高等代数 集合与映射

合集下载

高等代数 集合与映射共29页

高等代数 集合与映射共29页

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
高等代数 集合与映射ቤተ መጻሕፍቲ ባይዱ
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯

《高等代数》第一章主要内容

《高等代数》第一章主要内容

§1.4 整数的一些整除性质
• • 整除概念:设a,b是两个整数.如果存在一个整数d,使得b=ad,那么就说a整除b (或者说b被a整除)用符号a∣b来表示a整除b.这时a叫作b的一个因数,而b叫 作a的一个倍数. 整除的基本性质:⑴ a∣b,b ∣ c=>a ∣ c. ⑵ a∣b, a ∣ c =>a ∣ (a+b). ⑶ a∣b,而c∈Z =>a ∣ bc. 由⑵与⑶得⑷ a∣bi,而ci ∈Z ,i=1,2, …,t => a ∣ (b1c1+ …+btct). ⑸每一个整数都可以被1和-1整除. ⑹每一个整数a都可以 被它自己和它的相反数-a整除. ⑺ a∣b且b ∣ a =>b=a 或 b=-a. 定理1.4.1(带余除法)设a,b是整数且a≠0,那么存在一对整数q和r,使得 b=aq+r 且0≦r ﹤∣a∣. 满足以上条件的整数q和r是唯一确定的. 最大公因数概念:设a,b是两个整数. 满足下列条件的整数d叫作a与b的一个最大 公因数: (ⅰ)d∣a,d∣b; (ⅱ)如果c∈Z 且c∣a,c∣b,那么c∣d . 一般地, 设a1,a2, …,an是n个整数.满足下列条件的整数d叫作a1,a2, …,an 的一个最大公 因数(ⅰ)d ∣ai, i=1,2, …,n ;(ⅱ) 如果c∈Z 且c∣ ai, i=1,2, …,n,那么 c∣d. 定理1.4.2 任意n(n≧2)个整数a1,a2, …,an 都有最大公因数.如果d是 a1,a2, …,an 的一个最大公因数,那么-d也是一个最大公因数; a1,a2, …,an 的 两个最大公因数至多相差一个符号. 定理1.4.3 设d是整数a1,a2, …,an 的一个最大公因数,那么存在整数t1,t2, …,tn, 使得 t1a1+t2a2+…+tnan=d. 定理1.4.4 n个整数a1,a2, …,an 互素的充要的条件是存在整数t1,t2, …,tn,使 得 t1a1+t2a2+…+tnan=1. 定理1.4.5 一个素数如果整除两个整数a与b的乘积,那么它至少整除a与b中的 一个

映射法高一数学知识点总结

映射法高一数学知识点总结

映射法高一数学知识点总结在高一的数学学习中,映射法是一种重要的解题方法,它能够帮助我们在解决各种数学问题时更加清晰地思考。

在本文中,我将总结高一数学中的一些重要知识点,并结合映射法来进行讲解和应用。

一、映射与函数在数学中,映射是指一种从一个集合到另一个集合的对应关系。

而函数则是一种特殊的映射,它要求每个输入值都有唯一对应的输出值。

我们可以通过映射的图象、对应法则和定义域等方面来描述一个函数。

在解题中,我们可以通过映射的性质来简化计算,找到问题的关键所在。

二、集合与映射集合是数学中的基本概念,而映射则是将一个集合中的元素对应到另一个集合中的元素。

在解决集合和映射相关的问题时,我们可以运用映射法来分析和解答。

比如,在排列组合和概率等问题中,我们可以通过建立集合与映射的对应关系来快速求解。

三、函数的性质与应用函数是高中数学中的重点内容,它有很多重要的性质和应用。

其中,一次函数、二次函数和反比例函数是我们比较常见的函数类型。

在解决函数相关的问题时,我们可以利用映射法来推导函数的性质和应用,从而更好地理解和应用函数概念。

四、映射法在直角坐标系中的应用映射法在直角坐标系中有广泛的应用。

我们可以利用映射法来求解两点间的距离、两直线间的夹角以及两点间的中点等问题。

此外,映射法也可以帮助我们理解平移、旋转和翻折等几何变换,从而更好地解决相关的几何问题。

五、映射法在函数图象中的应用在研究函数的图象时,映射法可以帮助我们更好地分析和理解函数的性质。

通过建立函数的图象与输入输出的对应关系,我们可以求解函数的零点、最值和增减性等问题。

此外,映射法还可以帮助我们研究函数图象的对称性和周期性,进一步加深对函数的理解。

六、映射法在数列与数列极限中的应用数列是高中数学中的重要内容,而映射法可以帮助我们更好地研究数列的性质。

通过建立数列与输入输出的对应关系,我们可以求解数列的通项公式、前n项和以及极限等问题。

此外,映射法还可以帮助我们研究数列的收敛性和发散性,提高解题的效率和准确性。

高中数学奥赛辅导 第六讲 集合与映射

高中数学奥赛辅导 第六讲 集合与映射

数学奥赛辅导 第六讲 集合与映射知识、方法、技能这一讲主要介绍有限集的阶,有限集上的映射及其性质,这些在与计数有关的数学竞赛问题中应用极广,是参赛者必不可少的知识Ⅰ.有限集元素的数目 1.有限集的阶有限集A 的元素数目叫做这个集合的阶,记作|A|[或n(A)]. 2.集族的阶若M 为由一些给定的集合构成的集合,则称集合M 为集族.设A 为有限集,由A 的若干个子集构成的集合称为集合A 的一个子集族,求满足一定条件的集族的阶是一类常见的问题.显然,若|A|=n ,则由A 的所有子集构成的子集族的阶为2n . Ⅱ.映射,映射法定义1 设X 和Y 是两个集合(二者可以相同).如果对于每个X x ∈,都有惟一确定的Y y ∈与之对应,则称这个对应关系为X 到Y 的映射.记为.Y y X x Y X ∈→∈→或这时,Y x f y ∈=)(称为X x ∈的象,而x 称为y 的原象,特别当X 和Y 都是数集时,映射f 称为函数.定义2 设f 为从X 到Y 的一个映射.(1)如果对于任何x 1、.),()(,,21212为单射则称都有f x f x f x x X x ≠≠∈ (2)如果对于任何Y y ∈,都有X x ∈,使得f (x )=y ,则称f 为满射; (3)如果映射f 既为单射又为满射,则称f 为双射;(4)如果f 为满射且对任何Y y ∈,恰有X 中的m 个元素x 1、x 2、…x m ,使得.)(,,,2,1,)(倍数映射的倍数为为则称m f m i y x f i ==定理1 设X 和Y 都是有限集,f 为从X 到Y 的一个映射, (1)如果f 为单射,则|X|≤|Y| (2)如果f 为满射,则|X|≥|Y| (3)如果f 为双射,则|X|=|Y|(4)如果f 为倍数为m 的倍数映射,则|X|=m|Y|. 这个定理的结果是显然的.定理2 设有限集f a a a A n },,,,{21 =是A 到A 上的映射,),()(1x f x f =),,)](([)(1*+∈∈=N r A x x f f x f r r 则f 是一一映射(即双射)的充要条件是:对任意).11,()(,)(1,,-≤≤∈≠=≤≤∈∈**i i i s i i m i i i m s N s a a f a a f n m N m A a i 而使得存在证明:必要性.若f 是双射,则i i a a f ==)(1(此时m i =1),或者.)(11i i i a a a f ≠=在后一种情形下,不可能有.)()(1112i i i a a f a f ==否则,a i 1在A 中有两个原象a i 和a i 1,与f 是双射不合,而只可能有2222)(,,)(),2()(12i i i i i i i i i a a f a a a a f m a a f =≠===如果或者此时,则依同样的道理,不可能有或者此时而只可能有),3()(,,)()(33212====i i i i i i i m a a f a a a f a f213,,)(3i i i i i a a a a a f ≠=.如此等等.因为A 是有限集,所以经过有限次(设经过m 次)后,有i s i i m a ai f a a f i ≠=)(,)(而).11,(-≤≤∈*i m s N s这表明当f 是双射时,对任一A a i ∈都存在着映射圈:i im i i i a a a a a i →→→→-121在这个映射圈中,诸元素互异,且),1(1i i i a m n m 只有一个元素=≤≤充分性.如果对任意i i s i i m i i i i a a f a a f n m N m A a ≠=≤≤∈∈*)(,)(,1,,而使存在)1,(1-*≤≤∈i m s N s ,这说明从A 中任一元素a i 出发,都可以得到一个包含m i 个互异元素的映射圈,显然f 是双射.定理3 在命题1的条件下,若对i i m i i i a a f N m A a =∈∈*)(,,使存在,则对任意.)(,i i tm a a f N t i =∈*有这是明显的事实,证明从略.赛题精讲例1:设集合,30001|{},,14,20001|{≤≤=∈+=≤≤=y y B Z k k x x x A 集合||},,13B A Z k k y ⋂∈-=求.【解】形如4k +1的数的数可分三类:)(912,512,112Z l l l l ∈+++,其中只有形如12l +5的数是形如3k -1的数..167||},1997,,17,5{,1660),(20005121=⋂=⋂≤≤∈≤+≤B A B A l Z l l 所以所以得令例2:有1987个集合,每个集合有45个元素,任意两个集合的并集有89个元素,问此1987个集合的并集有多少个元素.【解】显然,可以由题设找到这样的1987个集合,它们都含有一个公共元素a ,而且每两个集合不含a 以外的公共元素.但是,是否仅这一种可能性呢?由任意两个集合的并集有89个元素可知,1987个集合中的任意两个集合有且仅有一个公共元素,则容易证明这1987个集合中必有一个集合中的元素a 出现在A 以外的45个集合中,设为A 1,A 2,…,A 45,其余的设为A 46,A 47,…,A 1996.设B 为A 46,…,A 1996中的任一个集合,且B a ∉,由题设B 和A ,A 1,A 2,…,A 45都有一个公共元素,且此46个元素各不相同,故B 中有46个元素,与题设矛盾,所以这1987个集合中均含有a .故所求结果为1987×44+1=87429.即这1987个集合的并集有87429个元素. 例3:集合n B B B A ,,,},9,2,1,0{21 =为A 的非空子集族,并且当,2||≤⋂≠j i B B j i 时 求n 的最大值.【解】首先考虑至多含三个元素的A 的非空子集族,它们共有175310210110=++C C C 个,这说明.175max ≥n下证,.175max ≤n 事实上,设D 为满足题设的子集族,若,,4||,B b B D B ∈≥∈设且 则B 与B-{b}不能同时含于D ,以B-{b}代B ,则D 中元素数目不变.仿此对D 中所有元素数目多于4的集合B 作相应替代后,集族D 中的每个集合都是元素数目不多于3的非空集合,故.175max ≤n .所以,.175max =n在许多问题中,计数对象的特征不明显或混乱复杂难以直接计数,这时可以通过适当的映射将问题划归为容易计数的对象,然后再解决,从而取得化难为易的效果.例4:设},,,2,1{n S =A 为至少含有两项的公差为正的等差数列,其项都在S 中且当将S 的其他元素置于A 中之后,均不能构成与A 有相同公差的等差数列.求这种A 的个数(只有两项的数列也视为等差数列) 【解】当k n 2=为偶数时,满足题中要求的每个数列A 中必有连续两项,使其前一项在集{1,2,…,k}和{k +1,k +2,…,2k }中各任取一数,并以二数之差作为公差可以作出一个满足要求的数列A.容易看出,这个对应是双射.故知A 的个数为.422n k = 当n =2k +1为奇数时,情况完全类似.惟一的不同在于这时第二个集合},2,1{n k k ++ 有k +1个元素.故A 的个数为.4/)1()1(2-=+n k k例5:设a n 为下述自然数N 的个数:N 的各位数字之和为n 且每位数字都只能取1、3或4.求证对每个自然数n ,a 2n 都是完全平方数.【证明】记各位数字之和为n 且每位数字都是1或2的所有自然数的集合为S n ,并记,3,2,1,||2121--+=≥===n n n n n f f f n f f f S 时有且当则这意味着{f n }恰为菲波那契数列.作对应'1M M S n →∍如下:先将M 的数字中自左至右的第一个2与它后邻的数字相加,其和作为一位数字;然后再把余下数字中第一个2与它后邻的数字相加,所得的和作为下一位数字;依此类推,直到无数再相加为止.所得的新自然数M′除最后一位数可能为2之外,其余各位数字均为1、3或4.若记所有M ′的集合为T n ,则容易看出,上述对应是由S n 到T n 的双射,从而有n n n f S T ==||||,且显然有,4,3,2=+=-n a a f n n n ①对于任一数字和为2n ,各位数字均为1或2的自然数M ,必存在正整数k ,使得下列两条之一成立:(1)M 的前k 位数字之和为n ;(2)M 的前k 位数字之和为n -1,第k +1位数字为2.则立即可得 ,3,2,2122=+=-n f f f n n n ② 由①和②得到,2122222--+==+n n n n n f f f a a),(122222----=-n n n n f a f a ③因为.0,2,4,2,12242432=-====f a f a a a 所以于是由③递推即得,,3,2,1,22 ==n f a n n即n a 2为完全平方数.应用映射还可以证明某些与计数相关的不等式和等式.这时可以通过分别计数来证明等或不等,也可以不计数而直接通过适当的映射来解决问题.例6:将正整数n 写成若干个1和若干个2之和,和项顺序不同认为是不同的写法,所有写法种数记为a (n ).将n 写成若干个大于1的正整数之和,和项顺序不同认为是不同的写法,所有写法的种数记为)(n β.求证对每个n ,都有).2()(+=n n βα【证法1】将每项都是1或2,各项之和为n 的所有数列的集合记为A n ,每项都是大于1的正整数,各项之和为n 的所有数列的集合记为B n ,则问题就是证明|,|||2+=n n B A 显然,只需在两集之间建立一个双射就行了.i k ik i i n m a m i i i a a a A a a a a 其余的其中设,1,2,),,,(212121≤<<≤≤====∈= 均为1且令.21n a a a m =+++1211i a a a b +++= ,,22112122121121+++++++++++=+++=+++=--m i i k ik i i k i i i a a a b a a a b a a a b k k k k),,,,,(121+=k k b b b b b①则定义.2+∈n B b2+∈→∍n n B b a A②则f 为双射.事实上,若a a A a a n '≠∈'且,,,则或者数列a 和a ′中的2的个数不同,或者2的个数相同但位置不全相同.无论哪种情形,由①和②知f a f b a f b 即不同与,)()('='=为单射,另一方面,对任何2+∈n B b 利用①式又可确定,n A a ∈使得,,)(为满射即f b a f =从而f 为由A n 到B n +2的双射.【证法2】使用证一中的记号.n n B A 和对于任意的令,),,,,(2121+-∈=n m m A a a a a a,,2;,1,).,,,(11121A a a A a a a a a a m n m m ∈'=∈'=='+-时当时当显然 容易看出,映射 n n n A A a af A ⋃∈'→∍++12是双射,故有).()1()2(n n n ααα++=+注意到2)2(,1)1(==αα,便知,)(n f n =α这里|f n |为菲波那契数列.对于任意的令2121),,,,(+-∈=n k k B b b b b b⎩⎨⎧>-=='--2)1,,,,(2),,,(121121k k k k k b b b b b b b b b b 当当则当,,,2;,2,21容易验证时当时时+∈'>∈'='=n k n k B b b B b b b 映射n n n B B b b B ⋃∈'→∍++12为双射,故有),()1()2(n n n βββ++=+==+n f n )2(β所以a (n )【证法3】显然有),4(2)2(),3(1)1(βαβα===即命题于n =1,2时成立.设命题于,.2,)1(1k n k n k k n =+=≥+≤既然命题于时命题成立须证当时成立令与之间的双射与与故存在时都成立.,,11312+++++f k k k k n f f B A B A k⎩⎨⎧>∈=+2),()()(1k k k k b a f A a a f a f 当当则f 为由.321的双射到+++⋃⋃n n k k B B A A对于任意的令和任意,),,,(),,,,(32212121+++-⋃∈'=∈=k k l k m m B B b b b b A a a a a a⎩⎨⎧==∈='+-,1,,2,),,,(1121m k m k m a A a A a a a a 当当 ⎩⎨⎧∈'∈+∈'∈=++++.,)1,,,)2,,,(34212421k k l k k l B b B b b b B b B b b b b 当当 43212:.:+++++∈→'∍⋃⋃∈'→∍k k k k k k B b b B B h A A a a A g 则映射都是双射,从而复合映射42:++∈→∍k k B b a A g f h为双射,故有)4()2(+=+k k βα,于是由数学归纳法知命题对所有自然数n 都成立.映射法还可以与其他方法结合起来使用,而且大多数竞赛题是这种类型.例如映射法可与抽屉原理、构造法、反证法等各种方法结合起来.例7:设oxyz 是空间直角坐标系,S 是空间中的一个有限点集,S x ,S y ,S z 分别是S 中所有点的坐标平面oyz ,ozx ,oxy 上的正投影所成的集合.求证.||||||||2z y x S S S S ⋅⋅≤(1992年IMO 试题5)【证明】对每点令,),(x S j i ∈∑∈=∈=ixS j i ijij TS S j i x j i x T ),(}},,(|),,{(显然有由柯西不等式有2),(2),(),(2||||||1||ij S j i x ijS j i S j i T S TS xxx∑∑∑∈∈∈⋅=⋅⋅≤①考虑集合},,|),{(),(2121),(ij ij ij ij ij S j i T t t t t T T T T V x∈=⨯⨯=∑∈其中显然,|V|=2),(||ij S j i T x∑∈定义映射f 如下z y S S i x j x j i x j i x V ⨯∈'→'∍)),(),,((),,(),,,(,不难看出f 为单射,因此有||||||z y S S V ⋅≤由①、②即得||||||||2z y x S S S S ⋅⋅≤.例8:设集合},10,,2,1{ =A A 到A 的映射f 满足下列两个条件: ①对任意;)(,30x x f A x =∈②对每个.)(,,291,a a f A a k Z k k ≠∈≤≤∈+使得至少存在一个求这样的映射的总数. (1992年日本奥林匹克预选赛题) 【解】注意到10=5+3+2,30=5×3×2.这提示我们将A 划分成三个不相交的子集},{},,{},,,,{2132154321c c b b b a a a a a A ⋃⋃=.因为f 满足条件①和②,所以f 是A 到A 上的双射,并且由定理2的证明过程得知A 中存在映射圈,因此,定义映射,)(,)(;)(,)(,)(,)(,)(:32211554433221b b f b b f a a f a a f a a f a a f a a f f ======= .)(,)(;)(122113c c f c c f b b f ===因为30是5、3、2的最小公倍数,故由定理2和定理3知f 是满足题目条件①和②惟一的一类映射.因此,f 的总数目相当于从10个元素中选取5个,再从剩下的5个中选取3个,最后剩下的两个也选上,它们分别作圆排列的数目,它等于.120960)!1)(!2)(!4(2235510=⋅⋅⋅C C C例9:设集合A={1,2,3,4,5,6},映射A A f →:,其三次复合映射f ·f ·f 是恒等映射,这样的f 有多少个? (1996年日本数学奥林匹克预选赛题)【解】因为集合A 上的三次复合映射是恒等映射,所以定理2和定理3推知符合条件的映射f 有三类:(1)f 是恒等映射;(2)A 中存在一个三元映射圈),,(互异c b a a c b a →→→,而其他三个元素是不动点; (3)A 中存在两个三元映射圈).,,,,,(互异和c b a c b a a c b a a c b a ''''→'→'→'→→→类型(1)的f 只有1个.对于类型(2),先从6个元素中选出3个元素20,,36=C c b a 的方法有种,又a 、b 、c 作圆排列有(3—1)!=2种,故这样的f 有20×2=40个.对于类型(3),首先6个元素平分成两组有10236=÷C 种分法,每组分别作圆排列又有(3—1)!(3—1)!=4种方式,所以这样的f 有10×4=40个. 综上所述,所求的f 有 1+40+40=81个.例10:把正三角形ABC 的各边n 等分,过各分点在△ABC 内作各边的平行线,得到的图形叫做正三角形ABC 的n 格点阵. (1)求其中所有边长为||1BC n的菱形个数; (2)求其中所有平行四边形的个数. (1988年国家集训队选拔考试题) 【解】延长AB 至.||1||||,,BC nC C B B C AC B ='='''使得至作出正三角形C B A ''的n+1格点阵(图I —3—1—1).边2+''n C B 上有个点,依次编码为0,1,2,…,n+1. 在△ABC 中边长为n1|BC|的菱形可以按边不平 行于BC 、AC 与AB 分为三类.容易看出,这三类 中菱形个数相同.边不平行BC 且边长为n1|BC|的 所有菱形集合记作S.由正整数1,2,…,n 组成 的所有有序的数对(i ,j ),i <j 所构成的集合记作T.很明显,,||2n C T =设菱形EFGH ∈S ,延长它的两条邻边HG 与GF ,分别交.),(,1,T j i n j i j i C B ∈≤<≤''则与于点令(i ,j )是菱形EFGH 在S 到T 的映射ϕ下的像,这样便建立了S 到T 的映射ϕ.容易验证,映射ϕ是双射.因此,,||||2n C T S ==所以所求的边长为n1|BC|的菱长个数为32n C . 其次,将平行四边形按边不平行于BC 、AC 与AB 分为三类,这三类的平行四边形个数应相同,边不平行BC 的所有平行四边形集合记作V.非负整数0,1,2,…,n+1构成的所有有序四元数组(i ,j ,k ,l ),10+≤<<<≤n l k j i 构成的集合记作W.很明显,42||+=n C W .设α是V 中平行的四边形,延长它的四条边分别交l k j i C B ,,,于点'',其中10+≤<<<≤n l k j i ,则ϕαββ的映射到在是令W V W l k j i .),,,(∈=下的像.这样便定义了V 到W 的一个映射ϕ.容易验证,ϕ是双射.因此,.||||42+==n C W V 从而所求平行四边形的个数为423+n C .。

专升本数学集 合与映射基础知识梳理

专升本数学集 合与映射基础知识梳理

专升本数学集合与映射基础知识梳理专升本数学:集合与映射基础知识梳理在专升本数学的学习中,集合与映射是非常基础且重要的概念。

理解和掌握好这部分知识,对于后续数学课程的学习起着至关重要的作用。

接下来,让我们一起系统地梳理一下集合与映射的基础知识。

一、集合的概念集合,简单来说,就是把一些具有特定性质的对象放在一起组成的一个整体。

这些对象称为集合的元素。

比如,我们可以把所有的正整数组成一个集合,把某班所有身高超过 18 米的同学组成一个集合。

集合通常用大写字母表示,如A、B、C 等,元素用小写字母表示,如 a、b、c 等。

如果一个元素 a 属于集合 A,我们记作 a ∈ A;如果一个元素 b 不属于集合 A,我们记作 b ∉ A。

集合的表示方法有多种,常见的有列举法、描述法和区间法。

列举法就是把集合中的元素一一列举出来,用逗号分隔,并用花括号括起来。

例如,集合 A ={1, 2, 3, 4, 5}。

描述法是用元素所具有的特征来描述集合。

例如,集合 B ={x |x 是大于 5 的整数}。

区间法通常用于表示连续的实数集合。

例如,区间(1, 5) 表示大于1 且小于 5 的实数组成的集合。

二、集合的基本关系集合之间存在着包含、相等、真包含等关系。

如果集合 A 中的所有元素都属于集合 B,那么我们说集合 A 包含于集合 B,记作 A ⊆ B;如果集合 A 包含于集合 B,且集合 B 中存在元素不属于集合 A,那么我们说集合 A 真包含于集合 B,记作 A ⊂ B;如果集合 A 和集合 B 中的元素完全相同,那么我们说集合 A 等于集合B,记作 A = B。

三、集合的运算集合的运算包括交集、并集和补集。

交集:集合 A 和集合 B 的交集,记作A ∩ B,是由既属于集合 A又属于集合 B 的所有元素组成的集合。

并集:集合 A 和集合 B 的并集,记作 A ∪ B,是由属于集合 A 或者属于集合 B 的所有元素组成的集合。

高等代数课件 第一章

高等代数课件 第一章

定理1.4.2 任意 n(n 2)个整数 a1, a2 ,, an 都有最
大公因数。如果d是a1, a2 ,, an 的一个最大公因数,那 么 - d 也是一个最大公因数;a1, a2 ,, an 的两个最大公因
数至多只相差一个符号。
证 由最大公因数的定义和整除的基本性质,最后一个论断 是明显的。
称f 是A到B 的一个单映射,简称单射.
定义3:如果f 既是满射,又是单射,即如果f 满
足下面两个条件: ① f (A) B
② f (x1) f (x2 ) x1 x2 对于一切 x1, x2 A ,那 么就称f 是A 到B 的一个双射或一一映射。
一个有限集合A到自身的双射叫做A的一个置换.
而 r1 d 。这与d是 I 中的最小数的事实矛盾。这样,
必须所有 ri 0 ,即 d | ai ,1 i n 。
另一方面,如果 c Z, c | ai ,1 i n 。那么 c | (t1a1 tnan ),即c | d 。这就证明了d 是 a1, a2 ,, an的
一个最大公因数。
那么存在一对整数q和r,使得
b aq r且0 r | a |
满足以上条件整数q和r 的唯一确定的。
证 令 S {b ax | x Z,b ax 0。因为 a 0,所以S 是N 的一个非空子集。根据最小数定理(对于N),S 含有一个最小数。也就是说,存在q Z ,使得 r=b-aq 是S 中最小数。于是b=aq+r,并且 r 0 。如果 r | a |,
这时y 叫做 x 在f 之下的象,记作 f (x) .
注意: ① A与B可以是相同的集合,也可以是不同的集
合 ② 对于A的每一个元素x,需要B中一个唯一确定
的元素与它对应. ③ 一般说来,B中的元素不一定都是A中元素的

01 集合与映射

01 集合与映射

一般的,任取一个正整数 m ,都能将 Z 分解成 m 个两两不相交的非空子集的并, ,使得每个子集恰好是由除以 m 余数相同 的整数组成的。特别地,取 m 2, Z 则被 分解成偶数子集和奇数子集的并。
设 M 2 ( R)
(a ) a
ij
ij
R; i , j 1, 2

是 R 上一切二阶矩阵组成的集合,令 A0 (aij ) 秩(aij ) 0 A1 (aij ) 秩(aij ) 1
例 A集合表示三个学生,B集合表示两门课,三个学 生 的某种选课法的集合表示可以: A {a, b, c}, B {1 2} ,
用A B的子集表示R {(a,1), (b,1), (b, 2)}
属于子集R表明:第一个分量与第二个分量有关系 不属于R表明:第一个分量与第二个分量无关系
二元关系
有序对集合中元素的个数
二元关系
定义 设A,B是两个集合, A B的子集R称为A,B 间的一个二元关系.当(a,b)∈R时,称a与b具有关 系R,记作aRb;当(a,b) R时,称a与b不具有关 系R,记作aR’b.
二元关系
例 A集合表示三个学生,B集合表示两门课。三个 A 学生选课的所有选法的数学表示可以: B
通过以上2个例子,可概括集合分类的定义.
设 A 为任一个集合,而 是 A 的一些 子集组成的集合, {Ai A i I }
定义
其中 I 是指标集,如果 iI (1) Ai (2) Ai A j i, j I且i j
历史上(困扰人们很久)的著名问题:




⑴二倍立方体问题:作一个立方体使其体积 为一已知立方体体积的两倍。 ⑵三等分任意角问题:给定一个任意角,将 其三等分。 ⑶圆化方问题:给定一个圆(已知半径为 r ),作一个正方形使其面积等于已知圆的面 积。 ⑷n等分一个圆周。 这些问题直到近世代数理论出现后才得到完 全的解决。

高等代数 集合与映射

高等代数 集合与映射
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间的定义 §6 子空间的交与和
与简单性质
§7 子空间的直和
§3 维数·基与坐标
§8 线性空间的同构
§4 基变换与坐标变换
§6.1 集合·映射
一、集合 二、映射
§6.1 集合 映射
一、集合(set)
1、定义
把一些事物汇集到一起组成的一个整体就叫做集合; 组成集合的这些事物称为集合的元素(element). ☆ 常用大写字母A、B、C 等表示集合;
(8)M=Z,M´=2Z,
σ:σ(n)=2n, n Z
(双射) (双射)
§6.1 集合 映射
4、可逆映射
定义 设映射 : M M ', 若有映射 : M ' M , 使得 IM , IM
则称σ为可逆映射(invertible mapping),τ为σ的 逆映射,记作σ-1.
§6.1 集合 映射
☆集合的表示方法一般有两种:描述法、列举法
描述法(description): 给出这个集合的元素所具有的特征性质. M={x | x具有性质P}
列举法(enumeration): 把构成集合的全部元素一一列举出来. M={a1,a2,…,an}
§6.1 集合 映射
例1 M {( x, y) x2 y2 4, x, y R}
用小写字母a、b、c 等表示集合的元素.
当a是集合A的元素时,就说a 属于A,记作 a A ; 当a不是集合A的元素时,就说a不属于A,记作 a A .
§6.1 集合 映射
注意
关于集合没有一个严谨的数学定义,只是有一 个描述性的说明.集合论的创始人是19世纪中期德 国数学家康托尔(G.Cantor),他把集合描述为: 所谓集合是指我们直觉中或思维中确定的,彼此有 明确区别的那些事物作为一个整体来考虑的结果; 集合中的那些事物就称为集合的元素.即,集合中 的元素具有:确定性、互异性、无序性.

高等代数教案 北大版 第六章

高等代数教案 北大版 第六章

,V 中加法的定构成K 上的线性空向量组的线性相关与线性无关向量组的线性等价;极大线性无关组.,s α,又给定数域,s k ,称s s k k α+为向量组12,,,s ααα的一个4(线性表出内一个向量组,s α,设β是V 内的一个向如果存在K 内s ,s k ,使得122s s k k ααα+++,,,s α线性表出.向量组的线性相关与线性无关) 内一个向量组12,,αα,s k ,使得s s k α+=,s α线性相关;若由方程s s k α+=0s k ===则称向量组,s α线性无关.命题3 设12,,s V ααα∈,则下述两条等价:12,,s ααα线性相关;某个i α可被其余向量线性表示证明同向量空间.线性等价) 给定,r α (,s β (Ⅰ)中任一向量都能被线性表示,则称两向量组(极大线性无关部分组,s α,如果它有一个部分组,,,r i ααα满足如下条件,r i α线性无关;、原向量组中任一向量都能被,r i α线性表示,则称此部分组为原向量组的一个极大线性无关部分组.由于在向量空间中我们证明的关于线性表示和线性等价的一些命题中并没于是那些命题在线性空间中依然成立一个向量组的任一极大线性无关部分组中均包含相同,,n ε和1,,n ηη是两组基2121212122221122,,.n n n nn n n nn n t t t t t t t εεεεηεεε++++⎪⎨⎪⎪=+++⎩ 11121212221212,)(,,,)n n n n n n nn t t t t t t tt t ηεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭. 我们称矩阵111212122212n n n n nn t t t t t t T tt t ⎛⎫ ⎪ ⎪= ⎪⎪⎪⎭,,n ε到1,,n ηη的过渡矩阵.6 设在n 维线性空间V/K 中给定一组基12,,,n εεε.T 是212,,,)(,,,).n n T ηηεεε=,n η是V/K 若12,,,n ηηη是线性空间,n η线性无关考察同构映射nK V ασ,:→,构造方程122)()(n k k ησηση+++1,2,,)n ,22)n n k k ηη++0n n k η+=,0n k ==⇒,()n σση线性无关.,()n ση构成了过渡矩阵的列向量,所以过渡矩阵可逆;若过渡矩阵可逆,则构造方程122n n k k ηηη+++=,(1,2,,)K i n =,作用,得到112()((n k k k σησηση++,120n k k k ⇒====.证毕向量的坐标变换公式;nK 中的两组基的过渡矩阵,n ε和12,,,n ηηη,又设,n ε下的),n a ,即1212(,,,)n n a a a εεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,,,n η下的坐标为,,)n b ,即1212,,,)n n b b b ηη⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.现在设两组基之间的过渡矩阵为T,即1212(,,,)(,,,).n n T ηηηεεε=2n a ⎪⎪⎪⎪⎭,2n Y b ⎪= ⎪ ⎪ ⎪⎝⎭,12[(,,)]n Y T Y εεε=.122122212,),,,),(,,,).n n n n n nn a a a a a ε= 和122122212,),,,),(,,,).n n n n n nn b b b b b η=1212(,,,)(,,,).n n T ηηηεεε=的第i 个列向量分别是i η在基12,,,n εεε下的坐标.,n ε和1,,,n ηηη看作列向量分别排成矩阵111212122212n n n n nn a a a a a a A aa a ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;111212122212n n n n nn b b b b b b B b b b ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, AT =,将A 和B 拼成2n n ⨯分块矩阵()|A B ,利用初等行变换将左边矩化为单位矩阵E,则右边出来的就是过渡矩阵T,示意如下:)|()|(T E B A −−−→−行初等变换.ε为W ,r1,,r r εε+的一个子空间假设即可.二、子空间的交与和定义13 设,t V α∈}22|,1,2,,t t i k k k K i t αα+++∈=称为由12,,,t ααα生成的子空间,记为12(,,,)t L ααα生成的子空间的维数等于12,,,t ααα的秩.) 设12,V V 为线性空间V/K 的子空间,定义2{V v =∈称为子空间的交; 21{V v +=+称为子空间的命题9 12V V 和1V +证明:由命题4.7,只需要证明2V 和1V +12,V V αβ∈,则1,V αβ∈,,αβ12,V V αβ+∈,于是12V V αβ+∈,12V V 关于加法封闭;2V ,k ∈12,kv V kv V ∈∈,于是12kv V V ∈,12V V 关于数乘封1,V V β∈+111222,,,V V αβαβ∃∈∈,21,αββ=2V ,则,,m V 是2m V V 和m V +均为的子空间.维数公式.1 设V 为有限维线性空间,2dim()V .,12dim()V V r =,2V 的一组基,r ε(若2V V =0,则基为空集),将此基分别扩充为12,V V 的基1212,,,,,,,r s r εεεααα-, 1212,,,,,,,r t r εεεβββ-,1212,,,,,,,,,r s r t r εαααβββ--是12V V +见12V V +中的任一向量都可1212,,,,,,,,,r s r t r εαααβββ--线性表出.事实上,V γ∀∈12γ+,其中1122,V V γγ∈∈,而111221122,r r r r s s r k k k k k k γεεεααα++-=+++++++ 211221122.r r r r t t r l l l l l l γεεεααα++-=+++++++,i j k l K ∈被121212,,,,,,,,,,,r l r t r εεεαααβββ--线性表21212,,,,,,,,,,r l r t r εεαααβββ--线性无关即2211220s r s r t r t r a a b b b ααβββ----++++++=,11221r r s r s r k a a a V εααα--+++++∈,11222t r t r b b b V βββ------∈,112212r r s r s r a a a V V εααα--++++∈,记为,r ε线性表示,设22r r h h αεε++,12211220r r t r t r h h b b b εεβββ--+++++++=,12,,,,,r t r εβββ-是2V 的一组基,所以线性无关,则12120r t r h h h b b b -========,12120r s r k k a a a -========,21212,,,,,,,,,,r s r t r εεαααβββ--线性无关12,,,t V V 都是有限为线性空间V 的子空间,则:1212)dim dim dim t t V V V V V V +++≤+++.作归纳.,m V 是V ,,1,2,,m i i V i m αα+∈=.记为2m V V ⊕⊕⊕或1mi i V =⊕.,,m V 为数域K 上的线性空间V 上的有限为子空间,则下述四m V +是直和;零向量表示法唯一;1ˆ(){0},1,2,,im V V V i m ++++=∀=;1212dim()dim dim dim m m V V V V V V +++=+++.: 1)2)⇒显然.1)⇒设1212,m m ααααβββ=+++=+++则(m α+-1,2,,m ,21m V V V +++是直和个,1i i ≤≤1ˆ(){0}im V V V ++++≠存在向1ˆ()i im V V V V ∈++++,于是存在j V ,使得1ˆi m αααα=++++.由线性空间的定义,1ˆ()iim V V V V α-∈++++,()()0m αααα+-++=+-=,与零向量的表示法唯一矛盾1ˆ(){0},1,2,,i im V V V V i m ++++=∀=.2)⇒若2)不真,则有10i m ααα=++++,1,2,,)m 且0i α∃≠.于是1ˆˆ()i m i im V V V V αα+++∈++++,成立.作归纳.由维数公式得到121212dim dim dim()dim dim V V V V V V =+-=+.11)dim(),m m m V V ---+111垐()(){0}i m i i m V V V V V V V -++++⊆++++=由归纳假设,可以得到1212dim()dim dim dim m V V V V V +++=+++3)⇒,1i i m ∀≤≤,都有1112垐())dim()dim()dim(i m i i m V V V V V V V V V ++++=+++++-++1ˆ(){0},1,2,,im V V V i m ++++=∀=.证毕.推论 设12,V V 为V 的有限维子空间,则下述四条等价: 12V V +是直和; ii)零向量的表示法唯一; iii)2{0}V V =;12dim()V V +=二、直和因子的基与直和的基设1m V V V V =⊕⊕,则,m V 的基的并集为,r ii ε是i V 的组基,则V 121{,,,}r im i i i i εεε=线性表出.又1dim dim i m V r r =+,由命题4.5,它们线性无关,于是它们是V 的一组基. 证毕. 三、补空间的定义及存在性定义 设1V 为V 则称为1V 的补空间.命题 有限维线性空间的任一非平凡子空间都有补空间证明: 设V ,r ε,将,,)n ε,则有12V V =+,且,即2V 是1V.s n AX ⨯的线性映射.上连续函数的全体,它是R 上的线性空间,sin 2,,sin ),x nx,cos).nx,AX.单线性映射(monomorphism)满线性映射(endmorphism)fα().α∈U'/kerγ.于是=,fα)('),t V α∈22()(t k k ϕαϕα+++,1122()t t k k k ϕααα+++t t k α+=则120t k k k ====,ii)成立;iii)若取组基12,,,n εεε,则,()n ϕε而im ϕ中任意向,()n ϕε线性表出12(),(),,()n εϕεϕε构成成立;⇒i)由/ker im U ϕ≅dimker dimim ϕ=即有ker ϕ=。

高等代数教学大纲

高等代数教学大纲

高等代数课程教学大纲一、课程说明1、课程性质:高等代数是高等院校数学系数学与应用数学专业的一门重要基础课。

对学生数学思想的形成有着重要意义,是进一步学习近世代数、常微分方程等后继课的基础,也为深入理解中学数学打下必要的基础。

高等代数是现代数学的基础知识,是学习其它数学学科和现代科学知识的必备基础和重要工具,尤其在本世纪,计算机技术、通讯信息技术和现代生物工程技术已成为最热门的学科领域,这些学科的发展均需要代数学的知识与支持。

高等代数也是师范院校数学与应用数学专业的一门重要基础课程,既是中学代数的继续和提高,对于中学数学教学工作具有重要的理论指导作用,又是输送更高层次优秀人才的专业知识保证。

2、课程教学目的要求(1)使学生掌握多项式理论、线性代数理论的基础知识和基本理论,着重培养学生解决问题的基本技能。

(2) 使学生熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。

(3) 使学生进一步掌握具体与抽象、特殊与一般、有限与无限等辩证关系,培养其辩证唯物主义观点。

(4) 逐步培养学生的对真理知识的发现和创新的能力,训练其对特殊实例的观察、分析、归纳、综合、抽象概括和探索性推理的能力。

(5) 使学生对中学数学有关内容从理论上有更深刻的认识,以便能够居高临下地掌握和处理高级中学数学教材,进一步提高中学数学教学质量。

(6) 根据教学的实际内容的需要,对大纲所列各章内容,分别提出了具体的目的要求,教学时必须着重抓住重点内容进行教学。

本课程分以一元多项式为主体的多项式理论和线性代数两部分。

线性代数部分涉及行列式、矩阵、线性方程组、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间等。

本课程教学重点应放在多项式理论与线性代数理论。

多项式理论以一元多项式的因式分解唯一性定理为主体介绍了有关多项式的一些必要的知识,为后继课提供准备;线性代数部分则较为系统地介绍了线性方程组,线性空间与线性变换理论。

高等数学——集合与映射

高等数学——集合与映射
第一章 集合与映射
本章学习要求: ▪ 正确理解集合和映射概念。 ▪ 掌握集合和元素的关系,集合的表示方法;映射的种类。 ▪ 正确理解集合的运算法则,并能够正确使用。
第一节 集合与映射
一、集合的基本概念 二、集合的基本运算 三、映射的基本概念
一、集合的基本概念
1. 集合
所谓集合是把我们直观和思维中确定的、相互间 有明确区别的那些对象(这些对象称为元素)作为一 个整体来考虑的结果。
注意:不论用那一种方法表示集合,集合中的元素不得 重复出现。(唯一,互异,无序)
二、集合的基本运算
1. 集合运算的概念
为了研究和叙述 便上 ,我 的 们方 ,我们I常常 或U来表示所 虑考 表示所 象考 (元素)的全构体所 成的集合,为 称的 之。集
设有A 集 , B, 合则 A与 B的并:A B { x | x A 或 x B }; A与 B的交:A B { x | x A 且 x B }; A与 B的差:A-B A \ B { x | x A 且 x B }; A的补集(或余集):A I A ( 或记为AC )。
反过来, 若 y Y, 存在唯一的 x X 使得 y = f ( x ), 则称 f 是 X 到 Y 的一一对应。
3) 映射的定义不排除几个不同的 x 值与同一个y 值对应。
X
.x1 .x2 .x3
f
Y
.y1 .y2
Rf
2. 映射的种类
满射 :Y中的任意元素y都是X中的某元素的 像; 单射:如果 不相等x 1,x 2 X,存在唯一
的 y1 = f ( x 1)不等于y2= f ( x 2)
一一对应(满射) 设 f 为集 X 到集 Y 的一个映射。 如果 x X,存在唯一的 y = f ( x ) Y 与之对应;

湖州师范学院高等代数第零章 集合映射与数集

湖州师范学院高等代数第零章 集合映射与数集
由定理 1.3 的证明,我们还可以得出关于最大公因 数的一个重要性质.这就是
定理 1.4 设d 是整数a1, a2 L , an 的一个最大公因数, 那么存在整数t1,t2 ,L tn ,使得t1a1 t2 a2 L tn an d ,
证 如果a1 a2 L an 0,那么d 0,定理显然成 立,设a1, a2 L , an 不全为零,由定理 1.3 的证明,d I , 因而存在t1,t2 ,L ,tn Z ,使得d t1a1 t2a2 L tnan.
根据带余除法,给了一对整数 a ,b,我们可以判断 a 能否整除b.如果 a 0 ,那么 a b当且仅当以a 除b 所得 的余数 r 0 ,如果 a 0,那么 a 只能整除 0.
3.2 最大公约数 定义 1.4 若a ,b是两个整数,满足下列条件的整 数 d 叫做a 与b的一个最大公约数: 1)d a且d b; 2)如果c Z ,且c a,c b,那么c d .
非负整数集 M0 的非空子集,根据最小数原理(对于 M0 ), S 含有一个最小数,即存在 q Z ,使得 r b aq 是 S 中的 最小数,于是b aq r ,并且 r 0 ,如果r a ,那么
r a r, r 0 ,而
r

b b

a a
例1.A={所有整数} , B={所有不等于整数}, D={所有有理数}
o: (a, b) a a ob是 b
一个A B到D的代数运算, 也就是一个普通的除法.
注意:当A=B的时候,A×B=B×A,但不是
a A, b B, 有a ob=b oa
在A和B都是有限集的时候,一个A×B到D的代数运算 常用一个表来表示.

高等代数、线性代数61集合映射线性空间的定义及简单性质

高等代数、线性代数61集合映射线性空间的定义及简单性质
第16页 共32页
4、可逆映射
定义:设映射 : M M ', 若有映射 : M ' M , 使得
I M , I M
记作σ-1.
则称σ为可逆映射,τ为σ的逆映射,
注:
( σ - 1 ) - 1= σ .
σ的逆映射是由σ唯一确定的
① 若σ为可逆映射,则σ-1也为可逆映射,且 ② : M M ' 为可逆映射,a M,若 (a ) a ',
显然有,A B A;
A A B
第6页 共32页
二、映射
1、定义
设M、M´是给定的两个非空集合,如果有 一个对 应法则σ,通过这个法则σ对于M中的每一个元素a, 都有M´中一个唯一确定的元素a´与它对应, 则称 σ为 M到M´的一个映射,记作 :
: M M'
M M'
( k l ) k l k ( ) k k
第23页 共32页
( ) 0
0
引例 2
数域P上的一元多项式环P[x]中,定义了两个多 项式的加法和数与多项式的乘法,而且这两种运算 同样满足上述这些重要的规律,即对 f ( x ) g ( x ) g( x ) f ( x ) ( f ( x ) g( x )) h( x ) f ( x) ( g( x) h( x)) f ( x) 0 f ( x) f ( x ) ( f ( x )) 0 f ( x ), g( x ), h( x ) P[ x ], k , l P 1 f ( x) f ( x) k (l ) f ( x ) ( kl ) f ( x ) (k l ) f ( x ) kf ( x ) lf ( x ) k ( f ( x ) g( x )) kf ( x ) kg( x )

高等代数群在集合上的作用定义与例子

高等代数群在集合上的作用定义与例子

高等代数群在集合上的作用定义与例子高等代数中,群的作用是一种映射关系,描述了一个群在一个集合上的操作方式。

群作用既可以用来描述抽象概念,也可以应用于各种数学问题的求解。

在本文中,我们将详细介绍群作用的定义和例子,并展示它们在不同领域的应用。

一、群作用的定义群作用是指一个群G在一个集合X上的一种映射关系,即G×X→X,满足以下四个条件:1.单位元条件:对于任意的x∈X,有e∙x=x,其中e是G的单位元。

2.封闭性条件:对于任意的g∈G,x∈X,有g∙(g∙x)=(g∙g)∙x。

3.结合律条件:对于任意的g1,g2∈G,x∈X,有(g1∙g2)∙x=g1∙(g2∙x)。

4.对于任意的x∈X,有g∈G,g∙x∈X。

群作用可以理解为一种运算方式,即群中的元素g作用在集合X上的元素x上,得到一个新的元素g∙x。

这个新的元素仍然在集合X中,因为群作用满足封闭性条件。

二、群作用的例子1.对称群的置换作用考虑一个有n个元素的集合X,对称群Sn中的元素可以看作是X上的置换。

对于Sn中的任意置换g,定义g作用在X上的元素x的结果为g(x)=g∙x,即将置换g作用在x上。

这样的群作用满足群作用的定义。

例如,在集合X={1,2,3}上,置换(12)可以作用在元素2上得到1∙2=1,与置换(12)作用在元素1上得到1∙1=2的结果相符。

2.线性群的线性作用在线性代数中,我们学习了线性变换。

线性群GL(n,F)中的元素可以看作是线性变换。

对于GL(n,F)中的任意线性变换T,定义T作用在F^n 上的元素x的结果为T(x)=T∙x,即将变换T作用在向量x上。

这样的群作用也满足群作用的定义。

例如,在集合F^3上,线性变换(x1,x2,x3)→(x1+x2,x2+x3,x1+x3)作用在向量(1,2,3)上得到(3,5,4),与变换作用结果一致。

三、群作用的应用1.群作用在组合数学中的应用在组合数学中,群作用有广泛的应用。

高等代数知识点总结

高等代数知识点总结

高等代数知识点总结高等代数是数学中的一个重要分支,它主要研究了代数结构及其相关性质。

下面是关于高等代数的一些常见知识点的总结。

1.环论:环是一种代数结构,它包含了一个集合以及对于这个集合中的元素定义的加法和乘法运算。

环的一些基本概念包括单位元、零元、可逆元、交换性、零因子、整环等。

环论研究了环的性质、子环、理想、同态等内容。

2.域论:域是一个包含了加法和乘法运算的交换环,且除了零元以外的所有元素都有乘法逆元。

域的一些基本概念包括素域、代数闭域、有限域等。

域论研究了域的性质、子域、扩域、代数元、素元、不可约多项式等内容。

3.矩阵论:矩阵是一个有限个数按一定顺序排列的数构成的数组,在高等代数中起到了很重要的作用。

矩阵的一些基本运算包括矩阵的加法、乘法、转置、逆等。

矩阵论研究了矩阵的行列式、特征值、特征向量、秩、相似矩阵等内容。

4.向量空间:向量空间是一个满足一定性质的集合,其中的元素称为向量。

向量空间的一些基本概念包括线性组合、线性相关性、线性独立性、子空间、基、维数等。

向量空间论研究了向量空间的性质、线性变换、内积空间、正交性、最小二乘法等内容。

5.线性代数:线性代数是研究向量、矩阵和线性方程组等问题的一门学科,它是高等代数的一个重要分支。

线性代数的一些基本概念包括线性变换、行列式、特征值、特征向量等。

线性代数研究了线性方程组的解的存在唯一性、线性变换的特征值分解、矩阵的相似对角化等内容。

6.线性空间:线性空间是一个满足一定性质的集合,其中的元素称为向量。

线性空间的一些基本概念包括线性组合、线性相关性、线性独立性、子空间、基、维数等。

线性空间论研究了线性空间的性质、线性变换、内积空间、正交性、最小二乘法等内容。

7.线性映射:线性映射是一个保持线性结构的映射,也就是满足线性变换的条件。

线性映射的一些基本概念包括核、像、像空间、零空间等。

线性映射论研究了线性映射的性质、线性变换的特征值分解、线性方程组的解的唯一性等内容。

高等代数集合与映射

高等代数集合与映射

则 ( y) ( ( y)) (x) y IM( y),
∴σ为可逆映射.
即 IM
§6.1 集合 映射
反之,设 : M M 为可逆映射,则 对y M, 有y 1( y) ( 1( y)) 即, x 1( y) M ,使y ( x).
所以σ为满射.
其次,对 x1, x2 M ,若 (x1) (x2 ) ,则
§6.1 集合 映射
又 h ( f 1 g1 ) ( g f ) ( f 1 g1) IC 同理 ( f 1 g1 ) h I A. h1 f 1 g1
§6.1 集合 映射
h(a1) g f (a1) g( f (a1)) g( f (a2)) g f (a2 ) h(a2 ) 这与h是单射矛盾,∴ f 是单射.
§6.1 集合 映射
(2)如果 h 是满射,那么 g 也是满射; 证: ∵ h 是满射,c C,a A,使h(a) c ,即 c h(a) g f (a) g( f (a)) 又∵ f (a) B ,∴ g 是满射.
则称σ是M到M´的一个单射(injection)或称σ 为1-1(one to one);
(3)若σ既是单射,又是满射,则称σ为双射 (bijection), (或称σ为 1-1对应).
§6.1 集合 映射
例6 判断下列映射的性质
(1)M={a,b,c}、M´={1,2,3} σ:σ(a)=1,σ(b)=1,σ(c)=2(既不单射,也不是满射) τ:τ(a)=3,τ(b)=2,τ(c)=1 (双射)
乘积 定义为:
(a)=τ(σ(a)) a M
即相继施行σ和τ的结果, 是 M 到 M" 的一个
映射.
§6.1 集合 映射
注意

高等代数、线性代数61集合映射线性空间的定义及简单性质共34页

高等代数、线性代数61集合映射线性空间的定义及简单性质共34页
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
高等代数、线性代数61集合映射线性 空间的定义及简单性质
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8








Байду номын сангаас





9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0















1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

高等代数教案第一章基本概念

高等代数教案第一章基本概念

第一章基本概念一综述1.本章是本门课程所需要的最基本概念(集合、映射、整数的一些性质、数环和数域)和方法(数学归纳法、反证法).所需位置不同,可根据课时安排及进度分散处理.如集合、整数的一些整除性质、数学归纳法、数环和数域可先讲,映射可放在线性空间前讲.2.从内容上讲,除集合中的卡氏积的概念及数环、数域的概念外,其它内容是学生在中学数学当中熟知的,只不过是将有关内容的系统化、理论化(如整数的整除性、映射、数学归纳法,其在中学中熟知其一些事实,今在理论上加以严密论证).3.新的知识点是集合的卡氏积、数环、数域的概念,数学归纳法作为定理的论证.4.学习本部分的难点是:从概念出发进行推理论证,这需要从具体例子引导训练,逐步培养.二重点、难点1. 重点在于所有基本概念,特别是引入的新概念.2. 难点是可逆映射、整数的整除性、数学归纳法本身的证明.1.1 集合一教学思考1.集合可以作为不定义的概念来处理,有些教材上给出了一个简单刻化.2.确定一个集合A,就是要确定哪些是集合的元素,哪些不是集合的元素.说明一个集合包含哪些元素时,常用“列举法”、“示性法”(描述法).3.中学代数大部分的内容是计算,因此一开始遇到证明题时,往往不知从何入手,此需注意培养学生的推理能力,这里应通过证明“集合相等”来加强这方面的训练.4.为稍拓宽知识,可讲解一下补集、幂集等概念.二重点、要求1.重点、难点:卡氏积的概念及从概念出发(集合相等、子集等)进行推理.2.要求:使学生了解有关集合的刻化及运算,培养推理能力.三 教学过程1.集合:简称集,在此是一个不定义的原始概念,通常可给出如下描述性的解释:即所谓集合,是指由某些确定的事物(或具有某种性质的事物)组成的集体.其中每个事物称为这个集合的元素.常用大写字母A 、B 、C K 表示集合,用小写字母a 、b 、c K 表示集合的元素.若a 是集合A 的元素,就说a 属于A,记作A a ∈,或者说A 包含a.若a 不是集合A 的元素,就说a 不属于A,记作a ∉A,或者说A 不包含a.常采用两种方法:(1)列举法:列出集合的所有元素(包括利用一定的规律列出无限集)的方法.如{}K ,3,2,1=A . (2)示性法(描述法):给出集合所具有的特征性质.如{}043|2=-+=x x x B 表示方程0432=-+x x 的解集.2.集合的分类(按所含元素的个数分):有限集:只含有有限多个元素的集合.无限集:由无限多个元素组成的集合.空集:不含任何元素的集合.用Φ表示.约定:Φ是任何集合的子集.3.集合间的关系:(1) 设A 、B 是两个集合.子集:若A 的每个元素都是B 的元素,则称A 是B 的子集.(即若""B x A x ∈⇒∈∀).记作B A ⊆(读作A 属于B );或者A B ⊇(读作B 包含A ).相等:若集合A 和B 是由完全相同的元素组成的,则称A 与B 相等,记为A=B.(2)性质:(由定义易得)A )A A ⊆;(反身性)B )若C A C B B A ⊆⇒⊆⊆,;(传递性)C )B A ⊆且A B ⊆⇒A=B.(反对称性)4.几个常用的数集(略)5.集合的运算(由两个集合得到一个新的集合)——交、并、补、卡氏积:设A 、B 是两个集合(1)并:由A 的一切元素和B 的一切元素组成的集合叫做A 与B 的并集,简称并.记作B A Y .即{}B x A x x B A ∈∈=或,|Y .(2)交:由集合A 与B 的公共元素组成的集合,叫做A 与B 的交集,简称交.记作B A I .即{}B x A x x B A ∈∈=但,|I . (3)余(差、补):由一切属于A 而不属于B 的元素组成的集合,叫做B 在A 中的余(补)集,或称为A 与B 的差集.记作A-B.即{}B x A x x B A ∉∈=-,|.(4)积(卡氏积):由一切元素对),(b a 所成的集合称为A 与B 的笛卡儿积(简称为积).其中第一个位置的元素取自A,第二个位置的元素取自B.记为B A ⨯.即{}B b A a b a B A ∈∈=⨯,|),(.1.2 映 射一 教学思考 1.映射是近代数学中的一个基本概念.为使本部分内容更加系统化,可作必要的调整及层次化,按映射的概念(包括相等)及例子、映射的合成、几种特殊的映射来处理.2.概念多且成系列,注意 帮助学生弄清概念的实质(包括概念的转述、注释、否定概念的描述、以及新概念与已有概念的联系,如映射的合成是函数与函数的合成的概念的推广),注意训练从定义验证有关问题(给定一个法则是否为映射、分辨一个映射是不是单射、满射、可逆映射)的方法,语言要准确、清楚、有条理.同时初步领会怎样举例——包括正例和反例(内容与作业中皆有此问题).二 内容、重点、要求1. 内容:映射、单、满、双(可逆)映射的概念、映射的合成等.2. 重点:映射及有关概念,举例及由定义验证有关问题的方法.3. 要求:理解并记住上述概念,学会举例与用定义的条件进行验证问题的方法.三 教学过程1.概念与例子定义1. 设A 、B 是两个非空集合,A 到B 的一个映射指的是一个对应法则,通过这个法则,对于,x A y B ∀∈∃∈与它唯一对应.例子:(1)对,,Z n Z ∈∀令n n f 2)(=.(2){}2)(,.0|,x x f R x x x B R A =∈∀≥==. (3){}14,43,32,21:.,4,3,2,1ααααf B A ==.(4)*设A 是任一集合,对x x f A x =∈∀)(,.这是A 到自身的一个映射(称为A 的变换),称为恒等映射(此为恒等变换),记为A j . 定义2. 设B A g B A f →→:,:都是A 到B 的映射,若对,A x ∈∀都有)()(x g x f =,则称映射f 与g 相等,记为g f =. 如:2,:;,:x x R R g x x R R f αα→→.有g f =.2.映射的合成(1)定义3. 设C B g B A f →→:,:是两个映射,对A x ∈∀,有B x f ∈)(,从而C x f g ∈))((,这样,对,A x ∈∀就有C 中唯一的))((x f g 与之对应,就得到A 到C 的一个映射,这个映射是由:f A B →和C B g →:所决定的,称为f 与g 的合成.记作f g ο.即:))((,:x f g x C A f g αο→.例子:x x R R g x x R R f sin ,:;,:2αα→→ .则 x x R R g f x x R R f g 22sin ,:;sin ,:αοαο→→.(2)映射合成满足结合律:设,:,:,:D C h C B g B A f →→→则由合成映射的定义可得D A →的两个映射:f g h f g h οοοο)(),(,则f g h f g h οοοο)()(=.3.几类特殊映射定义4. 设,:B A f →对,A x ∈∀有B x f ∈)(,则所有这样的象所作成B 的子集,用)(A f 表示,即{}A x x f A f ∈=|)()(,叫做A 在f 下的象,或叫做映射f 的象.(1)满射: 定义5. 设B A f →:是一映射,若B A f =)(,则称f 是A 到B 上的一个映射,也称f 是一个满射.(2)单射: 定义6. 设B A f →:是一个映射,若对A x x ∈∀21,,只要21x x ≠,就有)()(21x f x f ≠,则称f 是A 到B 的一个单射,简称单射.(3)双射(1-1对应):定义7. 若B A f →:既是单射又是满射,即1)若 A x x x x x f x f ∈∀=⇒=212121,,)()(;2)B A f =)(.则称f 是A 到B 的一个双射.特别若f 是A 到A 上的一个1-1对应,就称f 为A 的一个一一变换;有限集A 到自身的双射称为A 的一个置换.如:A j 是A 的一个一一变换,同样B j 是B 的一个一一变换.由映射合成及相等:若:f A B →,则有,A B f j f j f f ==o o .TH1.2.1令:f A B →是一个映射,则:下述两条等价:1)f 是双射;2)存在:g B A →使得,A B g f j f g j ==o o .且2)成立时,其中的g 由f 唯一决定.(4)可逆映射及其逆映射定义8. 设:f A B →,若存在:g B A →,使得,A B g f j f g j ==o o ,则称f 是可逆映射,且称g 为f 的逆映射.求其逆的方法由定理知::f A B →可逆⇔f 是双射.而验证双射有具体方法,所以可先证f 可逆(双射),再求其逆.而由TH1证知f 可逆时其逆唯一为:,g B A y x →a (若())f x y =(即对y B ∈,找在f 下的原象).(5)代数运算引例:我们常说整数加法是整数的一个“代数运算”.其意思是说对任一对整数(,)a b ,有确定的唯一一个整数(通过相加)与之对应,用映射的观点来说整数加法是Z Z Z ⨯→的一个映射::(,)a b a b ++a .同样实数乘法亦然.一般地:定义9. 设A 是一个非空集合,我们把A A A ⨯→的一个映射叫做集合A 的一个代数运算.若集合A 有代数运算σ,也说A 对σ封闭.数学归纳法一 教学思考1. 本节主要介绍了数学证明中的一种非常重要的方法——数学归纳法;对于该内容学生不感陌生,因在中学内容中曾会应用.问题在于数学归纳法自身的理论证明,为此需要一个原理——(自然数集的)最小数原理.2. 本节主要讲清最小数原理(给出分析证明及必要的说明),以及在此基础上的数学归纳法的证明.但更重要的是归纳法的解释——从特殊认识一般的思想方法,及数学归纳法应用中的关键(第二步)的突破.二 内容、重点、要求1. 内容:最小数原理、数学归纳法(第一、第二).2. 重点:数学归纳法的证明、应用,归纳思想的建立.3. 要求:了解最小数原理、理解数学归纳法的证明、掌握数学归纳法的应用.三 教学过程引言:现实生活中经常使用这种方法:即首先考察、研究某些个别特殊的事物,再由这些事物总结和抽象出带有一般性规律和结论.这样的方法叫归纳法.1. 数学归纳法的基础——自然数集的一个基本性质:最小数原理最小数原理:自然数集N *的任一非空子集S 必含有一个最小数,即a S ∃∈,对,c S ∀∈都有a c ≤. 2. 数学归纳法TH1.3.1(第一数学归纳法)设有一个与自然数n 有关的命题()P n ,若满足下列两条:1)当1n =时()P n 成立;2)假设n k =时成立,则当1n k =+时也成立.则命题()P n 对于一切自然数n 都成立.TH1.3.2(第二数学归纳法原理)设有一个与自然数n 有关的命题()P n ,若满足下列两条:1)当1n =时()P n 成立;2)假设命题对于一切小于k 的自然数都成立时,命题对于k 也成立.则命题()P n 对于一切自然数n 都成立.整数的一些整除性质一 教学思考1. 整数的性质是学生熟知的,本节只是将其系统化、理论化.主要从整除的定义、性质、带余除法,最大公因数及性质,互素三方面作了介绍.新的问题是有些概念较之在中学的概念有所区别,理论证明中运用最小数原理还不适应.2. 本节的目的主要为在多项式部分有与之平行的内容,助于学生对多项式类似内容的理解.作为自身的内容,需要将该部分层次化得清晰些.二 内容、重难点、要求1. 内容:整数的整除性、带余除法、最大公因数及性质、互素.2. 重难点:带余除法、最大公因数的性质定理的证明.3. 要求:掌握有关概念、证明整除的方法、反证法的运用.三 教学过程引言: 整除是研究整数性质的最基本的概念,从这个基本概念出发引进带余除法和辗转相除法,然后利用这两个工具建立了最大公因数(和最小公倍数)的理论(进一步证明了非常有用的算术基本定理),这些都是初等数论的基本内容.注意:本节所述的概念在小学、中学是熟知的事实,但未加以严格的叙述,因而不要盲目地相当然,要从中体会严格的推理论述.此与多项式相应的问题平行,到时应对照学习.1. 整除、带余除法(1)整除A )定义1. 设,a b Z ∈,若d Z ∃∈使得b ad =,则称a 整除b (或b 被a 整除).用符号|a b 表示.这时a 叫做b 的一个因数,而b 叫做a 的一个倍数.若a 不整除b (即对,d Z ad b ∀∈≠),记作|a b .B )整除的性质:1)|,||a b b c a c ⇒; (传递性)2)|,||();a b a c a b c ⇒+3)|,|a b c Z a bc ∀∈⇒;4)由2)、3)|,,1,2,3,,|i i i i a b c Z i n a b c ∀∈=⇒∑L ;5)1|,|0,|()a a a a a Z ±±∀∈;由此任意整数a 有因数1,a ±±,它们称为a 的平凡因数; 6)若||a b a b ⇒±±;7)|a b 且|b a a b ⇒=或a b =-.(对称性)(2) 带余除法“整除”是整数间的一种关系,任意两个整数可能有这种关系,可能没有这种关系,一般地有:TH1.4.1(带余除法) 设,a b Z ∈,且0a ≠;那么,q r Z ∃∈使得b aq r =+ 且0r a ≤≤.满足上述条件的,q r 是唯一的.2. 最大公因数、互素(1)最大公因数A )定义2. 设,,a b Z d Z ∈∈,若d 满足:1)|d a 且|d b (即d 是a 与b 的一个公因数);2)若c Z ∈且|,||c a c b c d ⇒(即d 能被a 与b 的任一个公因数整除).则称d 为a 与b 的一个最大公因数. 最大公因数的概念可推广至有限个整数.B )最大公因数的存在性(及求法)TH1.4.2 任意n (2)n ≥个整数12,,,n a a a L 都有最大公因数;若d 为12,,,n a a a L 的一个最大公因数,则d -也是;12,,,n a a a L 的两个最大公因数至多相差一个符号.C )性质TH1.4.3 设d 为12,,,n a a a L 的一个最大公因数,那么12,,,n t t t Z ∃∈L 使得1122n n d t a t a t a =+++L .略证:若120n a a a ====L ,则0d =,从而对i t Z ∀∈都有11220n n t a t a t a =+++L ;若i a 不全为0,由证明过程知结论成立.(2)互素定义3. 设,a b Z ∈,若(,)1a b =,则称,a b 互素;一般地设12,,,n a a a Z ∈L ,若12(,,,)1n a a a =L ,则称12,,,n a a a L 互素.TH1.4.4 n 个整数12,,,n a a a L 互素12,,,n t t t Z ⇔∃∈L 使得11221n n t a t a t a +++=L .3. 素数及其性质(1)定义4. 一个正整数1p >叫做一个素数,若除1,p ±±外没有其他因数.(2)性质1)若p 是一个素数,则对a Z ∀∈有(,)a p p =或(,)1a p =.(注意转换为语言叙述,证易;略)2)a Z ∀∈且0,1a ≠±;则a 可被某一素数整除.3)TH1.4.5 设p 是一个素数,,a b Z ∈,若|p ab ,则|p a 或|p b .1.5 数环和数域一 教学思考1. 数环、数域是本章引入的两个新概念,其是鉴于很多数学问题不仅与所讨论的范围(数集)有关,而且与数集所满足的运算有关.也就是说需论及所具有的运算.为体现这个问题,引入了数环、数域的概念.2. 数环、数域简而言之是分别关于加、减、乘和加、减、乘、除封闭的非空数集,这可知之联系与区别,且由于对于不同的运算的封闭性,可讨论各自具有的简单性质.3. 本节内容简洁,不难理解,需要注意的是:一、“任意数域都包含有理数域”的证法——归谬法;二、给定一个数集验证是否是数环、数域;三、关于数环、数域的深入的问题——因数环、数域都是数集,而集合有所谓的运算:交、并,那么问题是数环、数域的交、并是否仍是之从中体会“从定义出发加以验证”以及举例证明的方法.二 教学过程1. 概念定义1. 设S C ⊆且S ≠Φ,若对,a b S ∀∈都有,,a b a b ab S +-∈,则称S 是一个数环.定义2. 设F 是一个数环,若1)F 含有一个非0数;2)若,a b F ∈且0b ≠,则a Fb ∈.则称F 是一个数域.例子:1)整数集为数环,有理数集、实数集、复数集为数域.2)取定a Z ∈,令{}|S na n Z =∈,S 为数环.3){}2|,,1S a bi a b Z i =+∈=- 是数环.4){},F a a b Q =+∈ 是数域.2. 性质1)设S 是一个数环,则0S ∈.2)设F 是一个数域,则0,1F ∈.3)有理数域是最小的数域(在集合包含意义下)TH1.5.1 任何数域都包含有理数域Q .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 设映射
: M M ', : M ' M '', : M '' M , '''
有 ( ) ( ).
§6.1 集合 映射
3、映射的性质
设映射
:M M '
M ,即对于任意 y M ' '
(1)若 Im
x M
,均存在
1
:M M
为可逆映射,则
1
对 y M , 有 y
( y ) (
1
( y ))
( y ) M , 使 y ( x ).
所以σ为满射. 其次,对
x1 , x 2 M , 若 ( x1 ) ( x 2 )
1
,则
1
x1 I M ( x1 )
M {( x , y ) x y
2
2
4, x , y R }
N= { 0 , 1, 2 , 3 , } , = { 0 , 2 , 4 , 6 , } 2Z
M { x x 1 0 , x R } { 1, 1}
2
☆ 空集:不含任何元素的集合,记为 .
设映射 : M M ', : M ' M '' ,
乘积
定义为:
a M
(a)=τ(σ(a))
即相继施行σ和τ的结果, 是 M 到 M" 的一个 映射.
§6.1 集合 映射
注意 1. 对于任意映射 : M M ',有
IM IM
(2)M=Z,M´=Z+, n Z τ:τ(n)=|n|+1,
(是满射,但不是单射)
(3)M= P n n ,M´=P,(P为数域) σ:σ(A)=|A|,
§6.1 集合 映射
A P
n n
(是满射,但不是单射)
(4)M=P,M´=P n n , P为数域, E为n级单位矩阵 τ:τ(a)=aE,
或 : a a .
§6.1 集合 映射
注意
1.设映射 : M M ' , 集合
( M ) { ( a ) a M }
称之为M在映射σ下的象,通常记作 Imσ. 显然,Im
M '
2. 集合M 到M 自身的映射称为M 的一个变换.
§6.1 集合 映射
例4
M是一个集合,定义I:
§6.1 集合 映射
(3)如果 f、g 都是双射,那么 h 也是双射,并且
h
1
(g f )
1
f
1
g
1
证: c C 因为 g 是满射,存在 b
又因为 f 是满射,存在 a ∴
A
B
,使 g ( b )
c.
,使
f (a ) b
h ( a ) g f ( a ) g ( f ( a )) g ( b ) c ,
a P
(是单射,但不是满射)
M 为固定元素
a (5)M、M´为任意非空集合, 0
σ:σ(a)=a0,
a M
(既不单射,也不是满射)
(6)M=M´=P[x],P为数域 σ:σ(f (x))=f ´(x),
(是满射,但不是单射) f ( x) P[x]
§6.1 集合 映射
(7)M是一个集合,定义I:
σ的逆映射是由σ唯一确定的
§6.1 集合 映射
注意
1. 若σ为可逆映射,则σ-1也为可逆映射,且
(σ-1)-1=σ. 2. 则有
:M M '
为可逆映射,a
M ,若 ( a ) a ',

1
a
a.
3. σ 为可逆映射的充要条件是 σ 为1-1对应.
§6.1 集合 映射
I(a)=a,
a M
(双射)
(8)M=Z,M´=2Z, σ:σ(n)=2n,
n Z
(双射)
§6.1 集合 映射
4、可逆映射
定义 设映射
: M M ', 若有映射 : M ' M ,
使得 I M , I M 则称σ为可逆映射(invertible mapping),τ为σ的 逆映射,记作σ-1.
§6.1 集合 映射
☆集合的表示方法一般有两种:描述法、列举法 描述法(description): 给出这个集合的元素所具有的特征性质. M={x | x具有性质P} 列举法(enumeration): 把构成集合的全部元素一一列举出来. M={a1,a2,…,an}
§6.1 集合 映射
例1
例2 例3
( x1 )

1
( ( x 1 ))
( ( x 2 ))
1
( x2 ) I M ( x2 ) x2
即σ为单射. 所以.σ为1-1对应.
§6.1 集合 映射
例7
设映射 f
: A B,
g : B C ,令
h g f ,证明:
(1)如果 h 是单射,那么 f 也是单射;
I(a)=a ,
a M
即 I 把 M 上的元素映到它自身,I 是一个映射, 称 I 为 M 上的恒等映射(identity mapping)或 单位映射. 例5 任意一个在实数集R上的函数 y=f(x)
都是实数集R到自身的映射, 即,函数可以看成是映射的一个特殊情形.
§6.1 集合 映射
2、映射的乘积
证:若 f 不是单射,则存在
但 f ( a 1 ) f ( a 2 ),
a1 , a 2 A , 且 a1 a 2 ,
于是有
h ( a 1 ) g f ( a 1 ) g ( f ( a 1 )) g ( f ( a 2 )) g f ( a 2 ) h ( a 2 )
a2
),
则称σ是M到M´的一个单射(injection)或称σ 为1-1(one to one); (3)若σ既是单射,又是满射,则称σ为双射 (bijection), (或称σ为 1-1对应).
§6.1 集合 映射
例6
判断下列映射的性质
(1)M={a,b,c}、M´={1,2,3} σ:σ(a)=1,σ(b)=1,σ(c)=2 (既不单射,也不是满射) τ:τ(a)=3,τ(b)=2,τ(c)=1 (双射)
第六章 线性空间
§1 集合· 映射 §2 线性空间的定义 与简单性质 §3 维数· 基与坐标 §4 基变换与坐标变换
§5 线性子空间
§6 子空间的交与和 §7 子空间的直和 §8 线性空间的同构
§6.1 集合· 映射
一、集合 二、映射
§6.1 集合 映射
一、集合(set)
1、定义
把一些事物汇集到一起组成的一个整体就叫做集合; 组成集合的这些事物称为集合的元素(element). ☆ 常用大写字母A、B、C 等表示集合; 用小写字母a、b、c 等表示集合的元素. 当a是集合A的元素时,就说a 属于A,记作 a
注意 ≠
约定: 空集是任意集合 的子集合.
§6.1 集合 映射
2、集合间的关系
☆ 如果B中的每一个元素都是A中的元素,则称B是 A的子集(subset),记作 B A ,(读作B包含 于A).
B A 当且仅当 x B x A
☆ 如果A、B两集合含有完全相同的元素,则称 A与 B相等,记作A=B . A=B当且仅当 A
,使
y ( x ) ,则称
σ 是M到M´的一个满射
(surjection)或称 σ为映上(onto)的;
§6.1 集合 映射
(2)若M中不同元素的象也不同,即
a1 , a 2 M , 若 a1 a 2 , 则 (a1 ) (a 2 )
(或 a 1 , a 2 M , 若 ( a 1 ) ( a 2 ), 则 a 1
§6.1 集合 映射
B且 B A
3、集合间的运算
交: A
A 并: B { x x A且 x B } B { x x A或 x B }
; ;
A 显然有,
B A;
A A B
§6.1 集合 映射
二、映射
1、定义
设M、M´是给定的非空集合,如果有 一个对 应法则σ,通过这个法则σ对于M的每一个元素a, 都有M´中一个确定的元素a´与它对应, 则称 σ为 M到M´的映射(mapping),记作 : M M ' . 称 a´为 a 在映射σ下的象(image),而 a称a´在 映射σ下的原象(inverse image),记作σ(a)=a´
A

A
当a不是集合A的元素时,就说a不属于A,记作 a
§6.1 集合 映射
.
注意
关于集合没有一个严谨的数学定义,只是有一
个描述性的说明.集合论的创始人是19世纪中期德
国数学家康托尔(G.Cantor),他把集合描述为:
所谓集合是指我们直觉中或思维中确定的,彼此有
明确区别的那些事物作为一个整体来考虑的结果; 集合中的那些事物就称为集合的元素.即,集合中 的元素具有:确定性、互异性、无序性.
y M , 若 y = ( x ), 有 (y )= x
则 ( y ) ( ( y )) ( x ) y I M ( y ),

IM


IM
∴σ为可逆映射.
相关文档
最新文档