小波工具箱常用函数

合集下载

常用小波函数及Matlab常用指令

常用小波函数及Matlab常用指令
xd=wdencmp('gbl',x,'db3',2,thr,sorh,keepapp)
THR=wbmpen(C,L,SIGMA,ALPHA)使用penalization方法为降噪返回全局门槛THR.
STDC=wnoisest(C,L,S)返回[C,L]在尺度S上的细节系数的标准差估计
[THR,NKEEP]=wdcbm(C,L,ALPHA,M)返回各尺度上的相应门槛,存放于THR向量中,降噪一般将ALPHA设为3
y=upcoef('O',x,'wname',N) 用于一维小波分析,计算向量x向上N步的重构小波系数,N为正整数。如 果O=a,对低频系数进行重构;如果O=d,对高频系数进行重构。
[thr,sorh,keepapp]=ddencmp('den','wv',x)产生信号全局默认阈值,然后利用wdencmp函数进行消除噪 声的处理,thr = sqrt(2*log(n)) * s
THR=thselect(X,TPTR)使用由TPTR指定的算法计算与X相适应的门槛
D=detcoef(c,l,N) 提取N尺度的高频系数。
[nc,nl,ca]=upwlev(c,l,'wname')对小波分解结构[c,l]进行单尺度重构,返回上一尺度的分解结构并提 取最后一尺度的低频分量。
x=wrcoef('type',c,l,'wname',N)对一维信号的分解结构[c,l]用指定的小波函数进行重构,当'type=a' 时对信号的低频部分进行重构,此时N可以为0.当'type=d'时,对信号 的高频部分进行重构,此时N为正整数。

db5小波基函数

db5小波基函数

db5小波基函数DB5小波基函数是一种离散小波变换中常用的小波基函数之一。

它是由Daubechies提出的,也被称为Daubechies-5小波基函数。

DB5小波基函数具有紧支集、对称性和正交性等特点,在信号处理领域有着广泛的应用。

1. DB5小波基函数的定义DB5小波基函数是由一个低通滤波器和一个高通滤波器组成的,其中低通滤波器用于提取信号中的低频部分,高通滤波器用于提取信号中的高频部分。

DB5小波基函数可以通过以下公式表示:h0 = (1+sqrt(10)+sqrt(5-sqrt(10))+sqrt(10-2*sqrt(10)))/16h1 = (sqrt(10)+3*sqrt(5)+sqrt(2*sqrt(10))+sqrt(sqrt(10)-2))/16 h2 = (-1-sqrt(10)+sqrt(5-sqrt(10))-sqrt(10-2*sqrt(10)))/16h3 = (-sqrt(10)+3*sqrt(5)-sqrt(sqrt(10)-2)-sqrt(sqrt(10)+2))/16 h4 = (1+3*sqrt(sqrt(10)-2)-3*sqrt(sqrt(10)+2)-3*sqrt(sqrt(sqrt(10)-2))-6*sqrt(sqrt(sqrt(10)+2))))/16g0 = h4g1 = -h3g2 = h2g3 = -h1g4 = h0其中,h0、h1、h2、h3、h4是低通滤波器的系数,g0、g1、g2、g3、g4是高通滤波器的系数。

2. DB5小波基函数的性质DB5小波基函数具有以下性质:- 紧支集:DB5小波基函数在时域上具有紧支集,即只在有限的时间范围内才有非零值。

- 对称性:DB5小波基函数是对称的,即它关于垂直轴对称。

- 正交性:DB5小波基函数是正交的,即低通滤波器和高通滤波器之间是正交关系。

3. DB5小波基函数的应用DB5小波基函数在信号处理领域有着广泛的应用,包括图像压缩、信号去噪、特征提取等。

Matlab中的小波分析工具箱

Matlab中的小波分析工具箱

Family
Short name
Meyer
meyr
Orthogonal Biorthogonal
yes yes no possible but without FWT possible
Compact support DWT CWT
Support width
Effective support Regularity
多小波的多分辨分析
( x)生成r重多分辨分析 V j },j Z , 如果{V j }满足下列性质: { (1) ( 2) (3) ( 4) (5) V1 V0 V1 closL2 ( V j ) L2
jZ
V
jZ
j
{0}
f ( x) V j f (2 x) V j 1 {l , j ,k : 1 l r , k Z }是V j的Riesz基。
wnoislop.mat ……
具有二阶可微跳变的信号
叠加了白噪声的斜坡信号 ……
sum sin .m at sum sin(t ) sin(3t ) sin(0.3t ) sin(0.03t ) freqbrk.m at 1 t 500 sin(0.03t ) freqbrk(t ) sin(0.3t ) 501 t 1000
二维信号的多层小波分解:
[A,L]=wavedec2(X,N,’wname’) [A,L]=wavedec2(X,N,H,G) 其中:A :各层分量, L:各层分量长度 N:分解层数 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器
其他的二维函数:

对变换信号的伪彩色编码:wcodemat 反变换:idwt2,idwtper2, 重构: upwlev2,waverec2,wrcoef2,源自线调频小波变换:

小波时频(尺度)图的绘制原理与实现

小波时频(尺度)图的绘制原理与实现

-、绘制原理1.需要用到的小波工具箱中的三个函数COEFS = cwt(S,SCALES,'wname')说明:该函数能实现连续小波变换,其中S为输入信号,SCALES为尺度,wname为小波名称。

FREQ = centfrq('wname')说明:该函数能求出以wname命名的母小波的中心频率。

F = scal2frq(A,'wname',DELTA)说明:该函数能将尺度转换为实际频率,其中A为尺度,wname为小波名称,DELTA为采样周期。

注:这三个函数还有其它格式,具体可参阅matlab的帮助文档。

2.尺度与频率之间的关系设a为尺度,fs为采样频率,Fc为小波中心频率,则a对应的实际频率Fa为Fa=Fc×fs/a (1)显然,为使小波尺度图的频率范围为(0,fs/2),尺度范围应为(2*Fc,inf),其中inf表示为无穷大。

在实际应用中,只需取尺度足够大即可。

3.尺度序列的确定由式(1)可以看出,为使转换后的频率序列是一等差序列,尺度序列必须取为以下形式:c/totalscal,...,c/(totalscal-1),c/4,c/2,c (2)其中,totalscal是对信号进行小波变换时所用尺度序列的长度(通常需要预先设定好),c 为一常数。

下面讲讲c的求法。

根据式(1)容易看出,尺度c/totalscal所对应的实际频率应为fs/2,于是可得c=2×Fc/totalscal (3)将式(3)代入式(2)便得到了所需的尺度序列。

4.时频图的绘制确定了小波基和尺度后,就可以用cwt求小波系数coefs(系数是复数时要取模),然后用scal2frq将尺度序列转换为实际频率序列f,最后结合时间序列t,用imagesc(t,f,abs(coefs))便能画出小波时频图。

注意:直接将尺度序列取为等差序列,例如1:1:64,将只能得到正确的尺度-时间-小波系数图,而无法将其转换为频率-时间-小波系数图。

小波时频(尺度)图的绘制原理与实现

小波时频(尺度)图的绘制原理与实现

应广大版友的需要,下面将介绍小波时频(尺度)图的绘制原理,并举例加以说明。

1、绘制原理需要用到的小波工具箱中的三个函数COEFS = cwt(S,SCALES,'wname')说明:该函数能实现连续小波变换,其中S为输入信号,SCALES为尺度,wname为小波名称。

FREQ = centfrq('wname')说明:该函数能求出以wname命名的母小波的中心频率。

F = scal2frq(A,'wname',DELTA)说明:该函数能将尺度转换为实际频率,其中A为尺度,wname为小波名称,DELTA为采样周期。

注:这三个函数还有其它格式,具体可参阅matlab的帮助文档。

2.尺度与频率之间的关系设a为尺度,fs为采样频率,Fc为小波中心频率,则a对应的实际频率Fa为Fa=Fc×fs/a (1)显然,为使小波尺度图的频率范围为(0,fs/2),尺度范围应为(2*Fc,inf),其中inf表示为无穷大。

在实际应用中,只需取尺度足够大即可。

3.尺度序列的确定由式(1)可以看出,为使转换后的频率序列是一等差序列,尺度序列必须取为以下形式:c/totalscal,...,c/(totalscal-1),c/4,c/2,c (2)其中,totalscal是对信号进行小波变换时所用尺度序列的长度(通常需要预先设定好),c 为一常数。

下面讲讲c的求法。

根据式(1)容易看出,尺度c/totalscal所对应的实际频率应为fs/2,于是可得c=2×Fc/totalscal (3)将式(3)代入式(2)便得到了所需的尺度序列。

4.时频图的绘制确定了小波基和尺度后,就可以用cwt求小波系数coefs(系数是复数时要取模),然后用scal2frq将尺度序列转换为实际频率序列f,最后结合时间序列t,用imagesc(t,f,abs(coefs))便能画出小波时频图。

(完整版)最近想尝试一下小波的用法

(完整版)最近想尝试一下小波的用法

最近想尝试一下小波的用法,就这matlab的帮助尝试了一下它的例子,顺便翻译了一下帮助的内容,发现matlab帮助做的确实不错,浅显易懂!现把翻译的文档写出来吧,想学习的共同学习吧!小波工具箱简介小波工具箱包含了图像化的工具和命令行函数,它可以实现如下功能:l 测试、探索小波和小波包的特性l 测试信号的统计特性和信号的组分l 对一维信号执行连续小波变换l 对一维、二维信号执行离散小波分析和综合l 对一维、二维信号执行小波包分解(参见帮助Using Wavelet Packets)l 对信号或图像进行压缩、去噪另外,工具箱使用户更方便的展示数据。

用户可以做如下选择:l 显示哪个信号l 放大感兴趣的区域l 配色设计来显示小波系数细节工具箱可以方便的导入、导出信息到磁盘或matlab工作空间。

具体详见File Menu Options一维连续小波分析这一部分来测试连续小波分析的特性。

连续小波分析只需要一个小波函数cwt。

在这一部分将学到如下内容:l 加载信号l 对信号执行连续小波变换l 绘制小波系数l 绘制指定尺度的小波系数l 绘制整个尺度小波系数中的最大值l 选择显示方式l 在尺度和伪频率之间切换l 细节放大l 在普通或绝对模式下显示系数l 选择执行小波分析的尺度使用命令行执行连续小波分析这个例子是一个包含噪声的正弦波1. 加载信号4. 选择分析的尺度cwt函数的第二个参数可以设定任意小波分析的尺度,只要这些尺度满足如下要求l 所有尺幅必须为正实数l 尺度的增量必须为正l 最高的尺度不能超过由信号决定的一个最大值如下面的代码可以执行从2开始的偶数尺度计算c = cwt(noissin,2:2:128,'db4','plot');显示结果如下这幅图像很明确的表示出了信号的周期性。

使用图形接口做连续小波分析1. 开启一维连续小波工具,只需输入如下命令wavemenu出现如下小波工具箱主菜单选择Continuous Wavelet 1-D菜单项,出现如下一维信号分析连续小波分析工具2. 加载信号选择菜单File->Load Signal,在Load Signal对话框里选择noissin.mat文件,它在matlab安装目录的toolbox/wavelet/wavedemo文件夹下,点击OK加载信号。

基于MATLAB的小波分析应用(第二版)(周伟)1-4章 (2)

基于MATLAB的小波分析应用(第二版)(周伟)1-4章 (2)

说明 获取在消噪或压缩过程中的默认阈值 去噪的阈值选择 获取一维或二维小波去噪阈值 使用 Birgé-Massart 算法获取一维小波变换的阈值 使用 Birgé-Massart 算法获取二维小波变换的阈值 使用小波进行一维信号的自动消噪 用小波进行消噪或压缩 产生含噪声的小波测试数据 估计一维小波系数的噪声 小波包去噪的阈值选择 用小波包变换进行信号的压缩或去噪 小波包分解系数的阈值处理 一维信号小波系数的阈值处理 二维信号小波系数的阈值处理 软阈值或硬阈值处理 阈值设置管理
说明 尺度对应频率 尺度函数 二维尺度函数 小波管理 小波滤波器组 最大小波分解尺度
第2章 MATLAB小波工具箱简介 3. 小波函数 MATLAB小波工具箱提供的小波变换函数如表2-3所示,它 们主要用于产生一些基本的小波函数及其相应的滤波器。
第2章 MATLAB小波工具箱简介
表2-3 小波变换函数
第2章 MATLAB小波工具箱简介 表2-6 二维离散小波变换函数
函数名 appcoef2 detcoef2
dwt2 dwtmode
idwt2 upcoef2
说明 提取二维小波分解的低频系数 提取二维小波分解的高频系数 单尺度二维离散小波变换 离散小波变换的延拓模式 单尺度二维离散小波逆变换 二维小波分解系数的直接重构
第2章 MATLAB小波工具箱简介
表2-15 树 管 理 函 数
函数名
说明
函数名
说明
allnodes 计算树结点
noleaves 列举非终结点
函数名 laurpoly ls2filt
lsinfo lwt lwt2
lwtcoef lwtcoef2 wave2lp wavenames
说明 构造 Laurent 多项式 将提升方案转化为滤波器组 关于提升方案的信息 一维提升小波变换 二维提升小波变换 一维提升小波变换系数的提取或重构 二维提升小波变换系数的提取或重构 将 Laurent 多项式与小波关联 能够应用于提升小波变换的小波名称

五种常见小波基函数及其matlab实现

五种常见小波基函数及其matlab实现

五种常见小波基函数及其matlab实现Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。

Haar函数的定义如下:1021121(t)-10t t ≤≤≤≤ψ=其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但它也有自己的优点:1. 计算简单。

2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。

()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jHaar 小波的时域和频域波形[phi,g1,xval] = wavefun('haar',20); subplot(2,1,1);plot(xval,g1,'LineWidth',2); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(2,1,2); plot(g3,'LineWidth',2);xlabel('f') title('haar 频域')Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。

除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。

除1=N(Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=11-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。

Matlab中常用小波函数

Matlab中常用小波函数
(5) waverec2 函数
说明:二维信号的多层小波重构
格式:X=waverec2(C,S,'wname')
X=waverec2(C,S,Lo_R,Hi_R)
说明:X=waverec2(C,S,'wname') 由多层二维小波分解的结果 C、S 重构原始信号 X ,'wname' 为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号。
1. 离散傅立叶变换的 Matlab实现
3.2 二维小波变换的 Matlab 实现
二维小波变换的函数别可以实现一维、二维和 N 维 DFT
-------------------------------------------------
函数名 函数功能
---------------------------------------------------
(2) idwt 函数
功能:一维离散小波反变换
格式:X=idwt(cA,cD,'wname')
X=idwt(cA,cD,Lo_R,Hi_R)
X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分
X=idwt(cA,cD,Lo_R,Hi_R,L)
说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
dbwavf Daubechies小波滤波器 dbwavf(W) W='dbN' N=1,2,3,...,50 别可以实现一维、二维和 N DFT

五种常见小波基函数及其ma ab实现

五种常见小波基函数及其ma ab实现

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数具有多样性。

小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。

目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。

常用小波基有Haar 小波、Daubechies(dbN)小波、MexicanHat(mexh)小波、Morlet 小波、Meyer 小波等。

Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。

Haar 函数的定义如下:Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但它也有自己的优点:1. 计算简单。

2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a =的多分辨率系统中,Haar小波构成一组最简单的正交归一的小波族。

()t ψ的傅里叶变换是:Haar 小波的时域和频域波形Daubechies(dbN)小波Daubechies 小波是世界着名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。

除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。

除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令k N k k N k y p C ∑-=+=101-(y),其中C k N k +1-为二项式的系数,则有其中:Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。

2. 在频域)(ωψ在=0ω处有N 阶零点。

3. (t)ψ和它的整数位移正交归一,即⎰=δψψkk)dt -(t (t)。

小波分析常用函数

小波分析常用函数

Allnodes 计算树结点appcoef 提取一维小波变换低频系数appcoef2 提取二维小波分解低频系数bestlevt 计算完整最佳小波包树besttree 计算最佳(优)树biorfill 双正交样条小波滤波器组biorwavf 双正交样条小波滤波器centfrq 求小波中心频率cgauwavf Complex Gaussian小波cmorwavf coiflets小波滤波器cwt 一维连续小波变换dbaux Daubechies小波滤波器计算dbwavf Daubechies小波滤波器dbwavf(W) W='dbN' N=1,2,3,...,50 ddencmp 获取默认值阈值(软或硬)熵标准depo2ind 将深度-位置结点形式转化成索引结点形式detcoef 提取一维小波变换高频系数detcoef2 提取二维小波分解高频系数disp 显示文本或矩阵drawtree 画小波包分解树(GUI)dtree 构造DTREE类dwt 单尺度一维离散小波变换dwt2 单尺度二维离散小波变换dwtmode 离散小波变换拓展模式dyaddown 二元取样dyadup 二元插值entrupd 更新小波包的熵值fbspwavf B样条小波gauswavf Gaussian小波get 获取对象属性值idwt 单尺度一维离散小波逆变换idwt2 单尺度二维离散小波逆变换ind2depo 将索引结点形式转化成深度—位置结点形式intwave 积分小波数isnode 判断结点是否存在函数指含义istnode 判断结点是否是终结点并返回排列值iswt 一维逆SWT(Stationary Wavelet Transform)变换iswt2 二维逆SWT变换leavesmexihat 墨西哥帽小波meyer Meyer小波meyeraux Meyer小波辅助函数morlet Morlet小波nodease 计算上溯结点nodedesc 计算下溯结点(子结点)nodejoin 重组结点nodepar 寻找父结点nodesplt 分割(分解)结点noleavesntnodentreeorthfill 正交小波滤波器组plot 绘制向量或矩阵的图形qmf 镜像二次滤波器rbiowavfread 读取二进制数据readtree 读取小波包分解树scal2frqsetshanwavfswt 一维SWT(Stationary Wavelet Transform)变换swt2 二维SWT变换symauxsymwavf Symlets小波滤波器thselect 信号消噪的阈值选择thodestreedpth 求树的深度treeord 求树结构的叉数函数指令含义upcoef 一维小波分解系数的直接重构upcoef2 二维小波分解系数的直接重构upwlev 单尺度一维小波分解的重构upwlev2 单尺度二维小波分解的重构wavedec 单尺度一维小波分解wavedec2 多尺度二维小波分解wavedemo 小波工具箱函数demowavefun 小波函数和尺度函数wavefun2 二维小波函数和尺度函数wavemenu 小波工具箱函数menu图形界面调用函数wavemngr 小波管理函数waverec 多尺度一维小波重构waverec2 多尺度二维小波重构wbmpenwcodemat 对矩阵进行量化编码wdcbmwdcbm2wden 用小波进行一维信号的消噪或压缩wdencmpwentropy 计算小波包的熵wextendwfilters 小波滤波器wkeep 提取向量或矩阵中的一部分wmaxlev 计算小波分解的最大尺度wnoise 产生含噪声的测试函数数据wnoisest 估计一维小波的系数的标准偏差wp2wtree 从小波包树中提取小波树spbmpenwpcoef 计算小波包系数wpcutree 剪切小波包分解树wpdec 一维小波包的分解wpdec2 二维小波包的分解wpdencmp 用小波包进行信号的消噪或压缩wpfun 小波包函数wpjoinwprcoef 小波包分解系数的重构wprec 一维小波包分解的重构wprec2 二维小波包分解的重构wpsplt 分割(分解)小波包wpthcoef 进行小波包分解系数的阈值处理wptreewpviewcfwrcoef 对一维小波系数进行单支重构wrcoef2 对二维小波系数进行单支重构wrev 向量逆序write 向缓冲区内存写进数据wtbowthcoef 一维信号的小波系数阈值处理wthcoef2 二维信号的小波系数阈值处理wthresh 进行软阈值或硬阈值处理wthrmngr 阈值设置管理wtreemgr 管理树结构。

MATLAB小波函数总结

MATLAB小波函数总结

MATLAB小波函数总结在MATLAB中,小波函数是一种弧形函数,广泛应用于信号处理中的压缩,降噪和特征提取等领域。

小波函数具有局部化特性,能够在时频域上同时分析信号的瞬时特征和频率信息。

本文将总结MATLAB中常用的小波函数及其应用。

一、小波函数的基本概念小波变换是一种时间-频率分析方法,通过将信号与一组基函数进行卷积得到小波系数,从而实现信号的时频分析。

小波函数具有紧致性,能够在时域和频域具有局域性。

MATLAB提供了一系列的小波函数,用于不同的应用场景。

1. Haar小波函数Haar小波函数是最简单的一类小波函数,它是一种基于矩阵变换的正交小波函数。

具体而言,Haar小波函数形式如下:ψ(x)=1(0≤x<1/2)-1(1/2≤x<1)0(其他)Haar小波函数的最大优点是构造简单,仅由两个基本函数构成,且可以有效地表示信号的边缘和跳变。

2. Daubechies小波函数Daubechies小波函数是一类紧支小波函数,能够在时域和频域上实现精确的表示。

MATLAB提供了多个Daubechies小波函数,如db1、db2、db3等,其选择取决于所需的时频分析精度。

3. Symlets小波函数Symlets小波函数是Daubechies小波函数的一种变形,它在保持带通特性的基础上增加了支持系数的数量,提高了时频分析的精度。

MATLAB 提供了多个Symlets小波函数,如sym2、sym3、sym4等。

4. Coiflets小波函数Coiflets小波函数是一种具有对称性和紧支特性的小波函数,可用于信号压缩和降噪等应用。

MATLAB提供了多个Coiflets小波函数,如coif1、coif2、coif3等。

二、小波函数的应用小波函数广泛应用于信号处理中的各个领域,包括信号压缩、降噪、图像处理和模式识别等。

下面将重点介绍小波函数在这些领域的应用。

1.信号压缩小波函数可以通过选择合适的小波基函数和阈值策略来实现信号的压缩。

MATLAB常用工具箱及常用函数

MATLAB常用工具箱及常用函数

常用工具箱MATLAB包括拥有数百个内部函数的主包和三十几种工具包。

工具包又可以分为功能性工具包和学科工具包。

功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能。

学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类。

开放性使MATLAB广受用户欢迎。

除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。

Matlab Main Toolbox——matlab主工具箱Control System Toolbox——控制系统工具箱Communication Toolbox——通讯工具箱Financial Toolbox——财政金融工具箱System Identification Toolbox——系统辨识工具箱FuzzyLogic Toolbox——模糊逻辑工具箱Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱Image Processing Toolbox——图象处理工具箱computer vision systemtoolbox----计算机视觉工具箱LMI Control Toolbox——线性矩阵不等式工具箱Model predictive Control Toolbox——模型预测控制工具箱μ-Analysis and Synthesis Toolbox——μ分析工具箱Neural Network Toolbox——神经网络工具箱Optimization Toolbox——优化工具箱Partial Differential Toolbox——偏微分方程工具箱Robust Control Toolbox——鲁棒控制工具箱Signal Processing Toolbox——信号处理工具箱 Spline Toolbox——样条工具箱Statistics Toolbox——统计工具箱Symbolic Math Toolbox——符号数学工具箱Simulink Toolbox——动态仿真工具箱Wavele Toolbox——小波工具箱DSP systemtoolbox-----DSP处理工具箱常用函数Matlab内部常数[2]eps:浮点相对精度exp:自然对数的底数ei 或j:基本虚数单位inf 或Inf:无限大, 例如1/0nan或NaN:非数值(Not a number),例如0/0 pi:圆周率p(= 3.1415926...)realmax:系统所能表示的最大数值realmin:系统所能表示的最小数值nargin: 函数的输入引数个数nargout: 函数的输出引数个数lasterr:存放最新的错误信息lastwarn:存放最新的警告信息MATLAB常用基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):下取整,即舍去正小数至最近整数ceil(x):上取整,即加入正小数至最近整数rat(x):将实数x化为多项分数展开rats(x):将实数x化为分数表示sign(x):符号函数(Signum function)。

MATLAB小波分析工具箱常用函数

MATLAB小波分析工具箱常用函数

MATLAB小波分析工具箱常用函数1. wfilters 函数:用于生成小波滤波器和尺度函数,可以根据指定的小波和尺度类型生成小波滤波器系数。

2. wavedec 函数:用于将信号进行小波分解,将输入信号分解为多个尺度系数和小波系数。

3. waverec 函数:用于将小波系数和尺度系数进行重构,将小波分解后的系数重构为信号。

4. cwt 函数:用于进行连续小波变换,可以获得信号在不同尺度上的时频信息。

5. icwt 函数:用于进行连续小波反变换,可以将连续小波变换的结果重构为原始信号。

6. cmorlet 函数:用于生成复数 Morlet 小波。

Morlet 小波是一种基于高斯调制正弦波的小波函数。

7. modwt 函数:用于进行无偏快速小波变换,可以获取多个尺度下的小波系数。

8. imodwt 函数:用于进行无偏快速小波反变换,可以将无偏快速小波变换的结果重构为原始信号。

9. wdenoise 函数:用于对信号进行去噪处理,可以去除信号中的噪声。

10. wavethresh 函数:用于对小波系数进行阈值处理,可以实现信号压缩。

11. wenergy 函数:用于计算小波系数的能量,可用于分析小波系数的频谱特性。

12. wscalogram 函数:用于绘制小波系数的时频谱图,可以直观地显示信号的时频信息。

13. wpdec 函数:用于进行小波包分解,可以将输入信号分解为多个尺度系数和小波系数。

14. wprec 函数:用于将小波包系数和尺度系数进行重构,将小波包分解后的系数重构为信号。

15. wptree 函数:用于提取小波包树的信息,可以获得小波包树的结构和节点信息。

这些函数可以实现小波分析中主要的操作和功能。

通过使用这些函数,你可以进行小波分析、信号去噪、信号压缩等应用。

同时,你也可以根据具体的需求使用这些函数进行函数的扩展和自定义。

小波函数及Matlab常用指令

小波函数及Matlab常用指令
小波包分析的优势
小波包分析能够更全面地揭示信号的细节特征,对于非平稳信号的处理效果尤为突出。此 外,小波包分析还可以根据实际需求选择合适的小波基函数,从而更好地满足信号处理的 需求。
小波包分析的应用
小波包分析在信号处理、图像处理、语音识别等领域有着广泛的应用。例如,在信号处理 中,小波包分析可以用于信号去噪、特征提取、故障诊断等;在图像处理中,小波包分析 可以用于图像压缩、图像增强、图像恢复等。
信号的小波重构是将小波分解后的系数重新组合成原始信号的 过程。
02
在Matlab中,可以使用`waverec`函数对小波系数进行重构,该
函数可以根据小波分解的层次和系数重建原始信号。
小波重构的结果可以用于验证小波分解的正确性和完整性,以
03
及评估去噪等处理的效果。
信号的小波去噪
信号的小波去噪是一种利用小波 变换去除信号中噪声的方法。
小波函数及Matlab常用指 令
• 小波函数简介 • Matlab中小波函数的常用指令 • Matlab中信号的小波分析 • Matlab中小波变换的应用实例 • Matlab中小波函数的进阶使用
01
小波函数简介
小波函数的定义
小波函数是一种特殊的函数,其时间频率窗口均有限,具有良好的局部化 特性。
金融数据分类与聚类
利用小波变换的特征提取能力,可以对金融数据进行分类或聚类, 用于市场趋势预测等。
05
Matlab中小波函数的进阶使用
小波包分析
小波包分析
小波包分析是一种更为精细的信号分析方法,它不仅对信号进行频域分析,还对信号进行 时频分析。通过小波包分析,可以更准确地提取信号中的特征信息,为信号处理提供更全 面的数据支持。
THANKS

小波分析-matlab

小波分析-matlab

图像特征提取
特征提取
小波变换可以将图像分解成不同频率的子图像,从而提取出图像在 不同频率下的特征。这些特征可以用于图像分类、识别和比较等应 用。
特征描述
小波变换可以生成一组小波系数,这些系数可以用于描述图像的特 征。通过分析这些系数,可以提取出图像的纹理、边缘和结构等特 征。
应用领域
小波变换在图像特征提取方面的应用广泛,包括医学影像分析、遥感 图像处理、人脸识别和指纹比较等。
05
小波分析的未来发展与展望
小波分析与其他数学方法的结合
小波分析与傅里叶分析的结合
通过小波变换和傅里叶变换的互补性,可以更好地分析信号 的时频特性。
小波分析与分形理论的结合
利用小波分析的多尺度分析能力和分形理论对复杂信号的描 述,可以更好地揭示信号的非线性特征。
小波分析在大数据处理中的应用
高效的数据压缩
高效算法
小波变换具有快速算法,可以 高效地处理大规模数据。
小波变换的应用领域
信号处理
小波变换广泛应用于信号处理领域, 如语音、图像、雷达、地震等信号的 分析和处理。
图像处理
小波变换在图像处理中用于图像压缩、 图像去噪、图像增强等方面。
医学成像
小波变换在医学成像中用于图像重建、 图像去噪、图像分割等方面。
小波变换的压缩效果优于传统的JPEG压缩算法,特别是在处理具有大
量细节和纹理的图像时。
图像增强
图像增强
小波变换可以用于增强图像的细节和边缘信息,提高图像的视觉效果。通过调 整小波系数,可以突出或抑制特定频率的信号,实现图像的锐化、平滑或边缘 检测等效果。
增强效果
小波变换能够有效地增强图像的细节和边缘信息,提高图像的清晰度和对比度。 同时,小波变换还可以用于图像去噪,去除图像中的噪声和干扰。

五种常见小波基函数及其maab实现

五种常见小波基函数及其maab实现

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数具有多样性。

小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。

目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。

常用小波基有Haar 小波、Daubechies(dbN)小波、MexicanHat(mexh)小波、Morlet 小波、Meyer 小波等。

Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。

Haar 函数的定义如下:Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但它也有自己的优点:1. 计算简单。

2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a =的多分辨率系统中,Haar小波构成一组最简单的正交归一的小波族。

()t ψ的傅里叶变换是:Haar 小波的时域和频域波形Daubechies(dbN)小波Daubechies 小波是世界着名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。

除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。

除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令k N k k N k y p C ∑-=+=101-(y),其中C k N k +1-为二项式的系数,则有其中:Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。

2. 在频域)(ωψ在=0ω处有N 阶零点。

3. (t)ψ和它的整数位移正交归一,即⎰=δψψkk)dt -(t (t)。

五种常见小波基函数及其matlab实现

五种常见小波基函数及其matlab实现

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。

小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。

目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。

常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。

Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。

Haar 函数的定义如下:1021121(t)-1t t ≤≤≤≤ψ=⎧⎪⎨⎪⎩其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。

但它也有自己的优点:1. 计算简单。

2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。

()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jHaar 小波的时域和频域波形Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。

小波(t)ψ和尺度函数(t)φ中的支撑区为12-N,(t)ψ的消失矩为N 。

除1=N (Harr小波)外,dbN 不具有对称性(即非线性相位)。

除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=101-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。

常用小波基函数

常用小波基函数

常用小波基函数目前主要通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,并由此选定小波基。

根据不同的标准,小波函数具有不同的类型,标准通常有:1)小波函数和尺度函数的支撑长度。

2)对称性。

在图像处理中对于避免移相是非常有用的。

3)小波函数和尺度函数的消失矩阶数。

4)正则性。

对于信号或图像的重构以获得较好的平滑效果是非常有用的。

可以通过waveinfo函数获得工具箱中小波函数的主要性质。

小波函数和尺度函数可以通过wavefun函数计算,滤波器可以通过wfilters函数产生。

1、haar函数是小波分析中最早用到的一个具有紧支撑的正交小波基函数,同时也是最简单的一个函数。

2、morlet函数的尺度函数不存在,其本身不具有正交性。

3、墨西哥草帽函数在时域和频域有很好的局部化,不具有正交性。

4、Meyer小波的小波函数和尺度函数都是在频域中进行定义的,是具有紧支撑的正交小波。

5、Daubechies小波系,简称dbN,它的db1是haar小波,其他小波没有明确的表达式,dbN函数是紧支撑标准正交小波,它的出现使离散小波分析成为可能。

dbN大多不具有对称性,对于正交小波函数,不对称性是非常明显的。

正则性随着N的增加而增加。

6、Biorthogonal小波系,简称biorNr.Nd。

它主要应用在信号与图像的重构中,通常的用法是采用一个函数进行分解,用另外一个小波函数进行重构,可以解决分解与重构,对称性和重构的精确性成为一对矛盾的问题。

Nr为重构,Nd为分解。

7、Coiflet小波系,简称coifN,是由db构造的一个小波函数,具有比dbN更好的对称性。

从支撑长度的角度看,coifN具有和db3N、sym3N相同的支撑长度,从消失矩的数目来看,具有和db2N、sym2N相同的消失矩数目。

8、Symlets小波系,简称symN,是由db改进的一种函数,是金丝对称的。

scal2frq函数

scal2frq函数

在 MATLAB 中,scal2frq函数主要用于将尺度转换为频率。

这个函数通常与小波分析(Wavelet Analysis)相关,尤其是在连续小波变换(Continuous Wavelet Transform,CWT)中使用。

以下是scal2frq函数的基本语法和参数解释:
参数解释:
▪scale:尺度值,可以是标量或矢量。

尺度与小波函数的宽度相关,较小的尺度对应于较高的频率。

▪wavelet:小波函数,例如'Morlet'、'cmor'等。

▪sampling_period:采样周期,表示信号的采样间隔。

返回值:
▪omega:角频率,单位为弧度。

▪period:小波周期,单位与sampling_period相同。

▪freq:频率,单位为 Hz。

下面是一个简单的示例:
这个示例中,scale表示尺度的范围,wavelet是所选择的小波函数,sampling_period 是信号的采样周期。

scal2frq函数将这些参数作为输入,计算出角频率、小波周期和频率。

请注意,scal2frq函数的具体用法可能会根据 MATLAB 版本和小波分析工具箱的版本而有所不同。

确保查阅相应版本的 MATLAB 文档以获取准确的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.Cwt :一维连续小波变换
格式:coefs=cwt(s,scales,'wavename')
coefs=cwt(s,scales,'wavename','plot')
scales:尺度向量,可以为离散值,表示为[a1,a2,a3……],也可为连续值,表示为[amin:step:amax]
2.dwt:单尺度一维离散小波变换
格式:[ca,cd]=dwt(x,'wavename')
[ca,cd]=dwt(x,lo-d,hi-d)
先利用小波滤波器指令wfilters求取分解用低通滤波器lo-d和高通滤波器hi-d。

[lo-d,hi-d]=wfilters('haar','d');[ca,cd]=dwt(s,lo-d,hi-d)
3.idwt:单尺度一维离散小波逆变换
4.wfilters
格式:[lo-d,hi-d,lo-r,hi-r]=wfilters('wname')
[f1,f2]=wfilters('wname','type')
type=d(分解滤波器)、R(重构滤波器)、l(低通滤波器)、h(高通滤波器)
5.dwtmode 离散小波变换模式
格式:dwtmode
dwtmode('mode')
mode:zdp补零模式,sym对称延拓模式,spd平滑模式
6.wavedec多尺度一维小波分解
格式:[c,l]=wavedec(x,n,'wname')
[c,l]=wavedec(x,n,lo-d,hi-d)
7.appcoef 提取一维小波变换低频系数
格式:A=appcoef(c,l,'wavename',N)
A=appcoef(c,l,lo-d,hi-d,N) N是尺度,可省略例:
loadleleccum;
s=leleccum(1:2000)
subplot(421)
plot(s);
title('原始信号')
[c,l]=wavedec(s,3,'db1');
ca1=appcoef(c,l,'db1',1);
subplot(445)
plot(ca1);
ylabel('ca1');
ca2=appcoef(c,l,'db1',2);
subplot(4,8,17)
plot(ca2);
ylabel('ca2');
8.detcoef 提取一维小波变换高频系数
格式:d=detcoef(c,l,N),N尺度的高频系数
d=detcoef(c,l,) 最后一尺度的高频系数
例:
loadleleccum;
s=leleccum(1:2000)
subplot(421)
plot(s);
title('原始信号')
[c,l]=wavedec(s,3,'db1');
cd1=detcoef(c,l,1);
subplot(445)
plot(cd1);
ylabel('cd1');
cd2=detcoef(c,l,2);
subplot(4,8,17)
plot(cd2);
ylabel('cd2');
9.waverec 多尺度一维小波重构
格式:x=waverec(c,l,'wavename')
x=waverec(c,l,lo-r,hi-r)
x=waverec(waverec(c,l,'wavename'),'wavename') 10.upwlev 单尺度一维小波的重构
格式:[nc,na,ca]=upwlev(c,l,'wname')
[nc,na,ca]=upwlev(c,l,lo-r,hi-r)
返回上一尺度的分解结构并提取最后一尺度的低频分量,等价于[c,l]=wavedec(x,N-1,'wavename')
11.wrcoef 对一维小波系数进行单支重构
格式:x=wrcoef('type',c,l,'wavename',N)
x=wrcoef('type',c,l,'wavename')
x=wrcoef('type',c,l,lo-r,hi-r,N)
x=wrcoef('type',c,l,lo-r,hi-r)
12.upcoef一维系数的直接小波重构
格式:y=wrcoef('o',x,'wavename',N,L)
y=wrcoef('o',x,'wavename',N)
y=wrcoef('o',x,lo-r,hi-r,N,L)
用来计算向量X(信号系数)向上N步的重构小波系数,N为正整数。

O=a低频重构,d高频重构,L是对向量中间长度L进行重构。

13.wpdec 一维小波包分解
格式:T=wpdec(X,N,'wavename',E,P)
14.wprec 一维小波包重构
格式:X=wpdec(T)
15.wpcoef 计算小波系数
格式:X=wpdec(t,n)
X=wpdec(t)
16.wprcoef 小波包分解系数的重构,一维或二维小波包分析函数,每次只
能对一个节点重构。

多个节点可重复调用来实现格式:X=wprdec(t,n)
X=wprdec(t)
17.wpfun 小波包函数
格式:[wpms,x]=wpfun('wname',num,prec)
18.wpsplt 分解小波包
格式:t=wpsplt(t,n)
[t,ca,cd]=wpsplt(t,n)
[t,ca,ch,cv,cd,]=wpsplt(t,n)
19.wpjoin 重新组合小波包
格式:t=wpjoin(t,n)
[t,x]=wpjoin(t,n)
[t,x]=wpjoin(t)
20.wpcutree 剪切小波包分解树
格式:t=wpcutree(t,L) L层对t树剪切
21.besttree 计算最佳树
格式:t=besttree(t)
[T,E]=besttree(t)、[T,E,N]=besttree(t)
22.bestlevt 计算完整最佳小波包树
格式:t=bestlevt(t)、[T,E]=bestlevt(t)
23.wp2wtree 从小波包树中提取小波树
格式:t=wp2wtree(t)。

相关文档
最新文档