轴的强度计算
轴的三种强度计算方法
轴的三种强度计算方法
轴是一种机械零件,用于传递转矩和转速,而轴的强度对于机器的有效运行非常重要。
在工程设计中,有三种主要的轴强度计算方法,分别是静力学法、弹性力学法和塑性力学法。
静力学法是一种最简单和最常用的轴强度计算方法。
它基于平衡原理和力的分析,使用各种力学公式来计算轴的扭转、弯曲和剪切强度。
这种方法通常适用于小型和低速机器,因为它没有考虑材料的弹性和塑性变形。
弹性力学法是一种更准确和精细的轴强度计算方法,它考虑轴材料的弹性模量和截面形状的影响。
这种方法使用梁理论和材料力学原理来计算轴的应力、应变和变形,从而确定轴的强度和变形极限。
这种方法适用于大型和高速机器,因为它考虑了材料的弹性变形。
塑性力学法是一种针对高应力和高变形机器的轴强度计算方法,它考虑了材料的塑性变形和材料失效的可能性。
这种方法使用塑性流动理论和材料失效准则来计算轴的应力、应变和塑性变形,从而确定轴的强度和失效极限。
这种方法适用于高应力和高变形机器,因为它考虑了材料的塑性变形和失效可能性。
综上所述,轴的强度计算方法是一个重要的工程问题,需要根据具体
的机器要求和材料特性来进行选择。
静力学法、弹性力学法和塑性力学法都有其优点和限制,需要根据实际情况进行综合考虑。
轴的强度和刚度计算
轴的强度和刚度计算一、轴的强度计算轴的强度是指在受到外界载荷作用下,轴能够抵抗破坏的能力。
轴的强度计算通常分为以下几个步骤:1.确定轴的应力状态首先需要确定轴在受载过程中的应力状态。
一般情况下,轴受力状态可以分为以下几种情况:拉伸、压缩、弯曲、剪切和扭转。
根据轴的几何形状、受载方式和材料性质,可以确定轴的应力状态。
2.计算轴的受力根据轴所受到的外界载荷,可以计算轴的受力。
在拉伸和压缩情况下,轴的受力可以通过受力公式F=σA来计算,其中F是轴所受到的载荷,σ是轴的应力,A是轴的截面积。
在弯曲情况下,轴的受力可以通过受力公式M=σS来计算,其中M是轴的弯矩,S是轴的截面模数。
在剪切和扭转情况下,轴的受力可以通过受力公式τ=T/(2A)来计算,其中τ是轴所受的剪应力,T是轴的剪矩,A是轴的等效截面面积。
3.计算轴的抗力轴的抗力是指轴抵抗外界载荷作用下破坏的能力。
轴的抗力通常由材料的强度指标来表示,如抗拉强度、抗压强度、抗弯强度、抗剪强度和抗扭强度等。
根据轴的应力状态和材料的强度指标,可以计算轴的抗力。
4.比较轴的受力和抗力最后,需要比较轴的受力和抗力。
如果轴的受力小于轴的抗力,则表明轴具有足够的强度;如果轴的受力大于轴的抗力,则表明轴的强度不足,需要采取相应的加强措施。
二、轴的刚度计算轴的刚度是指轴在受力过程中不发生明显变形的能力。
轴的刚度计算通常分为以下几个步骤:1.确定轴的变形状态首先需要确定轴在受载过程中的变形状态。
轴的变形状态可以分为弹性变形和塑性变形两种情况。
在弹性变形情况下,轴在受载后可以恢复到原始形状;在塑性变形情况下,轴在受载后无法恢复到原始形状。
2.计算轴的变形根据轴所受到的外界载荷和轴的受力分布情况,可以计算轴的变形。
在拉伸和压缩情况下,轴的变形可以通过变形公式δ=FL/(EA)来计算,其中δ是轴的变形,F是轴所受到的载荷,L是轴的长度,E是轴材料的弹性模量,A是轴的截面积。
在弯曲情况下,轴的变形可以通过变形公式δ=ML/(EI)来计算,其中δ是轴的变形,M是轴的弯矩,L是轴的长度,E是轴材料的弹性模量,I是轴的截面二阶矩。
轴的强度计算
对于只传递扭转的圆截9.55 10 6 P 0.2d 3n
[ T ]
设计公式为:d 3 9.55106 3 P C 3 P
0.2[ ] n
n
MPa
mm
计算结果为:最小直径! 考虑键槽对轴有削弱,可按以下方式修正轴径:
轴径d>100mm 轴径d≤100mm
有一个键槽 d 增大3% d 增大5%~7%
有两个键槽 d 增大7% d 增大10%~15%
二、按弯扭合成强度计算
一般转轴强度用这 种方法计算,其步 骤如下:
减速器中齿轮轴的受力为典型的弯扭合成。
A
B CD
潘存云教授研制
L1
L2
L3
在完成单级减速器草图设计后,外载荷与支撑 反力的位置即可确定,从而可进行受力分析。
T A
1)轴的弯矩和扭矩分析 水平面受力及弯矩图→
铅垂面受力及弯矩图→ 水平铅垂弯矩合成图→
L1
L2
Fr
L3
Ft
Fa
F’NV1B
C
D
潘存云教授研制
FNV1 FNH1
ω
FNV2 FNH2
FNH1
F’NV1 FNV1
MH
FNH2
MH
Fr
Ma=Fa Fa
r
MV1
FNV2
MV2 M1 M2
扭矩图→
T
2)轴的强度校核
300
140
80
1000
330
150
90
铸钢
400
500
100
50
30
120
70
40
轴的设计实例
a
举例:计算某减速器输出轴危 d
轴的三种强度计算方法
轴的三种强度计算方法
轴是一种常见的机械零件,它经常用于承受旋转或者转移动力。
轴的强度是保证机械正常运转的关键因素之一。
通常,轴的强度由三个方面决定,包括材料强度、几何形状和外部载荷。
第一种计算轴强度的方法是通过材料强度。
轴的材料决定了它的承载能力和强度。
常见的轴材料包括钢、铝、铜等。
对于每种材料,都有一些标准的强度值,例如屈服强度和抗拉强度等。
根据轴的形状和尺寸,可以计算出它的截面面积和材料的应力。
这样就可以确定轴的材料强度。
第二种计算轴强度的方法是通过几何形状。
轴的几何形状对其强度有很大的影响。
通常,轴的截面形状可以是圆形、方形、六角形等。
不同形状的轴截面面积不同,这也会影响其承载能力。
此外,轴的长度和直径也是影响其强度的重要因素。
为了确定轴的强度,可以利用几何公式和截面积计算出轴的几何参数。
第三种计算轴强度的方法是考虑外部载荷。
轴通常用于承受旋转动力或者传递动力。
外部载荷可能包括转矩、弯曲力和剪切力等。
这些载荷会产生内部应力,从而影响轴的强度和稳定性。
为了计算轴的强度,需要考虑外部载荷和内部应力之间的关系,以及轴的材料强度和几何形状。
利用这些信息,可以计算出轴的最大应力和安全系数等参数,
从而确定轴的强度是否满足要求。
综上所述,计算轴强度的三种方法包括材料强度、几何形状和外部载荷。
这些方法都是非常重要的,可以帮助机械设计师确定轴的强度和稳定性,保证机械设备的正常运转。
机械设计(8.4.1)--轴的强度计算
已知:作用在轴上的转矩T 适用: 1. 传动轴的设计; 2. 弯矩较小的转轴;3. 粗(初)估轴的直8-4 轴的强度计算一、按扭转强度条件轴的强度计算通常是在初步完成轴的结构设计后进行校核计算。
8-4轴的强度计算 一、按扭转强度条件[]23N/mm 2.01095503T T T dn PW T ττ≤⨯==τT ——轴的扭转应力,N/mm ,T ——轴传递的扭矩,N.mmW T ——轴的抗扭截面模量,mm 3;P ——轴传递的功率,kW ;n ——轴的转速,r/min ;[τT ]——许用扭转应力,N/mm ;8-4 轴的强度计算一、按扭转强度条件[]mm2.0109550 3.03.3nP A n P d T =⨯≥τ轴的最小直径设计公式:A 0——由轴材料及承载情况确定的系数,A 0=110~160, 材质好、弯矩较小、无冲击和过载时取小值;反之取大值。
β——空心轴内外径的比值,常取0.5~0.6。
当轴上有键槽时,应适当增大轴径:单键增大3%-5%8-4 轴的强度计算 一、按扭转强度条件实心圆轴[]mm )1( )1(2.0109550 3.403.43nPA n P d T βτβ-=-⨯≥空心圆轴已知:各段轴径,轴所受各力、轴承跨距计算:轴的强度步骤:可先画出轴的弯矩扭矩合成图,然后计算危险截面的最大弯曲应力。
二、按弯扭合成强度计算主要用于计算一般重要,受弯扭复合的轴。
计算精度中等。
[]222N/mm 4b T b ca στσσ≤+=第三强度理论[]b T caT T b WT M W T W M WT d T W T dM W M σστσ≤+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==≈=≈=222332422.01.0122][)(-≤+==b caca WT M W M σασ弯曲应力 对称循环弯曲应力与扭转切应力的循环特征不同所以引入的应力校正系数α扭转应力不变化的转矩脉动变化的转矩频繁正反变化的转矩[][],3.011≈=+-b b σσα[][],6.001≈=-b b σσα[][],111≈=--b b σσα[σ]-1对称循环应力下轴的许用应力[σ]0脉动循环应力下轴的许用应力[σ]+1静应力下轴的许用应力轴的许用弯曲应力,表8-3[]311.0-≥b caM d σ122][)(-≤+==b cacaWT M W M σασ计算弯矩或校核轴径已知:轴的结构和尺寸、轴所受各力、轴承跨距、过渡圆角、表面粗糙度、轴毂配合计算:轴的强度用于重要的轴,计算精度高且复杂三、按疲劳强度计算安全系数8-4 轴的强度计算三、按疲劳强度计算安全系数轴的疲劳强度许用安全系数[S]=1.3-1.5,用于材料均匀;[S]=1.5-1.8,用于材料不够均匀;[S]=1.8-2.5,用于材料均匀性及计算精确度很低,或轴径 d>200mm 。
轴的强度计算.
轴的强度计算一、按扭转强度条件计算适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算;②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936TT T d n P W T ττ≤⨯== Mpa (11-1) 设计公式: 3036][1055.95nP A n P d T =⨯⨯≥τ(mm )⇒轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。
⇒取标准植][T τ——许用扭转剪应力(N/mm 2),表11-3 T ][τ——考虑了弯矩的影响A 0——轴的材料系数,与轴的材料和载荷情况有关。
注意表11-3下面的说明 对于空心轴:340)1(β-≥n P A d (mm )⇒ 6.0~5.01≈=d d β, d 1—空心轴的内径(mm )注意:如轴上有键槽,则d ⇒放大:3~5%1个;7~10%2个⇒取整。
二、按弯扭合成强度条件计算条件:已知支点、距距,M 可求时步骤:如图11-17以斜齿轮轴为例1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a )2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b )3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c )4、作合成弯矩图22V H M M M +=(图11-17d )5、作扭矩图T α(图11-17e )6、作当量弯矩图22)(T M M ca α+=α——为将扭矩折算为等效弯矩的折算系数∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力∴α与扭矩变化情况有关1][][11=--b b σσ ——扭矩对称循环变化 α=6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。
轴的强度计算
例:试设计图示斜齿圆柱齿轮轮减速器的低速袖。已知轴的转速n= 140r/min.传递功率P=5kw。轴上齿轮的参数为:齿数Z=58,法面模 数mn=3mm,分度圆螺旋角β=11°17′ 3 ″齿宽及轮毂宽b=70mm。
解:1)选择轴的材料
减速器功率不大.又无特殊要求, 改选最常用的45号钢,并作正火处
对于受重载,尺寸受限制和重要场合工作的轴,应采用安全系 数法校核。并进行刚度、稳定性等方面的校核计算。
一、按扭转强度计算
已知条件: 传递功率P(KW),转速n(r/min)
由于跨距不知——M不知T
T WT
9.55 106 0.2d 3
p n
[ ]T
二、按弯扭合成强度计算
对于一般钢制轴,第三强度理论
e b2 4 2 [b ]
b
M W
,
T
WT
T 2W
e
( M )2 4( T )2 1
W
2W W
M 2 T 2 [ b ]
对于一般转轴,弯曲应力为对称循环变应力,而切应力的循环特性 往往与弯曲应力不同,所以应对上式中的转矩T乘以一个系数α,以 考虑两者循环特性不同的影响,
三、提高轴的强度及刚度一些措施
减小应力集中 内凹圆角
适当加大截面变化处的过渡圆角半径。或采用:
过渡肩环(隔离环)
减载槽
a)端铣刀加工的键槽
b)盘铣刀加工的键槽
改善轴的受力状况
a. 改变轴上零件的结构,使受载减小。
b.合理安排轴上载荷的传递路线
输入
T1
T2
T1 +T2
输入
T1 T1 +T2
T2
T1 扭矩图
机械设计-轴的强度计算
轴的强度校核
5 小结
轴的强度校核
传动轴的强度计算 轴的强度计算方法 心轴的强度计算
转轴的强度计算 切应力计算 传动轴切应力计算 轴端直径计算
弯曲应力计算 芯轴弯曲应力计算
轴端直径计算
当量弯曲应力计算 转轴的当量弯曲应力计算
轴端直径计算
谢谢观看
d
3
Me 0.1 1
w
另外,需考虑键槽对轴强度的削弱,上式直径应增大4%~7%,单键槽时取较小
值,双键槽时取较大值。
T --轴的切应力 M--作用在轴上的弯矩 WT --轴的抗扭截面系数
σ W --轴的弯曲应力 W --轴的抗弯截面系数
M e--当量弯矩
[σ] W --轴的许用弯曲应力 T--轴传递的转矩
轴的强度校核
1 轴的强度计算方法 2 传动轴切应力计算 3 芯轴弯曲应力计算 4 转轴的当量弯曲应力计算 5 小结
CONTENTS
目 录
轴的强度校核
1 轴的强度计算方法 初步完成轴的结构设计之后进行轴的强度计算,对于不
同受载和应力性质的轴,应采用不同的计算方法。
1、传动轴的强度计算 2、心轴的强度计算 3、转轴的强度计算
轴的强度校核
4 转轴的当量弯曲应力计算
转轴在复合应力作用下危险截面的当量弯曲应力计算
ew
2 w
4
2 T
M W
2
4
T WT
2
w
WT
2W
ew
1 W
M 2 T 2 w
考虑弯曲应力与扭切应力循环特性的差异,将上式中的转矩T乘以应力校正系数α
ew
1 W
M
2
T
2
Me W
轴的强度计算
112-97
注:表中的许用扭转切应力是考虑了弯曲的影响而经过降低之后的取值。
应当指出,当轴截面上开有键槽时,应适当增大轴径以抵抗开键槽对轴强度的削弱影响。
对于d≤100,单键槽时,轴径增大5%-7%,双键槽时,轴径增大10%-15%。
对于d>100,单键槽时,轴径增大3%,双键槽时,轴径增大7%。
表3 抗弯截面系数W和抗扭截面系数WT的计算公式
热处理 毛坯直径/mm 硬度/HBS
热轧或 ≤100 锻后空
冷 >100~250
抗拉强度σB 屈服强度σs 弯曲疲劳极限σ-1 剪切疲劳极限τ-1
Mpa
400~420
225
170
105
375~390
215
许用弯曲应力[σ-1] 40
备注
用于不太重 要及载荷不
大的轴
正火
≤10 170~217
590
从而改善各薄弱环节,有利于提高轴的疲劳强度。 4.4 按静强度条件进行校核
4.1 按扭转强度条件计算(许用切应力计算)
受扭矩T(N·mm)的实心圆轴,其切应力:
.× /
==
≤
.
MPa
写成设计公式,其最小直径(实心圆轴):
式中:
扭转切应力
MPa
T
轴所受的扭矩
N·mm
W
轴抗扭截面系数
mm3
n
轴的转速
r/min
仅限技术交流 2019/10/17
第 1 页,共 4页
轴的强度计算
计算精度适中。 4.3 按疲劳强度条件进行精确计算(安全系数校核计算)
安全系数校核计算也是在轴的结构设计后进行,不仅要定出轴的各段直径,还要定出过渡圆角、轴毂配合、表面粗糙度等细节。它
第三节轴的强度计计算、设计
第三节 轴轴的强度计计算、设计计步骤与与设计实例例一.按抗扭强强度计算小直对于传动轴直径,然后进轴,因只受转进行轴的结构矩,可只按转构设计,并用转矩计算轴的弯扭合成强度的直径;对于度校核。
于转轴,先用用此法估算轴的最 对偿弯实心圆轴扭 对于转轴,也弯矩对轴的强扭转的强度条 τ也可用上式初步强度的影响。
条件为0.2T T W ==步估算轴的直由上式可写二.定,M 截面 式中 T P—— n—— [ τ] d——W T ——d ≥C——由轴的通过9-2式按弯扭组合轴的结构设就可以画出对于一般钢e M W σ=e M =式中,e σ为V 分别为水平面的抗弯截面T——轴传递—轴传递的功—轴的转速(r ——许用扭—轴的最小直—轴的抗弯截=的材料和受载式求出的轴的合强度计算设计完成后,轴出轴的受力简钢制的轴,可e=为当量应力(平面和垂直面面系数(mm 递的工作转矩功率(kW);r/min);扭转切应力;直径,估算时如截面模量。
=载情况所决定表9-4 几的直径d,应按算 轴上零件的位简图,然后就可按第三强度M =MPa);e M 为的弯矩(N·3),W=0.1T 3[]dτ≤ 直径,但必须出计算轴的直,也是轴承受如果该处有一 定的系数,其几种轴用材料按表圆整成标位置也确定下可以进行弯扭理论进行强度1[σ−≤为当量弯矩(mm);T 为;为根3d α据 须把轴的许用直径公式:用扭转切应力 (9-1) 力适当降低,以补受的扭矩,(一个键槽,应(N·mm);将所算的最小小直径增加5%; (9-2) 其值见表9-4.料的[及C ]τ值标准直径,作下来,外加载扭合成强度计度计算。
强度]b b(N·mm);M 为轴传递的转矩据转矩性质而作为转轴的最载荷和支反力计算,其具体度条件为为合成弯矩(矩(N·mm)而定的折合因最小直径。
力作用点也相体步骤如下:应确(N·mm);;W 为轴的危因数。
轴的强度计算
对于一般钢制轴,可用第三强度理论(最大切 应力理论)求出危险截面的当量应力。
按第三强度理论得出的轴的强度条件为:
e
2 b
4 2
[ b ]
弯曲应力:
b
M W
d
M 3/
32
M 0.1d 3
扭切应力:
T T WT 2W
W------抗弯截面系数; WT ----抗扭截面系数;
轴的抗弯和抗扭截面系数
12-2
计算结果为:最小直径! 考虑键槽对轴有削弱,可按以下方式修正轴径:
轴径d>100mm 轴径d≤100mm
有一个键槽 d 增大3% d 增大5%~7%
有两个键槽 d 增大7% d 增大10%~15%
轴的材料
表15-2 常用材料的[τT]值和A0值
Q235-A3, 20 Q275, 35 1Cr18Ni9Ti
80
1000
330
150
90
铸钢
400
500பைடு நூலகம்
100
50
30
120
70
40
折合系数取值:α=
0.3 ----转矩不变; 0.6 ----脉动变化;
1 ----频繁正反转。
设计公式: d 3 Me
mm
0.1[ 1b ]
表15-3 轴的许用弯曲应力
材料
σb
[σ+1b]
[σ0b]
脉400动循环状态下130的
S Sca
S S S S
S
2
S
S
2
S
SS
其中:
SSca----危险截面静强度设计的安全系数;
SS----按屈服强度设计的安全系数; SS=1.2~1.4----高塑性材料的钢轴(σS /σB ≤ 0.6); SS=1.4~1.8----中等塑性材料的钢轴(σS /σB =0.6~0.8);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴的强度计算一、按扭转强度初步设计阶梯轴外伸端直径由实心圆轴扭转强度条件τ=33102.09550⨯=nd P W T ρ≤[τ]式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。
对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。
将上式改写为设计公式d ≥[]33332.0109550nPA n P =⨯τ (16.1)式中,A 是由轴的材料和承载情况确定的常数。
见表16.7;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴径,mm 。
表16.7常用材料的[τ]和A 值轴的材料 Q235,20 35 45 40Cr ,35SiMn ,42SiMn ,38SiMnMo ,20CrMnTi[τ]/MPa12~20 20~30 30~40 40~52 A160~135135~118118~107107~98注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。
2.用Q235、3SiMn 时,取较大的A 值。
3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。
可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。
二、按弯扭组合强度计算轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。
如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。
力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。
分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为lPab M =T =PR m =危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为σ=WMτ=ρW T图16.39危险点应力(如图16.40(b)),由于轴类零件一般都采用塑性材料—钢材,所以应按第三强度理论建立强度条件图16.42σ=()()322221.0d T M WT M WM e αα+=+=≤[]1-b σ (16.2)式中,W 为抗弯截面系数,mm 3,e M 为当量弯矩,N ·mm ,()22T M M e α+=;α为根据转矩性质而定的折合系数,转矩不变时,α=0.3,转矩为脉动循环变化时,α≈0.6,频繁正反转的轴,转矩可视作对称循环变化,则取α=1;[]1-b σ称循环状态下的许用弯曲应力,见表16.8;T 为转矩,单位为N ·mm 。
由于外载荷通常是一空间作用力(如斜齿轮的法向作用力n F ),为简化问题,常把空间力分解为铅垂面V 上的分力和水平面H 上的分力,并在各分力作用平面内求出支点反力,绘制出水平弯矩H M 图、铅垂面弯矩VM 图,再绘制合成弯矩M 图,这里合成弯矩M (N ·mm)的计算式为22V H M M M +=。
材 料σb[σb]1+[σb][σb ]1-MPa碳 素 钢400 130 70 40 500600 170 200 75 95 45 55 70023011065合 金 钢800900 270 300 130 140 75 80 1000330 150 90 铸 钢400 500100 12050 7030 40计算轴的直径d (mm)时,可将式(16.2)改写为d ≥[]311.0-b eM σ (16.3)当轴截面上开有一个键槽时,轴径应增大3%左右;有两个键槽时,轴径应增大7%左右。
三、轴的设计实例轴的设计与轴系设计同步进行,一般先进行轴系的初步设计,继而进行轴的结构设计、强度校核。
例16.4 图16.41所示为输送机传动装置,由电动机1、带传动2、齿轮减速器3、联轴器4、滚筒5等组成,其中齿轮减速器3低速轴的转速n =140 r/min ,传递功率P =5 kW 。
轴上齿轮的参数为:z =58,n m =3mm ,β=11°17′13″,左旋,齿宽b =70mm 。
电动机1的转向如图所示。
试设计该低速轴。
解(1)选择轴的材料,确定许用应力。
普通用途、中小功率减速器,选用45钢,正 火处理。
查表16.1取b σ=600 MPa ,由表16.8得[]1-b σ=55 MPa。
(2) 按扭转强度,初估轴的最小直径。
由表16.7查得A =110,按式(16.1)得d ≥=⨯=331405110n P A 36.2 mm 图16.41输送机传动装置轴伸安装联轴器,考虑补偿轴的可能位移,选用弹性柱销联轴器。
由n 和转矩c T =KT =1.5×9.550×5/140 N ·mm =511554 N ·mm 查G5014—85选用LH3弹性柱销联轴器,标准孔径1d =38 mm ,即轴伸直径1d =38 mm 。
(3) 确定齿轮和轴承的润滑。
计算齿轮圆周速度=⨯⨯⨯⨯⨯=⨯=⨯=///131711cos 100060140583cos 100060100060o n znm dnπβππν=1.3 m/s齿轮采用油浴润滑,轴承采用脂润滑。
(4) 轴系初步设计。
根据轴系结构分析要点,结合后述尺寸确定,按比例绘制轴系结构草图,如图16.42所示。
图16.42轴系结构草图斜齿轮传动有轴向力,采用角接触球轴承。
采用凸缘式轴承盖实现轴系两端单向固定。
半联轴器右端用轴肩定位和固定,左端用轴端挡圈固定,依靠C 型普通平键联接实现周向固定。
齿轮右端由轴环定位固定,左端由套筒固定,用A 型普通平键联接实现周向定。
为防止润滑脂消失,采用挡油板内部密封。
绘图时,结合尺寸的确定,首先画出齿轮轮毂位置,然后考虑齿轮端面到箱体内壁的距离Δ2确定箱体内壁的位置,选择轴承并确定轴承位置。
根据分箱面螺栓联接的布置,设计轴的外伸部分。
(5) 轴的结构设计。
轴的结构设计主要有三项内容:①各轴段径向尺寸的确定;②各轴段轴向长度的确定;③其余尺寸(如键槽、圆角、倒角、退刀槽等)的确定。
① 径向尺寸确定。
从轴段1d =38 mm 开始,逐段选取相邻轴段的直径:如图16.42所示,2d 起定位固定作用,定位轴肩高度m in h 可在(0.07~0.1)d 范围内经验选取,故2d =1d +2h ≥38×(1+2×0.07)=43.32 mm ,该直径处将安装密封毡圈,标准直径应取2d =45mm ;3d 与轴承内径相配合,为便于轴承安装,故取3d =50 mm ,选定7210C ;4d 与齿轮孔径相配合,为了便于装配,按标准尺寸,取4d =53 mm ;d5起定位作用,由h =(0.07~0.1)d =(0.07~0.1)×53 mm =3.71~5.3 mm ,取h =4 mm ,5d =61mm ;6d 与轴承配合,取6d =3d =50 mm。
② 轴向尺寸的确定。
与传动零件(如齿轮、带轮、联轴器等)相配合的轴段长度,一般略小于传动零件的轮毂宽度。
题中锻造齿轮轮毂宽度2B =(1.2~1.5)d4=(1.2~1.5)×53mm =63.6~79.5 mm ,取2B =b =70 mm ,取轴段4L =68mm ;联轴器LH3的J 型轴孔1B =60 mm ,取轴段长1L =58mm 。
取挡油板宽6L 为12mm ,查轴承宽度2L 为20mm ,与轴承相配合的轴段长度6L +7L =32mm。
其他轴段的长度与箱体等设计有关,可由齿轮开始向两侧逐步确定。
一般情况,齿轮端面与箱壁的距离Δ2取10~15 mm ;轴承端面与箱体内壁的距离Δ3与轴承的润滑有关,油润滑时Δ3=3~5 mm ,脂润滑时Δ3=5~10 mm ,本题取Δ3=5 mm ;分箱面宽度与分箱面的联接螺栓的装拆空间有关,对于常用的M 16普通螺栓,分箱面宽l =55~65 mm 。
考虑轴承盖螺钉至联轴器距离Δ1=10~15 mm ,初步取2L =55 mm 。
由图可见3L =2+Δ2+Δ3+20=(2+15+5+20)=42mm 。
轴环宽度5L =8 mm。
两轴承中心间的跨距L =130 mm 。
(6) 轴的强度校核:① 计算齿轮受力 分度圆直径=⨯==///131711cos 583cos o n z m d β177.43 mm 转矩=⨯⨯==140510955095503n P T 341071 N ·mm齿轮切向力384443.17734107122=⨯==d T F t N齿轮径向力NF F o o t r 1427131711cos 20tan 2844cos tan ///===βα齿轮轴向力x F =βtan t F =///131711tan 3844o =767 N② 绘制轴的受力简图 如图16.43(a)所示。
③ 计算支承反力(图16.43(b)及(d)) 水平平面NF d F F r x HI 1237130142765243.177767130652=⨯+⨯=+=NF F F HI r HII 19012371427=-=-= 图16.43轴的强度校核垂直平面N F F F t VII VI 1922238442====④ 绘制弯矩图。
水平平面弯矩图 (图16.43(c))b 截面 -HbM =65HI F =65×1237=80405N ·mm+Hb M =-Hb M -d F x /2=80405-767×177.43/2=12361N ·mm垂直平面弯矩图(图16.43(e))Vb M =65VI F =65×1922=124930N ·mm合成弯矩图(图16.43(f))N M M M V Hb b 148568124930804052222=-=+=-- N M M M Vb Hb b 125540124930123612222=+=+=++⑤ 绘制转矩图(图16.43(g))。
转矩T =341036N ·mm⑥ 绘制当量弯矩图(图16.43(h))。