)把点D(﹣1,m)代入y=2x+6得,m=﹣2+6=4,∴点D的坐标为(﹣1,4),把点D(﹣1,4)和点B(0,3)代入y=kx+b得:,∴,∴直线l1的表达式为:y=﹣x(2)将直线l1向下平移4个单位长度得到直线l3的解析式为y=﹣x﹣1,解得,∴E(﹣,),在y=﹣x+3中,令y=0,则x=3,∴A(3,0),在直线l2:y=2x+6中,令y=0,则x=﹣3,∴C(﹣3,0),∴AC=6,∴△ADE的面积=S△ADC﹣S△ACE=×6×4﹣×6×=8.23.(8分)(2022秋•顺德区期末)一次函数y=x+1.(1)画出函数的图象;(2)当x时,的值大于0;(3)对于任何一个x的值,函数y=﹣x+b与的值中至少有一个大于0,求b的取值范围.解:(1)列表:画图如下:(2)由图可知:函数图象在x轴上方的部分对应的x的范围是x>﹣2,∴当x>﹣2时,的值大于0;(3)若对于任何一个x的值,函数y=﹣x+b与的值中至少有一个大于0,则当x≤﹣2时,y=﹣x+b必然大于0,∴﹣(﹣2)+b=4+b>0,解得b>﹣2.∴b的取值范围为:b>﹣2.24.(8分)(2023•花都区一模)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点D的坐标为(6,0),点E的坐标为(0,1),若四边形OECD的面积是9,求点C的坐标;②当CE平行于x轴,CD平行于y轴时,若四边形OECD的周长是10,请直接写出点C的坐标.解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,解得:k=﹣,故答案为:﹣;(2)①如图1,由(1)可知直线AB的解析式为y=﹣x+4.∴设C(m,﹣m+4)(0<m<8),∵点D的坐标为(6,0),点E的坐标为(0,1),∴OD=6,OE=1,∴OM=m,CM=﹣m+4,∵四边形OECD的面积是9,∴S梯形CEOM+S△CDM=(1﹣m+4)•m+(﹣m+4)•(6﹣m)=9,整理得2m=6,解得m=3,∴点C的坐标为(3,);②∵CE平行于x轴,CD平行于y轴,∴四边形CEOD是矩形,∵四边形OECD的周长是10,∴2(m﹣m+4)=10或2(﹣m+4﹣m)=10,解得m=2或m=6,点C的坐标为(2,3)或(﹣,).25.(8分)(2023•南山区校级三模)图象对于探究函数性质有非常重要的作用,下面我们就一类特殊的函数展开探究.画函数y1=3|x|的图象,经历分析表达式、列表、描点、连线过程得到函数图象如图所示:在同一平面直角坐标系中,经历同样的过程画出函数y2=3|x﹣2|的图象如图所示.(1)观察发现:两个函数的图象都是由两条射线组成的轴对称图形,且图象的开口方向和形状完全相同,只有最低点和对称轴发生了变化.所以可以将函数y1的图象向右平移2个单位得到y2的图象,则此时函数y2的图象的最低点A的坐标为.(2)探索思考:将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,请在网格图中画出函数y3的图象,并求出当x≥4时,函数y3的最小值.(3)拓展应用:将函数y3的图象继续平移得到函数y4=3|x﹣m|+2的图象,其最低点为点P.①用m表示最低点P的坐标为;②当﹣1≤x≤2时,函数y4有最小值为5,求此时m的值.解:(1)由图象可得A(2,0),故答案为:(2,0);(2)将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,如图:当x≥4时,y3取到最小值,最小值为8;(3)拓展应用:将函数y3的图象继续平移得到y4=3|x﹣m|+2,其最低点为点P.①最低点P的坐标为(m,2),故答案为(m,2);②若m<﹣1,当x=﹣1时,y4有最小值5,∴3×|﹣1﹣m|+2=5∴m=0(舍),或m=﹣2若﹣1≤m≤2,当x=m时,y4有最小值2,不符合题意,舍去.若m>2,当x=2时,y4有最小值5,∴3×|2﹣m|+2=5∴m=1(舍),或m=3综上所述,m=﹣2或m=3.26.(8分)(2023春•新疆期末)因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.解:(1)根据题意可得:函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;故答案为:y=﹣3x﹣2;(2)∵△ABC是等腰直角三角形,AO⊥BC,∴AO=BO=CO,∴设AO=BO=CO=x,根据题意可得:x×2x=16,解得:x=4,则B(﹣4,0),C(4,0),A(0,4),将B,A分别代入y=kx+b得:,解得:,故其函数解析式为:y=x+4,故其“镜子”函数为:y=﹣x+4.27.(8分)(2022秋•皇姑区校级期末)在初学函数过程中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题;在y=a|x|+b中,如表是y与x的几组对应值.(1)直接写出a=,b=;(2)直接写出m=,n=;(3)在给出的平面直角坐标系xOy中,描出以上表格中各组对应值为坐标的点,并根据描出的点,画出该函数的图象.根据函数图象可得:①该函数的最小值为;②该函数图象轴对称图形(填“是”或“不是”);(4)已知点(2022,y1)和(﹣2023,y2)在函数y=a|x|+b的图象上,则比较y1y2(填“>”或“<”).解:(1)∵函数y=a|x|+b的图象经过点(﹣1,3),(0,1),∴,解得,故答案为:2,1;(2)∵y=2|x|+1,∴当x=﹣2时,m=2×|﹣2|+1=5,当x=1时,n=2×|1|+1=3.故答案为:5,3;(3)函数y=2|x|+1的图象如图所示:根据图象可知,①该函数的最小值为1.②该函数图象是轴对称图形,故答案为:1;是;(4)∵点(2022,y1)到对称轴y轴的结论小于点(﹣2023,y2)的距离,∴y1<y2.故答案为:<.28.(8分)(2021秋•镇海区期末)如图,一次函数y=﹣x+4的图象交y轴于点A,交x轴于点B,点P为AB中点,点C,D分别在OA,OB上,连结PC,PD,点A,E关于PC对称,点B,F关于PD对称,且CE∥DF.(1)直接写出点A,B,P的坐标.(2)如图1,若点O,E重合,求DF.(3)如图2,若点F横坐标为5,求点E的坐标.解:(1)∵当x=0时,y=4,∴A(0,4),∵当y=0时,即,则x=8,∴B(8,0),∵点P为AB中点∴P(4,2),综上所述:A(0,4),B(8,0),P(4,2);(2)∵点C在OA,点A,E关于PC对称,此时点O,E重合,∴CE⊥x轴,∵CE∥DF,∴DF⊥x轴,∵B(8,0),P(4,2),∴PB2=(8﹣4)2+(0﹣2)2=20,∵点B,F关于PD对称,∴PF=PB,DF=DB设OD=m,则DF=DB=8﹣m,∴F(m,m﹣8),∴PF2=(m﹣4)2+(m﹣10)2=2m2﹣28m+116,∵PF2=PB2,∴2m2﹣28m+116=20,解得:m1=6,m2=8(舍),∴DF=8﹣6=2;(3)设F(5,n),由折叠知PF=PB==2,∵P(4,2),∴,解得n=2+(舍)或n=2﹣,∴F(5,2﹣),设PF的解析式为y=kx+b(k≠0),则,解得,∴直线PF的解析式为:y=﹣x+4+2,过P作PQ∥CE,则PQ∥CD∥DF,∴∠EPQ=∠E=∠PAC,∠FPQ=∠F=∠ABD,∴∠EPF=∠EPQ+∠FPQ=∠PAC PBD=90°,即PE⊥PF,∴可设直线PE的解析式为y=x+m,把P(4,2)代入得2=+m,解得m=2﹣,∴直线PE的解析式为y=x+2﹣,设E(t,t+2﹣),∵PE=PA=2,∴解得t=4+(舍)或t=4﹣,∴E(4﹣,1)。

北师大版八年级数学上期中复习(培优)一次函数

北师大版八年级数学上期中复习(培优)一次函数

北师大版八年级数学上期中复习必刷题(培优)一.选择题(共1小题)1.一次函数y=mx+n与正比例函数y=mnx(m、n为常数,且m≠0),它们在同一坐标系中的大致图象是()A.B.C.D.二.填空题(共11小题)2.如图,在平面直角坐标系中,A(,1),B(2,0),点P为线段OB上一动点,将△AOP沿AO 翻折得到△AOC,将△ABP沿AB翻折得到△ABD,则△ACD面积的最小值为.3.当x=2+时,x2﹣4x+2020=.4.如图,直线y=2x﹣1分别交x,y轴于点A,B,点C在x轴的正半轴,且∠ABC=45°,则直线BC的函数表达式是.5.如图,在△ABC中,∠ACB=90°,AC=4,BC=,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1D的长是.6.如图,直线l:y=x+1与x轴正方向夹角为30°,点A1、A2、A3、…在x轴上,点B1、B2、B3、…在直线l上,△OB1A1、△A1B2A2、△A2B3A3…均为等边三角形,则A2020的横坐标为.7.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D 是斜边AB的中点,则CD=AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为.8.求值:=.9.如图,在矩形ABCD中,AB=3,点E为边CD上一点,将△ADE沿AE所在直线翻折,得到△AFE,点F恰好是BC的中点,M为AF上一动点,作MN⊥AD于N,则BM+AN的最小值为.10.在直角坐标系中,如图所示,把∠BAO放在直角坐标系中,使射线AO与x轴重合,已知∠BAO=30°,OA=OB=1,过点B作BA1⊥OB交x轴于A1,过A1做B1A1⊥BA1交直线AB于点B1,过点B1做B1A2⊥B1A1交x轴于点A2,再过A2依次作垂线…,则△A1B1A2的面积为,△A n B n A n+1的面积为.11.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x 轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是.12.已知直线l1:y=x+6与y轴交于点B,直线l2:y=kx+6与x轴交于点A,且直线l1与直线l2相交所形成的角中,其中一个角的度数是75°,则线段AB的长为.三.解答题(共28小题)13.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.14.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD 并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.15.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)16.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.17.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.18.如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.19.在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别交于A、B两点.动点P从点A 出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q 两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为;(2)设MN、PN分别与直线y=x+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.20.(1)计算:+﹣(2)计算:×﹣+21.我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y =,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M 和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D和E 的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.24.计算(1)+|2﹣|﹣﹣(π﹣)0(2)(﹣2)×+325.如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.(1)求k的值;(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E.(i)若直线l把△BOC分成面积比为1:2的两部分,求直线l的函数表达式;(ⅱ)连接AD,若△ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标.26.已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A 关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.27.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.28.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P 的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.29.问题:如图1,在等边△ABC内部有一点P,已知P A=3,PB=4,PC=5,求∠APB的度数?(1)请写出常见四组勾股数:、、、.(2)解决方法:通过观察发现P A,PB,PC的长度符合勾股数,但由于P A,PB,PC不在一个三角形中,想法将这些条件集中在一个三角形,于是可将△ABP绕A逆时针旋转60°到△AP′C,此时△ABP ≌△ACP',这样利用等边三角形和全等三角形知识,便可求出∠APB=.请写出解题过程.(3)应用:请你利用(2)题的思路,解答下面的问题:如图2,在△ABC中,∠CAB=90°,AB=AC,E,F为BC的点,且∠EAF=45°,若BE=m,FC=n,请求出线段EF的长度(用m、n的代数式表示).30.如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线y=x+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∥y轴交直线y=x+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∠CGF=∠ABC时,求点G的坐标.31.如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.32.某服务厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(I)买一套西装送一条领带;(II)西装和领带均按定价的90%付款.某超市经理现要到该服务厂购买西装20套,领带若干条(不少于20条).(1)设购买领带为x(条),采用方案I购买时付款数为y I(元),采用方案II购买时付款数为y II(元).分别写出采用两种方案购买时付款数与领带条数x之间的函数关系式;(2)就领带条数x讨论在上述方案中采用哪种方案购买合算.33.如图1,在平面直角坐标系中,直线l1:y=﹣x+5与x轴,y轴分别交于A,B两点.直线l2:y=﹣4x+b 与l1交于点D(﹣3,8)且与x轴,y轴分别交于C,E.(1)求出点A坐标,直线l2解析式;(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间时点P的坐标;(3)如图3,平面直角坐标系中有一点G(m,2),使得S△CEG=S△CEB,求点G坐标.34.某工厂准备在春节前生产甲、乙两种型号的新年礼盒共80万套,两种礼盒的成本和售价如表所示;甲乙成本(元/套)2528售价(元/套)3038(1)该工厂计划筹资金2150万元,且全部用于生产甲乙两种礼盒,则这两种礼盒各生产多少万套?(2)经过市场调查,该厂决定在原计划的基础上增加生产甲种礼盒a万套,增加生产乙种礼盒b万套(a,b都为正整数),且两种礼盒售完后所获得的总利润恰为690万元,请问该工厂有几种生产方案?并写出所有可行的生产方案.(3)在(2)的情况下,设实际生产的两种礼盒的总成本为W万元,请写出W与a的函数关系式,并求出当a为多少时成本W有最小值,并求出成本W的最小值为多少万元?35.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.36.如图,在平面直角坐标系中,A(a,0),B(0,b),且a,b满足(a+1)2+=0.直线l1经过点A和B.(1)A点的坐标为(,),B点的坐标为(,);(2)如图1,已知直线l2经过点A和y轴上一点M,∠MAO=60°,点P是直线AB位于y轴右侧图象上一点,连接MP,且S△BMP=S△ABM.①求P点坐标;②将△AOM沿直线AM平移得到△A′O′M′,平移后的点A′与点M重合,N为A′M′上的一动点,当M′N+NP的值最小时,请求出最小值及此时N点的坐标;(3)如图2,将点A向左平移2个单位到点C,直线l3经过点B和C,点D是点C关于y轴的对称点,直线l4经过点B和点D.动点Q从原点出发沿着x轴正方向运动,连接BQ,过点C作直线BQ的垂线交y轴于点E,在直线BD上是否存在点G,使得△EQG是等腰直角三角形?若存在,求出G点坐标.37.如图1,直线y=﹣x+3交x轴于点B,交y轴于点C.点A在x轴负半轴上且∠CAO=30°.(1)求直线AC的解析式;(2)如图2,边长为3的正方形DEFG,G点与A点重合,现将正方形以每秒1个单位地速度向右平移,当点G与点O重合时停止运动.设正方形DEFG与△ACB重合部分的面积为S,正方形DEFG运动的时间为t,求s关于t的函数关系式;(3)如图3,已知点Q(1,0),点M为线段AC上一动点,点N为直线BC上一动点,当三角形QMN 为等腰直角三角形时,求M点的坐标.38.如图,在平面直角坐标系中,直线l1:y=x+和直线l2:y=﹣x+b相交于y轴上的点B,且分别交x轴于点A和点C.(1)求△ABC的面积;(2)点E坐标为(5,0),点F为直线l1上一个动点,点P为y轴上一个动点,求当EF+CF最小时,点F的坐标,并求出此时PF+OP的最小值;(3)将△OBC沿直线l1平移,平移后记为△O1B1C1,直线O1B1交l2于点M,直线B1C1交x轴于点N,当△B1MN为等腰三角形时,请直接写出点C1的横坐标.39.在平面直角坐标系xOy中,直线l1:y=k1x+2与x轴、y轴分别交于点A、B两点,OA=OB,直线l2:y=k2x+b经过点C(1,﹣),与x轴、y轴和线段AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图①:若EC=ED,求点D的坐标和△BFD的面积;(3)如图②:在坐标轴上是否存在点P,使△PCD是以CD为底边的等腰直角三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.40.如图,在平面直角坐标系内,点O为坐标原点,经过A(﹣2,6)的直线交x轴正半轴于点B,交y 轴于点C,OB=OC,直线AD交x轴负半轴于点D,若△ABD的面积为27.(1)求直线AD的解析式;(2)横坐标为m的点P在AB上(不与点A,B重合),过点P作x轴的平行线交AD于点E,设PE的长为y(y≠0),求y与m之间的函数关系式并直接写出相应的m的取值范围;(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.参考答案一.选择题(共1小题)1.A.二.填空题(共11小题)2.如图,在平面直角坐标系中,A(,1),B(2,0),点P为线段OB上一动点,将△AOP沿AO 翻折得到△AOC,将△ABP沿AB翻折得到△ABD,则△ACD面积的最小值为.【解答】解:如图,作AH⊥OB于H.∵A(,1),∴OH=,AH=1,∴tan∠OAH==,∴∠OAH=60°,∵B(2,0),∴OH=HB=,∵AH⊥OB,∴AO=AB,∴∠OAH=∠BAH=60°,由翻折的性质可知:AP=AC=AD,∠P AO=∠CAO,∠BAP=∠BAD,∴∠OAC+∠BAD=∠OAB=120°,∴∠CAD=360°﹣2×120°=120°,∴△CAD是顶角为120°的等腰三角形,根据垂线段最短可知,当AP与AH重合时,AC=AD=P A=1,此时△ACD的面积最小,最小值=×1×1•sin60°=.故答案为.3.当x=2+时,x2﹣4x+2020=2019.【解答】解:由已知得:x﹣2=,∴x2﹣4x+2020=(x﹣2)2+2016=3+2016=2019.故答案为:2019.4.如图,直线y=2x﹣1分别交x,y轴于点A,B,点C在x轴的正半轴,且∠ABC=45°,则直线BC的函数表达式是y=x﹣1.【解答】解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1;令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,如图,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,则,解得,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.5.如图,在△ABC中,∠ACB=90°,AC=4,BC=,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1D的长是2.【解答】解:∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,BC=,∴AB===3,∵AB×CE=BC×AC,∴CE===,又∵A1C=AC=4,∴A1E=4﹣=,∵A1D∥BC,∴△A1DE∽△CBE,∴=,即==2,∴A1D=2,故答案为:2.6.如图,直线l:y=x+1与x轴正方向夹角为30°,点A1、A2、A3、…在x轴上,点B1、B2、B3、…在直线l上,△OB1A1、△A1B2A2、△A2B3A3…均为等边三角形,则A2020的横坐标为(22020﹣1).【解答】解:∵直线l:y=x+1交x轴于点A,交y轴于点B,∴∠BAO=30°,点A(﹣,0).∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠AB1O=∠AB2A1=∠AB3A2=…=30°,∴OA1=OA,OA2=OA1+AA1=3OA,OA3=OA2+AA2=7OA,OA4=OA3+AA3=15OA,…,∴OA n=(2n﹣1)OA=(2n﹣1).∴A2020的横坐标为(22020﹣1),故答案为:(22020﹣1).7.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D 是斜边AB的中点,则CD=AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为.【解答】解:如图,连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∠BAC=90°,AB=2,AC=3,由勾股定理得BC=,由题可得AD=DC=DB=,∵•BC•AH=•AB•AC,∴×=∴AH=,∵AE=AB,DE=DB,∴点A在BE的垂直平分线上,点D在BE的垂直平分线上,∴AD垂直平分线段BE,∵AD•BO=BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===.故答案为.8.求值:=3﹣.【解答】解:∵<3,∴﹣3<0,∴=|﹣3|=3﹣.故答案为:3﹣.9.如图,在矩形ABCD中,AB=3,点E为边CD上一点,将△ADE沿AE所在直线翻折,得到△AFE,点F恰好是BC的中点,M为AF上一动点,作MN⊥AD于N,则BM+AN的最小值为.【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,BC=AD,∵将△ADE沿AE所在直线翻折,得到△AFE,∴AF=AD,∠F AE=∠DAE,∵点F恰好是BC的中点,∴BF=,∴∠BAF=30°,∴∠DAF=60°,∴∠F AE=,∴∠BAF=∠F AE,过B作BG⊥AF交AE于G,则点B与点G关于AF对称,过G作GH⊥AB于H交AF于M,则此时,BM+MH的值最小,∵MN⊥AD,∴四边形AHMN是矩形,∴AN=HM,∴BM+MH=BM+AN=HG,∵AB=AG,∠BAG=60°,∴△ABG是等边三角形,∴AG=BG=AB=3,∴AH=BH=,∴HG==,∴BM+AN的最小值为,故答案为:.10.在直角坐标系中,如图所示,把∠BAO放在直角坐标系中,使射线AO与x轴重合,已知∠BAO=30°,OA=OB=1,过点B作BA1⊥OB交x轴于A1,过A1做B1A1⊥BA1交直线AB于点B1,过点B1做B1A2⊥B1A1交x轴于点A2,再过A2依次作垂线…,则△A1B1A2的面积为,△A n B n A n+1的面积为•32n.【解答】解:∵OB=OA=1,∴∠BAC=∠ABO=30°,∴∠BOC=60°,∴∠BA1O=30°,∴BA1=,同理∠BB1A1=30°,∴B1A1=()2,同理:B1A2=()3,A2B2=()4,…A nB n=()2n,∴△A1B1A2的面积=×3×3=,△A n B n A n+1的面积=•()2n•()2n×=•32n.11.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x 轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()n﹣1.【解答】解:∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形A n B n∁n D n的面积=()n﹣1,故答案为:()n﹣1.12.已知直线l1:y=x+6与y轴交于点B,直线l2:y=kx+6与x轴交于点A,且直线l1与直线l2相交所形成的角中,其中一个角的度数是75°,则线段AB的长为12或4.【解答】解:令直线y=x+6与x轴交于点C,令y=x+6中x=0,则y=6,∴B(0,6);令y=kx+6中y=0,则x=﹣6,∴C(﹣6,0),∴∠BCO=45°,如图1所示,∵α=∠BCO+∠BAO=75°,∴∠BAO=30°,∴AB=2OB=12,如图2所示,∵α=∠CBO+∠ABO=75°,∴∠ABO=30°,∴AB=OB=4,故答案为:12或4.三.解答题(共28小题)13.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.【解答】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).14.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD 并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=45度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.【解答】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH=EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH=CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=AF,∵在Rt△AEF中,AE2=AF2+EF2,∴(AF)2+(EF)2=2AE2,∴EH2+CH2=2AE2.15.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:CD =AD+BD(不写证明过程)【解答】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=AD,∵CD=DE+CE,∴CD=AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=AD,∴DH==AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD=AD+BD,故答案为:CD=AD+BD.16.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.【解答】解:(1)由,解得,所以P(﹣1,﹣1);(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),则S△APB=(1+2)×1=;(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣,∴C(﹣,0),设T(x,0),∴CT=|x+|,∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=•|x+|•(1+1)=|x+|,∴|x+|=,解得x=1或﹣2,∴T(1,0)或(﹣2,0).17.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.【解答】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.18.如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.【解答】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=﹣x+2;(2)直线AB的表达式为:y=﹣x+2,则点D(0,2),由点A、B、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣x+2,故点C(,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=OP=(2﹣t),由勾股定理得:PH=(2﹣t)=QH,OQ=QH+OH=(2﹣t)+(2﹣t)=t,解得:t=;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=OP,即t=(2﹣t),解得:t=;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t=或.19.在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别交于A、B两点.动点P从点A 出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q 两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为2;(2)设MN、PN分别与直线y=x+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.【解答】解:(1)在y=﹣x+4中,令y=0,得x=6,∴OA=6,∵t=2,∴AP=PQ=2,∴OQ=6﹣2﹣2=2,故答案为:2;(2)∵AP=PQ=t,∴OQ=6﹣2t,∵四边形PQMN是正方形,∴PQ=QM=MN=PN=t,∴M(6﹣2t,t),N(6﹣t,t),C(6﹣t,t),∴CM=(6﹣t)﹣(6﹣2t)=t,CN=(6﹣t)﹣(6﹣t)=t,∴CM=CN;(3)作矩形NEFK,则EN=FK,∵OF+EN=OF+FK,∴当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,在等腰直角三角形PQN中,∵PQ=t,∴QN=t,∴HN=QN﹣QH=t﹣(t﹣3)=3,∴OF+EN的最小值为:HE+EN=HN=3.20.(1)计算:+﹣(2)计算:×﹣+【解答】解:(1)原式=+2﹣=;(2)原式=2×﹣3+×3=1﹣3+2=0.21.我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.【解答】(1)证明:∵垂美四边形ABCD的对角线AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①证明:连接BG、CE相交于点N,CE交AB于点M,如图2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形BCGE是垂美四边形;②解:∵四边形BCGE是垂美四边形,∴由(1)得:CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵正方形ACFG和正方形ABDE,∴CG=AC=4,BE=AB=5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【解答】解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.23.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y =,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M 和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D和E 的融合点.(1)若点E的纵坐标是6,则点T的坐标为(,2);(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.【解答】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).24.计算(1)+|2﹣|﹣﹣(π﹣)0(2)(﹣2)×+3【解答】解:(1)+|2﹣|﹣﹣(π﹣)0=2+﹣2﹣(﹣3)﹣1=3(2)(﹣2)×+3=×﹣2×+3×=6﹣2+=6﹣25.如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.(1)求k的值;。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一次函数》培优资料(1)专题一:一次函数的定义、图像及性质1.对于一次函数y = kx + k -1(k ? 0),下列叙述正确的是()A.当0 < k <1 时,函数图象经过第一、二、三象限B.当k > 0 时,y 随x 的增大而减小C.当k <1 时,函数图象一定交于y 轴的负半轴D.函数图象一定经过点(-1, -2)2.对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.3.直线y=kx+b 经过点(2,﹣4),且当3≤x≤6 时,y 的最大值为8 则k+b 的值为.4.两个一次函数y=ax+b与y=bx+a在同一坐标系中的图象大致是()5.如图,函数y=mx﹣4m(m 是常数,且m≠0)的图象分别交x 轴y 轴于点M、N,线段MN 上两点A、B(点B 在点A 的右侧),作AA1 ⊥x 轴,BB1⊥x 轴,且垂足分别为A1,B1,若OA1+OB1>4,则△OA1A 的面积S1 与△OB1B 的面积S2 的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.不确定的6.已知直线y =- n x +n +11n +1(n 为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2018= .7.如图,在平面直角坐标系中,函数y=﹣2x+12 的图象分别交x 轴y 轴于A、B 两点,过点A 的直线交y 正半轴于点M,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)试在直线AM 上找一点P,使得S=S△AOM,请直接写出点P△ABP的坐标.8.点C 在直线AM 上,在坐标平面内是否存在点D,使以A、O、C、D 为顶点的四边形是正方形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.专题二:重要公式和结论1.直线y=kx+b过点(x1,y1),(x2,y2),若x1﹣x2=1,y1﹣y2=﹣2,则k 的值为.2.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(﹣2 0),B(0,1),则直线BC 的解析式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M 的直线将平行四边形OABC 的面积分成相等的两部分,请写出该直线的函数表达式.4.如图,点A的坐标为(﹣2,0),点B在直线上运动,当点B 的坐标是时,线段AB 最短,最短距离为.5.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP 的对称点B′恰好落在x 轴上,则点P 的坐标为.6.对于坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2 两点间的“转角距离”,记作d(P1,P1).(1)令P0(3,﹣4),O为坐标原点,则d(O,P0)=;(2)已知O 为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中,画出所有符合条件的点P 所组成的图形;7.设P0(x0,y0)是一个定点,Q(x,y)是直线y=ax+b 上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的“转角距离”.若P(a,﹣2)到直线y=x+4 的“转角距离”为10,求a 的值.专题三:直线与x轴正方向夹角和k的关系1.已知:一次函数的图象如图所示,则k= .2.如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b 的表达式为.3.如图,点A 的坐标为(﹣2,0),点B 在直线y=x 上运动,当线段AB 长最短时点B 的坐标为.4.如图,在平面直角坐标系中,直线l:y = 3 x ,直线l2:y =3x ,在3直线l1 上取一点B,使OB=1,以点B 为对称中心,作点O 的对称点B1,过点B1 作B1A1∥l2,交x 轴于点A1,作B1C1∥x 轴,交直线l2 于点C1,得到四边形OA1B1C1;再以点B1 为对称中心,作O 点的对称点B2,过点B2 作B2A2∥l2,交x 轴于点A2,作B2C2∥x 轴,交直线l2 于点C2,得到四边形OA2B2C2;…;按此规律作下去,则四边形OA n B n C n的面积是.5.已知,直线x +与x 轴,y 轴分别交于点A,B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a 为坐标系中的一个动点.= ;(1)则三角形ABC 的面积S△ABC点C 的坐标为;(2)证明不论 a 取任何实数,△BOP 的面积是一个常数;(3)要使得△ABC 和△ABP 的面积相等,求实数a 的值.6.如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A、B 两点,点A 的坐标为(1,0)∠ABO=30°,过点B 的直线y= x+m 与x 轴交于点C.(1)求直线l 的解析式及点C 的坐标.7.点D 在x 轴上从点C 向点A 以每秒1 个单位长的速度运动(0<t<4),过点D 分别作DE∥AB,DF∥BC,交BC、AB 于点E、F,连接EF,点G 为EF 的中点.①判断四边形DEBF 的形状并证明;②求出t 为何值时线段DG 的长最短.8.点P 是y 轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,说明理由.《一次函数》培优资料(2)专题四:一次函数与几何变换1. ( 1 )直线y = 2x +1 向下平移 3 个单位后的解析式是.( 2 )直线y = 2x +1 向右平移 3 个单位后的解析式是.2.如图,已知点 C 为直线y =x 上在第一象限内一点,直线y = 2x +1 交y轴于点A,交x 轴于B,将直线AB 沿射线OC 方向平移3 2 个单位,则平移后的直线的解析式为.yACBO x3.如图,平面直角坐标系中,△ABC 的顶点坐标分别是A(1,1),B (3,1),C(2,2),当直线与△ABC 有交点时,b 的取值范围是.4.在平面直角坐标中,已知点A(-2,3)、B(4,5),直线y=kx+1(k≠0 与线段AB 有交点,则k 的取值范围为.5.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=﹣|2x+b|(b 为常数)的图象.若该图象在直线y=2 下方的点的横坐标x 满足0<x<3,则b 的取值范围为.6.如图,函数y=﹣2x+2 的图象分别与x 轴、y 轴交于A,B 两点,线段AB绕点A顺时针旋转90°得到线段AC,则直线AC的函数解析式是.7.如图,在平面直角坐标系中,矩形OABC 的顶点A,C 分别在x 轴y 轴上,点B 在第一象限,直线y=x+1 交y 轴于点D,且点D 为CO 中点,将直线绕点D 顺时针旋转15°经过点B ,则点B 的坐标为.8.如图1,已知平行四边形ABCD,AB∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是平行四边形ABCD 边上的一个动点.(1)若点P 在边BC 上,PD=CD,求点P 的坐标.(2)若点P 在边AB,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x﹣1 上,求点P 的坐标.解:(1)∵CD=6,∴点P 与点C 重合,∴点P 坐标为(3,4).(2)①当点P 在边AD 上时,∵直线AD 的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P 关于x 轴的对称点Q1(a,2a+2)在直线y=x﹣1 上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P 关于y 轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1 上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P 在边AB 上时,设P(a,﹣4)且1≤a≤7,若等P 关于x 轴的对称点Q2(a,4)在直线y=x﹣1 上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P 关于y 轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1 上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P 的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).9.若点P 在边AB,AD,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM,过点G 作x 轴的平行线GM,它们相交于点M,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)(3)①如图1 中,当点P 在线段CD 上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得,∴P (﹣,4)根据对称性可知,P(,4)也满足条件.②如图2 中,当点P 在AB 上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P 坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4)10.如图,直线l1 与x 轴、y 轴分别交于A、B 两点,直线l2 与直线l1 关于x 轴对称,已知直线l1 的解析式为y=x+3,(1)求直线l2 的解析式;y=﹣x﹣3(2)过A 点在△ABC 的外部作一条直线l3,过点B 作BE⊥l3 于E,过点C 作CF⊥l3 于F,请画出图形并求证:BE+CF=EF;(2)如图.BE+CF=EF.∵直线l2 与直线l1 关于x 轴对称,∴AB=AC,∵l1 与l2 为象限平分线的平行线,∴△OAC 与△OAB 为等腰直角三角形,∴∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P,过P 点的直线与AC 边的延长线相交于点Q,与y 轴相交于点M,且BP=CQ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.(3)①对,OM=3过Q 点作QH⊥y 轴于H,直线l2 与直线l1 关于x 轴对称∵∠POB=∠QHC=90°,BP=CQ,又∵AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM ∴HM=OM∴OM=BC﹣(OB+CM)=BC﹣(CH+CM)=BC﹣OM∴OM= BC=3.例1对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1 次斜平移后的点的坐标为(3,5),已知点A 的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.①若A. B. C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C 的坐标为(7,6),求出点B的坐标及n的值.例2 已知,在平面直角坐标系中,正方形ABOC的顶点在原点.(1)如图,若点C 的坐标为(-1,3),求A点坐标;(2)如图,点F 在AC 上,AB 交x 轴于点E。

相关文档
最新文档