高考浙江卷数学试题含答案
2021年高考数学真题试卷(浙江卷)带答案解析
2021年高考数学真题试卷(浙江卷)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共10题;共40分)1.设集合A={x|x≥1},B={x|−1<x<2},则A∩B=()A. {x|x>−1}B. {x|x≥1}C. {x|−1<x<1}D. {x|1≤x<2}【答案】 D【考点】交集及其运算【解析】【解答】由交集的定义结合题意可得:A∩B={x|1≤x<2}.故答案为:D.【分析】利用数轴,求不等式表示的集合的交集。
2.已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A. -1B. 1C. -3D. 3【答案】C【考点】复数代数形式的乘除运算,复数代数形式的混合运算【解析】【解答】(1+ai)i=i−a=−a+i,利用复数相等的充分必要条件可得:−a=3,∴a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。
3.已知非零向量a⃗,b⃗⃗,c⃗,则“ a⃗⋅c⃗=b⃗⃗⋅c⃗”是“ a⃗=b⃗⃗”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件【答案】B【考点】充分条件,必要条件,充要条件,平面向量数量积的运算【解析】【解答】若a⃗⋅c⃗=b⃗⃗⋅c⃗,则(a⃗−b⃗⃗)⋅c⃗=0,推不出a⃗=b⃗⃗;若a⃗=b⃗⃗,则a⃗⋅c⃗=b⃗⃗⋅c⃗必成立,故“ a⃗⋅c⃗=b⃗⃗⋅c⃗”是“ a⃗=b⃗⃗”的必要不充分条件故答案为:B.【分析】先将条件等式变形,可能得到条件不充分,后者显然成立。
4.某几何体的三视图如图所示,则该几何体的体积是()A. 32 B.3 C. 3√22D. 3√2 【答案】 A【考点】由三视图求面积、体积【解析】【解答】几何体为如图所示的四棱柱 ABCD −A 1B 1C 1D 1 ,其高为1,底面为等腰梯形 ABCD ,该等腰梯形的上底为 √2 ,下底为 2√2 ,腰长为1,故梯形的高为 √1−12=√22,故 V ABCD−A 1B 1C 1D 1=12×(√2+2√2)×√22×1=32,故答案为:A.【分析】先由三视图,还原立体图形,然后根据数量关系计算体积。
2021年高考数学真题试卷(浙江卷)含答案
2021年高考数学真题试卷(浙江卷)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共10题;共40分)1.设集合,,则()A. B. C. D.2.已知,,(i为虚数单位),则()A. -1B. 1C. -3D. 33.已知非零向量,则“ ”是“ ”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件4.某几何体的三视图如图所示,则该几何体的体积是()A. B. 3 C. D.5.若实数x,y满足约束条件,则的最小值是()A. -2B.C.D.6.如图已知正方体,M,N分别是,的中点,则()A. 直线与直线垂直,直线平面B. 直线与直线平行,直线平面C. 直线与直线相交,直线平面D. 直线与直线异面,直线平面7.已知函数,则图象为如图的函数可能是()A. B. C. D.8.已知是互不相同的锐角,则在三个值中,大于的个数的最大值是()A. 0B. 1C. 2D. 39.已知,函数.若成等比数列,则平面上点的轨迹是()A. 直线和圆B. 直线和椭圆C. 直线和双曲线D. 直线和抛物线10.已知数列满足.记数列的前n项和为,则()A. B. C. D.二、填空题(共7题;共36分),小正方形的面积为,则________.12.已知,函数若,则________.13.已知平面向量满足.记向量在方向上的投影分别为x,y,在方向上的投影为z,则的最小值为________. 14.已知多项式,则________,________.15.在中,,M是的中点,,则________,________.16.袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,一红一黄的概率为,则________,________.17.已知椭圆,焦点,,若过的直线和圆相切,与椭圆在第一象限交于点P,且轴,则该直线的斜率是________,椭圆的离心率是________.三、解答题:本大题共5小题,共74分。
2021年浙江省高考数学(含解析版)
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案:
B
解析:
若 c a 且 c b ,则 a c b c 0 ,但 a 不一定等于 b ,故充分性不成立,
若 a b ,则 a c b c ,必要性成立,故为必要不充分条件.
故选 B.
, E( )
.
6
3
答案:
1 8 9
解析:
P(
2)
C42 C2
mn4
6 C2
mn4
1 6
C
2 mn
4
36
,所以 m n 4 9 ,
P(一红一黄)
C41 Cm1 C2
mn4
4m 36
m 9
1 3
m
3
,所以 n
2 ,则 m n
1,
P(
2)
1 6
,
P(
1)
C41 C51 C92
45 36
13.已知多项式 (x 1)3 (x 1)4 x4 a1x3 a2 x a3x a4 ,则 a1
; a2 a3 a4
.
答案:
5 10
解析:
根据二项式通项公式: a1x3 C30 x3 (1)0 C41x311 5x3 ,故 a1 5 ;
同理, a2 x2 C31x2 (1)1 C42 x212 3x2 6x2 3x2 a2 3 ,
a
,故 e
5
.
5
解析二:不妨假设 c 2 , sin PF1F2
sin HF1M
HM F1M
2 , HM 3
c 2
2
2
,
F1M
2021年浙江省高考数学试题及答案
绝密★启用前2021年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+如果事件A ,B 相互独立,那么()()()P AB P A P B =如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h=+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh=其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径一、选择题1.设集合{}1A x x =≥,{}12B x x =-<<,则A B = ()A.{}1x x >- B.{}1x x ≥ C.{}11x x -<< D.{}12x x ≤<【答案】D 【解析】【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:{}|12A B x x =≤< .故选:D.2.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =()A.1-B.1C.3- D.3【答案】C 【解析】【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.3.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B 【解析】【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====- ,当AB OC ⊥时,a b - 与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b = 时,0a b -= ,∴()00a b c c -⋅=⋅=r r r r r ,∴成立,∴是a b =的必要条件,综上,“”是“”的必要不充分条件故选:B.4.某几何体的三视图如图所示,则该几何体的体积是()A.32B.3C.322D.32【答案】A 【解析】【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,2,下底为221,故梯形的高为12122-=,故11111232221222ABCD A B C D V -=⨯+⨯⨯=,故选:A.5.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y =-的最小值是()A.2-B.32-C.12-D.110【答案】B 【解析】【分析】画出满足条件的可行域,目标函数化为22y x z =-,求出过可行域点,且斜率为2的直线在y 轴上截距的最大值即可.【详解】画出满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩的可行域,如下图所示:目标函数12z x y =-化为22y x z =-,由12310x x y =-⎧⎨+-=⎩,解得11x y =-⎧⎨=⎩,设(1,1)A -,当直线22y x z =-过A 点时,12z x y =-取得最小值为32-.故选:B.6.如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A 【解析】【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【详解】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.7.已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是()A.1()()4y f x g x =+- B.1()()4y f x g x =--C.()()y f x g x = D.()()g x y f x =【答案】D 【解析】【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C.故选:D.8.已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是()A.0B.1C.2D.3【答案】C 【解析】【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值.【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>,故三式中大于12的个数的最大值为2,故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>,故三式中大于12的个数的最大值为2,故选:C.【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向.9.已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦,对其进行整理变形:()()()22222222as at ast b as at ast b as b +-++++=+,()()222222(2)0as at b ast as b++--+=,()2222222240asat b at a s t ++-=,222242220a s t a t abt -++=,所以22220as at b -++=或0t =,其中2212s t b ba a-=为双曲线,0t =为直线.故选:C.【点睛】关键点点睛:本题考查轨迹方程,关键之处在于由题意对所得的等式进行恒等变形,提现了核心素养中的逻辑推理素养和数学运算素养,属于中等题.10.已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A.100321S << B.10034S << C.100942S <<D.100952S <<【答案】A 【解析】【分析】显然可知,10012S >,利用倒数法得到21111124n n a a +⎛⎫=+=-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=局部放缩可得113n na n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【详解】因为)111,N n a a n *+==∈,所以0n a >,10012S >.由211111124n n n a a a ++⎛⎫==+-⎪⎪⎭2111122n a +⎛⎫∴<⇒⎪⎪⎭12<11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=<⎪ ⎪⎝⎭⎝⎭,即100321S <<.故选:A .24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.二、填空题11.我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为1S ,小正方形的面积为2S ,则11S S =___________.【答案】25【解析】【分析】分别求得大正方形的面积和小正方形的面积,然后计算其比值即可.【详解】由题意可得,大正方形的边长为:5a ==,则其面积为:21525S ==,小正方形的面积:212543412S ⎛⎫=-⨯⨯⨯=⎪⎝⎭,从而2125251S S ==.故答案为:25.12.已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f⎡⎤=⎣⎦,则a =___________.【答案】2【解析】【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【详解】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2.13.已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.【答案】(1).5;(2).10.【解析】【分析】根据二项展开式定理,分别求出43,(1(4))x x -+的展开式,即可得出结论.【详解】332(1)331x x x x -=-+-,4432(1)4641x x x x x +=++++,所以12145,363a a =+==-+=,34347,110a a =+==-+=,所以23410a a a ++=.故答案为:5,10.14.在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,AM =AC =___________,cos MAC ∠=___________.【答案】(1).(2).13【解析】【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠.【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以13AC =在AMC 中,由余弦定理得222521216239cos 213223213AC AM MC MAC AM AC +-∠==⋅⨯⨯.故答案为:213;3913.15.袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.【答案】(1).1(2).89【解析】【分析】根据古典概型的概率公式即可列式求得,m n 的值,再根据随机变量ξ的分布列即可求出()E ξ.【详解】2244224461(2)366m n m n m n C P C C C ξ++++++====⇒=,所以49m n ++=,()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=,所以2n =,则1m n -=.由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯==========155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为:1;89.16.已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+=⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________.【答案】(1).(2).【解析】【分析】不妨假设2c =,根据图形可知,122sin 3PF F ∠=,再根据同角三角函数基本关系即可求出12tan k PF F =∠=;再根据椭圆的定义求出a ,即可求得离心率.【详解】如图所示:不妨假设2c =,设切点为B ,12112sin sin 3AB PF F BF A F A∠=∠==,12tan PF F ∠==所以255k =,由21212,24PF k F F c F F ===,所以2855PF =,21121=sin 5PF PF PF F ⨯=∠,于是122PF a PF +==,即a =,所以5c e a ===.故答案为:255;55.17.已知平面向量,,,(0)a b c c ≠ 满足()1,2,0,0a b a b a b c ==⋅=-⋅= .记向量d 在,a b方向上的投影分别为x ,y ,d a - 在c方向上的投影为z ,则222x y z ++的最小值为___________.【答案】25【解析】【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得22x y +=,再结合柯西不等式即可得解.【详解】由题意,设(1,0),(02),(,)a b c m n === ,,则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b方向上的投影分别为x ,y ,所以(),d x y = ,所以d a - 在c 方向上的投影()||d a c z c -+-⋅===,即22x y +=,所以(()()222222222211221210105x y z x y z x y ⎡⎤++=++++≥+=⎢⎥⎣⎦ ,当且仅当2122x y x y ⎧==⎪⎨⎪+=⎩ 即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【点睛】关键点点睛:解决本题的关键是由平面向量的知识转化出,,x y z 之间的等量关系,再结合柯西不等式变形即可求得最小值.三、解答题18.设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π;(2)12+.【解析】【分析】(1)由题意结合三角恒等变换可得1sin 2y x =-,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得sin 242y x π⎛⎫=-+ ⎪⎝⎭,再由三角函数的图象与性质即可得解.【详解】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝,所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+⋅=+ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222sin sin cos cos22x x x x x x ⎛⎫=⋅+=+ ⎪ ⎪⎝⎭1cos 2222sin 22222242x x x x x π-⎛⎫=+=-+=-+⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值212+.19.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.【答案】(1)证明见解析;(2)156.【解析】【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【详解】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD,因为AM =,所以PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(2,0),(0,0,A P D,(0,0,0),1,0)M C -又N 为PC中点,所以31335,,,2222N AN ⎛⎛-=- ⎝⎭⎝⎭.由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||AN n AN n θ⋅===‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.20.已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33(4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解.【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-,当2n ≥时,由1439n n S S +=-①,得1439n n S S -=-②,①-②得143n na a +=122730,0,164n n n a a a a +=-≠∴≠∴=,又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933(3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-,所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭ ,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334((4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤;4n >时,312344n n n λ≥-=----,得3λ≥-;所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.21.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RNPN QN =⋅,求直线l 在x 轴上截距的范围.【答案】(1)24y x =;(2)()(),74373,11,⎡-∞---++∞⎣ .【解析】【分析】(1)求出p 的值后可求抛物线的方程.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,联立直线AB 的方程和抛物线的方程后可得12124,4y y y y t =-+=,求出直线,MA MB 的方程,联立各直线方程可求出,,P Q R y y y ,根据题设条件可得()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,从而可求n 的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故21111+1+1+444R P Q y ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n ⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+≤<或1n >.【点睛】方法点睛:直线与抛物线中的位置关系中的最值问题,往往需要根据问题的特征合理假设直线方程的形式,从而便于代数量的计算,对于构建出的函数关系式,注意利用换元法等把复杂函数的范围问题转化为常见函数的范围问题.22.设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b >+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)【答案】(1)0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln a b a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭;(2)(21,e ⎤⎦;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【详解】(1)2(),()ln x x f x b f a x e a x a b '==+--,①若0b ≤,则()ln 0x f x a a b '=-≥,所以()f x 在R 上单调递增;②若0b >,当,log ln a b x a ⎛⎫∈-∞ ⎪⎝⎭时,()()'0,f x f x <单调递减,当log ,ln a b x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0,f x f x >单调递增.综上可得,0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln a b a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭.(2)()f x 有2个不同零点20x a bx e ⇔-+=有2个不同解ln 20x a e bx e ⇔-+=有2个不同的解,令ln t x a =,则220,0ln ln t tb b e e e e t a a t t +-+=⇒=>,记()22222(1)(),()t t t t e t e e e e e t e g t g t t t t '⋅-++--===,记2()(1),()(1)10t t t t h t e t e h t e t e e t '=--=-+⋅=⋅>,又(2)0h =,所以(0,2)t ∈时,()0,(2,)h t t <∈+∞时,()0h t >,则()g t 在(0,2)单调递减,(2,)+∞单调递增,22(2),ln ln b b g e a a e ∴>=∴<,22222,ln ,21b b e a a e e>∴>∴≤⇒<≤ .即实数a 的取值范围是(21,e ⎤⎦.(3)2,()x a e f x e bx e ==-+有2个不同零点,则2x e e bx +=,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ++==>,注意到函数2x e e y x+=在区间()0,2上单调递减,在区间()2,+∞上单调递增,故122x x <<,又由5245e e e +<知25x >,122211122x e e e e b x x x b+=<⇒<,要证2212ln 2b b e x x e b >+,只需22ln e x b b>+,222222x x e e e b x x +=<且关于b 的函数()2ln e g b b b=+在4b e >上单调递增,所以只需证()22222222ln 52x x e x e x x x e>+>,只需证2222222ln ln 02x x x e x e e x e -->,只需证2ln ln 202x e x x e-->,242e < ,只需证4()ln ln 2x x h x x e =--在5x >时为正,由于()11()44410x x x h x xe e e x x x '---+-+-==>,故函数()h x 单调递增,又54520(5)ln 5l 20n 2ln 02h e e =--=->,故4()ln ln 2x x h x x e =--在5x >时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.。
2020年浙江省高考数学试卷 试题+答案详解
数学
本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页;非选择题部分3至4页.满分150分.考试用时120分钟、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.
球的表面积公式
球的体积公式
其中 表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则P Q=()
A. B. C. D.
2.已知a∈R,若a–1+(a–2)i(i为虚数单位)是实数,则a=()
A. 1B. –1C. 2D. –2
17.设 , 为单位向量,满足 , , ,设 , 的夹角为 ,则 的最小值为_______.
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且 .
(I)求角B;
(II)求cosA+cosB+cosC的取值范围.
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
7.已知等差数列{an}的前n项和Sn,公差 , .记b1=S2,bn+1=Sn+2–S2n, ,下列等式不可能成立的是()
A. 2a4=a2+a6B. 2b4=b2+b6C. D.
8.已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y= 图像上的点,则|OP|=()
2020年高考卷 数学(浙江卷)附答案
20201.已知集合,,则ABCD2.已知,若(i为虚数单位)是实数,则a=A1B-1C2D-23.若实数x,y满足约束条件,则的取值范围是ABCD4. 函数在区间的图像大致为ABCD5. 某几何体的三视图(单位:)如图所示,则该几何体的体积(单位:)是ABCD6. 已知空间中不过同一点的三条直线则“在同一平面” 是“两两相交”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件7.已知等差数列的前项的和,公差,.记下列等式不可能成立的是ABCD8.已知点, ,.设点满足,且为函数的图像上的点,则ABCD9.已知,若在上恒成立,则ABCDA若S有4个元素,则有7个元素B若S有4个元素,则有6个元素C若S有3个元素,则有4个元素D若S有3个元素,则有5个元素11.已知数列满足,则______12.设,则=_______;_______.13.已知=2,则=______;=______.14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为______.15.设直线l:y=kx+b(k>0),圆:,:,若直线l与,都相切,则k=______;b=______.16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为,则;;17.设,为单位向量,满足,,,设的夹角为,则的最小值为.18.(本题满分14分)19(本题满分15分)如图,三棱台中,面面,,。
(Ⅰ)证明:;(Ⅱ)求与面所成角的正弦值。
(第19题图)20.(本题满分15分)已知中,.(I)若数列为等比数列,且公比,且,求与的通项公式;(Ⅱ)若数列为等差数列,且公差,证明:21.(15分)如图,已知椭圆,抛物线,点是椭圆与抛物线的交点,过点的直线交椭圆于点,交抛物线于(不同于).(I)若,求抛物线的焦点坐标;(Ⅱ)若存在不过原点的直线使为线段的中点;求的最大值. 22.(本题满分15 分)已知函数,其中为自然对数的底数.(Ⅰ)证明:函数在上有唯一零点;(Ⅱ)记为函数在上的零点,证明:(i)(ⅱ).参考答案1.B2.C3.B4.A5.A6.B7.D8.D9.C 10.A 11.10 12.80 ,12213. 14.1 15. 16.17.282918 正确答案及相关解析正确答案19 正确答案及相关解析正确答案20 正确答案及相关解析正确答案21 正确答案及相关解析正确答案22 正确答案及相关解析正确答案。
2020年高考数学真题试卷(浙江卷)
外…………○…………装……学校:___________ 姓名:内…………○…………装……2020年高考数学真题试卷(浙江卷)姓名:__________ 班级:__________考号:__________1.(4分)已知集合P ={x|1<x <4},Q ={x|2<x <3},则P∩Q =( )A .{x|1<x≤2}B .{x|2<x <3}C .{x|3≤x <4}D .{x|1<x <4}2.(4分)已知a∈R ,若a ﹣1+(a ﹣2)i (i 为虚数单位)是实数,则a =( )A .1B .﹣1C .2D .﹣23.(4分)若实数x ,y 满足约束条件 {x −3y +1≤0x +y −3≥0 ,则z =x+2y 的取值范围是( ) A .(﹣∞,4] B .[4,+∞) C .[5,+∞)D .(﹣∞,+∞)4.(4分)函数y =xcosx+sinx 在区间[﹣π,+π]的图象大致为( )A .B .C .D .5.(4分)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )…………线…………○……………线…………○…A .73B .143C .3D .66.(4分)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(4分)已知等差数列{a n }的前n 项和S n ,公差d≠0, a 1d≤1.记b 1=S 2,b n+1=S n+2﹣S 2n ,n∈N*,下列等式不可能成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .a 42=a 2a 8D .b 42=b 2b 88.(4分)已知点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,且P为函数y =3 √4−x 2 图象上的点,则|OP|=( )A .√222B .4√105C .√7D .√109.(4分)已知a ,b∈R 且ab≠0,若(x ﹣a )(x ﹣b )(x ﹣2a ﹣b )≥0在x≥0上恒成立,则( ) A .a <0B .a >0C .b <0D .b >010.(4分)设集合S ,T ,S∈N*,T∈N*,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y∈S ,若x≠y ,都有xy∈T ;②对于任意x ,y∈T ,若x <y ,则 y x∈S ;下列命题正确的是( )A .若S 有4个元素,则S∈T 有7个元素B .若S 有4个元素,则S∈T 有6个元素C .若S 有3个元素,则S∈T 有4个元素D .若S 有3个元素,则S∈T 有5个元素外…………○…学内…………○…11.(4分)已知数列{a n }满足a n = n(n+1)2,则S 3= . 12.(6分)设 (1+2x )5=a 1+a 2x+a 3x 2+a 4x 3+a 5x 4+a 6x 5,则a 5= ;a 1+a 2+a 3= .13.(6分)已知tanθ=2,则cos2θ= ;tan (θ﹣ π4 )= . 14.(4分)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为 . 15.(6分)设直线l :y =kx+b (k >0),圆C 1:x 2+y 2=1,C 2:(x ﹣4)2+y 2=1,若直线l 与C 1,C 2都相切,则k = ;b = .16.(6分)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则P (ξ=0)= ;E (ξ)= .17.(4分)设 e 1⃗⃗⃗⃗ , e 2⃗⃗⃗⃗ 为单位向量,满足|2 e 1⃗⃗⃗⃗ ﹣ e 2⃗⃗⃗⃗ |≤ √2 , a ⃗ = e 1⃗⃗⃗⃗ + e 2⃗⃗⃗⃗ , b ⃗ =3 e 1⃗⃗⃗⃗ + e 2⃗⃗⃗⃗ ,设 a⃗ , b ⃗ 的夹角为θ,则cos 2θ的最小值为 . 5小题,共74分。
2022年浙江省高考数学试题及答案
2022年浙江省高考数学试题及答案一、选择题(本大题共10小题,每小题5分,共50分)1. 设集合A={x|0<x<1},B={x|x^2<4},则A∩B=()A. {x|0<x<2}B. {x|0<x<1}C. {x|2<x<0}D. {x|2<x<2}2. 若函数f(x)=x^33x+1在区间(1,1)上单调递减,则实数a的取值范围是()A. a>1B. a<1C. a≥1D. a≤13. 已知等差数列{an}的前n项和为Sn,且a1+a3=20,a2+a4=26,则数列{an}的公差d=()A. 2B. 3C. 4D. 54. 在等腰三角形ABC中,AB=AC=4,∠BAC=60°,则三角形ABC的面积是()A. 2√3B. 4√3C. 6√3D. 8√35. 已知圆C:x^2+y^2=4,直线l:y=kx+2与圆C相交于A、B两点,若AB=2√2,则实数k的值是()A. 1B. 1C. ±1D. 06. 已知函数f(x)=log2(x+1),则f(x)的值域是()A. (∞,0)B. (0,+∞)C. (∞,+∞)D. (0,+∞)7. 已知正三棱柱ABCA1B1C1的底面边长为a,高为h,则该三棱柱的体积V是()A. V=√3/4a^2hB. V=√3/2a^2hC. V=a^2hD. V=√3a^2h8. 若复数z满足|z1|=|z+1|,则z在复平面上的轨迹是()A. 以原点为中心,半径为1的圆B. 以原点为中心,半径为2的圆C. 以点(1,0)为中心,半径为1的圆D. 以点(1,0)为中心,半径为1的圆9. 已知等比数列{an}的首项a1=1,公比q=2,则数列{an}的前5项和S5=()A. 31B. 32C. 33D. 3410. 已知函数f(x)=x^2+ax+b(a,b∈R),若f(x)在区间(1,1)上单调递增,则实数a的取值范围是()A. a>2B. a<2C. a≥2D. a≤2二、填空题(本大题共5小题,每小题5分,共25分)11. 若函数f(x)=x^33x+1在区间(1,1)上单调递减,则实数a的取值范围是_________。
2020年浙江省高考数学试卷-含详细解析
2020年浙江省⾼考数学试卷-含详细解析2020年浙江省⾼考数学试卷副标题题号⼀⼆三总分得分⼀、选择题(本⼤题共10⼩题,共40.0分)1. 已知集合P ={x|1A. {x|1B. {x|2C. {x|3≤x <4}D. {x|12. 已知a ∈R ,若a ?1+(a ?2)i(i 为虚数单位)是实数,则a =( )A. 1B. ?1C. 2D. ?2 3. 若实数x ,y 满⾜约束条件{x ?3y +1≤0x +y ?3≥0,则z =x +2y 的取值范围是( )A. (?∞,4]B. [4,+∞)C. [5,+∞)D. (?∞,+∞)4. 函数y =xcosx +sinx 在区间[?π,π]的图象⼤致为( )A.B.C.D.5. 某⼏何体的三视图(单位:cm)如图所⽰,则该⼏何体的体积(单位:cm 3)是( )A. 73 B. 143 C. 3 D. 66. 已知空间中不过同⼀点的三条直线m ,n ,l ,则“m ,n ,l 在同⼀平⾯”是“m ,n ,l 两两相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7.已知等差数列{a n}的前n项和S n,公差d≠0,a1d1.记b1=S2,b n+1=S n+2?S2n,n∈N?,下列等式不可能成⽴的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b88.已知点O(0,0),A(?2,0),B(2,0),设点P满⾜|PA|?|PB|=2,且P为函数y=3√4?x2图象上的点,则|OP|=()A. √222B. 4√105C. √7D. √109.已知a,b∈R且a,b≠0,若(x?a)(x?b)(x?2a?b)≥0在x≥0上恒成⽴,则()A. a<0B. a>0C. b<0D. b>010.设集合S,T,S?N?,T?N?,S,T中⾄少有两个元素,且S,T满⾜:①对于任意x,y∈S,若x≠y,都有xy∈T;②对于任意x,y∈T,若xx∈S;下列命题正确的是()A. 若S有4个元素,则S∪T有7个元素B. 若S有4个元素,则S∪T有6个元素C. 若S有3个元素,则S∪T有5个元素D. 若S有3个元素,则S∪T有4个元素⼆、填空题(本⼤题共7⼩题,共36.0分)11.我国古代数学家杨辉、宋世杰等研究过⾼阶等差数列求和问题,如数列{n(n+1) 2}就是⼆阶等差数列,数列{n(n+1)},(n∈N?)的前3项和______.12.⼆项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=______;a1+a2+a3=______.13.已知tanθ=2,则cos2θ=______;tan(θ?π4)=______.14.已知圆锥的侧⾯积(单位:cm2)为2π,且它的侧⾯展开图是⼀个半圆,则这个圆锥的底⾯半径(单位:cm)是______.15.已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x?4)2+y2=1均相切,则k=______,b=______.16.盒中有4个球,其中1个红球,1个绿球,2个黄球,从盒中随机取球,每次取1个不放回,直到取出红球为⽌,设此过程中取到黄球的个数为ξ,则P(ξ=0)=______,E(ξ)=______.17.已知平⾯向量e1 ,e2 满⾜|2e1??? ?e2??? |≤√2,设a?=e1 +e2 ,b? =3e1 +e2 ,向量a?,b? 的夹⾓为θ,则cos2θ的最⼩值为______.三、解答题(本⼤题共5⼩题,共74.0分)18.在锐⾓△ABC中,⾓A,B,C的对边分别为a,b,c.已知2bsinA?√3a=0.(1)求⾓B;(2)求cosA+cosB+cosC的取值范围.19.如图,三棱台ABC?DEF中,⾯ADFC⊥⾯ABC,∠ACB=∠ACD=45°,DC=2BC.(1)证明:EF⊥DB;(2)求DF与⾯DBC所成⾓的正弦值.20.已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n+1=a n+1?a n,c n+1=b nb n+2c n(n∈N?).(1)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+?+c n<1+1,n∈N?.d21.如图,已知椭圆C1:x2+y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与抛物线C2的交点.过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).(1)若p=1,求抛物线C2的焦点坐标;16(2)若存在不过原点的直线l使M为线段AB的中点,求p的最⼤值.22.已知1底数.(1)证明:函数y=f(x)在(0,+∞)上有唯⼀零点;(2)记x0为函数y=f(x)在(0,+∞)上的零点,证明:(ⅰ)√a?1≤x0≤√2(a?1);(ⅰ)x0f(e x0)≥(e?1)(a?1)a.答案和解析1.【答案】B【解析】解:集合P ={x|1直接利⽤交集的运算法则求解即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 2.【答案】C【解析】解:a ∈R ,若a ?1+(a ?2)i(i 为虚数单位)是实数,可得a ?2=0,解得a =2.故选:C .利⽤复数的虚部为0,求解即可.本题考查复数的基本概念,是基础题. 3.【答案】B【解析】解:画出实数x ,y 满⾜约束条件{x ?3y +1≤0x +y ?3≥0所⽰的平⾯区域,如图:将⽬标函数变形为?12x +z2=y ,则z 表⽰直线在y 轴上截距,截距越⼤,z 越⼤,当⽬标函数过点A(2,1)时,截距最⼩为z =2+2=4,随着⽬标函数向上移动截距越来越⼤,故⽬标函数z =2x +y 的取值范围是[4,+∞).故选:B .作出不等式组表⽰的平⾯区域;作出⽬标函数对应的直线;结合图象判断⽬标函数z =x +2y 的取值范围.本题考查画不等式组表⽰的平⾯区域、考查数形结合求函数的最值. 4.【答案】A【解析】解:y =f(x)=xcosx +sinx ,则f(?x)=?xcosx ?sinx =?f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除B ,D ,当x =π时,y =f(π)=πcosπ+sinπ=?π<0,故排除B ,故选:A .先判断函数的奇偶性,再判断函数值的特点.本题考查了函数图象的识别,掌握函数的奇偶性额函数值得特点是关键,属于基础题. 5.【答案】A【解析】解:由题意可知⼏何体的直观图如图,下部是直三棱柱,底⾯是斜边长为2的等腰直⾓三⾓形,棱锥的⾼为2,上部是⼀个三棱锥,⼀个侧⾯与底⾯等腰直⾓三⾓形垂直,棱锥的⾼为1,所以⼏何体的体积为:12×2×1×2+13×12×2×1×1=73.故选:A.画出⼏何体的直观图,利⽤三视图的数据求解⼏何体的体积即可.本题考查三视图求解⼏何体的体积,判断⼏何体的形状是解题的关键.6.【答案】B【解析】【分析】本题借助空间的位置关系,考查了充分条件和必要条件,属于基础题.由m,n,l在同⼀平⾯,则m,n,l相交或m,n,l有两个平⾏,另⼀直线与之相交,或三条直线两两平⾏,根据充分条件,必要条件的定义即可判断.【解答】解:空间中不过同⼀点的三条直线m,n,l,若m,n,l在同⼀平⾯,则m,n,l相交或m,n,l有两个平⾏,另⼀直线与之相交,或三条直线两两平⾏.故m,n,l在同⼀平⾯”是“m,n,l两两相交”的必要不充分条件,故选:B.7.【答案】B【解析】解:在等差数列{a n}中,a n=a1+(n?1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n?1)2d,b1=S2=2a1+d,b n+1=S n+2?S2n=(2?n)a1?3n2?5n?22d.∴b2=a1+2d,b4=?a1?5d,b6=?3a1?24d,b8=?5a1?55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=?2a1?10d,b2+b6=a1+2d?3a1?24d=?2a1?22d,若2b4=b2+b6,则?2a1?10d=?2a1?22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d1,故C正确;D.若b42=b2b8,则(?a1?5d)2=(a1+2d)(?5a1?55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满⾜a1d1,故D正确.∴等式不可能成⽴的是B.故选:B.由已知利⽤等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成⽴时是否满⾜公差d≠0,a1 d1判断B与D.本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能⼒,是中档题.8.【答案】D【解析】解:点O(0,0),A(?2,0),B(2,0).设点P满⾜|PA|?|PB|=2,可知P的轨迹是双曲线x21?y23=1的右⽀上的点,P为函数y=3√4?x2图象上的点,即y236+x24=1在第⼀象限的点,联⽴两个⽅程,解得P(√132,3√32),所以|OP|=√134+274=√10.故选:D.求出P满⾜的轨迹⽅程,求出P的坐标,即可求解|OP|.本题考查圆锥曲线的综合应⽤,曲线的交点坐标以及距离公式的应⽤,是中档题.9.【答案】C【解析】解:由题意知,x=0时,不等式ab(?2a?b)?0恒成⽴,即ab(2a+b)?0,∵ab≠0,∴可得1a +2b0,则a,b⾄少有⼀个是⼩于0的,(1)若a<0,b<0,(x?a)(x?b)(x?2a?b)?0在x?0时恒成⽴,符合题意;(2)若a<0,b>0,则2a+b(3)若a>0,b<0,则2a+b>b,当2a+b=a时,(x?a)(x?b)(x?2a?b)?0在x?0时恒成⽴,符合题意.综合,b<0成⽴.故选:C.本题考查不等式恒成⽴问题,注意三次函数的图象,考查分类讨论思想和转化思想,属于中档题.10.【答案】A【解析】解:取:S={1,2,4},则T={2,4,8},S∪T={1,2,4,8},4个元素,排除C.S={2,4,8},则T={8,16,32},S∪T={2,4,8,16,32},5个元素,排除D;S={2,4,8,16}则T={8,16,32,64,128},S∪T={2,4,8,16,32,64,128},7个元素,排除B;故选:A.利⽤特殊集合排除选项,推出结果即可.本题考查命题的真假的判断与应⽤,集合的基本运算,利⽤特殊集合排除选项是选择题常⽤⽅法,难度⽐较⼤.11.【答案】10【解析】【分析】本题考查数列求和,数列通项公式的应⽤,是基本知识的考查.求出数列的前3项,然后求解即可.【解答】解:数列{a n}满⾜a n=n(n+1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.12.【答案】80 130【解析】解:∵(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=C54?24=80.a1+a2+a3=C51?2+C52?4+C53?8=130.故答案为:80;130.直接利⽤⼆项式定理的通项公式,求解即可.本题考查⼆项式定理的应⽤,只有⼆项式定理系数以及项的系数的区别,是基本知识的考查.13.【答案】?351 3【解析】解:tanθ=2,则cos2θ=cos2θ?sin2θcos2θ+sin2θ=1?tan2θ1+tan2θ=1?41+4=?35.tan(θ?π4)=tanθ?tanπ41+tanθtanπ4=2?11+2×1=13.故答案为:?35;13.利⽤⼆倍⾓公式以及同⾓三⾓函数基本关系式求解第⼀问,利⽤两⾓和与差的三⾓函数转化求解第⼆问.本题考查⼆倍⾓公式的应⽤,两⾓和与差的三⾓函数以及同⾓三⾓函数基本关系式的应⽤,是基本知识的考查.14.【答案】1【解析】解:∵圆锥侧⾯展开图是半圆,⾯积为2π,设圆锥的母线长为a,则12×a2π=2π,∴a=2,∴侧⾯展开扇形的弧长为2π,设圆锥的底⾯半径OC=r,则2πr=2π,解得r=1.故答案为:1.利⽤圆锥的侧⾯积,求出母线长,求解底⾯圆的周长,然后求解底⾯半径.本题考查圆锥的母线长的求法,注意利⽤圆锥的弧长等于底⾯周长这个知识点.15.【答案】√33?2√33【解析】解:由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d 1=√1+k 2=1,d 2=√1+k 2=1,则有√1+k 2=√1+k 2,故可得b 2=(4k +b)2,整理得k(2k +b)=0,因为k >0,所以2k +b =0,即b =?2k ,代⼊d 1=√1+k 2=1,解得k =√33,则b =?2√33,故答案为:√33;?2√33.根据直线l 与两圆都相切,分别列出⽅程d 1=√1+k 2=1,d 2=√1+k 2=1,解得即可.本题考查直线与圆相切的性质,考查⽅程思想,属于中档题.16.【答案】13 1【解析】解:由题意知,随机变量ξ的可能取值为0,1,2;计算P(ξ=0)=C 11C 41+C 11?C 11C 41?C 31=13;P(ξ=1)=C 21?C 11A 42+C 21C 11A 22C 11A 43=13; P(ξ=2)=A 22?C 11A 43+C 22C 11A 33A 22C 11A 44=13;所以E(ξ)=0×13+1×13+2×13=1.故答案为:13,1.由题意知随机变量ξ的可能取值为0,1,2;分别计算P(ξ=0)、P(ξ=1)和P(ξ=2),再求E(ξ)的值.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.17.【答案】2829【解析】解:设e 1 、e 2 的夹⾓为α,由e 1 ,e 2 为单位向量,满⾜|2e 1??? ?e 2??? |≤√2,所以4e 1 2?4e 1 ?e 2 +e 2 2=4?4cosα+1≤2,解得cosα≥34;⼜a ? =e 1 +e 2 ,b ? =3e 1 +e 2 ,且a,b ? 的夹⾓为θ,所以a ? ?b ? =3e 1 2+4e 1 ?e 2 +e 2 2=4+4cosα, a ? 2=e 1 2+2e 1 ?e 2 +e 2 2=2+2cosα,b ? 2=9e 1 2+6e 1 ?e 2 +e 2 2=10+6cosα;则cos 2θ=(a ? ?b)2a2×b2=(4+4cosα)2(2+2cosα)(10+6cosα)=4+4cosα5+3cosα=43?835+3cosα,所以cosα=34时,cos 2θ取得最⼩值为43?835+3×34=2829.故答案为:2829.设e1 、e2 的夹⾓为α,由题意求出cosα≥34;再求a?,b? 的夹⾓θ的余弦值cos2θ的最⼩值即可.本题考查了平⾯向量的数量积与夹⾓的运算问题,是中档题.18.【答案】解:(1)∵2bsinA=√3a,∴2sinBsinA=√3sinA,∵sinA≠0,∴sinB=√32,,∴B=π3,(2)∵△ABC为锐⾓三⾓形,B=π∴C=2π3A,,△ABC为锐⾓三⾓形,,,解得,,,,∴cosA+cosB+cosC的取值范围为(√3+12,32 ].【解析】本题考查了正弦定理,三⾓函数的化简,三⾓函数的性质,考查了运算求解能⼒和转化与化归能⼒,属于中档题.(1)根据正弦定理可得sinB=√32,结合⾓的范围,即可求出,(2)根据两⾓和差的余弦公式,以及利⽤正弦函数的性质即可求出.19.【答案】解:(1)证明:作DH⊥AC,且交AC于点H,∵⾯ADFC⊥⾯ABC,⾯ADFC∩⾯ABC=AC,DH?⾯ADFC,∴DH⊥⾯ABC,BC?⾯ABC,∴DH⊥BC,∴在Rt△DHC中,CH=CD?cos45°=√22CD,∵DC=2BC,∴CH=√22CD=√222BC=√2BC,∴BCCH =√22,⼜∠ACB=45°,∴△BHC是直⾓三⾓形,且∠HBC=90°,∴BC⊥⾯DHB,∵DB?⾯DHB,∴BC⊥DB,∵在三棱台DEF?ABC中,EF//BC,∴EF⊥DB.(2)设BC=1,则BH=1,HC=√2,在Rt△DHC中,DH=√2,DC=2,在Rt△DHB中,DB=√DH2+HB2=√2+1=√3,作HG⊥BD于G,∵BC⊥⾯DHB,HG?⾯DHB,∴BC⊥HG,⽽BC?⾯BCD,BD?⾯BCD,BC∩BD=B,∴HG⊥⾯BCD,∵GC?⾯BCD,∴HG⊥GC,∴△HGC是直⾓三⾓形,且∠HGC=90°,设DF与⾯DBC所成⾓为θ,则θ即为CH与⾯DBC的夹⾓,且sinθ=sin∠HCG=HGHC =√2,∵在Rt△DHB中,DH?HB=BD?HG,∴HG=DH?HBBD =√2?1√3=√63,∴sinθ=√2=√63√2=√33.【解析】本题主要考查空间直线互相垂直的判定和性质,以及直线与平⾯所成⾓的⼏何计算问题,考查了空间想象能⼒和思维能⼒,平⾯与空间互相转化是能⼒,⼏何计算能⼒,以及逻辑推理能⼒,本题属综合性较强的中档题.(1)题根据已知条件,作DH⊥AC,根据⾯⾯垂直,可得DH⊥BC,进⼀步根据直⾓三⾓形的知识可判断出△BHC是直⾓三⾓DF与⾯DBC 所成⾓的正弦值.20.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2?q?1=0,解得q=?13(舍去),或q=12,∴c n+1=b nb n+2?c n=1b n+2b nc n=1q2c n=1(12)2c n=4c n,∴数列{c n}是以1为⾸项,4为公⽐的等⽐数列,∴c n=1?4n?1=4n?1,n∈N?.∴a n+1?a n=c n+1=4n,则a1=1,a2?a1=41,a3?a2=42,a na n1=4n1,各项相加,可得a n=1+41+42+?+4n?1=1?4n1?4=4n?13b n+2c n(n∈N?),可得b n+2?c n+1=b n?c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是⼀个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dddb n b n+1=(1+1d)?b n+1?b nb n b n+1=(1+1d)(1b n1b n+1),∴c1+c2+?+c n=(1+1d)(1b11b2)+(1+)(1b21b3)+?+(1+ 1d)(1b n1b n+1 )=(1+1 d)(1b11b2+1b21b3 +?+1b nb n+1)=(1+1d)(1b11b n+1)=(1+1d)(1?1b n+1)<1+1d,∴c1+c2+?+c n<1+1d,故得证.【解析】本题主要考查数列求通项公式,等差数列和等⽐数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,⽅程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能⼒和数学运算能⼒.本题属综合性较强的偏难题.(1)先根据等⽐数列的通项公式将b2=q,b3=q2代⼊b1+b2=6b3,计算出公⽐q的值,然后根据等⽐数列的定义化简c n+1=b nb n+2c n可得c n+1=4c n,则可发现数列{c n}是以1为⾸项,4为公⽐的等⽐数列,从⽽可得数列{c n}的通项公式,然后将通项公式代⼊c n+1=a n+1?a n,可得a n+1?a n=c n+1=4n,再根据此递推公式的特点运⽤累加法可计算出数列{a n}的通项公式;(2)通过将已知关系式c n+1=b nb n+2c n不断进⾏转化可构造出数列{b n b n+1c n},且可得到数列{b n b n+1c n }是⼀个常数列,且此常数为1+d ,从⽽可得b n b n+1c n =1+d ,再计算得到c n =1+d,根据等差数列的特点进⾏转化进⾏裂项,在求和时相消,最后运⽤放缩法即可证明不等式成⽴.21.【答案】解:(1)p =116,则?p 2=132,则抛物线C 2的焦点坐标(132,0),(2)由题意可设直线l :x =my +t (m ≠0,t ≠0),点A (x 0,y 0),将直线l 的⽅程代⼊椭圆C 1:x 22+y 2=1得(m 2+2)y 2+2mty +t 2?2=0∴点M 的纵坐标y M =?mtm 2+2。
2021年浙江省高考数学试题(解析版)
【解析】
【分析】根据二项展开式定理,分别求出 的展开式,即可得出结论.
【详解】 ,
,
所以 ,
,
所以 .
故答案为: .
14.在 中, ,M是 的中点, ,则 ___________, ___________.
【答案】(1). (2).
【解析】
【分析】由题意结合余弦定理可得 ,进而可得 ,再由余弦定理可得 .
【答案】(1). (2).
【解析】
【分析】不妨假设 ,根据图形可知, ,再根据同角三角函数基本关系即可求出 ;再根据椭圆的定义求出 ,即可求得离心率.
【详解】
如图所示:不妨假设 ,设切点为 ,
,
所以 ,由 ,所以 , ,于是 ,即 ,所以 .
故答案为: ; .
17.已知平面向量 满足 .记向量 在 方向上的投影分别为x,y, 在 方向上的投影为z,则 的最小值为___________.
22.设a,b为实数,且 ,函数
(1)求函数 的单调区间;
(2)若对任意 ,函数 有两个不同的零点,求a的取值范围;
(3)当 时,证明:对任意 ,函数 有两个不同的零点 ,满足 .
(注: 是自然对数的底数)
【答案】(1) 时, 在 上单调递增; 时,函数的单调减区间为 ,单调增区间为 ;
(2) ;
(3)证明见解析.
(2)设 , , ,联立直线 的方程和抛物线的方程后可得 ,求出直线 的方程,联立各直线方程可求出 ,根据题设条件可得 ,从而可求 的范围.
【详解】(1)因为 ,故 ,故抛物线的方程为: .
(2)设 , , ,
所以直线 ,由题设可得 且 .
由 可得 ,故 ,
2021年新高考浙江省数学试题及参考答案
2021年普通高等学校招生全国统一考试(浙江卷)数 学一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}1A x x =≥,{}12B x x =-<<,则A B =( )A .{}1x x >- B .{}1x x ≥ C .{}11x x -<< D .{}12x x ≤<2.已知a ∈R ,()1i i 3i a +=+(i 为虚数单位),则a =( )A .1-B .1C .3-D .33.已知非零向量,,a b c ,则“⋅=⋅a c b c ”是“=a b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是( )A .32 B .3 C .322 D .325.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y=-的最小值是( )A .2-B .32-C .12-D .1106.如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D,1D B的中点,则( )A .直线1A D与直线1D B垂直,直线MN ∥平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线MN ∥平面ABCDD .直线1A D与直线1D B异面,直线MN ⊥平面11BDD B7.已知函数21(),()sin 4f x x g x x=+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =8.已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( )A .0B .1C .2D .39.已知,,0a b ab ∈>R ,函数()2()f x ax b x =+∈R .若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线10.已知数列{}n a 满足)*111,1n n na a n a +==∈+N .记数列{}n a 的前n 项和为n S ,则( )A .100132S <<B .10034S <<C .100942S <<D .100952S <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2020年高考浙江卷数学试题(含解析)
1.已知集合{|14}P x x =<<,{|23}Q x x =<<,则P Q =( ) A.{|12}x x <≤ B.{|23}x x << C.{|34}x x ≤< D.{|14}x x << 【答案】B【解析】由题易知,{|23}P Q x x =<<,故选B.2.已知a R ∈,若1(2)a a i -+-(i 是虚数单位)是实数,则a =( ) A.1 B.1- C.2 D.2- 【答案】C【解析】因为1(2)a a i -+-是实数,则虚部为0,所以20a -=,即2a =.故选C.3.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是( )A.(,4]-∞B.[4,)+∞C.[5,)+∞D.(,)-∞+∞【答案】B【解析】根据约束条件,画出可行域,如图所示,将2z x y =+化为22x zy =-+,由图可知,当直线22x zy =-+经过点(2,1)时,截距z 最小,此时,z 取得最小值,即min 2214z =+⨯=,z 的最大值可取到无穷大, 则2z x y =+的取值范围为[4,)+∞.故选B.4.函数cos sin y x x x =+在区间[,]ππ-上的图象可能是( )A. B.C. D.【解析】函数()cos sin f x x x x =+,则()cos()sin()cos sin ()f x x x x x x x f x -=--+-=--=-, 则()f x 为奇函数,可排除C ,D 项;当x π=时,()cos sin 0f πππππ=+=-<,故选A.5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )是( )A.73 B.143 C.3 D.6 【答案】A【解析】由三视图易知,原几何体由一个三棱锥和一个三棱柱两部分组成, 该几何体的直观图如图所示,三棱锥的体积1111211323V =⨯⨯⨯⨯=,三棱柱的体积2121222V =⨯⨯⨯=,则该几何体的体积为1217233V V V =+=+=.故选A.6.已知空间中不过同一点的三条直线,,l m n ,“,,l m n 共面”是“,,l m n 两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】B【解析】,,m n l 两两相交⇒,,m n l 在同一平面内,,,m n l 在同一平面内,,m n l ⇒两两相交,比如////m n l ,所以,,m n l 在同一平面内是,,m n l 两两相交的必要不充分条件.故选B.7.已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,且11ad≤.记12b S =,*1222,n n n b S S n N ++=-∈,下列等式不可能成立的是( )A.4262a a a =+B.4262b b b =+C.2428a a a =D.2428b b b = 【答案】D【解析】等差数列{}n a 的通项公式为1(1)n a a n d =+-,因为1n n b b +-222222()()n n n n S S S S +-=---2221221()4(2)n n n n a a a a d n ++-=+-+=≥,又214b b d -=,所以{}n b 是公差为4d 的等差数列,11(1)42(43)n b b n d a n d =+-⋅=+-,选项A ,B 由等差数列性质可知正确;选项C ,若2428a a a =,则2111(3)()(7)a d a d a d +=++, 化简得21a d d =,满足0d ≠,11ad≤,所以C 正确;选项D ,若2428b b b =,则2111(213)(25)(229)a d a d a d +=++,化简得2123a d d =,不满足0d ≠,11ad≤,所以D 正确.故选D.8.已知点(0,0)O ,(2,0)A -,(2,0)B .设点P 满足||||2PA PB -=,且P为函数y =图象上的点,则||OP =( )【答案】D【解析】由题知,(2,0)A -,(2,0)B ,点P 满足||||2PA PB -=, 由双曲线的定义可知,则22a =,即1a =,又||42AB c ==,则2c =,b ,所以点P 在双曲线22113x y -=右支上,而y =229(4)y x =-,则2222162y x +=,所以点P 又在椭圆221436x y +=上半部分(0)y ≥, 联立2222131436y x x y ⎧-=⎪⎪⎨⎪+=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩P ,则||OP ==故选D. 9.已知a ,b R ∈且0ab ≠,对于任意0x ≥均有()()(2)0x a x b x a b ----≥,则( ) A.0a < B.0a > C.0b < D.0b > 【答案】C【解析】根据标根法分类讨论,三个根分别为123,,2x a x b x a b ===+,①当1230,0,0x x x ≤≤≤时,0,0a b ≤≤; ②当1230,x x x ≤=时,0,a b R =∈;③当2130,x x x ≤=时,0,b a b ≤=-,即0,0b a ≤≥; ④当3120,x x x ≤=时,0b ≤或0a ≤; 综上,0b ≤.10.设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的,x y S ∈,若x y ≠,则xy T ∈;②对于任意的,x y T ∈,若x y <,则yS x∈.下列命题正确的是( )A.若S 有4个元素,则S T 有7个元素B.若S 有4个元素,则S T 有6个元素C.若S 有3个元素,则S T 有5个元素D.若S 有3个元素,则S T 有4个元素 【答案】A【解析】取{1,2,4}S =,{2,4,8}T =,此时{1,2,4,8}S T =有4个元素,排除D ; 取{2,4,8}S =,{8,16,32}T =,此时{2,4,8,16,32}S T =有5个元素,排除C ;取{2,4,8,16}S =,{8,16,32,64,128}T =,此时{2,4,8,16,32,64,128}S T =有7个元素,排除B.故选A. 二、填空题11.我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1){}2n n +就是二阶等差数列,数列*(1){}()2n n n N +∈的前3项和是 . 【答案】10【解析】设(1)2n n n a +=,则11212a ⨯==,22332a ⨯==,33462a ⨯==,∴313610S =++=.12.二项展开式52345102354(12)x a a x a x a x a x a x +=+++++,则4a = ,315a a a ++= . 【答案】80,122【解析】444445(2)5280C x x x =⨯⨯=,∴480a =,15(2)10C x x =,3533(2)80C x x ⋅=,5555(2)32C x x =,∴110a =,380a =,532a =, ∴513122a a a =++.13.已知tan 2θ=,则cos2θ= ;)an(t 4πθ-= .【答案】35-,13【解析】222222cos sin 1tan 143cos2cos sin 1tan 145θθθθθθθ---====-+++,tan tan2114tan 412131tan t (n 4)a πθπθπθ---===+⨯+. 14.已知圆锥的侧面积(单位:2cm )为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是 . 【答案】1【解析】设圆锥母线长为l ,底面半径为r , 由圆锥展开图的侧面积为2π可得2rl ππ=,由圆锥展开图的侧面为半圆可得1222r l ππ=⋅⋅,可解得1r =.15.已知直线(0)y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k = ;b【解析】根据对称性直线AB 过线段12O O 中点(2,0)C ,故直线:(2)AB y k x =-,再由1||1O A =,且190O AC ∠=,得1230O CA O CB ∠=∠=,所以2tan k O CB =∠=,故b =16.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止,设此过程中取到黄球的个数为ξ,则(0)P ξ== ,()E ξ= .【答案】13,1【解析】第一次红球114P =,第一次绿球第二次红球21114312P =⨯=,111(0)4123P ξ==+=, 红球在两黄球左边,中间,右边的概率为13,当红球在两黄球之外之内不同位置所取出的黄球数不同,∴111()0121333E ξ=⨯+⨯+⨯=.17.已知平面单位向量12,e e 满足12|2|2e e -≤,设12a e e =+,123b e e =+,设,a b 夹角为θ,则2cos θ的最小值为 .【答案】2829【解析】法一:22121122|2|24()4()2e e e e e e -≤⇒-⋅+≤,∴1234e e ⋅≥, ()()2212222121244()cos 22(106)||||e e a b e e e e a b θ+⋅⋅==⋅++⋅⋅,令1234k e e =⋅≥, 则224(1)4(1)424228cos 113(1)(53)533533295()()34k k k k k k θ++===⋅-≥-=+++++⨯. 法二:设1(1,0)e =,2(cos ,sin )e αα=, 2212|2|2(2cos )sin 2e e αα-≤⇒-+≤,∴3cos 4α≥, ||||cos ,a b a b a b ⋅=⨯⨯〈〉22(44cos )cos ,(22cos )(106cos )a b ααα+⇒〈〉=++88cos 44cos 106cos 53cos αααα++==++.设443(14()53)x f x x x +=≤≤+, 4(1)424228()113533533()(2)9534x f x x x +==⋅-≥-=+++⨯,即2min 28cos (9)2θ=. 三、解答题18.在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知2sin 0b A=. (1)求角B 的大小;(2)求cos cos cos A B C ++的取值范围.【解析】(1)由正弦定理得2sin sin B A A ,故sin B 3B π=.(2)由A B C π++=得23C A π=-,由ABC ∆是锐角三角形得(,)62A ππ∈,由21cos cos()cos 32C A A A π=-=-+得1113cos cos cos cos sin()]22622A B C A A A π++=++=++∈.故cos cos cos A B C ++的取值范围是3]2.19.如图,在三棱台ABC DEF -中,平面ACFD ⊥面ABC ,45ACB ACD ∠=∠=︒,2DC BC =. (1)证明:EF DB ⊥;(2)求直线DF 与平面DBC 所成角的正弦值.【解析】(1)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得CD ,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,12BC CD ==得BO BC ⊥,所以BC ⊥平面BDO ,故BC DB ⊥.由三棱台ABC DEF -得//BC EF ,所以EF DB ⊥.(2)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH . 由三棱台ABC DEF -得//DF CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD , 所以OCH ∠为直线CO 与平面DBC 所成角.设CD =,由2DO OC ==,BO BC ==得BD =,OH =sin OH OCH OC ∠==,因此,直线DF 与平面DBC . 方法二:由三棱台ABC DEF -得//DF CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0)O ,(1,1,0)B ,(0,2,0)C ,(0,0,2)D . 因此(0,2,0)OC =,(1,1,0)BC =-,(0,2,2)CD =-. 设平面BCD 的法向量(,,)n x y z =,由00n BC n CD ⎧⋅=⎪⎨⋅=⎪⎩,即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)n =,所以||3sin |cos ,|3||||OCn OC n OC n θ⋅=<>==⋅. 因此,直线DF 与平面DBC . 20.已知数列{}n a ,{}n b ,{}n c 满足1111a b c ===,1n n n c a a +=-,12nn n n b c c b ++=,*()n N ∈. (1)若数列{}n b 为等比数列,公比0q >,且1236b b b +=,求q 的值及数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,公差0d >,证明:*12311,n c c c c n N d++++<+∈….【解析】(1)由1236b b b +=得216q q +=,解得12q =,由14n n c c +=得14n n c -=.由114n n n a a -+--得121421443n n n a a --+=++++=. (2)由12n n n n b c c b ++=得12111111()nn n n n b b c d c b b d b b +++==-, 所以123111(1)n n d c c c c d b ++++++=-, 由11b =,0d >得10n b +>,因此12311n c c c c d++++<+,*n N ∈. 21.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (,B M 不同于A ).(1)若116p =,求抛物线2C 的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解析】(1)由116p =得2C 的焦点坐标是1(,0)32.(2)由题意可设直线l :x my t =+(0m ≠,0t ≠),点00(,)A x y .将直线l 的方程代入椭圆1C :2212x y +=得222(2)220m y mty t +++-=,所以点M 的纵坐标22M mty m =-+. 将直线l 的方程代入抛物线2C :22y px =得2220y pmy pt --=, 所以02M y y pt =-,解得202(2)p m y m +=,因此,22022(2)p m x m +=. 由220012x y +=得2421224()2()160m m p m m =+++≥,所以当m t =时,p . 22.已知12a <≤,函数()x f x e x a =--,其中 2.71828e =是自然对数的底数.(1)证明:函数()y f x =在(0,)+∞上有唯一零点; (2)记0x 是函数()y f x =在(0,)+∞上的零点,证明:(i 0x ≤(ii )()00(1)(1)xx f e e a a ≥--.【解析】(1)因为(0)10f a =-<,22(2)240f e a e =--≥->,所以()y f x =在(0,)+∞上存在零点.因为()1x f x e '=-,所以当0x >时,()0f x '>,故函数()f x 在[0,)+∞上单调递增,所以函数()y f x =在(0,)+∞上有唯一零点.(2)(i )令21()1(0)2xg x e x x x =---≥,()1()1x g x e x f x a '=--=+-,由(1)知函数()g x '在[0,)+∞上单调递增,故当0x >时,()(0)0g x g ''>=,所以函数()g x 在[0,)+∞单调递增,故()(0)0g x g ≥=.由0g ≥得00()f a f x =-≥=,因为()f x 在[0,)+∞0x ≥. 令1()21(01)x h x e x x =--≤≤,1()2x h x e '=-,所以故当01x <<时,1()0h x <,即1()0h x '<,所以()h x 在[0,1]单调递减,因此当01x ≤≤时,()(0)0h x h ≤=.由0h ≤得00()f a f x =≤=,因此()f x 在[0,)+∞0x ≤.0x ≤≤(ii )令()(1)1x u x e e x =---,()(1)x u x e e '=--,所以当1x >时,()0u x '>,故函数()u x 在区间[1,)+∞上单调递增,因此()(1)0u x u ≥=.由00x e x a =+可得022000000()()(1)(2)(1)x a a x f e x f x a e x a e x e ax =+=-+-≥-,由0x ≥得00()(1)(1)x x f e e a a ≥--.。
2022年高考真题—数学(浙江卷)【含答案及解析】
年普通⾼等学校招⽣全国统⼀考试(浙江卷)数学参考公式:如果事件A ,B 互斥,则柱体的体积公式()()()P A B P A P B +=+V Sh=如果事件A ,B 相互独立,则其中S 表示柱体的底面积,h 表示柱体的高()()()P AB P A P B =×锥体的体积公式若事件A 在一次试验中发生的概率是p ,则n 次13V Sh=独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高()(1)(0,1,2,,)k k n k n n P k C p p k n -=-=L 球的表面积公式台体的体积公式24S R p=()1213V S S h =++球的体积公式其中12,S S 表示台体的上、下底面积,343V R p =h 表示台体的高其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2},{2,4,6}A B ==,则A B È=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}2.已知,,3i (i)i a b a b Î+=+R (i 为虚数单位),则()A.1,3a b ==- B.1,3a b =-= C.1,3a b =-=- D.1,3a b ==3.若实数x ,y 满足约束条件20,270,20,x x y x y -³ìï+-£íï--£î则34z x y =+的最大值是()A 20B. 18C. 13D. 64.设x ÎR ,则“sin 1x =”是“cos 0x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是().A.22πB.8πC.22π3D.16π36.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x æö=+ç÷èø图象上所有的点()A.向左平移π5个单位长度 B.向右平移π5个单位长度C.向左平移π15个单位长度 D.向右平移π15个单位长度7.已知825,log 3ab ==,则34a b -=()A.25B.5C.259 D.538.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为a ,EF 与平面ABC 所成的角为b ,二面角F BC A --的平面角为g ,则()A.a b g££ B.b a g ££ C.b g a££ D.a g b££9.已知,a b ÎR ,若对任意,|||4||25|0x a x b x x Î-+---³R ,则()A.1,3a b £³ B.1,3a b ££ C.1,3a b ³³ D.1,3a b ³£10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-ÎN ,则()A.100521002a <<B.100510032a << C.100731002a <<D.100710042a <<非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.12已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.13.若3sin sin 2pa b a b -=+=,则sin a =__________,cos 2b =_________.14.已知函数()22,1,11,1,x x f x x x x ì-+£ï=í+->ïî则12f f æöæö=ç÷ç÷èøèø________;若当[,]x a b Î时,1()3f x ££,则b a -的最大值是_________.15.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为x ,则(2)P x ==__________,()E x =_________.16.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.17.设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++u u u r u u L u r u u u r 的取值范围是_______.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 面积..的19.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE Ð=Ð=°,二面角F DC B --的平面角为60°.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ^;(2)求直线BM 与平面ADE 所成角的正弦值.20.已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *ÎN .(1)若423260S a a -+=,求n S ;(2)若对于每个n *ÎN ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.21.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q æöç÷èø在线段AB上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点距离的最大值;(2)求||CD 的最小值.22.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L是自然对数的底数)的的答案及解析选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2},{2,4,6}A B ==,则A B È=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}【答案】D 【解析】【分析】利用并集的定义可得正确的选项.【详解】{}1,2,4,6A B =U ,故选:D.2.已知,,3i (i)i a b a b Î+=+R (i 为虚数单位),则()A.1,3a b ==- B.1,3a b =-= C.1,3a b =-=- D.1,3a b ==【答案】B 【解析】【分析】利用复数相等的条件可求,a b .【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.3.若实数x ,y 满足约束条件20,270,20,x x y x y -³ìï+-£íï--£î则34z x y =+的最大值是()A. 20B. 18C. 13D. 6【答案】B 【解析】【分析】在平面直角坐标系中画出可行域,平移动直线34z x y =+后可求最大值.【详解】不等式组对应的可行域如图所示:当动直线340x y z +-=过A 时z 有最大值.由2270x x y =ìí+-=î可得23x y =ìí=î,故()2,3A ,故max 324318z =´+´=,故选:B.4.设x ÎR ,则“sin 1x =”是“cos 0x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为22sin cos 1x x +=可得:当sin 1x =时,cos 0x =,充分性成立;当cos 0x =时,sin 1x =±,必要性不成立;所以当x ÎR ,sin 1x =是cos 0x =的充分不必要条件.故选:A.5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是()A.22πB.8πC.22π3D.16π3【答案】C 【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =´´+´´+´´´+´+=3cm .故选:C .6.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x æö=+ç÷èø图象上所有的点()A. 向左平移π5个单位长度 B.向右平移π5个单位长度C. 向左平移π15个单位长度 D. 向右平移π15个单位长度【答案】D【解析】【分析】根据三角函数图象的变换法则即可求出.【详解】因为ππ2sin 32sin 3155y x x éùæö==-+ç÷êúèøëû,所以把函数π2sin 35y x æö=+ç÷èø图象上的所有点向右平移π15个单位长度即可得到函数2sin 3y x =的图象.故选:D.7.已知825,log 3ab ==,则34a b -=()A. 25B. 5C.259D.53【答案】C 【解析】【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为25a=,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa bb b -====.故选:C.8.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为a ,EF 与平面ABC 所成的角为b ,二面角F BC A --的平面角为g ,则()A.a b g££ B.b a g ££ C.b g a££ D.a g b££【答案】A 【解析】【分析】先用几何法表示出a b g ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ^于P ,过P 作PM BC ^于M ,连接PE ,则EFP a =Ð,FEP b =Ð,FMP g =,tan 1PE PE FP AB a ==£,tan 1FP AB PE PE b ==³,tan tan FP FPPM PEg b =³=,所以a b g ££,故选:A .9.已知,a b ÎR ,若对任意,|||4||25|0x a x b x x Î-+---³R ,则()A 1,3a b £³ B.1,3a b ££ C.1,3a b ³³ D.1,3a b ³£【答案】D 【解析】【分析】将问题转换为|||25||4|a x b x x -³---,再结合画图求解.【详解】由题意有:对任意的x ÎR ,有|||25||4|a x b x x -³---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ì-£ïïï=---=-<<íï-³ïïî,即()f x 的图象恒在()g x 的上方(可重合),如下图所示:.由图可知,3a ³,13b ££,或13a £<,3143b a££-£,故选:D .10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-ÎN ,则()A.100521002a <<B.100510032a << C.100731002a <<D.100710042a <<【答案】B 【解析】【分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +æö-=<=+ç÷-+èø-+,累加可求出()111111113323n n a n æö-<-++++ç÷èøL ,再次放缩可得出10051002a >.【详解】∵11a =,易得()220,13a =Î,依次类推可得()0,1n aÎ由题意,1113n n n a a a +æö=-ç÷èø,即()1131133n n n n n a a a a a +==+--,∴1111133n n n a a a +-=>-,即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->³,累加可得()11113n n a ->-,即11(2),(2)3n n n a >+³,∴()3,22n a n n <³+,即100134a <,100100100334a <<,又11111111,(2)333132n n n n a a a n n +æö-=<=+³ç÷-+èø-+,∴211111132a a æö-=+ç÷èø,321111133a a æö-<+ç÷èø,431111134a a æö-<+ç÷èø,…,111111,(3)3n n n a a n -æö-<+³ç÷èø,累加可得()11111111,(3)3323n n n a n æö-<-++++³ç÷èøL ,∴10011111111133334943932399326a æöæö-<++++<+´+´<ç÷ç÷èøèøL ,即100140a <,∴100140a >,即10051002a >;综上:100510032a <<.故选:B .【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【答案】4.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S =,所以4S ==.故答案为:4.12.已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.【答案】①.8②.2-【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令0x =求出0a ,再令1x =即可得出答案.【详解】含2x 项为:()()3232222244C 12C 14128x x x x x x ×××-+×××-=-+=,故28a =;令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,故答案为:8;2-.13.若3sin sin 2pa b a b -=+=,则sin a =__________,cos 2b =_________.【答案】①.10②.45【解析】【分析】先通过诱导公式变形,得到a 的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出a ,接下来再求b .【详解】2pa b +=,∴sin cos b a =,即3sin cos a a -=的sin cos1010a aö-=÷÷øsin10q=,cos10q=,()a q-=,∴22k k Zpa q p-=+Î,,即22kpa q p=++,∴sin sin2cos210kpa q p qæö=++==ç÷èø,则224cos22cos12sin15b b a=-=-=.故答案为:10;45.14.已知函数()22,1,11,1,x xf xx xxì-+£ï=í+->ïî则12f fæöæö=ç÷ç÷èøèø________;若当[,]x a bÎ时,1()3f x££,则b a-的最大值是_________.【答案】①.3728②.3【解析】【分析】结合分段函数的解析式求函数值,由条件求出a的最小值,b的最大值即可.【详解】由已知2117()2224fæö=-+=ç÷èø,77437()144728f=+-=,所以137()228f féù=êúëû,当1x£时,由1()3f x££可得2123x£-+£,所以11x-££,当1x>时,由1()3f x££可得1113xx£+-£,所以12x<£1()3f x££等价于12x-££+,所以[,][1,2a bÍ-+,所以b a-的最大值为3.故答案为:3728,315.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为x,则(2)P x==__________,()E x=_________.【答案】①.1635,②.127##517【解析】【分析】利用古典概型概率公式求(2)P x =,由条件求x 分布列,再由期望公式求其期望.【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P x +===,由已知可得x 的取值有1,2,3,4,2637C 15(1)C 35P x ===,16(2)35P x ==,,()()233377C 31134C 35C 35P P x x ======,所以15163112()1234353535357E x =´+´+´+´=,故答案为:1635,127.16.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【答案】4【解析】【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4b a 的直线:()4b AB y x c a=+,渐近线2:bl y x a =,联立()4b y x c ab y xa ì=+ïïíï=ïî,得,33c bc B a æöç÷èø,由||3||FB FA =,得5,,99c bc A a æö-ç÷èø而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e 4=.故答案为:4.17.设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++u u u r u u L u r u u u r 的取值范围是_______.【答案】[12+【解析】【分析】根据正八边形的结构特征,分别以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设(,)P x y ,再根据平面向量模的坐标计算公式即可得到()2222212888PA PA PA x y +++=++u u u r u u u r u u u r L ,然后利用cos 22.5||1OP ££o 即可解出.【详解】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,如图所示:则1345726(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A æöææ-----ç÷ççç÷ç÷ç÷èøèøèø,822A æö-ç÷ç÷èø,设(,)P x y ,于是()2222212888PA PA PA x y +++=++u u u r u u u r u u u r L ,因为cos 22.5||1OP ££o,所以221cos 4512x y +£+£o ,故222128PA PA PA +++u u u r u u u r u u u r L 的取值范围是[12+.故答案为:[12+.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.【答案】(1;(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【小问1详解】由于3cos 5C =,0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin sin 45A C ==.【小问2详解】因为4a =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====,即26550a a +-=,解得5a =,而4sin 5C =,11b =,所以ABC V 的面积114sin 51122225S ab C ==´´´=.19.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE Ð=Ð=°,二面角F DC B --的平面角为60°.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ^;(2)求直线BM 与平面ADE 所成角的正弦值.【答案】(1)证明见解析;(2)14.【解析】【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC BC =,再根据二面角的定义可知,60BCF Ð=o ,由此可知,FN BC ^,FN CD ^,从而可证得FN ^平面ABCD ,即得FN AD ^;(2)由(1)可知FN ^平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,求出平面ADE 的一个法向量,以及BM uuu u r,即可利用线面角的向量公式解出.【小问1详解】过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE Ð=Ð=°,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==Ð=Ð=Ð=Ð=°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD V 和Rt DHA V ,EG DH ==∵,DC CF DC CB ^^,且CF CB C Ç=,∴DC ^平面,BCF BCF Ð是二面角F DC B --的平面角,则60BCF Ð=o ,∴BCF △是正三角形,由DC Ì平面ABCD ,得平面ABCD ^平面BCF ,∵N 是BC 的中点,\FN BC ^,又DC ^平面BCF ,FN Ì平面BCF ,可得FN CD ^,而BC CD C Ç=,∴FN ^平面ABCD ,而AD Ì平面ABCD FN AD \^.【小问2详解】因为FN ^平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,设(3,(1,0,3)A B D E,则33,,22M æöç÷ç÷èø,33,,,(2,(22BM AD DE æö\=-=--=-ç÷ç÷èøu u u u r u u ur u u u r 设平面ADE 的法向量为(,,)n x y z =r由00n AD n DE ì×=í×=îu u u v r u u u v r,得20230x x z ì--=ïí-++=ïî,取n =-r ,设直线BM 与平面ADE 所成角为q ,∴||sin cos ,14|||n BM n BM n BM q ×=áñ====×u uu u r r u uu u r r uu u u r r .20.已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *ÎN .(1)若423260S a a -+=,求n S ;(2)若对于每个n *ÎN ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 取值范围.【答案】(1)235(N )2n n nS n *-=Î(2)12d <£【解析】【分析】(1)利用等差数列通项公式及前n 项和公式化简条件,求出d ,再求n S;的(2)由等比数列定义列方程,结合一元二次方程有解的条件求d 的范围.【小问1详解】因为42312601S a a a -+==-,,所以()()46211260d d d -+--+-++=,所以230d d -=,又1d >,所以3d =,所以34n a n =-,所以()213522n na a n n n S +-==,【小问2详解】因为n n a c +,14n n a c ++,215n n a c ++成等比数列,所以()()()212415n n n n n n a c a c a c +++=++,()()()2141115n n n nd c nd d c nd d c -+=-+-+-+++,22(1488)0n n c d nd c d +-++=,由已知方程22(1488)0n n c d nd c d +-++=的判别式大于等于0,所以()22148840d nd d D =-+-³,所以()()168812880d nd d nd -+-+³对于任意的n *ÎN 恒成立,所以()()212320n d n d ----³éùéùëûëû对于任意的n *ÎN 恒成立,当1n =时,()()()()21232120n d n d d d ----=++³éùéùëûëû,当2n =时,由()()2214320d d d d ----³,可得2£d 当3n ³时,()()21232(3)(25)0n d n d n n ---->--³éùéùëûëû,又1d >所以12d <£21.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q æöç÷èø在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.【答案】(1)11;(2)5.【解析】【分析】(1)设,sin )Q q q 是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =×+,由柯西不等式即可求出最小值.【小问1详解】设,sin )Q q q 是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ q q q q q æö=+-=--=-+£ø+ç÷è,当且仅当1sin 11q =-时取等号,故||PQ 的最大值是11.【小问2详解】设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx æö++-=ç÷èø,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ì+=-ï+ïïíï=-æöï+ç÷ïèøî,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则||CD ====231555k =×=³=+,当且仅当316k =时取等号,故CD的最小值为5.【点睛】本题主要考查最值计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.22.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)【答案】(1)()f x 的减区间为e 02æöç÷èø,,增区间为e ,2æö+¥ç÷èø.的的(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1eam =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.【小问1详解】()22e 12e 22xf x x x x -¢=-+=,当e 02x <<,()0f x ¢<;当e2x >,()0f x ¢>,故()f x 的减区间为e 02æöç÷èø,,()f x 的增区间为e ,2æö+¥ç÷èø.【小问2详解】(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a ¢-=-,故方程()()()f x b f x x a ¢-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x æö----+=ç÷èø,设()()21e e ln 22g x x a x b x x x æö=----+ç÷èø,则()()22321e 1e 1e22g x x a x x x x x xæö¢=-+-+--+ç÷èø()()31e x x a x=---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +¥上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b æö----+<ç÷èø且()21e e ln 022a a a b a a a æö----+>ç÷èø,整理得到:12e a b <+且()eln 2b a f a a>+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a aæöæö---<+-+-+=--ç÷ç÷èøèø,设()3e ln 22u a a a =--,则()2e-202au a a ¢=<,故()u a 为()e,+¥上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a æö<-<-ç÷èø.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +¥上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b æö----+>ç÷èø且()21e e ln 022a a a b a a a æö----+<ç÷èø,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =Î,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2e a a t t t b +-+++=即为()21ln 02mm t t t b -++++=,记123123e e e,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6e a a t t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --æöæö+-+-+<ç÷ç÷èøèø,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-´-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--´<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k j +=>-,则()()2112ln 01k k k k k j æö¢=-->ç÷èø-,设()12ln u k k k k =--,则()2122210u k k k k k¢=+->-=即()0k j ¢>,故()k j 在()1,+¥上为增函数,故()()k m j j >,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m w ---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m w ---+-+¢=>>++,所以()m w 在()0,1为增函数,故()()10m w w <=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m mm m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
2020年浙江省高考数学试卷及答案
2020年普通高等学校招生全国统一考试(浙江卷)数学参考公式:2)S h +选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P={|14}<<x x,{}23Q x=<<,则P Q=()A. {|12}x x<≤ B. {|23}x x<<C. {|34}x x≤< D. {|14}<<x x【答案】B【解析】根据集合交集定义求解【详解】(1,4)(2,3)(2,3)P Q==,故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.2.已知a∈R,若a–1+(a–2)i(i为虚数单位)是实数,则a=()A. 1B. –1C. 2D. –2 【答案】C【解析】根据复数为实数列式求解即可.【详解】因为(1)(2)a a i-+-为实数,所以202a a-=∴=,,故选:C .点睛】本题考查复数概念,考查基本分析求解能力,属基础题.3.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则z =2x +y 的取值范围是( ) A. (,4]-∞B. [4,)+∞C. [5,)+∞D.(,)-∞+∞【答案】B【解析】首先画出可行域,然后结合目标函数的几何意义确定目标函数在何处能够取得最大值和最小值从而确定目标函数的取值范围即可. 【详解】绘制不等式组表示的平面区域如图所示,目标函数即:1122y x z =-+, 其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大,z 取得最小值时,其几何意义表示直线系在y 轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点A 处取得最小值,联立直线方程:31030x y x y -+=⎧⎨+-=⎩,可得点A 的坐标为:()2,1A ,据此可知目标函数的最小值为:min 2214z =+⨯=,且目标函数没有最大值. 故目标函数的取值范围是[)4,+∞.故选:B【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大. 4.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为( )A.B.C. D.【答案】A【.【解析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误; 且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143C. 3D. 6【答案】A【解析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱, 且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B 【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.7.已知等差数列{a n }的前n 项和S n ,公差d ≠0,11a d≤.记b 1=S 2,b n+1=S n+2–S 2n ,n *∈N ,下列等式不可能成立的是( )A. 2a 4=a 2+a 6B. 2b 4=b 2+b 6C. 2428a a a =D.2428b b b =【答案】D【解析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+.∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-,当1a d =时,2428a a a =,C 正确;对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D【点睛】本题主要考查等差数列的性质应用,属于基础题.8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y=|OP |=( )A. 2B. 5【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =由()22103y x x y ⎧⎪⎨->==⎪⎩,解得2x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == D. 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.9.已知a ,b ∈R 且ab ≠0,若(x –a )(x –b )(x –2a –b )≥0在x ≥0上恒成立,则( ) A. a <0 B. a >0C. b <0D. b >0【答案】C【解析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案. 【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 零点为123,,2x a x b x a b ===+,当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题.10.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足: ①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则yx∈S ; 下列命题正确的是( )A. 若S 有4个元素,则S ∪T 有7个元素B. 若S 有4个元素,则S ∪T 有6个元素C. 若S 有3个元素,则S ∪T 有4个元素的D. 若S 有3个元素,则S ∪T 有5个元素 【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可. 【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项D ;若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即ST 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.非选择题部分(共110分)二、填空题:本大题共7小题,共36分.多空题每小题6分,单空题每小题4分.11.已知数列{a n }满足(1)=2n n n a +,则S 3=________. 【答案】10【解析】根据通项公式可求出数列{}n a 的前三项,即可求出.【详解】因为()12n n n a +=,所以1231,3,6a a a ===.即312313610S a a a =++=++=.故答案为:10.【点睛】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题. 12.设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 +a 3=________.【答案】 (1). 80 (2). 122【解析】利用二项式展开式的通项公式计算即可.【详解】5(12)x +的通项为155(2)2r r r r r r T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=.故答案为:80;122【点晴】本题主要考查利用二项式定理求指定项的系数问题,考查学生的数学运算能力,是一道基础题.13.已知tan 2θ=,则cos2θ=________;πtan()4θ-=______.【答案】 (1).35 (2). 13【解析】利用二倍角余弦公式以及弦化切得cos2θ,根据两角差正切公式得tan()4πθ-【详解】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++,tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53-【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______. 【答案】1【解析】利用题目所给圆锥侧面展开图的条件列方程组,由此求得底面半径.【详解】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题. 15.设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】3- 【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可.【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.【答案】 (1).13(2). 1 【解析】先确定0ξ=对应事件,再求对应概率得结果;第二空,先确定随机变量,再求对应概率,最后根据数学期望公式求结果.【详解】因为0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球,所以1111(0)4433P ξ==+⨯=,随机变量0,1,2ξ=,212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=,111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=.故答案为:1;13.【点睛】本题考查古典概型概率、互斥事件概率加法公式、数学期望,考查基本分析求解能力,属基础题.17.设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】利用复数模的平方等于复数的平方化简条件得1234e e ⋅≥,再根据向量夹角公式求2cos θ函数关系式,根据函数单调性求最值.【详解】12|2|2e e -≤,124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯.故答案为:2829.【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,且2sin b A =. (I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II)13,22⎛⎤⎥ ⎝⎦ 【解析】(I )首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定∠B 的大小;(II )结合(1)的结论将含有三个角的三角函数式化简为只含有∠A 的三角函数式,然后由三角形为锐角三角形确定∠A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin B A A B =∴=△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos sin 222A A A =-++11cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭. 由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 3A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,13sin 232A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是13,22⎛⎤ ⎥ ⎝⎦.【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.19.如图,三棱台DEF —ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I )证明:EF ⊥DB ;(II )求DF 与面DBC 所成角的正弦值.【答案】(I )证明见解析;(II【解析】【分析】(I )作DH AC ⊥交AC 于H ,连接BH ,由题意可知DH ⊥平面ABC ,即有DH BC ⊥,根据勾股定理可证得BC BH ⊥,又//EF BC ,可得DH EF ⊥,BH EF ⊥,即得EF ⊥平面BHD ,即证得EF DB ⊥;(II )由//DF CH ,所以DF 与平面DBC 所成角即为CH 与平面DBC 所成角,作HG BD ⊥于G ,连接CG ,即可知HCG ∠即为所求角,再解三角形即可求出DF 与平面DBC 所成角的正弦值.【详解】(Ⅰ)作DH AC ⊥交AC 于H ,连接BH . ∵平面ADFC ⊥平面ABC ,而平面ADFC平面ABC AC =,DH ⊂平面ADFC ,∴DH ⊥平面ABC ,而BC ⊂平面ABC ,即有DH BC ⊥. ∵45ACB ACD ∠=∠=︒,∴2CD BC CH ==⇒=. 在CBH 中,22222cos 45BH CH BC CH BC BC =+-⋅︒=,即有222BH BC CH +=,∴BH BC ⊥.由棱台的定义可知,//EF BC ,所以DH EF ⊥,BH EF ⊥,而BH DH H =,∴EF ⊥平面BHD ,而BD ⊂平面BHD ,∴EF DB ⊥.(Ⅱ)因为//DF CH ,所以DF 与平面DBC 所成角即为与CH 平面DBC 所成角. 作HG BD ⊥于G ,连接CG ,由(1)可知,BC ⊥平面BHD , 因为所以平面BCD ⊥平面BHD ,而平面BCD平面BHD BD =,HG ⊂平面BHD ,∴HG ⊥平面BCD .即CH 在平面DBC 内的射影为CG ,HCG ∠即为所求角.在Rt HGC △中,设BC a =,则CH =,BH DH HG BD ⋅===,∴sin HG HCG CH ∠===. 故DF 与平面DBC【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.20.已知数列{a n },{b n },{c n }中,1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与a n 的通项公式;(Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d+++<+. 【答案】(I )1142,.23n n q a -+==;(II )证明见解析.【解析】(I )根据1236b b b +=,求得q ,进而求得数列{}n c 的通项公式,利用累加法求得数列{}n a 的通项公式.(II )利用累乘法求得数列{}n c 的表达式,结合裂项求和法证得不等式成立.【详解】(I )依题意21231,,b b q b q ===,而1236b b b +=,即216q q +=,由于0q >,所以解得12q =,所以112n n b -=. 所以2112n n b ++=,故11112412n n n n n c c c -++=⋅=⋅,所以数列{}n c 是首项为1,公比为4的等比数列,所以14n n c -=.所以114n n n n a a c -+==-(*2,n n N ≥∈).所以12142144.3n n n a a --+=+++⋅⋅⋅+=(II )依题意设()111n b n d dn d =+-=+-,由于12n nn n c b c b ++=, 所以111n n n n c b c b --+=()*2,n n N ≥∈, 故13211221n n n n n c c c c c c c c c c ---=⋅⋅⋅⋅⋅1232111143n n n n n n b b b b b c b b b b b ---+-=⋅⋅⋅⋅⋅ 121111111111n n n n n n b b d b b d b b d b b +++⎛⎫⎛⎫+⎛⎫==-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以121223*********n nn c c c d b b b b b b +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 11111n d b +⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭.由于10,1d b >=,所以10n b +>,所以1111111n d b d +⎛⎫⎛⎫+-<+⎪ ⎪⎝⎭⎝⎭. 即1211n c c c d++⋯+<+,*n N ∈. 【点睛】本小题主要考查累加法、累乘法求数列的通项公式,考查裂项求和法,属于中档题.21.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;(Ⅱ)40【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32; (Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm m p λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=, 所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.22.已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明: (ⅰ0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.【答案】(I )证明见解析,(II )(i )证明见解析,(ii )证明见解析. 【解析】(I )先利用导数研究函数单调性,再结合零点存在定理证明结论; (II )(i )先根据零点化简不等式,转化求两个不等式恒成立,构造差函数,利用导数求其单调性,根据单调性确定最值,即可证得不等式;(ii )先根据零点条件转化:0000()()xx f e x f x a =+,再根据12a <≤放缩,转化为证明不等式224(2)(1)(1)a e e a -≥--,最后构造差函数,利用导数进行证明.【详解】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点;(II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10x g x e x x =---≤,因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),xxe x x e x x ∴--≤≤--≤≤(ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--,即只需证明224(2)(1)(1)a e e a -≥--,令22()4(2)(1)(1),(12)a s a e e a a =----<≤,则22()8(2)(1)8(2)(1)0a a s a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x0e (e 1)(1)x f a a ≥--.【点睛】本题考查利用导数研究函数零点、利用导数证明不等式,考查综合分析论证与求解能力描述难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数 学一、 选择题:本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}x -1<x Q x =<<<1,=0x 2P ,那么P Q U =A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)2.椭圆x y +=22194的离心率是 A.133B. 53 C. 23 D. 593.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A.π+12B.π+32C.π3+12 D. π3+324.若x,y 满足约束条件x 0x y 30x 2y 0⎧≥⎪≥=+⎨⎪≤⎩+-,则z 2-x y 的取值范围是A.[0,6]B. [0,4]C.[6, +∞)D.[4, +∞) 5.若函数()2f x =++x ax b在区间[0,1]上的最大值是M,最小值是m,则M-mA. 与a 有关,且与b 有关B. 与a 有关,但与b 无关C. 与a 无关,且与b 无关D. 与a 无关,但与b 有关6.已知等差数列{}n a 的公差为d,前n 项和为n S ,则“d>0”是465"+2"S S S >的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件7.函数y (x)y (x)f f ==,的导函数的图像如图所示,则函数y (x)f =的图像可能是8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r = ,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3< I 1<I 2D . I 2<I 1<I 3非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。
祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6= 。
12.已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = 。
13.已知多项式()31x +()2x +2=5432112345x a x a x a x a x a +++++,则4a =________________,5a =________.14.已知△ABC ,AB =AC =4,BC =2.?点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是___________,cos ∠BDC =__________.15.已知向量a,b 满足1,2==a b ,则+-a +b a b 的最小值是 ,最大值是 。
16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 17.已知∈a R ,函数()4=+-+f x x a a x在区间[1,4]上的最大值是5,则a 的取值范围是三、解答题:本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)已知函数()()22sin cos 23sin cos =--∈f x x x x x x R(I )求23π⎛⎫⎪⎝⎭f 的值 (II )求()f x 的最小正周期及单调递增区间.19. (本题满分15分)如图,已知四棱锥P-ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC=AD=2DC=2CB,E 为PD 的中点. (I )证明:CE ∥平面PAB ;(II )求直线CE 与平面PBC 所成角的正弦值20. (本题满分15分)已知函数()(1-2-1e 2-⎛⎫=≥ ⎪⎝⎭x f x x x x(I )求()f x 的导函数(II )求()f x 在区间1,+2⎡⎫∞⎪⎢⎣⎭上的取值范围 21. (本题满分15分)如图,已知抛物线2=x y .点A 1139-,,,2424B⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,抛物线上的点P (x,y )13-<<22⎛⎫⎪⎝⎭x ,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围; (II )求PA PQ g 的最大值22. (本题满分15分)已知数列{}n x 满足:()()*111=1,ln 1++=++∈n n n x x x x n N 证明:当*∈n N 时(I )10<<+n n x x ; (II )112-2++≤n n n nx x x x ;(III) 1-21122-≤≤n n n x2017年普通高等学校招生全国统一考试(浙江卷)数学参考答案一、选择题:本题考查基本知识和基本运算。
每小题4分,满分40分。
二、填空题:本题考查基本知识和基本运算。
多空题每题6分,单空题每题4分,满分36分。
11. 332,2 14.1510,2415. 4,25 17.9-,2⎛⎤∞ ⎥⎝⎦三、解答题:本大题共5小题,共74分。
18.本题主要考查三角函数的性质及其变换等基础知识,同时考查运算求解能力。
满分14分。
(I )由2321sin,cos 3232ππ==-, 22231312332222f π⎛⎫⎛⎫⎛⎫⎛⎫=---⨯⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得223f π⎛⎫= ⎪⎝⎭(II )由22cos 2cos sin =-x x x 与sin 22sin cos =x x x 得()2cos 23sin 2sin 26f π⎛⎫=--+⎪⎝⎭x x x =-x 所以()f x 的最小正周期是π 由正弦函数的性质得 3+22+2,262πππππ≤+≤∈k x k k Z 解得2++,63ππππ≤≤∈k x k k Z 所以()f x 的单调递增区间是2+,+63ππππ⎡⎤∈⎢⎥⎣⎦k k k Z19.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。
满分15分。
(Ⅰ)如图,设P A中点为F,连结EF,FB.因为E,F分别为PD,P A中点,所以EF∥AD且,又因为BC∥AD,,所以EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面P AB.(Ⅱ)分别取BC,AD的中点为M,N.连结PN交EF于点Q,连结MQ.因为E,F,N分别是PD,P A,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△P AD为等腰直角三角形得PN⊥AD.由DC⊥AD,N是AD的中点得BN⊥所以AD⊥平面PBN,由BC∥AD得BC⊥平面PBN,那么,平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连结MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角. 设CD=1.在△PCD中,由PC=2,CD=1,PD=得CE=,在△PBN中,由PN=BN=1,PB=得QH=,在Rt△MQH中,QH=,MQ=,所以sin∠QMH=,所以,直线CE与平面PBC所成角的正弦值是.20.本题主要考查函数的最大(小)值,导数的运算及其应用,同时考查分析问题和解决问题的能力。
满分15分。
(Ⅰ)因为所以=.(Ⅱ)由解得或.因为x () 1 ()()- 0 + 0 -f(x)↘0 ↗↘又,所以f (x )在区间[)上的取值范围是.21. 本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力。
满分15分。
(Ⅰ)设直线AP 的斜率为k ,k =21-14122x x x =-+,因为1322x -<<,所以直线AP 斜率的取值范围是(-1,1)。
(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是22432(1)Qk k xk -++=+因为|P A |=211()2k x ++=21(1)k kx ++|PQ |= 21()Q k x x +-=22(1)1(1)k k k --++,所以|P A |g |PQ |= -(k -1)(k +1)3 令f (k )= -(k -1)(k +1)3, 因为f ’(k )=2(42)(1)k k --+,所以 f (k )在区间(-1,12)上单调递增,(12,1)上单调递减, 因此当k =12时,|P A |g |PQ | 取得最大值271622. 本题主要考查数列的概念、递推关系与单调性等基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力。
满分15分。
(Ⅰ)用数学归纳法证明:nx>0当n =1时,x 1=1>0 假设n =k 时,x k >0,那么n =k +1时,若xk +1≤0,则110In(1)0kk k x xx ++<=++≤,矛盾,故1k x +>0。
因此0()n x n N *〉∈所以111ln(1)n n n n x x x x +++=++〉 因此10()n n x x n N *+〈〈∈(Ⅱ)由111ln(1)n n n n x x x x +++=++〉得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0, 因此 2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥112(N )2n n n n x x x x n *++-≤∈ (Ⅲ)因为1111ln(1)n n n n n x x x x x ++++=++≤+所以112n n x -≥得 1122n n n n x x x x ++≥- 111112()022n n x x +-≥-〉 12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅-= 故212n n x -≤1211(N )22n n n x n *--≤≤∈。