小学奥数教师版-1-3-1 定义新运算

合集下载

小学奥数-定义新运算

小学奥数-定义新运算

小学奥数-定义新运算小学奥数——定义新运算1.定义运算△为a△b=3×a-2×b。

求4△3,3△4,(17△6)△2,17△(6△2)和5△b=5时的b的值。

2.定义运算※为a※b=a×b-(a+b)。

求5※7,7※5,12※(3※4),(12※3)※4和3※(5※x)=3时的x的值。

3.暂无内容。

4.已知4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。

5.定义运算▽为a▽b=a×b+a-b,求5▽8.6.定义运算△为a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。

求1△100的值和5△b=5时的b的值。

7.定义运算为a b3a4b,求(87) 6.8.定义运算⊖为a⊖b=5×a×b-(a+b),求11⊖12.9.定义运算※为a※b=2×a×b-1/4×b,求8※(4※16)。

10.定义运算□为x□y=(x+y)/4,求a□16=10中a的值。

11.定义运算为a b=a×b/(a+b),求21010的值。

12.定义运算※为P※Q=(P+Q)/2,求4※(6※8)和x※(6※8)=6时的x的值。

13.定义运算⊕为x⊕y=(x+1)/y,求3⊕(2⊕4)的值。

14.已知4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50,求7⊗3的值。

15.定义运算为a b=(a+3)×(b-5),求5(67)的值。

16.定义运算为x y=6x+5y和△为x△y=3xy,求(23)△4的值。

读一读】狼&羊羊和狼在一起时,狼要吃掉羊,所以我们定义了两种运算,用符号△表示羊和狼的运算,用符号☆表示羊与羊战胜狼的运算。

具体规则见上文。

(完整word版)小学三年级奥数讲义定义新运算.doc

(完整word版)小学三年级奥数讲义定义新运算.doc

定新运算一、知要点定新运算是指运用某种特殊符号来表示特定的意,从而解答某些算式的一种运算。

解答定新运算,关是要正确地理解新定的算式含,然后格按照新定的算程序,将数代入,化常的四运算算式行算。

定新运算是一种人的、性的运算形式,它使用的是一些特殊的运算符号,如: * 、△、⊙等,是与四运算中的“+、-、×、÷”不同的。

新定的算式中有括号的,要先算括号里面的。

但它在没有化前,是不适合于各种运算定律的。

二、精精【例 1】假 a*b=(a+b)+(a-b) ,求 13*5 和 13* ( 5*4 )。

【思路航】的新运算被定:a*b 等于 a 和 b 两数之和加上两数之差。

里的“ * ”就代表一种新运算。

在定新运算中同定了要13*5=(13+5)+( 13-5 ) =18+8=26先算小括号里的。

因此,在13*( 5*4 )5*4=(5+4) +(5-4 ) =10中,就要先算小括号里的(5*4 )。

13* ( 5*4 )=13*10=( 13+10)+(13-10 )=26 1:1.将新运算“ *”定: a*b=(a+b) × (a-b). 。

求 27*9 。

2.a*b=a2+2b ,那么求 10*6 和 5* ( 2*8 )。

3. a*b=3a - b× 1/2 ,求( 25*12 ) * ( 10*5 )。

3△(4 △ 6)【例 2】 p、q 是两个数,定: p△q=4× q-(p+q) ÷ 2。

求3△ (4 △ 6) 。

=3△【 4× 6-( 4+6)÷ 2】=3△19【思路航】根据定先算 4△6。

在里“△”是新的运算符号。

=4×19-( 3+19)÷ 2=76-11=652:1. p、 q 是两个数,定p△ q= 4× q-( p+q)÷ 2,求 5△( 6△ 4)。

2. p、 q 是两个数,定p△ q= p2+( p- q)× 2。

小学数学竞赛:定义新运算.教师版解题技巧 培优 易错 难

小学数学竞赛:定义新运算.教师版解题技巧 培优 易错 难
.
【考点】定义新运算之直接运算【难度】3星【题型】计算
【解析】原式
【答案】
【巩固】 表示
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】走美杯,3年级,初赛
【解析】原式
【答案】
【巩固】规定运算“☆”为:若a>b,则a☆b=a+b;若a=b,则a☆b=a-b+1;若a<b,则a☆b=a×b。那么,(2☆3)+(4☆4)+(7☆5)=。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】希望杯,四年级,二试
【解析】19
【答案】
【例 2】“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【答案】
【巩固】设 △ ,那么,5△ ______,(5△2)△ _____.
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
,
【答案】
【巩固】 、 表示数, 表示 ,求3 (6 8)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
【答案】
【巩固】已知a,b是任意自然数,我们规定:a⊕b=a+b-1, ,那么
可知:5*7=(5+3×7)×(5+7)=(5+21)×12=26×12=312
【答案】
【巩固】定义新运算为a△b=(a+1)÷b,求的值。6△(3△4)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】所求算式是两重运算,先计算括号,所得结果再计算。由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7

第1讲-定义新运算(教师版)

第1讲-定义新运算(教师版)

第1讲定义新运算教学目标学会理解新定义的内容;理解新定义内容的基础上能够解决用新定义给出的题目;学会自己总结解题技巧。

知识梳理一、知识概念1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。

它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、◆、■等来表示的一种运算。

(3)新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

2、一般的解题步骤是:一是认真审题,深刻理解新定义的内容;二是排除干扰,按新定义关系去掉新运算符号;三是化新为旧,转化成已有知识做旧运算。

典例分析例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

【解析】根据题目定义的运算要求,直接代入后用四则运算即可。

12*4=12×4-12-4=48-12-4=32例2、假设a ★ b = ( a + b )÷ b 。

求8 ★ 5 。

【解析】该题的新运算被定义为: a ★ b等于两数之和除以后一个数的商。

这里要先算括号里面的和,再算后面的商。

这里a代表数字8,b代表数字5。

8 ★ 5 = (8 + 5)÷ 5 = 2.6例3、如果a◎b=a×b-(a+b)。

求6◎(9◎2)。

【解析】根据定义,要先算括号里面的。

这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。

求6Δ5。

【解析】仔细观察发现“Δ”前面的数字是加数每个数位上的数字,而加数分别是一位数,二位数,三位数,……“Δ”后面的数字是几,就有几个加数。

【小学奥数题库系统】1-3-1定义新运算.学生版(精)

【小学奥数题库系统】1-3-1定义新运算.学生版(精)

【巩固】规定:6 2 ※ =6+66=72 2 1 7 ※5= ※3=2+22+222=246,※4=1+11+111+1111=1234. 【例 16】有一个数学运算符号⊗,使下列算式成立:2⊗4= 8,5⊗3 = 13 , 3 ⊗ 5 = 11 , 9 ⊗ 7 = 25 ,求 7 ⊗ 3 = ? 【巩固】规定 a △ b = a × (a + 2 − (a + 1 − b , 计算:((11 △1 ) = ______. △10 )【例 17】一个数 n 的数字中为奇数的那些数字的和记为 S ( n ,为偶数的那些数字的和记为E ( n ,例如 S (134 =1 + 3 = 4 , E (134 = 4 .; E (1 + E=.模块四、综合型题目【例 18】已知:10 △3=14 , 8△7=2△, 3 4 1 = 1 ,根据这几个算式找规律,如果 4 . 5 △ x =1,那么 x = 8 【例19】如果 a 、 b 、 c 是 3 个整数,则它们满足加法交换律和结合律,即⑴ a + b = b + a ;⑵ (a + b + c =a + (b + c 。

现在规定一种运算"*",它对于整数 a、 b、c 、d 满足:(a, b *(c, d = (a × c + b × d , a × c − b × d 。

例: (4,3 *(7,5 = (4 × 7 + 3 × 5, 4 ×7 − 3 × 5 = (43,13 请你举例说明,"*"运算是否满足交换律、结合律。

1-3-1.定义新运算.题库学生版 page 6 of 9【例 20】用 {a} 表示 a 的小数部分, [a] 表示不超过 a 的最大整数。

例如:记 = = = = {0.3} 0.3, {4.5} 0.5, [0.3] 0; [ 4.5] 4 f ( x = x+2 2x +1 ,请计算的值。

完整word版小学三年级奥数讲义定义新运算

完整word版小学三年级奥数讲义定义新运算

定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四那么运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四那么运算中的“+、-、×、÷〞不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*〔5*4〕。

【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。

这里的“*〞就代表一种新运算。

在定义新运算中同样规定了要13*5=〔13+5〕+〔13-5〕=18+8=26先算小括号里的。

因此,在13*〔5*4〕5*4=〔5+4〕+〔5-4〕=10中,就要先算小括号里的〔5*4〕。

13*〔5*4〕=13*10=〔13+10〕+〔13-10〕=26练习1:将新运算“*〞定义为:a*b=(a+b)×(a-b).。

求27*9。

设a*b=a2+2b,那么求10*6和5*〔2*8〕。

3.设a*b=3a-b×1/2,求〔25*12〕*〔10*5〕。

3△(4△6)【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

=3△【4×6-〔4+6〕÷2】=3△19【思路导航】根据定义先算4△6。

在这里“△〞是新的运算符号。

=4×19-〔3+19〕÷2=76-11=65练习2:1.设p、q是两个数,规定p△q=4×q-〔p+q〕÷2,求5△〔6△4〕。

2.设p、q是两个数,规定p△q=p2+〔p-q〕×2。

求30△〔5△3〕。

小学五年级奥数第一讲--定义新运算及作业

小学五年级奥数第一讲--定义新运算及作业

定义新运算定义新运算是以四则运算为基础的,并以一定的符号来表示的新运算。

我们仔细思考一下,学习过的加、减、乘、除四则运算,就是把相同的原料(数),通过不同的加工(四则运算),得到不同的结果(数值不同)。

运算时应该严格按新运算的定义要求进行计算,不得随意改变运算顺序;有括号的先求括号内的值,再求括号外的值。

在没有确定新运算是否具有交换律、结合律之前,不能运用这些运算定律解题。

下面我们通过例题进一步了解和熟悉“定义新运算”这一数学新内容1、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。

2、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?3、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?4、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○+b=a+b-1,a○×b=a×b-1,那么8○× [(6○+10)○+(5○×3)]等于多少?5、定义运算“○+”=(a+b)÷3,那么(3○+6)○+12与3○+(6○+12)哪一个大?大的比小的大多少?6、a、b是自然数,规定a⊙b= ab-a-b-10,求8⊙8=?7、如果1*2=1+2,2*3=2+3+4,3*4=3+4+5+6,……,请按照此规则计算3*7=?8、规定运算a@b=(a+b)÷2,且3@(x@2)=2,求x=?9、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

10、设m、n是任意自然数,A是常数,定义运算m⊙n=(A×m-n)÷4,并且2⊙3=0.75,试计算(5⊙7)×(2⊙2)÷(3⊙2)。

定义新运算作业1、定义新运算“*”:a*b=3a+4b-2,求(1)10*11;(2)11*10。

小学数学奥赛1-3-1 定义新运算.学生版

小学数学奥赛1-3-1 定义新运算.学生版

定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一 定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等. 如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

6△(3△4) 例题精讲知识点拨教学目标定义新运算【巩固】 设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2) △3=_____.【巩固】 P 、Q 表示数,*P Q 表示2P Q+,求3*(6*8)【巩固】 已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗= .【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。

奥数第三讲 学生 定义新运算1

奥数第三讲 学生 定义新运算1

奥数第三讲定义新运算1定义新运算通常是用特殊的符号表示特定的运算意义。

它的符号不同于课本上明确定义或已经约定的符号,例如“+、-、×、÷、、>、<”等。

表示运算意义的表达式,通常是使用四则运算符号,例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。

正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。

如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。

值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。

一、例题与方法指导例1 对于任意数a,b,定义运算“*”:a*b=a×b-a-b。

求12*4的值。

根据以上的规定,求10△6的值。

3,x>=2,求x的值。

由上面三例看出,定义新运算通常是用某些特殊符号表示特定的运算意义。

新运算使用的符号应避免使用课本上明确定义或已经约定俗成的符号,如+,-,×,÷,<,>等,以防止发生混淆,而表示新运算的运算意义部分,应使用通常的四则运算符号。

如例1中,a*b=a×b-a-b,新运算符号使用“*”,而等号右边新运算的意义则用四则运算来表示。

例6 对于任意自然数,定义:n!=1×2×… ×n。

例如4!=1×2×3×4。

那么1!+2!+3!+…+100!的个位数字是几?例7 如果m,n表示两个数,那么规定:m¤n=4n-(m+n)÷2。

求3¤(4¤6)¤12的值。

定义新运算课堂练习一1、a、b是自然数,规定a※b=(a+b)÷2,求:3※(4※6)的值。

2、对于任意两个自然数a、b,定义一种新运算“*”:a*b=ab+a÷b,求75*5=?,12*4=?3、定义运算符“◎”:a◎b=3a+4b-5,求6◎9=?9◎6=?×b=a+b=a+b-1,a○4、定义两种运算“○+”和“○×”,对于任意两个整数a、b规定:a○×3)]等于多少?×b-1,那么8○× [(6○+10)○+(5○+12)哪一个大?大的+(6○+12与3○5、定义运算“○+”=(a+b)÷3,那么(3○+6)○比小的大多少?6、规定a△b=ab+2a, a▽b=2b-a,求(8△3)▽(9△5)的值。

四年级上册奥数知识点专讲第3课《定义新运算》试题附答案

四年级上册奥数知识点专讲第3课《定义新运算》试题附答案
小学四年级上册数学奥数知识点讲解第3课《定义新运算》试题附答案
答案
四年级奥数上册:第三讲定义新运算习题解答
---------------------赠予---------------------
【幸遇•书屋】
你来,或者不来
我都在这里,等你、盼你
等你婉转而至
盼你邂逅而遇
你想,或者不想
我都在这里,忆你、惜你
忆你来时莞尔
惜你别时依依
你忘,或者不忘
我都在这里,念你、羡你
念你袅娜身姿
羡你悠然书气
人生若只如初见
任你方便时来
随你心性而去
却为何,有人
为一眼而愁肠百转
为一见而不远千里
晨起凭栏眺但见云卷Fra bibliotek舒风月乍起
春寒已淡忘
如今秋凉甚好
几度眼迷离
感谢喧嚣
把你高高卷起
砸向这一处静逸
惊翻了我的万卷
和其中的一字一句
幸遇只因这一次
被你拥抱过,览了
被你默诵过,懂了
被你翻开又合起
被你动了奶酪和心思
不舍你的过往
和过往的你
记挂你的现今
和现今的你
遐想你的将来
和将来的你
难了难了
相思可以这一世
---------------------谢谢喜欢--------------------

小学奥数1-3-1定义新运算.教师版

小学奥数1-3-1定义新运算.教师版

小学奥数1-3-1定义新运算.教师版定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例题精讲模块一、直接运算型【例1】若表示,求的值。

【考点】定义新运算之直接运算【难度】2星【题型】计算【解析】A*B是这样结果这样计算出来:先计算A+3B的结果,再计算A +B的结果,最后两个结果求乘积。

由A*B=(A+3B)×(A+B)可知:5*7=(5+3×7)×(5+7)=(5+21)×12=26×12=312【答案】【巩固】定义新运算为a△b=(a+1)÷b,求的值。

第四讲 六年级奥数——定义新运算(教师版)

第四讲 六年级奥数——定义新运算(教师版)

第四讲六年级奥数——定义新运算(教师版)定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一、知识储备二、例题讲解【例】设a b表示整数,规定⊙的运算为:a⊙b=a÷b×3+5×a-b计算75⊙15。

解题思路:先弄清⊙是怎样的一种运算程序,按规定a⊙b的值是a÷b×3+5×a-b的计算结果,那么利用代换思维,75⊙15说明此时a是75,b是15,带入算式进行解答75⊙15=75÷15×3+5×75-15=15+375-15=3751、对任意整数A B 规定:A ⊙B=9A+3B+1(1)12⊙10 (2)10⊙12139 1272、对任意整数a b 规定:a ⊕b=(a-b )÷2(1)10⊕4 (2)(29⊕1)⊕43 53、对任意b a ,(b 不为0)规定:32+⨯÷=∆b a b a ,若19256=∆a ,求a 。

324、现定义m ■n :2m+n+5。

已知(7■a )■7=64,那么a 的值为多少?75、对于整数a b 规定如下:a ●b=a ×b -a -b +6,已知(2●m )●3=16,求m 。

256、现定义a★b=ab-3。

已知(10★2)★(m★3)=1,m的值为多少?55517、现定义“★”运算为:a★b=ab+a—3,若(2★x)+(x★3)=1,则x的值为多少?568、如果1※2=1+2,2※3=2+3+4,….5※6=5+6+7+8+9+10,那么x※3=54中,x=?179、规定:6※2=6+66=722※3=2+22+222=2461※4=1+11+111+1111=1234则7※5=?8641510、定义某种新运算⊙:S=a⊙b的运算原理,如右侧流程图所示,则5⊙4-3⊙4=?911、定义两种运算⊙和△。

小学奥数模块教程第1章 定义新运算

小学奥数模块教程第1章  定义新运算

第二章 定义新运算一、例题解析1.定义新运算“*”,对于任何数a 和b ,a*b=a b a +;当a=2,b=3时,2*3=232+=2.5 (1)计算1996*1998,1998*1996; (2)计算1997*7*1,1997*(7*1);2.定义一种运算“∧”,对于任何两个正数a 和b ,a ∧b=ba ab+;计算,2∧4∧8∧16∧16,计算,16∧2∧8∧16∧4。

3、有一个数学运算符号“”,使下列算式成立:2 4=8,53=13,35=11,9 7=25,求73=?4.规定a △b=a+(a+1)+(a+2)+…(a+b-1)(a 、b 均为自然数,b>a )如果x △10=65;那么x=?二、巩固练习1、a *b 表示a 的3倍减去b 的1/2 ,例如:1*2=1 ×3-2×21=2; 根据以上的规定,计算: ①10*6 ②7*(2*1)2、有一个数学运算符号“”,使下列算式成立:2132= 63,5497 =4511,6571=426。

求11354的值。

3、定义两种运算“ ”、 ,对于任意两个整数a 、b ,a b= a+b-1,a b=a×b-1。

①计算4[(68)(35)的值;②若x(x4)=30,求x 的值。

4、对于任意的整数x 、y ,定义新运算“△”,x △y =2ymx 6x y(其中m 是一个确定的整数),如果1△2=2,则2△9=?5、x 和y 表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值。

小学奥数题及答案:定义新运算

小学奥数题及答案:定义新运算

小学奥数题及答案:定义新运算小学奥数题及答案:定义新运算定义新运算:(高等难度)规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数.若(A○5+B△3)×(B○5+A△3)=96,且A、B均为大于0的自然数A×B的所有取值有()个。

定义新运算答案:共5种;分类讨论,由于题目中所要求的定义新运算的符号是较大的数与较大的数,则对于A或者B有3类不同的范围,A小于3,A大于等于3,小于5,A大于等于5。

对于B也有类似,两者合起来共有3×3=9种不同的`组合,我们分别讨论。

1)当A<3,B<3,则(5+B)×(5+A)=96=6×16=8×12,无解;2)当3≤A<5,B<3时,则有(5+B)×(5+3)=96,显然无解;3)当A≥5,B<3时,则有(A+B)×(5+3)=96,则A+B=12.所以有A=10,B=2,此时乘积为20或者A=11,B=1,此时乘积为11。

4)当A<3,3≤B<5,有(5+3)×(5+A)=96,无解;5)当3≤A<5,3≤B<5,有(5+3)×(5+3)=96,无解;6)当A≥5,3≤B<5,有(A+3)×(5+3)=27,则A=9.此时B=3后者B=4。

则他们的乘积有27与36两种;7)当A<3,B≥5时,有(5+3)×(B+A)=96。

此时A+B=12。

A与B的乘积有11与20两种;8)当3≤A<5,B≥5,有(5+3)×(B+3)=96。

此时有B=9.不符;9)当A≥5,B≥5,有(A+3)×(B+3)=96=8×12。

则A=5,B=9,乘积为45。

所以A与B的乘积有11,20,27,36,45共五种。

【小学奥数题及答案:定义新运算】。

奥数专题_定义新运算(带答案完美排版)

奥数专题_定义新运算(带答案完美排版)

定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3 ×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:① 5※7=5×7-(5+7)=35-12=23,7※ 5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例子可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)=8x-13那么8x-13=3 解出x=2.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?解:① 6 ⊕2=6×2+6+2=20,2 ⊕6=2×6+2+6=20.②(1 ⊕2)⊕3=(1×2+1+2)⊕3=5 ⊕3=5×3+5+3=231 ⊕(2 ⊕3)=1 ⊕(2×3+2+3)=1 ⊕11=1×11+1+11=23.③先看“⊕”是否满足交换律:a ⊕b=a×b+a+bb ⊕a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕b=b ⊕a,因此“⊕”满足交换律.再看“⊕”是否满足结合律:(a ⊕b)⊕c=(a×b+a+b)⊕c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕b)⊕c=a ⊕(b ⊕c),因此“⊕”满足结合律.说明:“⊕”对于普通的加法不满足分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?解:通过对2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25这几个算式的观察,找到规律:a ⊗b =2a +b ,因此7⊗3=2×7+3=17.例5、x 、y 表示两个数,规定新运算“*”及“△”如下:x *y=mx+ny ,x △y=kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采用分析法,从要求的问题入手,题目要求1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以首先要计算出k的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a *3,按“*”的定义: a *3=ma+3n ,在只有求出m 、n时,我们才能计算a *3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.又因为m 、n 均为自然数,所以解出:①当m=1,n=2时: (2*3)△4=(1×2+2×3)△4=8△4=k ×8×4=32k有32k=64,解出k=2.②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4=9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是自然数矛盾,因此m=3,n =1,k=971这组值应舍去.所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上面这一类定义新运算的问题中,关键的一条是:抓住定义这一点不放,在计算时,严格遵照规定的法则代入数值.还有一个值得注意的问题是:定义一个新运算,这个新运算常常不满足加法、乘法所满足的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运用这些运算律来解题.m=1n =2 m=2 n =23(舍去)m=3 n =1课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a +, ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值. 4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值. 8.a ※b=b÷a b a +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1)=10x +(1+2+3+⋯+9)=10x + 45 因此有10x + 45=65,解出x=2.定义新运算我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.例2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.例3、定义新的运算a ⊕b=a×b+a+b.①求6 ⊕2,2 ⊕6;②求(1 ⊕2)⊕3,1 ⊕(2 ⊕3);③这个运算有交换律和结合律吗?例4、有一个数学运算符号“⊗”,使下列算式成立:2⊗4=8,5⊗3=13,3⊗5=11,9⊗7=25,求7⊗3=?例5、x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中m、n、k均为自然数,已知1*2=5,(2*3)△4=64,求(1△2)*3的值.课后习题1.a *b 表示a 的3倍减去b 的21,例如:1*2=1×3-2×21=2,根据以上的规定,计算:①10*6; ②7*(2*1).2.定义新运算为 a ㊀b =b 1a , ①求2㊀(3㊀4)的值; ② 若x ㊀4=1.35,则x =?3.有一个数学运算符号○,使下列算式成立:21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“⊗”,对于任意两个整数a 、b ,a ⊕b =a +b +1, a ⊗b=a ×b -1,①计算4⊗[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ⊗4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”,x △y=y×2x ×m y ×x ×6+(其中m 是一个确定的整数), 如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成立,求a 的值.7.“*”表示一种运算符号,它的含义是:x *y=xy 1+))((A y 1x 1++, 已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b ÷a ba +,在x ※(5※1)=6中,求x 的值.9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为自然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表示选择两数中较大数的运算,例如:5◇3=3◇5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++ =?。

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案3定义新运算、通项归纳(一)

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案3定义新运算、通项归纳(一)

年级五年级学科奥数版本通用版课程标题定义新运算定义新运算是奥数题中一类常考的、难度较低的计算题。

在一道定义新运算的题目中,会“发明”新的运算符号,解题的关键是先看清新符号的运算规则,再代入数值准确计算。

注意运算顺序:注意新符号是对多少个数值进行计算(常见的是对两个数值进行计算)。

题目有可能给出计算规则和计算结果要求反推未知数。

题目有可能不给出计算规则而是要求观察规律确定计算规则。

题目中的加、减、乘、除号有可能不同于普通的定义。

例1. (1)若A*B表示(A+3B)×(A+B),求5*7的值;(2)[A]表示小于A的最大质数,计算[[45]+[23]]。

【分析与解】以上两道题就属于直接计算型问题。

=+⨯⨯+=(1)5*7(537)(57)312+=+==(2)[[45][23]][4319][62]61例2. 已知a,b是任意自然数,我们规定:a#b=a+b-1,a*b=a×b+1,试计算[(5*3)#(2*5)]*(6#6)【分析与解】与例1的区别是多了一种计算的符号,但本质上还是直接计算型问题。

本题可按顺序分步计算。

(5*3)=53+1=16(2*5)25111[16#11]1611126(6#6)6611126*1126111=287⨯=⨯+==+-==+-==⨯+例3. 如果a △b 表示(a -2)×b ,例如3△4=4,那么,当a △5=30时,a = 。

【分析与解】把定义的运算新法则代入a △5=30中可得a △5=(a -2)×5=30解得a -2=6a =8例4. 若有新运算a#b ,a#b 表示a 、b 中较大数除以较小数后的余数。

例如;2#7=1,8#3=2,9#16=7,21#2=1。

若(21#(21#x ))=5,则x 可以是________(x 小于50)。

【分析与解】反推未知数型。

21#x 可能是8、16、26、47,又因为必须小于21,所以只能是8、16。

奥数第一讲奥数定义新运算教师版(可编辑修改word版)

奥数第一讲奥数定义新运算教师版(可编辑修改word版)

定义新运算姓名分数加、减、乘、除这四种运算的意义和运算法则我们都很熟悉.除了这四种运算之外,我们还可以人为地规定一些其它运算,并给出特定的运算规则,这样的运算形式我们一般称之为定义新运算.它使用的是一些特殊的运算符号,如*、△、▽、⊙等,这与四则运算中的“+、-、×、÷”表示的意义是不同的,其运算规则中运用的计算方法与我们所学的四则运算方法相同,解题的关键是通过表达式寻找到运算规则.一、假设 a*b=(a+b)+(a-b),求13*5 和13*(5*4)。

解析:这道题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算规定了要先算“小括号”里的。

因此,在 13* (5*4)中,就要先算小括号里的5*4。

13*5=(13+5)+(13-5)=18+8=2 65*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13 +10)+(13-10)=26举一反三(15 分)1.设a*b=(a+b)×(a-b),求27*9.解:27*9=(27+9)×(27-9)=36×18=648.2. 设 a*b=a2+2b, 求 10*6 和5*(2*8)。

解:(1)10*6 =102+6×2 =100+12 =112;(2)5*(2*8)=5*(22+8×2) =5*(4+16) =5*20 =52+20×2 =25+40 =65.13.设a*b=3a-b ×2 ,求(25*12)*(10*5).解:(25*12)*(10*5) =(25×3-12× )*(10×3-5× ) =(75-6)*(30-2.5) =69*27.5=69×3-27.5× =207-13.75 =193.25.二、 设 p 、 q 是两个数,规定:.求.解:因为 ,所以:所以:.举一反三(15 分)1.设 p、 q 是两个,规定 :数30△(5△3)=30△[52 +(5-3)×2 ].求5△(6△4).解:因为,所以:所以:2.设 p、q 是两个数,规定p△q=p 2+(p-q)×2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例题精讲模块一、直接运算型【例1】若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算【难度】2星【题型】计算【解析】A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

由A *B =(A +3B )×(A +B )【巩固】可知:5*7=(5+3×7)×(5+7)=(5+21)×12=26×12=312【答案】312定义新运算为a △b =(a +1)÷b ,求的值。

6△(3△4)【考点】定义新运算之直接运算【难度】2星【题型】计算【巩固】【解析】所求算式是两重运算,先计算括号,所得结果再计算。

由a △b =(a +1)÷b 得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7【答案】7设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2)△3=_____.【考点】定义新运算之直接运算【难度】2星【题型】计算【解析】56552613=⨯-⨯=△52552221=⨯-⨯=△,1321216435=⨯-=△【答案】435【巩固】P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8)【考点】定义新运算之直接运算【难度】2星【题型】计算【解析】68373*(6*8)3*()3*7522++====【答案】5【巩固】已知a ,b 是任意自然数,我们规定:a ⊕b =a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗=.【考点】定义新运算之直接运算【难度】3星【题型】计算【解析】原式4[(681)(352)]4[1313]=⊗+-⊕⨯-=⊗⊕4[13131]425=⊗+-=⊗425298=⨯-=【答案】98【巩固】M N *表示()2,(20082010)2009M N +÷**____=【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】走美杯,3年级,初赛【解析】原式()()200820102*20092009*20092009200922009=+÷==+÷=⎡⎤⎣⎦【答案】2009【巩固】规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。

那么,(2☆3)+(4☆4)+(7☆5)=。

【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】希望杯,四年级,二试【解析】19【答案】19【例2】“△”是一种新运算,规定:a △b =a ×c +b ×d (其中c ,d 为常数),如5△7=5×c +7×d 。

如果1△2=5,2△3=8,那么6△1OOO 的计算结果是________。

【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】希望杯,六年级,二试【解析】1△2=1×c +2×d =5,2△3=2×c +3×d =8,可得c =1,d =26△1000=6×c +1000×d =2006【答案】2006【巩固】对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =2m a b a b ⨯+⨯⨯(m 是一个确定的整数)。

如果1⊗4=2⊗3,那么3⊗4等于________。

【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】希望杯,六年级,二试【解析】根据1⊗4=2⊗3,得到1423214223m m ⨯+⨯+=⨯⨯⨯⨯,解出m =6。

所以,634113423412⨯+⊗==⨯⨯。

【答案】1112【例3】对于任意的整数x 与y 定义新运算“△”:6=2x y x y x y ⨯⨯∆+,求2△9。

【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】北京市,迎春杯【解析】根据定义6=2x y x y x y⨯⨯∆+于是有62922952295⨯⨯∆==+⨯【答案】255【巩固】“*”表示一种运算符号,它的含义是:()()111x y xy x y A *=+++,已知()()11221212113A *=+=⨯++,求19981999*。

【考点】定义新运算之直接运算【难度】2星【题型】计算【解析】根据题意得()()()()()()12111,,2116,1211322116A A A A =-=++==++++,所以()()111120001998199819991998199919981199911998199919992000199819992000399811998199920001998000+*=+=+=⨯++⨯⨯⨯⨯==⨯⨯【答案】11998000【例4】[A ]表示自然数A 的约数的个数.例如4有1,2,4三个约数,可以表示成[4]=3.计算:([18][22])[7]+÷=.【考点】定义新运算之直接运算【难度】3星【题型】计算【解析】因为21823=⨯有(11)(21)6+⨯+=个约数,所以[18]=6,同样可知[22]=4,[7]=2.原式(64)25=+÷=.【答案】5【巩固】x 为正数,<x >表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是.【考点】定义新运算之直接运算【难度】3星【题型】计算【巩固】【解析】<19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个.<93>为不超过的质数,共24个,易知<1>=0,所以,原式=<<19>+<93>>=<8+24>=<32>=11.【答案】11定义运算“△”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的和记为a △b .例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12=.【考点】定义新运算之直接运算【难度】3星【题型】计算【解析】18△12=(18,12)+[18,12]=6+36=42.【答案】42【例5】我们规定:符号Θ表示选择两数中较大数的运算,例如:5Θ3=3Θ5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:1523(0.6)(0.625)23353411(0.3)( 2.25)996∙∙Θ+∆∆+Θ的结果是多少?【考点】定义新运算之直接运算【难度】3星【题型】计算【解析】15232531(0.6)(0.625)123353824341119312(0.3)( 2.25)9963412∙∙Θ+∆+===∆+Θ+【答案】12【巩固】规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。

计算下式:[(7◎3)&5]×[5◎(3&7)]【考点】定义新运算之直接运算【难度】3星【题型】计算【巩固】【解析】新定义运算进行计算时如果遇到有括号的,要先计算小括号里的,再计算中括号里的。

[(7◎6)&5]×[5◎(3&9)]=[6&5]×[5◎9]=6×5=30【答案】30我们规定:A ○B 表示A 、B 中较大的数,A △B 表示A 、B 中较小的数。

则()()108651120=-⨯△△○13+15△【考点】定义新运算之直接运算【难度】3星【题型】计算【关键词】走美杯,3年级,决赛【解析】根据题目要求计算如下:()()()()108651120=861315=228=56-⨯-⨯+⨯△○○13+15△【答案】56【例6】如果规定a ※b =13×a -b ÷8,那么17※24的最后结果是______。

【考点】定义新运算之直接运算【难度】2星【题型】计算【巩固】【关键词】希望杯,4年级,1试【解析】17※24=13×17-24÷8=221-3=218【答案】218若用G (a )表示自然数a 的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,则G (36)+G (42)=。

【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】希望杯,4年级,1试【解析】36的约数有:1、2、3、4、6、9、12、18、36。

42的约数有:1、2、3、6、7、14、21、42。

所以有G 36G +=+=429817()()。

【答案】17【巩固】如果&10a b a b =+÷,那么2&5=。

【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】希望杯,4年级,1试【解析】2&5=2+5÷10=2.5【答案】2.5【例7】“华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是________.【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】华杯赛,六年级,决赛【解析】偶数位自左至右依次为4、0、1、9、0、8,它们关于9的补码自左至右依次为5、9、8、0、9、1,所以“华杯赛”新的编码是:254948903981【答案】254948903981【例8】羊和狼在一起时,狼要吃掉羊.所以关于羊及狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼,以上运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了。

相关文档
最新文档