高考数学圆锥曲线分类大全理

合集下载

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中非常重要的一部分,它包括直角双曲线、抛物线和椭圆。

这些曲线都是由一个平面与一个旋转椭球体相交得到的,具有广泛的应用价值。

以下是对于圆锥曲线的知识点总结:一、直角双曲线直角双曲线由于其特殊的形状和性质,在物理学、工程学和数学等方面都有应用。

直角双曲线的方程可以表示为以下形式:(x^2/a^2) - (y^2/b^2) = 1其中a和b是正实数。

在直角双曲线上,存在两个焦点以及两个称为顶点的特殊点。

双曲线还具有渐近线,与其方程的斜率相关。

二、抛物线抛物线是一种类似于开口向上或开口向下的弧线。

它的方程通常表示为:y = ax^2 + bx + c其中a、b和c是实数且a不等于零。

抛物线的焦点是它的特殊点,而直径称为准线。

抛物线具有对称性质,其形状可以用焦点和准线的位置来确定。

三、椭圆椭圆是圆锥曲线中最常见的类型,它的形状类似于椭圆形。

椭圆的方程可以表示为:(x^2/a^2) + (y^2/b^2) = 1其中a和b是正实数。

椭圆具有两个焦点,椭圆的形状和大小由焦距和长短轴决定。

椭圆还具有较为特殊的直径,它称为主轴。

四、参数方程与极坐标方程除了直角坐标系下的方程表示,圆锥曲线还可以用参数方程和极坐标方程来描述。

参数方程是将x和y表示为参数t的函数,通过参数的变化来确定曲线上的点。

极坐标方程是使用角度和极径来定义曲线上的点。

五、圆锥曲线的性质圆锥曲线具有许多重要性质和性质。

其中一些重要的性质包括:切线的斜率、焦点与直线的关系、曲率和弧长等。

这些性质在求解问题和绘图中都有重要的应用。

总结:圆锥曲线是数学中的重要概念,它包括直角双曲线、抛物线和椭圆。

每种曲线都具有独特的形状和性质,可以通过方程、参数方程或极坐标方程来描述。

了解圆锥曲线的基本知识对于解决实际问题和深入理解数学概念都是非常重要的。

掌握圆锥曲线的知识点,将有助于我们在几何学和解析几何学领域更加灵活和熟练地运用相关概念。

高考数学中的圆锥曲线知识

高考数学中的圆锥曲线知识

高考数学中的圆锥曲线知识高考数学中的圆锥曲线是一道重要的考题,也是很多学生容易失分的一道难题。

圆锥曲线是指平面上坐标系中的一种特殊的曲线,也是数学的重要分支之一。

本文将介绍圆锥曲线的基本概念,分类和应用,希望能对广大考生有所帮助。

一、圆锥曲线的基本概念1.圆锥圆锥是一个由一个圆绕着它的直径周而复始地旋转而成的立体物体,其中:该直径是铅锤线,圆锥的底面是这个圆,圆锥的顶点是铅锤线的另一端。

2.圆锥曲线的概念在平面直角坐标系中,将一个固定的点F(称为焦点)与一个固定的直线L(称为直角准线)连接。

在平面上,连结点P到直线L的距离为PF和P到点F的距离的比等于定值e(e>0)。

这样得到的曲线称为圆锥曲线。

圆锥曲线分为三种情况:椭圆、双曲线和抛物线。

二、圆锥曲线的分类1.椭圆椭圆是平面上与两个焦点F1,F2的距离之和等于定值2a(a>0)的点P的轨迹。

椭圆是圆锥曲线中最简单的一种形式。

椭圆可以通过平移、伸缩、旋转对平面上的圆形进行简单的变换。

2. 双曲线双曲线是平面上与两个焦点F1,F2的距离之差等于定值2a (a>0)的点P的轨迹。

双曲线有两条渐进线,即切射线和渐进线。

3. 抛物线抛物线是平面上焦点F到直线L的距离等于点P到焦点F的距离的平方与定值a(a>0)成正比例的点P的轨迹。

抛物线的形状像一个平翻的碗,有上凸抛物和下凸抛物两种。

三、圆锥曲线的应用1. 物理学圆锥曲线在物理学中得到广泛的应用。

例如,在宇宙空间中,行星的轨迹可以用椭圆来描述。

在天体力学中,利用双曲线描绘有关天体的相对运动情况。

抛物线则可用于描述抛体的轨迹。

2. 工程学圆锥曲线在工程学中也有重要的应用,特别是在光学的设计中。

例如,望远镜的光学系统用到的镜面都是椭圆形的;飞机的机翼、车轮和机器的轮子都是利用圆锥的形状进行设计的。

3. 数学研究圆锥曲线在数学研究中的应用也是相当广泛的,例如,利用双曲线求解微积分中的积分问题;还可以用抛物线中的特殊几何性质证明三次方程有一个实根。

高三数学圆锥曲线知识点总结大全

高三数学圆锥曲线知识点总结大全

高三数学圆锥曲线知识点总结大全在高三数学学习中,圆锥曲线是一个非常重要的知识点,它可以帮助我们更好地理解数学的几何性质和关系。

本文将对圆锥曲线的相关知识进行总结和归纳,希望可以帮助大家更好地掌握这一部分的内容。

一、什么是圆锥曲线圆锥曲线是以两条总称为焦点的直线为边界的平面曲线。

根据焦点的相对位置和离心率的不同,圆锥曲线可以分为四种类型:椭圆、双曲线、抛物线和圆。

二、椭圆1. 椭圆的定义:椭圆可由平面内的一动点 M 和两焦点 F1、F2的距离之和等于常数 2a 的点的轨迹定义。

2. 椭圆的性质:- 椭圆的离心率 e 小于 1,且焦点位于长轴上。

- 椭圆的长轴和短轴分别对应着两个标准方程的分子和分母。

- 椭圆的离心率越小,形状越趋于圆形。

- 椭圆的焦点到直角坐标轴的垂直距离分别为 a 和 b。

三、双曲线1. 双曲线的定义:双曲线可由平面内的一动点M 和两焦点F1、F2 的距离之差等于常数 2a 的点的轨迹定义。

2. 双曲线的性质:- 双曲线的离心率 e 大于 1,且焦点位于长轴上。

- 双曲线的长轴和短轴分别对应着两个标准方程的分子和分母。

- 双曲线的离心率越大,形状越扁平。

- 双曲线的焦点到直角坐标轴的垂直距离分别为 a 和 b。

四、抛物线1. 抛物线的定义:抛物线可由平面内的动点 M 和直线 l 的距离点 F 的距离等于焦距 PF 点的轨迹定义。

2. 抛物线的性质:- 抛物线的焦点位于焦线的中垂线上。

- 抛物线的顶点为最低点或最高点,轴称为准线,焦距 PF 的两倍称为参数。

- 抛物线的标准方程为 y² = 2px。

五、圆1. 圆的定义:圆可由平面内的一动点 M 到定点 O 的距离等于定长 r 的点的轨迹定义。

2. 圆的性质:- 圆的离心率 e 等于 0,焦距为零。

- 圆的半径为定长 r,焦距为零。

- 圆心到任意点的距离都相等,这个距离称为半径 r。

总结:通过以上对圆锥曲线的介绍,我们可以发现每一种曲线都有各自的定义和性质。

高考数学中的圆锥曲线

高考数学中的圆锥曲线

高考数学中的圆锥曲线圆锥曲线是代数几何中的重要概念,也是高中数学中比较难的一部分。

它包含了直线、双曲线、抛物线和椭圆四种曲线类型。

在高考数学中,圆锥曲线是一个难点,但是掌握了这个知识点,不仅有助于理解高数中其他知识点,也有助于应对高考成绩。

一、圆锥曲线的定义和概念圆锥曲线是在平面直角坐标系中的解析几何概念,它是二次方程x²+y²+Dx+Ey+F=0(D,E,F均为常数,且D²+E²≠0)的图形。

其中的四种曲线类型如下:1. 直线:当圆锥曲线的系数D=E=0时,圆锥曲线变成直线。

直线可以看成是一个不确定的椭圆,它有两个焦点(即两个充电电荷)、两个半轴(即极值)。

2. 双曲线:当圆锥曲线的系数D²-E²>0时,圆锥曲线变成双曲线。

双曲线有两个焦点和两个渐近线。

3. 抛物线:当圆锥曲线的系数D=0,E≠0时,圆锥曲线变成抛物线。

抛物线有一个焦点和一个顶点。

4. 椭圆:当圆锥曲线的系数D²-E²<0时,圆锥曲线变成椭圆。

椭圆有两个焦点和两个半轴。

二、实例探究:直线与圆锥曲线我们以直线为例,来看一下圆锥曲线与直线的关系。

首先,我们知道当圆锥曲线系数D=E=0时,可以变成一个直线。

而对于直线y=kx+b(k和b均为常数),可以加入一个令y=mx,那么k和b就是D和E,即圆锥曲线的系数。

例如,圆锥曲线x²-6x+y²+4y+9=0,我们可以将它转换为(x-3)²+(y+2)²=4。

这是一个半径为2,圆心在(3,-2)处的圆。

我们可以绘制它的图像,然后再绘制直线y=x-1的图像。

从图像来看,直线y=x-1穿过了圆心,因此它一定与这个圆有交点。

我们可以通过解方程,求出直线y=x-1与圆的交点:(x-3)²+(y+2)²=4;y=x-1.解得:x²-5x+9=0,因此x=(5±√5)/2,代入y=x-1,得到y=(3±√5)/2。

高考数学真题分类大全 专题25 圆锥曲线综合解析

高考数学真题分类大全 专题25 圆锥曲线综合解析

专题25圆锥曲线综合第一部分真题分类1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是()A B C .2D【答案】D【解析】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒=.故选:D.2.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .3.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .2⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即02e <≤;当32b b c ->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c++≤,化简得,()2220cb -≤,显然该不等式不成立.故选:C .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为()AB C .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2021·全国高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.6.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m-=>的一条渐近线为0my +=,则C 的焦距为_________.【答案】40my +=化简得y =,即b a =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =.故答案为:4.7.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.【答案】32x =-【解析】抛物线C :22y px =(0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧,又||6FQ = ,(6,0),(6,)2pQ PQ p ∴+∴=-uu u r 因为PQ OP ⊥,所以PQ OP ⋅= 2602p p ⨯-=,0,3p p >∴=Q ,所以C 的准线方程为32x =-故答案为:32x =-.8.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>的离心率为3.(1)证明:a ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥.①求直线l 的方程;②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【解析】(1)3c e a ===,3b a ∴=,因此,a ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,1015⎛⎫ ⎪ ⎪⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得10b >.设点()11,P x y 、()22,Q x y,则12129210210x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,所以,12129y y x x +=+,由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=,所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝所以,直线l方程为910y x ⎛⎫-- ⎪ ⎭⎝⎭,即y =所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥ ,而()11,OP x y = ,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.9.(2021·湖南高考真题)已知椭圆()2222:10x y C a b a b+=>>经过点()20A ,,且离心率为2.(1)求椭圆C 的方程;(2)设直线1y x =-与椭圆C 相交于P Q ,两点,求AP AQ ⋅的值.【答案】(1)2214x y +=;(2)15.【解析】(1)椭圆()2222:10x y C a b a b+=>>经过点()20A ,,所以2a =,2c ca ==,所以c =222431b a c =-=-=,所以椭圆C 的方程为2214x y +=.(2)由22141x y y x ⎧+=⎪⎨⎪=-⎩得2580x x -=,解得128,05x x ==,所以118583155x y ⎧=⎪⎪⎨⎪=-=⎪⎩,或110011x y =⎧⎨=-=-⎩,可得83,55P ⎛⎫ ⎪⎝⎭,()0,1Q -,或者83,55Q ⎛⎫⎪⎝⎭,()0,1P -,所以()834312,02,155555AP AQ ⎛⎫⋅=-⋅--=-= ⎪⎝⎭ .10.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)0x y -=.【解析】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为5c e a ==,故2c =,1b ==,因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215x y +=上一点,先证明直线MN 的方程为0015x xy y +=,联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭,直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭,因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=,所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-,所以,直线l的方程为1x y =,即0x y -=.第二部分模拟训练一、单选题1.已知P (x 0,y 0)是椭圆C :24x +y 2=1上的一点,F 1,F 2分别是椭圆C 的左、右焦点,若12PF PF ⋅<0,则x 0的取值范围是A .2626,33⎛⎫-⎪ ⎪⎝⎭B .2323,33⎛⎫-⎪ ⎪⎝⎭C .33,33⎛⎫- ⎪ ⎪⎝⎭D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】A【解析】如图,设以O为原点、半焦距c =为半径的圆x 2+y 2=3与椭圆交于A ,B 两点.由2222314x y x y ⎧+⎪⎨+⎪⎩==得263x ±=,要使12PF PF ⋅<0,则点P 在A 、B 之间,∴x 0的取值范围是2626,33⎛⎫- ⎪ ⎪⎝⎭.故选A.2.已知抛物线C 1:21615y x =和圆C 2:(x -6)2+(y -1)2=1,过圆C 2上一点P 作圆的切线MN 交抛物线C ,于M ,N 两点,若点P 为MN 的中点,则切线MN 的斜率k >1时的直线方程为()A .4x -3y -22=0B .4x -3y -16=0C .2x -y -11+5=0D .4x -3y -26=0【答案】D【解析】画出曲线图像如下图:由题意知,切线MN 的斜率k 存在且不为0,设点00(,)P x y ,设直线MN 的方程为:(0)x my n m =+≠,其中11k m=>,则01m <<,联立21615x my ny x =+⎧⎪⎨=⎪⎩,可得2161601515y my n --=,则有,121615y y m +=,2121216()2215x x m y y n m n +=++=+,根据中点坐标公式可得,20815x m n =+,0815y m =,又直线MN 与圆C 21=,即22(6)1m n m --=+①,依题意,直线C 2P 与直线MN 垂直,则28111518615mm mn -⋅=-+-,整理得218861515n m m =--+②,将②代入①并整理得,43264240642402250m m m m -+-+=,降次化简可得,32(43)(16482075)0m m m m ----=③,令32()16482075g m m m m =---,则222()48962048(1)68g m m m m '=--=--,因为01m <<,所以2()48(1)680g m m '=--<,即()g m 在(0,1)单调递减,则()(0)750g m g <=-<在(0,1)上恒成立,即()=0g m 在(0,1)无解,从而③式的解只有一个,34m =,代入②式可得,132n =,所以,直线MN 的方程为:31342x y =+,整理得,4x -3y -26=0.故选:D.3.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则221213e e +的值为()A .1B .2512C .4D .16【答案】C【解析】如图,设椭圆的长半轴长为1a ,双曲线的半实轴长为2a ,则根据椭圆及双曲线的定义1211222,2PF PF a PF PF a +=-=,112212,PF a a PF a a ∴=+=-,设12122,3F F c F PF π=∠=,则在12PF F ∆中由余弦定理得()()()()2221212121242cos3c a a a a a a a a π=++--+-,∴化简2221234a a c +=,该式变成2221314e e +=,故选:C.4.已知双曲线2221(0)x y a a -=>的离心率为3,抛物线22(0)y px p =>的焦点与双曲线的右焦点F 重合,其准线与双曲线交于点(),0,2M M N y MF FQ >=,点R 在x 轴上.若||||RN RQ -最大,则点R 的坐标为()A .(6,0)B .(8,0)C .(9,0)D .(10,0)【答案】D【解析】因为双曲线2221(0)x y a a -=>的离心率为233,即233c a =,又221a c +=,所以2a c ==,即(20)F ,,因此抛物线的准线方程为2x =-,联立221(2,(2,3332x y M N x ⎧-=⎪⇒---⎨⎪=-⎩,设(,)Q x y ,由2MF FQ = 可得()()2(2)22(4,60203x Q y ⎧--=-⎪⇒-⎨-=-⎪⎩,结合下图可知,当R 点运动到R ',即,,N Q R 三点共线时,||||RN RQ -最大,设此时(,0)R r ',则有//NQ QR ',即33363610424r r -+=⇒=+-,因此(10,0)R ,故选:D.5.已知抛物线2:4C y x =和点(2,0)D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①以BE 为直径的圆与抛物线准线相离;②直线OB 与直线OE 的斜率乘积为2-;③设过点A ,B ,E 的圆的圆心坐标为(,)a b ,半径为r ,则224a r -=.其中,所有正确判断的序号是()A .①②B .①③C .②③D .①②③【答案】D【解析】如图,设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE的中点.设B ,E 到准线的距离分别为1d ,2d ,M 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线,则12||||||222d d BF EF BE d R ++==>=.所以①正确.由题意可设直线DE 的方程为2x my =+,代入抛物线C 的方程,有2480y my --=.设点B ,E 的坐标分别为()11,x y ,()22,x y ,则124y y m +=,128y y =-.所以()()()21212121222244x x my my m y y m y y =++=+++=.则直线OB 与直线OE 的斜率乘积为12122y y x x =-.所以②正确.将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-.根据抛物线的对称性可知,A ,E 两点关于x 轴对称,所以过点A ,B ,E 的圆的圆心N 在x 轴上.由上,有124y y m +=,21244x x m +=+,则()()2224212121212||44164832BE x x x x y y y y m m =+-++-=++.所以,线段BE 的中垂线与x 轴的交点(即圆心N )横坐标为224m +,所以224a m =+.于是,222222421212||||244128222BE x x y y r MN m m m ++⎛⎫⎛⎫⎛⎫=+=+-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,代入21244x x m +=+,124y y m +=,得24241612r m m =++,所以()()22224224416124a r m m m -=+-++=.所以③正确.故选:D 6.已知(0,3)A ,若点P 是抛物线28x y =上任意一点,点Q 是圆22(2)1x y +-=上任意一点,则2||||PA PQ 的最小值为()A .4-B .1-C .2-D .1+【答案】A【解析】设点,由于点P 是抛物线上任意一点,则20008(0)x y y =≥, 点(0,3)A ,则22222000000(3)8(3)29PA x y y y y y =+-=+-=++,由于点Q 是圆22(2)1x y +-=上任意一点,所以要使2||PA PQ 的值最小,则PQ 的值要最大,即点P 到圆心的距离加上圆的半径为PQ 的最大值,则0max 113PQ y =+==+,∴22002000000()4()12||129333)3(3243y y y y P P y y y Q y A -++++≥==+++++-+,003312()y y +++≥=∴2||PA PQ的最小值为4-,故答案选A .7.以正方形的四个顶点分别作为椭圆的两个焦点和短轴的两个端点,A ,B ,M 是椭圆上的任意三点(异于椭圆顶点),若存在锐角θ,使cos sin OM OA OB θθ=⋅+⋅ ,(0为坐标原点)则直线OA ,OB 的斜率乘积为___.【答案】12-或-2【解析】由题意可设椭圆方程为2222x y 12b b+=,又设A (1x ,1y ),B (2x ,2y ),()1212OM cosθOA sinθOB M cosθx sinθx cosθy sinθy =⋅+⋅⇒⋅+⋅⋅+⋅ ,因为M 点在该椭圆上,∴()()22121222cosθx sinθx cosθy sinθy 12b b ⋅+⋅⋅+⋅+=,则12121222122sinθcosθ2sinθcosθ102b b 2x x y y y y x x ⋅⋅+=⇒=-又因为A 、B 点在也该椭圆上,∴221122x y 12b b +=,222222x y 12b b+=∴1x 12<<,即直线OA 、OB 的斜率乘积为12-,同理当椭圆方程为2222y x 12b b+=时直线OA 、OB 的斜率乘积为﹣2.故答案为12-或﹣2.8.在平面直角坐标系xOy 中,椭圆()222139x y a a +=>与为双曲线22214x y m -=有公共焦点1F ,2F .设P 是椭圆与双曲线的一个交点,则12PF F △的面积是_____________.【答案】6.【解析】根据对称性,不妨设P 在第一象限.由题设可知()()22221249444F F a m c =-=+=.即2213a m -=,229a c -=,224c m -=.根据椭圆与双曲线的定义得,在12PF F △中,由余弦定理得()()222222222222513a c c m a m c a m a m ---+-===--.所以,1212sin 13F PF ∠=,()122212121112sin 62213PF F S PF PF F PF a m =⋅∠=⨯-⨯⋅⋅=△.故答案为:69.已知1F ,2F 是双曲线22:1259x y Γ-=的左、右焦点,点P 为Γ上异于顶点的点,直线l 分别与以1PF ,2PF 为直径的圆相切于A ,B 两点,若向量AB ,12F F 的夹角为θ,则cos θ=___________.【答案】34【解析】如图,设以PF 1,PF 2为直径的圆的圆心分别为C ,D ,连接AC ,BD ,过D 作DE ⊥AC 于点E ,连接CD ,则||DE =,因为直线AB 是圆C 和圆D 的公切线,且切点分别是A ,B ,所以AC ⊥AB ,BD ⊥AB ,则四边形ABDE 是矩形,所以|AB |=|DE |,|AE |=|BD |.且1||2PF AC =,2||2PF BD =,易知|CE |=|AC |-|AE |=|AC |-|BD |=1222PF PF -,根据双曲线的定义知,|PF 1|-|PF 2|=10,所以|CE |=5.因为12||2F F CD ==222||||+||CD CE DE =|可得||3DE =,即|AB |=3,因为向量12,AB F F 的夹角θ即为,ED CD 的夹角,所以||cos||34DE CD θ==.故答案为:33434.10.在直角坐标系xOy 中,双曲线22221x y a b-=(00a b >>,)的离心率2e >,其渐近线与圆22(2)4x y +-=交x 轴上方于A B ,两点,有下列三个结论:①||||OA OB OA OB →→→→-<+;②||OA OB →→-存在最大值;③||6OA OB →→+>.则正确结论的序号为_______.【答案】①③【解析】 2c b e a a==>⇒>,∴60AOB ∠< ,对①,根据向量加法的平行四边形法则,结合60AOB ∠< ,可得||||OA OB OA OB →→→→-<+成立,故①正确;对②,||||OA OB AB →→-= ,由于60AOB ∠< ,∴AOB ∠没有最大值,∴||AB 没有最大值,故②错误;对③,当60AOB ∠= 时,||||22cos 30OA OB ==⋅=∴21||12122362OA OB OA OB →→+=++⋅⋅⋅= ,又 60AOB ∠< ,∴2||36OA OB →→+>,∴,故③正确;故答案为:①③.。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。

高中数学中的圆锥曲线知识点总结

高中数学中的圆锥曲线知识点总结

高中数学中的圆锥曲线知识点总结圆锥曲线是高中数学中重要的几何概念之一,包括椭圆、双曲线和抛物线。

在本文中,我们将对这些圆锥曲线的基本概念、性质和相关公式进行总结。

一、椭圆1. 概念:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。

2. 基本性质:- 长轴和短轴:椭圆的两个焦点F1和F2之间的距离为2c,椭圆的长轴为2a,短轴为2b,有关系式c^2 = a^2 - b^2。

- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。

椭圆的离心率小于1。

- 焦点与定点关系:椭圆上的任意一点P到两个焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。

- 弦与切线性质:椭圆上任意一条弦与该点处的切线垂直。

3. 相关公式:- 椭圆标准方程:(x^2)/(a^2) + (y^2)/(b^2) = 1 或 (y^2)/(a^2) +(x^2)/(b^2) = 1(其中a > b)。

- 焦点坐标公式:F1(-c,0),F2(c,0)。

- 离心率公式:e = c/a。

- 曲率半径:任意一点P在椭圆上的曲率半径为a^2/b。

二、双曲线1. 概念:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点的轨迹。

2. 基本性质:- 长轴和短轴:双曲线的两个焦点F1和F2之间的距离为2c,双曲线的长轴为2a,短轴为2b,有关系式c^2 = a^2 + b^2。

- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。

双曲线的离心率大于1。

- 焦点与定点关系:双曲线上的任意一点P到两个焦点F1和F2的距离之差等于常数2a,即|PF1 - PF2| = 2a。

- 弦与切线性质:双曲线上任意一条弦与该点处的切线垂直。

3. 相关公式:- 双曲线标准方程:(x^2)/(a^2) - (y^2)/(b^2) = 1 或 (y^2)/(a^2) -(x^2)/(b^2) = 1(其中a > b)。

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。

下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。

根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。

1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。

即|PF1| + |PF2| = 2a。

椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。

3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。

即|PF| = |PM|,其中M是直线L上的一点。

抛物线对应的方程为\(y^2 = 2px\)。

二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。

B. 椭圆的离心率e的范围为0<e<1。

C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。

3. 抛物线的性质:A. 抛物线的焦点为定点F。

B. 抛物线的离心率e=1。

C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。

三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。

2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。

3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。

2024高考数学专项复习圆锥曲线专题:调和点列-极点极线

2024高考数学专项复习圆锥曲线专题:调和点列-极点极线

圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。

同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。

所以称A,B和C,D称为调和共轭。

2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。

若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。

3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。

由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。

4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。

高考圆锥曲线知识点汇总(精选)

高考圆锥曲线知识点汇总(精选)

高考圆锥曲线知识点汇总(精选)为左、右焦点,则有以下几何性质:1)顶点为(±a,0)和(0,±b),其中长轴长为2a,短轴长为2b;2)焦点为(±c,0),其中c=√(a^2-b^2)为焦距;3)范围为−a≤x≤a,−b≤y≤b;4)对称轴为x=0和y=0,对称中心为原点;5)准线为x=±c;6)离心率为e=c/a,其中e越小,椭圆越圆;e越大,椭圆越扁;7)焦点半径为PF1=a+ex,PF2=a-ex。

二、双曲线方程1.双曲线的定义:平面内到两个定点F1,F2的距离之差等于常数2a的点的轨迹叫做双曲线。

其中两个定点F1,F2为双曲线的两个焦点,两焦点间的距离F1F2叫做双曲线的焦距。

第一定义:当PF1-PF2<2a,无轨迹;当PF1-PF2=2a,轨迹是以F1,F2为端点的线段;当PF1-PF2>2a,轨迹为双曲线。

第二定义:双曲线上的点到对应焦点的距离与到对应准线的距离的差等于常数2a。

切记:“点点距为分子、点线距为分母”,其差即为常数2a。

如图:PF1 d1 PF2 cc 或PF2 d2 PF1 ccd1-d2=2a2.双曲线的标准方程:1)中心在原点,焦点在x轴上的双曲线的标准方程:x2-y21(a>0)a22)中心在原点,焦点在y轴上的双曲线的标准方程:y2-x21(a>0)a23.双曲线的一般方程:Ax2+Bxy+Cy2+Dx+Ey+F=0(A,C≠0)4.双曲线x2/a2-y2/b2=1的几何性质:1)顶点:(±a,0)和(0,±b);2)渐近线:y=±b/a*x;3)渐近线与双曲线的交点称为双曲线的端点;4)离心率:e=c/a,其中c=√(a^2+b^2)为焦距;5)对称轴:x=0和y=0,对称中心为原点;6)焦点:(±c,0),其中c=√(a^2+b^2)为焦距。

三、抛物线方程1.抛物线的定义:平面内到定点F的距离等于定点到直线L的距离的点的轨迹叫做抛物线。

高三数学圆锥曲线知识点

高三数学圆锥曲线知识点

高三数学圆锥曲线知识点在高中数学中,圆锥曲线是一个重要的概念。

它由圆、椭圆、双曲线和抛物线四种曲线构成。

掌握圆锥曲线的知识对于解决各种数学问题和应用是至关重要的。

本文将介绍高三数学圆锥曲线的知识点。

一、圆锥曲线的定义和性质圆锥曲线是一个平面上到一个定点和一个定直线的距离之比保持不变的点的轨迹。

圆锥曲线分为四种类型:圆、椭圆、双曲线和抛物线。

1. 圆:圆是所有到一个点的距离相等的点的轨迹。

圆的特点是中心坐标为(h, k),半径为r。

2. 椭圆:椭圆是所有到两个定点之和的距离之比为定值的点的轨迹。

椭圆的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,长轴的长度为2a,短轴的长度为2b。

3. 双曲线:双曲线是所有到两个定点之差的距离之差为定值的点的轨迹。

双曲线的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,离心率小于1。

4. 抛物线:抛物线是所有到一个定直线的距离与到一个定点的距离相等的点的轨迹。

抛物线的特点是焦点为F,准线为L,焦距为p,焦点到准线的距离为x,焦点到点P的距离为y。

二、圆锥曲线的方程1. 圆的方程:$(x-h)^2 + (y-k)^2 = r^2$,其中(h, k)为圆心的坐标,r为半径。

2. 椭圆的方程:$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$,其中(h, k)为椭圆中心的坐标,a和b分别为椭圆长半轴和短半轴的长度。

3. 双曲线的方程:$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} =1$,其中(h, k)为双曲线中心的坐标,a和b分别为双曲线长半轴和短半轴的长度。

4. 抛物线的方程:$y^2 = 4ax$,其中焦点为原点,准线为x轴,焦距为p。

三、圆锥曲线的性质和应用1. 圆的性质:圆的切线与半径垂直,圆的弦与半径垂直于弦的中点。

2. 椭圆的性质:椭圆的离心率介于0和1之间,焦点和对称轴平行。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。

它在数学、物理、工程和计算机图形等领域具有广泛的应用。

本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。

一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。

它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。

- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。

- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。

2. 方程形式:圆锥曲线可以以各种形式的方程表示。

常见的方程形式包括标准方程、参数方程和极坐标方程。

二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。

椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。

2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。

3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。

4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。

5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。

三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。

抛物线对称于准线,并且具有一个顶点。

2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。

3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。

4. 极坐标方程:抛物线没有显式的极坐标方程。

5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。

圆锥曲线重点知识点总结

圆锥曲线重点知识点总结

圆锥曲线重点知识点总结圆锥曲线是高中数学中一个重要的内容,是解析几何的重点之一。

在学习圆锥曲线时,我们需要掌握一些重要的知识点。

本文将对圆锥曲线的基本概念、方程与性质进行总结。

一、圆锥曲线的基本概念圆锥曲线是由切割一个锥体的过程中所得到的曲线。

根据切割方式的不同,圆锥曲线可分为三类:椭圆、双曲线和抛物线。

1. 椭圆:通过一点F(焦点)到平面上任意一点P的距离之和恒定的点集所构成的曲线称为椭圆。

这个常数称为椭圆的焦距,用c表示。

椭圆还有一个重要的性质是焦点与准线之间的距离等于准线两焦点距离的一半。

2. 双曲线:通过一点F到平面上任意一点P的距离之差恒定的点集所构成的曲线称为双曲线。

这个常数称为双曲线的离心率,用e表示。

双曲线还有一个重要的性质是焦点与准线之间的距离等于准线两焦点距离的一半。

3. 抛物线:通过平面上任意一点P到一个定点F的距离等于点P到一条直线l的距离的点集所构成的曲线称为抛物线。

二、圆锥曲线的方程在解析几何中,我们常常使用方程描述曲线。

圆锥曲线的方程可以用多种形式表示,例如标准方程、一般方程和参数方程等。

1. 椭圆的方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1 (a > b > 0),其中a和b分别代表椭圆的长半轴和短半轴。

2. 双曲线的方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1 (a > 0,b > 0),其中a和b分别代表双曲线的距离焦点的距离和离心率。

3. 抛物线的方程:抛物线的标准方程为y^2 = 2px,其中p为抛物线的焦距。

三、圆锥曲线的性质掌握圆锥曲线的性质对于解析几何的问题求解非常重要。

1. 椭圆的性质:a) 椭圆的离心率满足0<e<1,离心率越小,椭圆越圆。

b) 长半轴和短半轴的长度之间的关系是a>b。

c) 椭圆的离心率e满足等于c/a(其中c代表焦距)。

2. 双曲线的性质:a) 双曲线的离心率满足e>1,离心率越大,双曲线越开口。

圆锥曲线高三知识点

圆锥曲线高三知识点

圆锥曲线高三知识点圆锥曲线是高中数学中一个重要的概念和知识点,它涉及到解析几何和微积分等多个学科领域。

本文将为您介绍圆锥曲线的相关知识点,帮助您更好地理解和应用这一概念。

一、圆锥曲线的定义与分类圆锥曲线是由一个固定点(焦点)到平面上的一个动点(动点不在平面上)的距离与一个定长的比例(离心率)所决定的点的轨迹。

根据焦点的位置和离心率的大小,圆锥曲线可分为椭圆、双曲线和抛物线三种类型。

1. 椭圆椭圆是焦点到动点距离与离心率的比例小于1的圆锥曲线。

它的特点是对称性强,曲线两端较平缓,并且有两个焦点。

2. 双曲线双曲线是焦点到动点距离与离心率的比例大于1的圆锥曲线。

它的特点是曲线两端较陡,且无限延伸,并且有两个焦点。

3. 抛物线抛物线是焦点到动点距离与离心率的比例等于1的圆锥曲线。

它的特点是对称性较强,曲线开口方向有两种可能:向上开口或向下开口。

二、圆锥曲线的方程每种圆锥曲线都有其各自的方程形式。

下面分别介绍各种圆锥曲线的方程形式:1. 椭圆的方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为椭圆的长轴长度的一半,b为椭圆的短轴长度的一半。

2. 双曲线的方程双曲线的标准方程有两种形式:(x-h)²/a² - (y-k)²/b² = 1和(y-k)²/b² - (x-h)²/a² = 1。

其中(h,k)为双曲线的中心坐标,a为双曲线的横轴长度的一半,b为双曲线的纵轴长度的一半。

3. 抛物线的方程抛物线的标准方程为y² = 4px或x² = 4py,其中p为焦点到准线的垂直距离。

三、圆锥曲线的性质与应用圆锥曲线具有许多有趣的性质和应用。

下面给出一些常见的性质和应用:1. 椭圆的性质和应用椭圆具有对称性强、焦点内所有点之和等于定值等性质。

数学高考圆锥曲线知识点

数学高考圆锥曲线知识点

数学高考圆锥曲线知识点圆锥曲线是高中数学中重要的知识点,广泛应用于数理化、工程学等领域。

本文将介绍圆锥曲线的基本概念和性质,以及与几何图形和实际问题的联系。

一、基本概念圆锥曲线是由圆锥和平面相交所得的曲线。

根据所切割的位置不同,圆锥曲线可分为椭圆、双曲线和抛物线三种类型。

1. 椭圆椭圆是平面与圆锥相交时,切割位置在圆锥两侧并且切割面是圆锥的两个对称面的情况。

椭圆具有如下性质:- 离心率小于1,离焦点距离小于两倍长轴。

- 长轴和短轴是椭圆的两个重要参数,可用于描述椭圆的形态。

2. 双曲线双曲线是平面与圆锥相交时,切割位置在圆锥两侧并且切割面不包含圆锥顶点的情况。

双曲线具有如下性质:- 离心率大于1,离焦点距离大于两倍长轴。

- 长轴和短轴是双曲线的两个重要参数,可用于描述双曲线的形态。

3. 抛物线抛物线是平面与圆锥相交时,切割位置在圆锥两侧并且切割面与圆锥对称的情况。

抛物线具有如下性质:- 离焦点距离等于两倍焦半径。

- 抛物线的开口方向由焦点和准线的相对位置决定。

二、性质和方程圆锥曲线的性质和方程是研究圆锥曲线的核心内容。

根据圆锥曲线的类型,我们可以得到如下性质和方程:1. 椭圆的性质和方程椭圆有很多独特的性质,如焦点、离心率、焦半径等。

椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$其中,a为长半轴长度,b为短半轴长度。

2. 双曲线的性质和方程双曲线也有很多独特的性质,如焦点、离心率、焦半径等。

双曲线的方程分为两种情况:- 横轴为x轴时,方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$;- 横轴为y轴时,方程为$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$;其中,a为实轴长度,b为虚轴长度。

3. 抛物线的性质和方程抛物线也有诸多性质,如焦点、准线、抛物线方程等。

抛物线的方程为:$y=ax^2+bx+c$其中,a、b、c为常数,a决定了抛物线的开口方向。

高考数学核心考点深度解析圆锥曲线篇

高考数学核心考点深度解析圆锥曲线篇

高考数学核心考点深度解析圆锥曲线篇在高考数学中,圆锥曲线一直是一个重要的考点,其涉及的知识点较为深奥,对学生的数学能力和逻辑思维能力都有很高的要求。

本文将从圆锥曲线的基本概念出发,深度解析其在高考数学中的应用,并对其中的核心考点进行逐一剖析。

一、基本概念1. 圆锥曲线的定义:圆锥曲线是平面上的点到两个定点的距离之比等于到一个定点到一个定直线的距离的性质的点的轨迹。

2. 圆锥曲线的分类:圆锥曲线包括椭圆、双曲线和抛物线三种类型,它们分别对应着不同的几何特征和数学表达式。

二、椭圆1. 椭圆的定义:椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。

2. 椭圆的性质:椭圆具有对称性、焦点、长轴和短轴等几何特征,并且在数学上有严格的表达式和性质。

三、双曲线1. 双曲线的定义:双曲线是平面上到两个定点的距离之差等于常数的点的轨迹。

2. 双曲线的性质:双曲线同样具有对称性、焦点、渐近线等独特的几何特征,其数学性质和表达式也有着明确定义。

四、抛物线1. 抛物线的定义:抛物线是平面上到一个定点到一个定直线的距离相等的点的轨迹。

2. 抛物线的性质:抛物线是所有圆锥曲线中最简单的一种,其几何性质和数学表达式都具有很强的规律性和特殊性。

五、高考数学中的应用圆锥曲线在高考数学中有着举足轻重的地位,它涉及到的知识点既有几何直观又有严谨的数学表达,考查的内容也涵盖了平面几何、解析几何和代数方程等多个方面。

六、核心考点解析1. 圆锥曲线方程:掌握圆锥曲线的一般方程及标准方程是解题的基础,要熟练掌握各种类型圆锥曲线的方程形式和性质。

2. 圆锥曲线的性质:了解椭圆、双曲线和抛物线各自的特点和性质,对其焦点、渐近线、参数方程等知识要有深入的理解。

3. 圆锥曲线的应用:掌握圆锥曲线在现实生活和工程技术中的实际应用,能够将数学知识与实际问题相结合。

七、个人观点圆锥曲线作为高考数学的重要内容,不仅考查学生对数学知识的掌握和运用能力,更重要的是培养学生的逻辑思维和数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-2018 新课标(理科)圆锥曲线分类汇编一、选择填空【2011 新课标】7. 设直线 l 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,l 与 C 交于 A,B两点, AB 为 C 的实轴长的 2 倍,则 C 的离心率为( B )(A) 2(B) 3(C)2(D)3【2011 新课标】14. 在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F1, F2 在 x 轴上,离心率为2 。

过 l 的直线 2交于 A, B 两点,且 △ABF2 的周长为 16,那么 C 的方程为x2 y2 1。

16 8【2012 新课标】4. 设 F1F2 是椭圆 E :x2 a2y2 b2 1(a b 0) 的左、右焦点,P 为直线 x3a 2上一点, F2PF1 是底角为 30o 的等腰三角形,则 E 的离心率为( C )【解析】 F2PF1 是底角为 30o 的等腰三角形 PF2 F2F1 2(3 a c) 2c e c 32a4【2012 新课标】8. 等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2 16 x 的准线交于 A, B 两点, AB 4 3 ;则 C 的实轴长为( C )【解析】设 C : x2 y2 a2 (a 0) 交 y 2 16 x 的准线 l : x 4 于 A(4, 2 3) B(4, 2 3) 得: a2 (4)2 (2 3)2 4 a 2 2a 4【2013 新课标 1】4. 已知双曲线 C:xa22-yb22=1(a>0,b>0)的离心率为 ,则 C 的渐近线方程 为( C )A、y=± x(B)y=± x(C)y=± x(D)y=±x【解析】由题知, c a5 2,即5 4=c2 a2=a2 b2 a2,∴ b2 a2=1 4,∴b a=1 2,∴ C的渐近线方程为 y 1 x ,故选 C . 2【2013 新课标 1】10、已知椭圆xa22+yb22=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交椭圆于A、B 两点。

若 AB 的中点坐标为(1,-1),则 E 的方程为 (D)x2 y2 A、45+36=1x2 y2 B、36+27=1x2 y2 C、27+18=1x2 y2 D、18+ 9 =1【解析】设 A(x1, y1), B(x2 , y2 ) ,则 x1 x2 =2, y1 y2 =-2,x12 a2y12 b21①x22 a2y22 b21②①-②得 (x1 x2 )(x1 x2 ) ( y1 y2 )( y1 y2 ) 0 ,a2b2∴ kAB=y1 x1 y2 x2=b2 a2( (x1 y1 x2 ) y2 )= b2 a2,又 kAB= 01 = 311 2,∴ b2 a2=1 2,又9= c2 = a2 b2 ,解得 b2 =9, a2 =18,∴椭圆方程为 x2 y2 1,故选 D. 18 9【2013 新课标 2】11. 设抛物线 C:y2=2px(p>0)的焦点为 F,点 M 在 C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则 C 的方程为( C ).A.y2=4x 或 y2=8x B.y2=2x 或 y2=8xC.y2=4x 或 y2=16x D.y2=2x 或 y2=16x【解析】设点 M 的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+ p =5,则 x0=5- p .22又点F的坐标为 p 2,0 ,所以以MF为直径的圆的方程为(x-x0) xp 2 +(y-y0)y=0.将 x=0,y=2 代入得 px0+8-4y0=0,即 y02 -4y0+8=0,所以 y0=4. 2由y02=2px0,得162p 5p 2 ,解之得p=2,或p=8.所以 C 的方程为 y2=4x 或 y2=16x.故选 C.【2013 新课标 2】12. 已知点 A(-1,0),B(1,0),C(0,1),直线 y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则 b 的取值范围是( B ).A.(0,1) B. 12 2,1 2 C. 12 2,1 3 D. 1 3,1 2 【2014 新课标 1】4. 已知 F 为双曲线 C:x2﹣my2=3m(m>0)的一个焦点,则点 F 到 C 的一条渐近线的距离为( A )A.B. 3C.D.3m【解析】双曲线 C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点 F 到 C 的一条渐近线的距离为= .故选:A.【2014 新课标 1】10. 已知抛物线 C:y2=8x 的焦点为 F,准线为 l,P 是 l 上一点,Q 是直线 PF 与 C 的一个交点,若 =4 ,则|QF|=( B )A.B. 3C.D.2【解析】设 Q 到 l 的距离为 d,则|QF|=d, ∵ =4 , ∴|PQ|=3d, ∴直线 PF 的斜率为﹣2 , ∵F(2,0),∴直线 PF 的方程为 y=﹣2 (x﹣2), 与 y2=8x 联立可得 x=1,∴|QF|=d=1+2=3,故选:B. 【2014 新课标 2】10. 设 F 为抛物线 C: y2 3x 的焦点,过 F 且倾斜角为 30°的直线交 C 于 A,B 两点,O 为坐标原点,则△OAB 的面积为( D )A. 3 3 4B. 9 3 8C. 63 32D. 9 4【2014 新课标 2】16. 设点 M( x0 ,1),若在圆 O: x2 y2 1上存在点 N,使得∠OMN=45°,则x0 的取值范围是___[-1,1]_____.【2015 新课标 1】5. 已知 M(x0,y0)是双曲线 C: x2 y2 1上的一点,F1、F2 是 C 上的两个 2焦点,若 •<0,则 y0 的取值范围是( A)(A)(- 3 , 3 ) (B)(- 3 , 3 ) (C)( 2 2 , 2 2 ) (D)( 2 3 , 2 3 )33663333【解析】【2015 新课标 1】14. 一个圆经过椭圆 x2 y2 1的三个顶点,且圆心在 x 轴上,则该圆的标 16 4准方程为 (x 3)2 y2 25 。

24【解析】设圆心为( a ,0),则半径为 4 | a | ,则 (4 | a |)2 | a |2 22 ,解得 a 3 ,故圆的 2方程为 (x 3)2 y2 25 。

24【2015 新课标 2】7. 过三点 A(1,3),B(4,2),C(1,-7)的圆交于 y 轴于 M、N 两点,则 MN =(C )(A)2 6(B)8(C)4 6(D)10【2015 新课标 2】11. 已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上,?ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为()(A)√5 (B)2 (C)√3 (D)√2【2016 新课标 1】5.已知方程 x2 y2 m2 n 3m2 n 1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是(A)(A)(–1,3)(B)(–1, 3)(C)(0,3)(D)(0, 3)【解析】由题意知:m2n 3m2n4 ,解得m2 1,13nn0, 0解得 1 n 3,故 A 选项正确. 【2016 新课标 1】10. 以抛物线 C 的顶点为圆心的圆交 C 于 A、B 两点,交 C 的标准线于 D、E两点.已知|AB|= 4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为( B(A)2(B)4(C)6) (D)8【解析】令抛物线方程为 y2 2 px ,D 点坐标为( p , 5 ),则圆的半径为 r p2 5 ,24r2 8 p2 3 ,即 A 点坐标为( p2 3 ,2 2 ),所以 (2 2)2 2 p p2 3 ,解得 p 4 ,444故 B 选项正确.【2016 新课标 2】4. 圆 x2 y2 2x 8y 13 0 的圆心到直线 ax y 1 0 的距离为 1,则 a=(A)(A) 4 3(B) 3 4(C) 3(D)2【解析】圆 x2 y2 2x 8y 13 0 化为标准方程为: x 12 y 42 4 ,故圆心为 1,4 , d a 4 1 1,解得 a 4 ,故选 Aa2 13【2016新课标2】11. 已知 F1 , F2 是双曲线E: x2a2y2 b2 1 的左,右焦点,点M在E上, MF1与x轴垂直,sinMF2 F11 3,则 E 的离心率为(A)(A) 2(B) 3 2(C) 3(D)222【解析】离心率 e F1F2 MF2 MF1,由正弦定理得 e F1F2 MF2 MF1sin M sin F1 sin F23 1 132 .故选 A.【2016 新课标 3】11. 已知 O 为坐标原点,F 是椭圆 C:xa22+yb22=1(a>b>0)左焦点,A、B分别为 C 的左、右顶点,P 为 C 上一点,且 PF⊥x 轴,过点 A 的直线 l 与线段 PF 交于点 M,与y 轴交于 E,若直线 BM 经过 OE 的中点,则 C 的离心率为(A)(A)13(B)12(C)23(D)34【2016 新课标 3】16. 已知直线 l:mx+y=3m- 3=0 与圆 x2+y2=12 交于 A、B 两点,过 A、B 分别作 l 的垂线与 x 轴并于 C、D 两点,若|AB|=2 3,则|CD|=___4____【2017 新课标 1】10. 已知 F 为抛物线 C:y2=4x 的焦点,过 F 作两条互相垂直的直线 l1,l2,直线 l1 与 C 交于 A、B 两点,直线 l2 与 C 交于 D、E 两点,则|AB|+|DE|的最小值为( A )A.16B.14C.12D.10【2017 新课标 1】15. 已知双曲线 C: x2 y2 1 (a>0,b>0)的右顶点为 A,以 A 为圆心,ba2 b2为半径做圆 A,圆 A 与双曲线 C 的一条渐近线交于 M、N 两点。

若∠MAN=60°,则 C 的离心率为___ 2 3 _____。

3【2017 新课标 2】9.若双曲线 C :x2 a2 y2 b2 1( a 0 , b 0 )的一条渐近线被圆 x 22 y2 4 所截得的弦长为 2,则 C 的离心率为(A)A.2B. 3C. 2D. 2 3 3【解析】双曲线 C: ﹣ =1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4 的圆心(2,0),半径为:2,双曲线 C: ﹣ =1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4 所截得的弦长为 2,可得圆心到直线的距离为:=,解得:,可得 e2=4,即 e=2.故选:A.【2017 新课标 2】16. 已知 F 是抛物线 C : y2 8x 的焦点, 是 C 上一点,F 的延长线交 y轴于点 .若 为 F 的中点,则 F 6.【解析】抛物线 C:y2=8x 的焦点 F(2,0),M 是 C 上一点,FM 的延长线交 y 轴于点 N.若 M为 FN 的中点,可知 M 的横坐标为:1,则 M 的纵坐标为:,|FN|=2|FM|=2=6.【2017新课标3】5.已知双曲线 C:ax22y2 b21( a 0 , b 0 )的一条渐近线方程为y5 x, 2且与椭圆 x2 y2 1 有公共焦点.则 C 的方程为( B ) 12 3A. x2 y2 1 8 10B. x2 y2 1 45C. x2 y2 1 54D. x2 y2 1 43【解析】∵双曲线的一条渐近线方程为 y 5 x ,则 b 5 ①2a2又∵椭圆 x2 y2 1 与双曲线有公共焦点,易知 c 3 ,则 a2 b2 c2 9 ② 12 3由①②解得 a 2,b 5 ,则双曲线 C 的方程为 x2 y2 1,故选 B. 45【2017新课标3】10.已知椭圆C:x2 a2y2 b21( a b 0 )的左、右顶点分别为 A1 ,A2 ,且以线段 A1 A2 为直径的圆与直线 bx ay 2ab 0 相切,则 C 的离心率为( A )A. 6 3B. 3 3C. 2 3D. 1 3【解析】∵以 A1A2 为直径为圆与直线 bx ay 2ab 0 相切,∴圆心到直线距离 d 等于半径,2ab∴d a , 又∵ a 0,b 0 ,则上式可化简为 a2 3b2a2 b2 ∵ b2 a2 c2 ,可得 a2 3 a2 c2,即 c2 2 a2 3∴ e c 6 ,故选A a3【2018 新课标 1】8.设抛物线 C:y2 4x 的焦点为 F ,过点 2 ,0 且斜率为 2 的直线与 C 交3于 M , N 两点,则()A.5B.6C.7D.8【答案】D【2018 新课标 1】11.已知双曲线 C:x2 y2 1 ,O 为坐标原点, F 为 C 的右焦点,过 F 的直 3线与 C 的两条渐近线的交点分别为 M , N .若 △OMN 为直角三角形,则 MN ( )A. 3 2B.3C. 2 3D.4【答案】B【2018 新课标2】5.双曲线x2 a2y2 b2 1 (a 0, b 0) 的离心率为3 ,则其渐近线方程为()A. y 2xB. y 3xC. y 2 x 2D. y 3 x 2【答案】A【2018新课标2】12.已知F1 ,F2是椭圆 C:ax22y2 b2 1 (ab 0)的左,右焦点,A是C的左顶点,点 P 在过 A 且斜率为3 6的直线上,△PF1F2为等腰三角形, F1F2P 120,则 C的离心率为()A. 2 3B. 1 2C. 1 3D. 1 4【答案】D【2018 新课标 3】6.直线 x y 2 0 分别与 x 轴,y 轴交于 A ,B 两点,点 P 在圆 x 22 y2 2上,则 ABP 面积的取值范围是( )A. 2,6B. 4 ,8C. 2 ,3 2D. 2 2 ,3 2【答案】A【2018 新课标3】11.设 F1 ,F2是双曲线 C:ax22y2 b21( a 0,b 0 )的左,右焦点, O 是坐标原点.过 F2 作 C 的一条渐近线的垂线,垂足为 P .若 PF1 6 OP ,则 C 的离心率为( )A. 5B.2C. 3D. 2【答案】C【2018 新课标 3】16.已知点 M 1,1 和抛物线 C:y2 4x ,过 C 的焦点且斜率为 k 的直线与 C交于 A , B 两点.若∠AMB 90 ,则 k ________.【答案】2二、解答题【2011 新课标】20. 在平面直角坐标系 xOy 中,已知点 A(0,-1),B 点在直线 y = -3 上,M 点 满足 MB//OA, MA?AB = MB?BA,M 点的轨迹为曲线 C。

相关文档
最新文档