概率密度函数的估计71页PPT

合集下载

概率密度函数的估计.

概率密度函数的估计.

∵ P(Xk| μ )=N(μ ,σ2),P(u)=N(μ 0,σ02)
P ( | X i ) a
k 1
1 1 Xk exp{ 2 2
1 N Xk 2 0 2 a' exp{ [ ]} 2 k 1 0
1 N 1 2 1 N 0 a' ' exp{ [( 2 2 ) 2( 2 Xk 2 ) ]} 2 0 k 1 0
三. 参数估计的基本概念
1. 统计量:样本中包含着总体的信息,总希望通过样本 集把有关信息抽取出来。也就是说,针对不同要求构 造出样本的某种函数,该函数称为统计量。 2. 参数空间:在参数估计中,总假设总体概率密度函数 的形式已知,而未知的仅是分布中的参数,将未知参 数记为 ,于是将总体分布未知参数 的全部可容许 值组成的集合称为参数空间,记为 。 3. 点估计、估计量和估计值:点估计问题就是构造一个 统计量d x1, , xN 作为参数 θ 的估计ˆ ,在统计学中 i i 是属于类别 的几个 称 ˆ 为 θ 的估计量。若 x1 , , xN i 样本观察值,代入统计量d就得到对于第i类的ˆ 的具体 数值,该数值就称为 θ 的估计值。



Xk

T
结论:①μ 的估计即为学习样本的算术平均

②估计的协方差矩阵是矩阵 X k X k 的算术 平均(nⅹn阵列, nⅹn个值)

T
二. 贝叶斯估计
极大似然估计是把待估的参数看作固定的未知量, 而贝叶斯估计则是把待估的参数作为具有某种先验 分布的随机变量,通过对第i类学习样本Xi的观察, 通过贝叶斯准则将概率密度分布P(Xi/θ)转化为后 验概率P(θ/Xi) ,进而求使得后验概率分布最大的 参数估计,也称最大后验估计。 估计步骤:

关于概率密度函数的参数估计课件

关于概率密度函数的参数估计课件

a41 a14
a32 a23
v1 b41
a24
v2
b42 b43
w4
v3
a44
a43 a13 a34
b31 v1
w3
b32 b33
a33
v2 v3
模式识别 – 概率密度函数的参数估计
HMM的工作原理
• 观察序列的产生过程:HMM的内部状态转移过程同 Markov模型相同,在每次状态转移之后,由该状态输 出一个观察值,只是状态转移过程无法观察到,只能 观察到输出的观察值序列。
3.1 最大似然估计
• 独立同分布假设:样本集D中包含n个样本:x1,
x2, …, xn,样本都是独立同分布的随机变量 (i.i.d,independent identically distributed)。
• 对类条件概率密度函数的函数形式作出假设,参 数可以表示为参数矢量θ:
pxi,θi
模式识别 – 概率密度函数的参数估计
概率密度函数的估计方法
• 参数估计方法:预先假设每一个类别的概 率密度函数的形式已知,而具体的参数未 知;
– 最大似然估计(MLE, Maximum Likelihood Estimation);
– 贝叶斯估计(Bayesian Estimation)。
• 非参数估计方法。
模式识别 – 概率密度函数的参数估计
1. begin initialize 样本数n,聚类数K,初始聚类中
心μ1, …, μc;
2. do 按照最近邻μi分类n个样本;
3.
重新计算聚类中心μ1, …, μc;
4. until μi不再改变;
5. return μ1, …, μc;
6. end

概率密度函数的估计优秀课件

概率密度函数的估计优秀课件
N
p(xk | θ) k 1
对数似然函数:
N
H (θ) ln p(xk | θ)
k 1
1
最大似然估计量使似然函数梯度为0 :
N
θH (θ) |ˆML θ ln p( xk | θ) |ˆML 0 k 1
T
θ
1
...
s
1 一元正态分布
p( xk | 1 ,2 2 )
1 exp( ( xk 1)2 )
1
贝叶斯估计步骤
确定θ的先验分布p(θ) 由样本集K={x1, x2 ,…, xN}求出样本联合分布 利用贝叶斯公式,求出θ的后验分布p(θ|K) 求出贝叶斯估计量(损失函数为二次函数):
ˆBEθ^ E[ | x]
p( | x)d
1
非参数估计
参数估计方法要求已知总体的分布形式,然而很多实际问题并不 知道总体分布形式,或总体分布不是一些通常遇到的典型分布,不 能写成某些参数的函数。在这些情况下,为了设计贝叶斯分类器, 仍然需要总体分布的知识,于是提出了某些直接用样本来估计总体 分布的方法,称之为估计分布的非参数法。
1
uj
11/,2j,j=11,,22,3,…..., d 2
0 其他 otherwise
超立方体内样本数:
kN
N ( x xi )
i 1
hN
某点概率密度p(x)的估计:
pˆ N (x)
1 N
N 1 ( x xi )
V i1 N
hN
1
窗函数的选择
窗函数需满足两个条件:
几种常用的窗函数: 方窗函数 正态窗函数 指数窗函数
22
22
ln
p( xk
| 1,2 )

模式识别概率密度估计ppt课件

模式识别概率密度估计ppt课件

xi m T K 1
x i
m

11
对数似然函数为样本联合密度函数的对数:
lnp x1,x2,,xN ;m

N i1
-
n 2
ln 2
1 ln K 2
1 2
xi m
T K 1
xi m

将上式对m求导并令它等于0,有
N个观测样本
• 的最大似然估计是,在N个观测样本的基
础上,选择这样的 ~N ,它使似然函数最大。 • 换句话说,选择的 ~N应使 x i落在 xˆ i(样本)
的附近小区域内最大。(当 均匀分布时,发生概率最大)
• 只要导数存在,使似然函数最大的 可以
通过解下面的似然方程或对数似然方程得
数估计(样本 类别已知)
(把待估参数看 作是确定的)
无监督的参 贝叶斯估计(把 数估计(样本 待估参数看作 类别未知) 是随机的)
非参数估计(分布 形式未知,直接估 计密度函数)
Parzen窗估计 KN近邻估计 KN近邻分类法 4
• 参数估计中的一些基本概念:
1) 统计量:针对不同的要求所构造的样本 的函数,包含了总体的信息;
第三章 概率密度函 数的估计
1
• 前一章我们讨论了各种决策规则,在设计 分类器时,总是假定先验概率和类条件密 度函数是已知的。
• 在实际工作中,先验概率和类条件密度函 数都可能未知。
• 需要利用样本设计分类器。
2
利用样本设计分类器 的方法有两种:
1) 从样本中估计先验概率和类条件密度函 数,然而按前一章的方法
确定的常数。
• 而贝叶斯估计则把 看作是随机变量,它
的先验密度是已知的。

概率密度函数的估计

概率密度函数的估计

Xuegong Zhang, Tsinghua University贝叶斯决策: 已知)(i P ω和)|(i p ωx ,对未知样本分类(设计分类器) 实际问题: 已知一定数目的样本,对未知样本分类(设计分类器)怎么办? 一种很自然的想法:首先根据样本估计)|(i p ωx 和)(i P ω,记)|(ˆi p ωx 和)(ˆi P ω 然后用估计的概率密度设计贝叶斯分类器。

——(基于样本的)两步贝叶斯决策“模式识别基础”教学课件希望:当样本数∞→N 时,如此得到的分类器收敛于理论上的最优解。

为此, 需 )|()|(ˆi N i p pωωx x ⎯⎯→⎯∞→)()(ˆi N iP P ωω⎯⎯→⎯∞→ 重要前提:z 训练样本的分布能代表样本的真实分布,所谓i.i.d 条件 z 有充分的训练样本本章研究内容:① 如何利用样本集估计概率密度函数?Xuegong Zhang, Tsinghua University“模式识别基础”教学课件3.2参数估计的基本概念和方法 (part1)参数估计(parametric estimation):z已知概率密度函数的形式,只是其中几个参数未知,目标是根据样本估计这些参数的值。

几个名词:统计量(statistics):样本的某种函数,用来作为对某参数的估计θ∈参数空间(parametric space):待估计参数的取值空间ΘXuegong Zhang, Tsinghua University ② 各类样本集i X ,c i ,,1L =中的样本都是从密度为)|(i p ωx 的总体中独立抽取出来的,(独立同分布,i.i.d.)③ )|(i p ωx 具有某种确定的函数形式,只其参数θ未知 ④ 各类样本只包含本类分布的信息其中,参数θ通常是向量,比如一维正态分布),(21σµi N ,未知参数可能是⎥⎦⎤⎢⎣⎡=2i i i σµθ此时)|(i p ωx 可写成),|(i i p θωx 或)|(i p θx 。

概率密度函数的估计

概率密度函数的估计
概率密度函数是描述随机变量取值概率分布的函数,是概率论中的核心概念。在实际问题中,类条件概率密度常常是未知的,因此需要通过样本集进行估计。估计方法主要分为参数估计和非参数估计两种。参数估计是在概率密度函数形式已知但参数未知的情况下,通过训练数据来估计参数,常用方法ห้องสมุดไป่ตู้最大似然估计和Bayes估计。最大似然估计是通过最大化似然函数来求解参数,使得估计出的概率密度函数最符合样本数据的分布。而Bayes估计则考虑了参数的先验分布,通过贝叶斯公式求出参数的后验分布,进而得到估计量。非参数估计是在总体概率密度函数形式未知的情况下,直接利用训练数据对概率密度进行推断,主要方法有Parzen窗法和kN-近邻法。Parzen窗法是通过某种函数表示某一样本对待估计的密度函数的贡献,所有样本所作贡献的线性组合视作对某点概率密度的估计。而kN-近邻法则是把窗扩大到刚好覆盖kN个点,落在窗内的样本点的数目固定,但窗宽是变化的,从而提高了分辨率。这些方法在模式识别、机器学习等领域有广泛应用,特别是在设计贝叶斯分类器时,需要利用样本集来估计类条件概率密度,进而完成分类器的设计。

模式识别课件-概率密度函数的估计

模式识别课件-概率密度函数的估计
与最大似然估计同为概率密度估计中的主要参数
估计方法
结果多数情况下与最大似然估计相同
区别:
最大似然估计把待估计的参数当作未知但固定的

贝叶斯估计把待估计的参数也看为随机变量
贝叶斯估计和贝叶斯学习
Bayesian Learning
把贝叶斯估计的原理用于直接从数据对概率
密度函数进行迭代估计
值范围,这个区间叫置信区间,这类问题称
为区间估计。
概率密度估计的评估
如何评估概率密度估计的好坏?
单次抽样得到的估计值与真实值的偏差?
基于平均和方差进行评估较为公平!
常用标准:
无偏性
有效性
一致性
概率密度估计的评估
෡ , , … , )的数学期
无偏性:的估计量(
望是
渐进无偏:N趋于无穷时估计具有无偏性
有效性:一种估计比另一种的方差小,此种
估计更有效
对于任意正数ε,有
෡ − > ε =
lim
→∞

则是的一致估计
最大似然估计
基本假设
Maximum Likelihood Estimation.
参数是确定(非随机)的而未知的量。
贝叶斯估计量
෡ 为给定x条件下估计量的期望损失,

ȁ
称为条件风险

定义:如果的估计量使得条件风险最小,

则称是的贝叶斯估计量
贝叶斯估计和贝叶斯学习
损失函数
决策分类时我们需要事先定义决策风险表即
损失表
估计连续随机变量时我们需要定义损失函数
损失函数有许多种,最常见的损失函数为平

概率密度函数 ppt课件

概率密度函数 ppt课件
概率密度函数
定义 设X为一随机变量,若存在非负实函数 f (x) , 使对任意实数 a < b ,有
b
P{axb}a f(x)dx
则称X为连续型随机变量, f (x) 称为X 的概 率密度函数,简称概率密度或密度函数.
x
分布函数 F(x) f (t)dt
P {x1Xx2}xx 12 f(x)dx
(1 x 5)
0 其它
所求概率为 P { 1 } 1f(x)d x f(x)d x2
1
3
指数分布
定义 若连续型随机变量X的概率密度为
ex
f(x)
x0(0为 常 数 )
0 x0
则称X服从参数为 的指数分布.
X~ E()
分布函数
0
x0
F(x)1ex x0
f(x)和F(x)可用图形表示
f (x)
均匀分布
定义 若连续型随机变量X的概率密度为
1 f (x) b a
a xb
0 其它
则称X在区间 (a,b)上服从均匀分布.记为 X ~ U (a, b)
分布函数
0,
xa
F
(
x)
x b
a a
,
a xb
1,
b x
意义
0a
b
x
X“等可能”地取区间(a,b)中的值,这里的“等可
能”理解为:X落在区间(a,b)中任意等长度的子区间内
。 P(X a) 1 (a )
例 设X~N(1,4),求 P(0<X<1.6)

1, 2
P(0X1.6) (1.61)(01)
2
2
(0.3)(0.5)
(0.3)1 (0.5)

哈工大模式识别课程3用概率密度函数估计PPT课件

哈工大模式识别课程3用概率密度函数估计PPT课件
• 此方法的有效性取决于样本数量的多少,以及区 域体积选择的合适。
• 构造一系列包含x的区域R1, R2, …,对应n=1,2,… ,则对p(x)有一系列的估计:
pn
x
kn n Vn
• 当满足下列条件时,pn(x)收敛于p (x): lnimVn 0 lni mkn lim kn 0 n n
【 Parzen窗法和K-近邻法】
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
第3章 概率密度函数估计
➢ 引言 ➢参数估计 ➢正态分布的参数估计 ➢非参数估计 ➢本章小结
引言
【引言】
Pi xPx PixPi
【引言】
【引言】
【引言】
【引言】
【引言】
参数估计
【参数估计】
【最大似然估计】
【最大似然估计】
【最大似然估计】
【最大似然估计】
【最大似然估计】
【最大似然估计】
2[E(|x)][E(|x)ˆ]p(|x)d
[ E (|x )][E (|x ) ˆ]p (|x )d [E (|x ) ˆ]
[ E (|x )]p (|x )d [E (|x ) ˆ][E (|x ) E (|x )] 0
R ( ˆ |x ) [ E ( |x ) ] 2 p ( |x ) d [ E ( |x ) ˆ ] 2 p ( |x ) d
【最大似然估计】
例子:
1
p(x|)2 1
0
,1 x2
其它
l() p(x1,x2,...,xN|1,2)2 11N ,1x2

3概率密度函数的估计79页PPT

3概率密度函数的估计79页PPT
➢样本集可按类别分开,不同类别的密度函数的参 数分别用各类的样本集来训练。
➢概率密度函数的形式已知,参数未知,为了描述
概率密度函数p(x|ωi)与参数θ的依赖关系,用
p(x|ωi,θ)表示。
独立地按概率密度p(x|θ)抽取样本集
K={x1, x2 ,…, xN},用K估计未知参数θ
第三章 概率密度密度的估计
第三章 概率密度密度的估计
14
最大似然估计示意图
最大似 然估计
p(K|θ)
ln p(K|θ)
第三章 概率密度密度的估计
15
计算方法
最大似 然估计
最大似然估计量使似然函数梯度为0 :
N
θ H (θ )|ˆM L θlnp (x k|θ )|ˆM L 0 k 1
T
θ 1
...
s
第三章 概率密度密度的估计
argmax p(K | ) p( )
p(K)
argmax p(K | ) p( )
第三章 概率密度密度的估计
17
贝叶斯决策问题与贝叶斯估计问题
贝叶斯 估计
贝叶斯决策问题: 样本x 决策ai 真实状态wj 状态空间A是离散空间 先验概率P(wj)
贝叶斯参数估计问题: 样本集K={xi} 估计量^s 真实参数s 参数空间S是连续空间 参数的先验分布p(s)
第三章 概率密度函数的估计
请各位思考的问题
+ 1、我们可以构造一个比贝叶斯规则更好的 分类器吗?
+ 2、利用贝叶斯法则构造分类器何要估计密度以及如何估计密度?
Table of Contents
第三章 概率密度密度的估计
4
3.1 引言
分类器
x1

第3章 概率密度函数的估计 ppt课件

第3章 概率密度函数的估计  ppt课件

问题假定:
①待估参数θ是确定的未知量 ②按类别把样本分成C类X1,X2,X3,… XM,
其中第i类的样本共N个,Xi = (X1,X2,… XN)T , 并且是独立从总体中抽取的
③ Xi中的样本不包含θj(i≠j)的信息,所以可 根据以上假以定对,每我一们类下样边就本可独以立只进利行用处第i理类。学习样本 来估计第 i④类的第概i类率的密度条,件其概它率类的的函概率数密形度式由已其知它类
实验室的研究生录取分数
不同实验室有个期望录取分数线 受到往年录取成绩的影响
假设只有两个真实取值:分数高vs分数低 某实验室去年都是”分数低”
同学A估计该实验室今年为"分数高“ 同学B估计该实验室今年为"分数低"
哪一个更接近于最大似然估计方法?
PPT课件
28
贝叶斯估计
问题假定:
2
需要研究的问题
研究如何用已知训练样本的信息去估计
P(ωi),P(x|ωi)
学习
分类器设计的步骤:
第一步: 利用样本集估计概率密度函数
训练
第二步: 利用概率密度函数进行分类决策
分类
PPT课件
3
贝叶斯决策理论设计分类器步骤
PPT课件
4
概率密度函数估计中的三个问题
如何利用样本估计概率密度函数 估计量的性质如何 利用样本集估计错误率的方法
时θ的条件期望,即

p( | x)d
PPT课件
35
贝叶斯估计
步骤
① 确定θ的先验分布p(θ),。
② 率用 密样 度本分布x=p(x(x1,| xθ2),,…它. x是N)Tθ求的出函样数本。的联合概

概率密度函数PPT课件

概率密度函数PPT课件


pY
y


2
y1
e2
y 1
0
y 1
16
例7 设随机变量 X ~ N , 2 ,Y eX,试求随机变量
Y 的密度函数 pY y.
解: 由题设,知 X 的密度函数为
p x
1
e

x 2
2 2
2
x
当X为离散型随机变量时,Y g X , 也是离散型
随机变量。并且在 X 的分布列已知的情况下,求Y的
分布列是容易的。
X 1 0 1 2 3 例1 已知X的分布列为
pk 0.2 0.1 0.1 0.3 0.3 求 Y1 X 1 Y2 2X Y3 X 2 的分布列。 解 由Y的分布列可列出
对于任意 x 恒有 g(x) 0 或恒有 g(x) 0 则
Y gX 是一个连续型随机变量,其反函数为
X hY . Y 的概率密度为
[h( y)] hy, y
pY ( y)
0,
其它
其中, min g(x), max g(x),
y
/
2
)
d
(e y dy
/
2
)
,

0,
0 ey/2 1 其它

pY
(
y)


1 2
e

y
/
2
,
y0
0,
其它
即Y服从参数为1/2的指数分布.
20
作业 P142 21 22 24 26
21
2019/11/30
.
22
0,

第3章概率密度函数的估计非参数估计

第3章概率密度函数的估计非参数估计

密度的第N次估计:
pˆ N
(x)

kN / N VN
总体分布的非参数估计
p(x)估计值的收敛性讨论
若p^N(x)收敛于p(x)应满足三个条件:
lim V N 0
N
lim
N
kN


lim k N 0 N N
总体分布的非参数估计
两种非参数估计方法
Parzen窗口估计
若hN选太大,则PN(x)估计较平坦,反映不出 总体分布的变化
kN近邻法的思想
体积是数据的函数,而不是样本数N的函数
根据KN选择hN KN是N的函数
kN近邻估计
kN对估计结果的影响
导数不连续
kN近邻估计
K=5
P
P R p(x)dx Prx R
R
p(x)是要求的x的概率密度
概率P是p(x)在区域R上平滑或平均后得到的概率
我们可以通过估计P来估计p(x)的平滑值
总体分布的非参数估计
估计概率P
假 分设 布有 的,N个概样率本密X度=(函x1数, x2是,…p(xxN)。)T都是独立同
需要计算^p(x|ωi)的每个点的值 方法
① 用样本直接去估计类概率密度p(x|ωi)以此来设 计分类器, 如窗口估计
② 用学习样本直接估计后验概率p(ωi|x)作为分类 准则来设计分类器如k近邻法. 本章只考虑第一种方法
总体分布的非参数估计
概率密度函数估计的基本思想
一个随机变量x落在区域R的概率为P
k N
总体分布的非参数估计
估计概率p(x)
密度p(x)的估计:
k pˆ (x) N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档