初二分式练习题及答案(完整资料).doc
(word版)初二数学《分式》练习题及答案

1.分式练习题一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):以下运算正确的选项是()10÷x5=x2-4·x=x-33·x2=x6D.(2x-2)-3=-8x62.一件工作,甲独做a小时完成,乙独做b小时完成,那么甲、乙两人合作完成需要()小时.A.11B.1 C.a b ab3.化简a b等于()1ababD.abb a bA. a2b2B.(ab)2C.a2b2D.(ab)2 a2b2a22a2b2a2b2.假设分式x24的值为零,那么x的值是()x2x2或-22x5y.不改变分式2x的值,把分子、分母中各项系数化为整数,结果是()y3A.2x15yB.4x5yC.6x15yD.12x15y4x2x4x2y4x6yy3y.分式:①a2,②a b,③4a,④中,最简分式有()a23a2b212(ab)x2个个个.计算xxx4x的结果是()2xA.-B.122.假设关于x的方程x ac有解,那么必须满足条件()bA.a≠b,c≠dB.a≠b,c≠-d≠-b,c≠d≠-b,c≠-d假设关于x的方程ax=3x-5有负数解,那么a的取值范围是() A.a<3 B.a>3 ≥3≤310.解分式方程236x1x1x2,分以下四步,其中,错误的一步是()1A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每题4分,共20分)11.把以下有理式中是分式的代号填在横线上.(1)-3x ;(2) x;(3)2x2y 7xy 2;(4)- 1x ;(5)5 ;(6)x21;(7)-m 21;(8)3m2y38y3 112.当a时,分式a 1有意义.2a 3假设x=2-1,那么x+x -1=__________.某农场原方案用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原方案要多播种_________公顷.115. 计算(1)21 5(2004)的结果是_________.216.u=s1s2(u≠0),那么t=___________.117. 当m=______时,方程2 会产生增根.x 3x 318.用科学记数法表示毫克=________吨.当x 时,分式3x 的值为负数.2x20.计算(x+y)·x2y 22=____________.yx三、计算题:(每分,共12分)题636x5xy2x4y221.22.x2.x1xx x xyxyx44y 2四、解方程:(6分)23.1212。
(完整word版)初二数学分式习题(附答案)

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a ba ba bA B a b a b a b a ba ba ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=g 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---g g =_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x= ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--g222132(2)(1).441x x x x x x x --+÷+-+-g2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=g 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b ++---g g 的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+g g g 解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--g g g 解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----g .当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--g . 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--g =12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.初中数学分式方程同步练习题一、选择题(每小题3分,共30分)1.下列式子是分式的是( )A .2xB .x 2C .πxD .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2= C .()0,≠=a ma na m n D .am a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222y xy x y x +-- 4.化简2293mm m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c b a +的值是( )A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
(完整版)八年级下册数学分式练习题+答案

初中数学81八年级数学下册分式单元测试题一、精心选一选(每小题3分,共24分)1.计算223)3(a a ÷-的结果是()(A )49a -(B )46a(C )39a (D )49a2.下列算式结果是-3的是()(A )1)3(--(B )0)3(-(C ))3(--(D )|3|--4.下列算式中,你认为正确的是( ) A .1-=---a b a b a bB 。
11=⨯÷ba ab C .D .b a b a b a b a +=--•+1)(12225.计算⎪⎪⎭⎫⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅24382342y x y x y x 的结果是()(A )x3-(B )x3(C )x12-(D )x126.如果x >y >0,那么xyx y -++11的值是()(A )0 (B )正数(C )负数(D )不能确定7.如果m 为整数,那么使分式13++m m 的值为整数的m 的值有()(A )2个(B )3个(C )4个(D )5个8.已知122432+--=--+x B x A x x x ,其中A 、B 为常数,则4A -B 的值为()(A )7 (B )9 (C )13 (D )5二、细心填一填(每小题3分,共30分)9.计算:-16-=.10.用科学记数法表示:-0.00002004=.11.如果32=b a,那么=+ba a____ .12.计算:a b bb a a -+-=.13.已知31=-a a ,那么221a a +=.14.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f满足关系式:1u +1v =1f. 若f =6厘米,v =8厘米,则物距u =厘米.15.若54145=----xx x 有增根,则增根为___________.16、若2)63(2)3(----x x 有意义,那么x 的取值范围是 。
17、某工厂的锅炉房储存了c 天用的煤m 吨,要使储存的煤比预定多d 用天,每天应节约煤 吨 18.若1)1(1=-+x x ,则x = .三、耐心做一做(本题共6小题,共46分)19.(本题满分4分)化简:)3()126()2(2432x x x x ÷-+-.20.(本题满分4分) 计算:|1|2004125.02)21(032-++⨯---21.计算题(共18分) 1、)6()43(8232y x zy xx -⋅-⋅ 2.212293m m ---3.(-3ab -1)34.4xy 2z ÷(-2x -2yz -1)5.112---a a a 6.22428a a a -+-÷(a 2-4)·2442a a a -+-. 22.已知(a+11a -)(311a +-1)÷31aa -,其中a=99,求原式的值.(6分) 24.(本题满分5分)某商场销售某种商品,第一个月将此商品的进价加价20%作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价加价10%作为销售价,第二个月的销售量比第一个增加了100件,并且商场第二个月比第一个月多获利2000元,问此商品进价是多少元?商场第二个月共销售多少件? 25.(本题满分4分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?附加题:国家对居民住宅建设明确规定:窗户面积必须小于卧室内地面面积,而且按采光标准,窗户面积必须与卧室内地面面积之比应该在15%左右,而且这个比值越大,采光条件越好,如果同时增加相等的窗户面积和地面面积,那么采光条件变好了还是变差了,请你运用数学知识这个回答问题。
(完整版)初二数学《分式》练习题及答案.doc

分式练习题一、选择题 (共 8 题,每题有四个选项,其中只有一项符合题意。
每题3 分,共 24 分 ):1. 下列运算正确的是 ( )A.x 10÷ x 5=x 2B.x-4· x=x -3 C.x3· x 2 =x 6 D.(2x -2 ) -3=-8x62. 一件工作 , 甲独做 a 小时完成 , 乙独做 b 小时完成 , 则甲、乙两人合作完成需要 ( )小时 .A.11 B. 1 C. a b ab 3. 化简a b 等于( )1aba b D.a ba b a bA.a 2b 2 B.(a b) 2 C.a 2b 2D.( a b)2a 2b 2a 2b 2a 2b 2a 2b 24. 若分式x 2 4的值为零 , 则 x 的值是 ( )x 2x 2A.2 或 -2B.2C.-2D.42x 5 y5. 不改变分式2 x 2 的值 , 把分子、分母中各项系数化为整数 ,结果是()y 3A.2 x15 yB.4 x5 y C.6x 15 y D. 12x 15 y4x y2 x3 y4 x 2 y 4 x 6 y6. 分式 : ①a2 , ② ab , ③ 4a , ④ 1 中, 最简分式有 ( )a 23a 2b 2 12( a b) x 2A.1 个B.2个C.3 个D.4个7. 计算x x x x4x 的结果是 ( )2 2 2 xA. -1 B.1 C.-1D.12x 2x8. 若关于 x 的方程xac有解 , 则必须满足条件 ( )b x dA. a ≠ b ,c ≠ dB. a ≠b , c ≠ -dC.a ≠ -b , c≠d C.a ≠-b , c≠-d9. 若关于 x 的方程 ax=3x-5 有负数解 , 则 a 的取值范围是 ( )A.a<3B.a>3C.a≥ 3D.a≤ 310. 解分式方程2 3 6x 1 x 1 x 2, 分以下四步 , 其中 , 错误的一步是 ( )1A. 方程两边分式的最简公分母是 (x-1)(x+1)B. 方程两边都乘以 (x-1)(x+1), 得整式方程 2(x-1)+3(x+1)=6C. 解这个整式方程 , 得 x=1D. 原方程的解为 x=1二、填空题 : ( 每小题 4 分, 共 20分)11. 把下列有理式中是分式的代号填在横线上.(1) - 3x ;(2) x ;(3) 2 x 2 y 7xy 2;(4) - 1x ;(5)5 ; (6) x 21 ;(7) - m2 1 ; (8) 3m 2 .y38y 3x 1 0.512. 当 a时,分式a1有意义.2a313. 若 x= 2 -1, 则 x+x -1 =__________.14. 某农场原计划用 m 天完成 A 公顷的播种任务 , 如果要提前 a 天结束 , 那么平均每天比原计划要多播种 _________公顷 .115. 计算 ( 1)21 5 (2004) 0 的结果是 _________.216. 已知 u=s 1 s 2(u ≠ 0), 则 t=___________.t1xm17. 当 m=______时 , 方程2 会产生增根 .x 3 x 318. 用科学记数法表示 :12.5 毫克 =________吨 .19. 当 x 时,分式3 x的值为负数.2 x20. 计算 (x+y) ·x 2 y 2x 2 y 2=____________.y x三、计算题 : ( 每小题 6 分, 共 12分)36x 5xy 2x 4 yx 221.;22.yx 2 .x 1 x x2xx y x y x 4 4 y 2四、解方程 :(6 分 )23.1 2 12 。
初二分式考试题及答案

初二分式考试题及答案一、选择题(每题3分,共30分)1. 下列分式中,分母为零的分式是()A. \frac{2}{x-1}B. \frac{3}{x+2}C. \frac{4}{0}D.\frac{5}{x}2. 计算分式 \frac{1}{x} + \frac{1}{y} 的结果为()A. \frac{y+x}{xy}B. \frac{x+y}{x}C. \frac{x+y}{xy}D.\frac{y-x}{xy}3. 若分式 \frac{2}{x} = \frac{3}{y},则x与y的关系是()A. x = \frac{2}{3}yB. x = 3yC. y = \frac{2}{3}xD. y = 3x4. 将分式 \frac{a+b}{c+d} 化简为最简形式,正确的做法是()A. 直接约分B. 先通分再约分C. 先约分再通分D. 不能约分5. 已知 \frac{1}{x} + \frac{1}{y} = \frac{1}{2},求\frac{2x+2y}{x+y} 的值是()A. 2B. 4C. 6D. 86. 计算分式 \frac{3x-2}{2x+1} \cdot \frac{2x-1}{3x+2} 的结果为()A. \frac{1}{2}B. \frac{1}{3}C. \frac{1}{4}D. \frac{1}{5}7. 将分式 \frac{a^2-1}{a^2-2a+1} 化简,正确的结果为()A. \frac{a+1}{a-1}B. \frac{a-1}{a+1}C. \frac{a+1}{a}D. \frac{a-1}{a}8. 已知 \frac{2}{x} + \frac{3}{y} = 5,求 \frac{x+y}{xy} 的值是()A. \frac{1}{5}B. \frac{1}{10}C. \frac{1}{15}D. \frac{1}{20}9. 计算分式 \frac{1}{x-1} - \frac{1}{x+1} 的结果为()A. \frac{2}{x^2-1}B. \frac{2}{x^2+1}C. \frac{2x}{x^2-1}D.\frac{2x}{x^2+1}10. 将分式 \frac{x^2-1}{x^2-4} 化简,正确的结果为()A. \frac{x+1}{x-2}B. \frac{x-1}{x-2}C. \frac{x+1}{x+2}D.\frac{x-1}{x+2}二、填空题(每题4分,共20分)1. 计算 \frac{2x}{3} \div \frac{x}{2} 的结果为\frac{4x}{3} 。
八年级数学分式试卷【含答案】

八年级数学分式试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个选项是分式的定义?A. 分子为0的表达式B. 分子和分母都是整式的表达式C. 分子和分母都是多项式的表达式D. 分子和分母都是单项式的表达式2. 分式$\frac{3x}{x+1}$的分母是什么?A. $3x$B. $x+1$C. $x$D. $3$3. 下列哪个分式是最简分式?A. $\frac{4}{6}$B. $\frac{6}{8}$C. $\frac{8}{10}$D. $\frac{10}{12}$4. 分式$\frac{x+2}{x-3}$的分子是什么?A. $x+2$B. $x-3$C. $x^2-9$D. $x^2+6x+9$5. 下列哪个分式等于1?A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{2}{2}$D. $\frac{3}{3}$二、判断题(每题1分,共5分)1. 分式的分子和分母都是整式。
()2. 分式的值随x的增大而增大。
()3. 分式的值随x的减小而减小。
()4. 分式的值可以等于0。
()5. 分式的值可以等于1。
()三、填空题(每题1分,共5分)1. 分式$\frac{x+1}{x-1}$的分子是______,分母是______。
2. 当x=2时,分式$\frac{x+3}{x-1}$的值为______。
3. 当x=3时,分式$\frac{x-1}{x+2}$的值为______。
4. 分式$\frac{2x+4}{x+2}$可以化简为______。
5. 当x=0时,分式$\frac{x^2+1}{x+1}$的值为______。
四、简答题(每题2分,共10分)1. 请简述分式的定义。
2. 请简述分式的最简形式。
3. 请简述分式的值随x的增大而变化的规律。
4. 请简述分式的值随x的减小而变化的规律。
5. 请简述分式的值可以等于0的条件。
五、应用题(每题2分,共10分)1. 已知分式$\frac{x+1}{x-1}$,当x=2时,求分式的值。
初二分式练习题及答案

初二分式练习题及答案分式是初中数学中重要的概念之一,也是比较复杂的内容。
为了帮助同学们更好地理解分式,以下是一些初二分式练习题及答案。
希望能够帮助大家提高分式的理解和运用能力。
一、选择题1. 下列词语中,含有分式的是()。
A. 直线B. 三角形C. 加法D. 分数2. 分子为2,分母为3的分式是()。
A. 2B. 3C. 2/3D. 3/23. 下列分式中,与2/3相等的是()。
A. 4/6B. 5/3C. 3/2D. 7/94. 下列分式中,与1相等的是()。
A. 2/2B. 3/2C. 4/4D. 5/35. 约分时,分子与分母同时除以一个相同的数叫做()。
A. 加法B. 减法C. 乘法D. 约分二、填空题1. 将3/4约分为最简分式,其结果为______。
2. 将6/9约分为最简分式,其结果为______。
3. 分式4/5和6/10的分母的最小公倍数是______。
4. 将5/8和2/3相加的结果为______。
5. 将3/4和2/5相减的结果为______。
三、计算题1. 计算:2/3 + 4/5 = ______。
2. 计算:3/4 - 1/2 = ______。
3. 计算:1/2 × 2/3 = ______。
4. 计算:3/4 ÷ 2/5 = ______。
5. 计算:2/5 + 3/8 - 1/10 = ______。
四、解答题1. 小明有12块巧克力,他想平分给3个朋友,请问每个朋友能得到多少块巧克力?2. 小红的书架上有40本书,其中的1/4是数学书,剩下的是其他科目的书,请问其他科目的书有多少本?3. 某次数学考试,小明答对了6/10题,小红答对了2/5题。
请问谁答对了更多的题目?解答题答案:1. 每个朋友可以得到 12 ÷ 3 = 4 块巧克力。
2. 数学书的数量是 40 × 1/4 = 10 本,其他科目的书有 40 - 10 = 30 本。
初二数学分式习题(附答案)

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y --的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.初中数学分式方程同步练习题一、选择题(每小题3分,共30分)1.下列式子是分式的是( )A .2xB .x 2C .πxD .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .abb a b 2= C .()0,≠=a ma na m n D .a m a n m n ++= 3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222y xy x y x +-- 4.化简2293m m m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3 5.若把分式xy y x +中的x 和y 都扩大2倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c b a +的值是( )A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x x C .x x +=-306030100 D .306030100+=-x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
(完整)初二数学分式习题(附答案).doc

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是()1x11 ( x 1) x 1A.xB.xxC.1 x2 x 1D.1 [ 1( x 1) 1] 1 10 xx322.如果分式 | x | 5 的值为 0,那么 x 的值是()x 25xA . 0B . 5C .- 5D .± 53.把分式 2x2 y中的 x , y 都扩大 2 倍,则分式的值()x yA .不变B .扩大 2 倍C .扩大 4 倍D .缩小 2 倍4.下列分式中,最简分式有()a 3 x y m 2 n 2 m 1 a 2 2ab b 23x 2,x2y 2 , m2n 2,m21 ,a 2 2ab b 2A .2 个B .3 个C .4 个D .5 个 5.分式方程114的解是()3x3 x 2x 9A . x=± 2B . x=2C . x= -2D .无解6.若 2x+y=0 ,则 x 2xy y 2)2xy x 2的值为(A .-1B. 3C .1D .无法确定55xk7.关于 x 的方程2化为整式方程后, 会产生一个解使得原分式方程的最简公分母为 0,则 k 的值为()3xx 3A . 3B . 0C .± 3D .无法确定8.使分式 x2等于 0 的 x 值为()x 24A . 2B .- 2C .± 2D .不存在9.下列各式中正确的是()a b a ba b a bA.babB.b a ba a ab a ba b a bC.babD.bb aa a10.下列计算结果正确的是( )A. b g a1 B.ab (a 2 ab)12a 2 b 2 2abaa 2C.mn nD .( 3xy ) 29xyxy xx m5a5a 2二、填空题1.若分式| y | 5的值等于 0,则 y= __________ .5y2.在比例式 9:5=4: 3x 中, x=_________________ .b 1 a 1 b 1 a1=_________________ .3.计算 :ga gabb2的值为正数. 4.当 x> __________ 时,分式1 11 3x=_______________ .5.计算 :x 11 x6.当分式x2 与分式 x23x2的值相等时, x 须满足 _______________ . x 1 x 2 1117.已知 x+ x =3 ,则 x 2+ x 2 = ________ .8.已知分式2x 1_时,分式没有意义; 当 x= _______ 时,分式的值为 0;当 x= -2 时,分式的值为 _______.x :当 x=29.当 a=____________ 时,关于 x 的方程2ax3 = 5的解是 x=1 .a x 410.一辆汽车往返于相距 akm 的甲、乙两地,去时每小时行mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是_____________ . 三、解答题 1.计算题 :a 242 a 2 4a 4 (1)a 22a 8 ( a4)ga 2;x 2 1x 23x 2 (2)g.2 4x 4x x12.化简求值.(1)( 1+1)÷( 1- 1 ),其中 x= - 1;x 1 x 1 2(2)2 1 x ( x 23 ) ,其中 x= 1. x 2 xx 2 23.解方程 :( 1)10 5 =2 ; ( 2) 23x 3 .2x 1 1 2xx 1 x 1 x 2 14.课堂上,李老师给大家出了这样一道题:当x=3, 5- 2 2 ,7+ 3 时,求代数式 x22x 12x 2的值.小明x 2 1 x1一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗? ?请你写出具体的解题过程.5.对于试题: “先化简,再求值:x 3 1 ,其中 x=2.”小亮写出了如下解答过程:x 2 1 1 x∵ x 31 x 3 1①x 2 1 1 x (x 1)( x 1) x 1x 3x 1②( x 1)(x 1) ( x 1)( x1)=x - 3-( x+1) =2x - 2,③ ∴当 x=2 时,原式 =2× 2- 2=2.④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号) ;(2)从②到③是否正确:不正确 ;若不正确,错误的原因是 把分母去掉了;(3)请你写出正确的解答过程.6.小亮在购物中心用 12.5 元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5 元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14 元,买的饼干盒数比第一次买的盒数多2, ?5问他第一次在购物中心买了几盒饼干?答案一、选择题1.下列各式中,不是分式方程的是(D )1x111) x 1A.xB. ( xxxC.1 x2 x 1 D.1 [ 1( x 1) 1] 1 10 xx3 22.如果分式 | x |5的值为 0,那么 x 的值是( B )x 2 5xA . 0B . 5C .- 5D .± 53.把分式 2x2 y中的 x , y 都扩大 2 倍,则分式的值( A )x yA .不变B .扩大 2 倍C .扩大 4 倍D .缩小 2 倍4.下列分式中,最简分式有(C )a 3 x y m 2 n 2 m 1 a 2 2ab b 23x 2,x2y2,m 2 n 2 ,m 21 ,a 2 2ab b 2A .2 个B .3 个C .4 个D .5 个5.分式方程1 1x 2 4 的解是( B )3 x3x 9A . x=± 2B . x=2C . x= -2D .无解6.若 2x+y=0 ,则x 2xy y 2 的值为( B )2xy x 2A .-1B. 3C .1D .无法确定55xk7.关于 x 的方程2化为整式方程后, 会产生一个解使得原分式方程的最简公分母为0,则 k 的值为( A )3xx3A . 3B . 0C .± 3D .无法确定8.使分式 x2等于 0 的 x 值为( D )x 2 4A . 2B .- 2C .± 2D .不存在9.下列各式中正确的是(C )a b a ba b a bA.ba bB.b a ba a ab a ba b a bC.ba bD.bb aa a10.下列计算结果正确的是( B )A. b g a1 B.a b (a 2 ab)1 2a2 b 2 2abaa 2C.mn n D .(3xy) 2 9xy xy xx m5a 5a 2二、填空题1.若分式| y | 5的值等于 0,则 y= - 5 .5y2.在比例式 9: 5=4 : 3x 中, x=20.273.b 1g ab 1 b 1g a 1 的值是 2( a b) .aa bab4.当 x>1 时,分式 12 的值为正数. 13 12 3x=.5.1 x 1 x 21 x6.当分式x2 与分式 x 23x2的值相等时, x 须满足 x ≠± 1 .x1x 217.已知 x+ 1 =3 ,则 x 2+1 = 7 .x x 28.已知分式 2 x1,当 x= 2 时,分式没有意义; 当 x=-1时,分式的值为 0;当 x=- 2 时,分式的值为3 .x 2249.当 a= - 17 时,关于 x 的方程2ax3 = 5的解是 x=1 .3a x 410.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行 mkm , ?返回时每小时行 nkm ,则往返一次所用的时间是(a a)h . m n三、解答题1.计算题.a 2 4( a 2a 2 4a 4(1) 22a8 4)ga 2 ; a解: 原式a 2 4g 1 ( a 2) 21.ga 4( a 2)(a 4) a 24 a 2x 2 1x 2 3x 2(2)2(xg.4x 4 1)x 1 x解: 原式 ( x 1)(x 1)g 1 g (x 1)(x 2)x 1 .( x 2)2x 1 x 1x 22.化简求值.(1)( 1+1 )÷( 1- 1 1 ),其中 x=- 1;x 1 x2 解:原式 =x1 1 x 1 1 x g x 1 x .x 1 x 1x 1 x2 x 2当 x= -1时,原式 =1.25(2)x1 x ( x23 ) ,其中 x= 1.2 2 xx 2 2解:原式 =( x 1) ( x2)( x 2) 31 g x2 1 .( x 2)( x 1)x 2x 2 x 2 1x 2 1当 x=1时,原式 =4 .233.解方程.(1)10 5=2 ;2x 1 1 2x解: x= 7 .4(2)x 2 3x 3 .1 x 1x 2 1解:用( x+1)( x - 1)同时乘以方程的两边得,2( x+1)- 3( x - 1)=x+3 .解得 x=1.经检验, x=1 是增根. 所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3, 5- 2 2 ,7+ 3 时,求代数式 x22x 12x 2的值.小明x 2 1 x1一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗??请你写出具体的解题过程.解:原式 =(x 1)2g x1 = 1 .( x 1)(x 1) 2( x 1) 2由于化简后的代数中不含字母x ,故不论 x 取任何值,所求的代数式的值始终不变.所以当 x=3, 5- 2 2 ,7+ 3 时,代数式的值都是1 .x 3 125.对于试题: “先化简,再求值:,其中 x=2.”小亮写出了如下解答过程:x 2 1 1 x∵ x 31 x 3 1①x 2 1 1 x (x 1)( x 1) x 1x 3x 1②( x 1)(x 1) ( x 1)( x 1)=x - 3-( x+1) =2x - 2, ③ ∴当 x=2 时,原式 =2× 2- 2=2.④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号) ;(2)从②到③是否正确:不正确 ;若不正确,错误的原因是 把分母去掉了;(3)请你写出正确的解答过程.解:正确的应是:x 3 1x 3 x 1 2x 2 1 1 x=( x 1)(x 1)x 1( x 1)(x 1)当 x=2 时,原式 =2 .36.小亮在购物中心用 12.5 元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5 元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14 元,买的饼干盒数比第一次买的盒数多2, ?5问他第一次在购物中心买了几盒饼干?7 解:设他第一次在购物中心买了x 盒,则他在一分利超市买了x 盒.512.5 14由题意得:=0.5x7 x5解得x=5.经检验, x=5 是原方程的根.答:他第一次在购物中心买了5 盒饼干.初中数学分式方程同步练习题一、选择题(每小题 3 分,共 30 分) 1.下列式子是分式的是()x2xxyA .B .C .D .22x2.下列各式计算正确的是()A . a a 1B .bb2C .nna, a 0D .nn a bb 1aabmmamm a3.下列各分式中,最简分式是()3 x ym 2n 2C .a 2b 2D .x 2 y 2 A .B .a 2b ab 22xy y 27 x ym nx 2 m 2 3m )4.化简m 2 的结果是(9m B. mm D.mA.m 3C.33 mm 3m5.若把分式 xy中的 x 和 y 都扩大 2 倍,那么分式的值()xyA .扩大 2 倍B .不变C .缩小 2倍D .缩小 4 倍6.若分式方程1 3 a x有增根,则 a 的值是()x 2 axA . 1B . 0C .— 1D .— 2ab ca b7.已知2 34,则 c的值是( )475A .5B.4C.1D. 48.一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行100 千米所用时间,与以最大航速逆流航行 60 千米所用时间相等,江水的流速为多少?设江水的流速为x 千米 /时,则可列方程()100 60100 60A .30 xB .x 30x 30x 30 100 60100 60C .30 xD .x3030 xx 309.某学校学生进行急行军训练,预计行60 千米的路程在下午 5 时到达,后来由于把速度加快20% ,结果于下午 4 时到达,求原计划行军的速度。
初二数学分式试题及答案

初二数学分式试题及答案一、选择题(每题3分,共30分)1. 下列分式中,分母不能为0的是()。
A. \frac{1}{x-1}B. \frac{1}{x+1}C. \frac{1}{x}D.\frac{1}{x^2+1}答案:D2. 计算 \frac{1}{x-1} + \frac{1}{x+1} 的结果是()。
A. \frac{2}{x^2-1}B. \frac{2}{x^2+1}C. \frac{2x}{x^2-1}D. \frac{2x}{x^2+1}答案:C3. 如果 \frac{a}{b} = \frac{c}{d},那么 ad = ()。
A. bcB. bdC. acD. cd答案:A4. 下列分式中,最简分式是()。
A. \frac{2x}{3x}B. \frac{x^2-1}{x-1}C. \frac{x^2+2x+1}{x+1}D. \frac{x^2-4}{x+2}答案:D5. 计算 \frac{1}{x-2} - \frac{1}{x+2} 的结果是()。
A. \frac{x+2}{x^2-4}B. \frac{x-2}{x^2-4}C. \frac{-4}{x^2-4}D. \frac{4}{x^2-4}答案:C6. 如果 \frac{a}{b} = \frac{c}{d} = \frac{e}{f},那么\frac{a+c}{b+d} = ()。
A. \frac{e}{f}B. \frac{e+f}{f+d}C. \frac{e+f}{f+b}D.\frac{a+c}{b+d}答案:A7. 下列分式中,可以约分的是()。
A. \frac{2x^2}{4x}B. \frac{3x^2-3}{3x-3}C. \frac{x^2-4}{x+2}D. \frac{x^2+2x+1}{x+1}答案:B8. 计算 \frac{1}{x-1} \cdot \frac{1}{x+1} 的结果是()。
初二数学分式方程练习试题(含答案)

分式方程专项练习题一.选择题(每小题3分,30分)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( )A.2,1B.1,2C.1,1D.-1,-19.如果,0,1≠≠=b ba x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题(每小题3分,共30分)11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式xx ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分)21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?23.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14. 212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20. ()240024008120%x x-=+; 三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32- 经检验,x=32-是原方程的根. 22.6天,23.解;5=x。
八年级分式测试题及答案

八年级分式测试题及答案一、选择题(每题3分,共15分)1. 下列分式中,分母为单项式的是()A. \(\frac{2}{x+y}\)B. \(\frac{2}{xy}\)C. \(\frac{2}{x^2+y^2}\)D. \(\frac{2}{x^2-y^2}\)答案:C2. 计算 \(\frac{a}{b} \div \frac{c}{d}\) 的结果是()A. \(\frac{ad}{bc}\)B. \(\frac{bc}{ad}\)C. \(\frac{bd}{ac}\)D. \(\frac{ac}{bd}\)答案:A3. 如果 \(\frac{a}{b} = \frac{c}{d}\),那么\(\frac{a+c}{b+d}\) 等于()A. \(\frac{ac}{bd}\)B. \(\frac{ad}{bc}\)C. \(\frac{ac+bd}{bd}\)D. \(\frac{ad+bc}{bd}\)答案:D4. 下列分式中,最简分式是()A. \(\frac{2x^2}{4x}\)B. \(\frac{3x^2-6x}{x^2-4}\)C. \(\frac{x^2-4}{x-2}\)D. \(\frac{2x^2-4x}{2x}\)答案:C5. 将分式 \(\frac{3}{x-2}+\frac{2}{x+2}\) 化为最简形式,结果是()A. \(\frac{5x}{x^2-4}\)B. \(\frac{x+5}{x^2-4}\)C. \(\frac{5x+4}{x^2-4}\)D. \(\frac{x+5}{x^2-4}\)答案:B二、填空题(每题3分,共15分)1. 将分式 \(\frac{3x^2-6x}{2x-4}\) 约分后得到的结果为\(\frac{3x}{2}\)。
2. 将分式 \(\frac{a^2-4}{a-2}\) 进行因式分解后得到\(\frac{(a+2)(a-2)}{a-2}\)。
初二分式练习题及答案

分式练习题1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+(4)x y x y x xy x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111x x x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。
(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++ 的值。
(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。
(4)已知0132=+-a a ,求142+a a 的值。
4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求c b b a -+-11的值。
5、解下列分式方程:(1)xx x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒 按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售 价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本, 并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批 发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按 定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两 次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若 赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此文档下载后即可编辑分式练习题1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+(4)x yx y x xy x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111x x x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。
(2)当()0130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++ 的值。
(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。
(4)已知0132=+-a a ,求142+a a 的值。
4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求cb b a -+-11的值。
5、解下列分式方程:(1)xx x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x xx x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x xx m x x,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若 赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。
小明提出把房间的窗户和地面都增加相同的面积a ,以改善采光条件。
他这样做能达到目的吗?通过这段对话,请你求出该地驻军原来每天加固的米数.12、阅读下列材料:∵11111323⎛⎫=- ⎪⨯⎝⎭,111135235⎛⎫=- ⎪⨯⎝⎭,111157257⎛⎫=- ⎪⨯⎝⎭,……1111171921719⎛⎫=- ⎪⨯⎝⎭, ∴11111335571719++++⨯⨯⨯⨯L L =11111111111(1)()()()2323525721719-+-+-++-L=11111111(1)2335571719-+-+-++-L =119(1)21919-=. 解答下列问题: (1)在和式111133557+++⨯⨯⨯L L 中,第6项为______,第n 项是__________.(2)上述求和的想法是通过逆用________法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以_______,从而达到求和的目的. (3)受此启发,请你解下面的方程:1113(3)(3)(6)(6)(9)218x x x x x x x ++=++++++. 答案1、分析:①判断分式有无意义,必须对原分式进行讨论而不能讨论化简后的分式;②在分式B A 中,若B =0,则分式BA无意义;若B ≠0,则分式B A 有意义;③分式BA的值为零的条件是A =0且B ≠0,两者缺一不可。
答案:(1)x ≠2且x ≠-1;(2)x =12、分析:(1)题是分式的乘除混合运算,应先把除法化为乘法,再进行约分,有乘方的要先算乘方,若分式的分子、分母是多项式,应先把多项式分解因式;(2)题把()2+-x 当作整体进行计算较为简便;(3)题是分式的混合运算,须按运算顺序进行,结果要化为最简分式或整式。
对于特殊题型,可根据题目特点,选择适当的方法,使问题简化。
(4)题可以将y x --看作一个整体()y x +-,然后用分配律进行计算;(5)题可采用逐步通分的方法,即先算xx ++-1111,用其结果再与212x +相加,依次类推。
答案:(1)21-a ;(2)24-x ;(3)12---x x (4)y x x -2;(5)818x- 3、分析:分式的化简求值,应先分别把条件及所求式子化简,再把化简后的条件代入化简后的式子求值。
略解:(1)原式=22x- ∵211222-=-x x ∴21222-=-x x ∴21212-=-x ∴222-=-x∴原式=2-(2)∵()1130sin 400=--=x ,360tan 0==y ∴原式=1331312+=--=--y x y x 分析:分式的化简求值,适当运用整体代换及因式分解可使问题简化。
略解:(3)原式=xy2-∵02322=-+y xy x ∴()()023=+-y x y x ∴y x 32=或y x -= 当y x 32=时,原式=-3;当y x -=时,原式=2(4)∵0132=+-a a ,a ≠0 ∴31=+aa∴142+a a =221a a +=212-⎪⎭⎫ ⎝⎛+a a =232-=74、解:由题设有()()()⎪⎩⎪⎨⎧=-+-+-≠--0432023222c b a c b ,可解得a =2,3-=b ,c =-2∴c b b a -+-11=321321-++=3232++-=4 5、分析:(1)题用化整法;(2)(3)题用换元法;分别设112++=x x y ,xx y 1+=,解后勿忘检验。
(4)似乎应先去分母,但去分母会使方程两边次数太高,仔细观察可发现x x x x 12122-=-,所以应设xx y 122-=,用换元法解。
答案:(1)1-=x (2=x 舍去); (2)1x =0,2x =1,21733+=x ,21734-=x (3)211=x ,22=x(4)2611+=x ,2612-=x ,213=x ,14-=x 6、分析:此题不宜去分母,可设x 1=A ,y 1-=B 得:⎪⎪⎩⎪⎪⎨⎧-==+9231AB B A ,用根与系数的关系可解出A 、B ,再求x 、y ,解出后仍需要检验。
答案:⎪⎩⎪⎨⎧==32311y x ,⎪⎩⎪⎨⎧-=-=23322y x7、略解:存在。
用化整法把原方程化为最简的一元二次方程后,有两种情况可使方程无解:(1)△<0;(2)若此方程的根为增根0、1时。
所以m <47或m =2。
8、解:设每盒粽子的进价为x 元,由题意得20%x ×50-(x2400-50)×5=350 化简得x 2-10x -1200=0解方程得x 1=40,x 2=-30(不合题意舍去) 经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去.9、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+=解得:5x = 经检验5x =是原方程的解 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元) 所以两次共赚钱48040520+=(元)10、解:设原来每天加固x 米,根据题意,得926004800600=-+xx . 去分母,得 1200+4200=18x (或18x =5400) 解得 300x =. 检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.11、分析:小明要想达到目的,就要比较改善采光条件前后窗户的面积与地面面积的比值的大小,改善采光条件前窗户的面积与地面面积的比值为,改善采光条件后窗户的面积与地面面积的比值为。
问题就转化为比较与的大小,比较两个分式的大小,我们可以运用以下结论:若,则;若,则;若,则。
此题就转化为分式的加减运算问题。
解:因为 所以 即所以小明能达到目的。
12、(1)11,1113(21)(21)n n ⨯-+.(2)分式减法,对消 (3)解析:将分式方程变形为111111333366218x x x x x x ⎛⎫-+-+= ⎪+++++⎝⎭ 整理得11992(9)x x x -=++,方程两边都乘以2x (x +9),得2(x +9)-2x =9x ,解得x =2.经检验,x =2是原分式方程的根.点评:此方程若用常规方法来解,显然很难, 这种先拆分分式化简后再解分式方程的方法不失是一种技巧.。