数学建模差分方程模型资料

合集下载

数学建模中的差分方程模型

数学建模中的差分方程模型

数学建模中的差分方程模型数学建模是一种将实际问题转化为数学模型并寻求与之相连的数学方法的学科,不仅仅在理论研究上有很大的应用,也在实际生活中有着广泛的应用。

在各种数学模型中,差分方程模型也是一种很重要的模型。

本文将结合实例,介绍差分方程模型的定义、建立、求解以及应用。

差分方程模型定义差分方程模型是一种通过离散化的方法,将连续时间问题转化为离散时间问题,来描述变量随时间的变化规律的数学模型。

这种数学模型以时间为自变量,以某个状态量为因变量,由一定的关系式组成。

例如:y(n+1)=ay(n)+b,式子中y(n)代表第n时刻系统状态,y(n+1)代表第n+1时刻系统状态,a和b为常数。

差分方程模型建立建立差分方程模型的关键是将实际问题中的连续变化离散化。

一般情况下,对于所建立的模型,首先要确定它的思路和范围,然后根据实际情况,确定差分方程的形式。

此外,还需要进行参数的估计和参数变化的分析,以及对模型精确性的验证。

以物理学中的简谐振动为例,建立一个差分方程模型描述其运动,即一个质点在回复力作用下以简谐运动形式振动。

设t为时间,y为质点的位移,v为质点的速度,a为质点的加速度,则有:$$y=n\Delta y \\v=\dfrac{y(n+1)-y(n-1)}{2\Delta t} \\a=\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2}$$其中n为时间步长,$\Delta t$为时间间隔。

我们利用受力平衡的原理,即简谐振动中的$F=-ky$得到:$$\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2} = -\dfrac{k}{m}y(n)$$将$\alpha=\dfrac{k}{m}$带入上式得到:$$y(n+1)-2(1+\alpha)y(n)+y(n-1) = 0$$此时,我们便成功地建立了描述简谐振动的差分方程模型。

差分方程模型求解对差分方程模型求解通常有两种方法:一种是使用递推公式进行求解,另一个方法是使用其它数学方法,如拉普拉斯变换或离散傅立叶变换等。

(完整版)差分方程模型(讲义)

(完整版)差分方程模型(讲义)

差分方程模型一. 引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。

1. 确定性连续模型1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。

2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。

3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。

4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。

2. 确定性离散模型1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。

2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。

3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。

4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。

随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。

在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。

有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。

例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。

这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。

有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。

但是,往往都需要用计算机求数值解。

这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。

7.数学建模-差分方程法

7.数学建模-差分方程法


pt 发生动态等幅振荡;
ab t ) p* (5) 当 0 < ab < 2 , pt ( A1 sin kt A2 cos kt)( 2 ab ab t 1 ( ) 为衰减因子 2 2

pt → p*
( t → + ∞ ) , pt 动态发展趋于稳定 .
5.差分形式的生物数量 ic(阻滞增长)模型及其稳定性研究 描述生物生长受到环境约束的微分方程模型是 Logistic(阻滞增 长)模型 。其形式是 : y
0
这时还贷公司需要还清银行的债务的时限变为:
b ln b ry0 x 503.5 ( 半月) 21年 . ln(1 r )
这表明还贷公司只用 21 年就可还清银行的债务, 由此 , 还贷公司赚 了购房人 一年的钱: 24 × 316 = 7584 ( 元 ) . 故问题 (2) 的解答是 : 此方案对还贷公司而言是有利可图的 。
模型II . 模型假设: (1) t 时刻的商品价格 pt 是商品数量 xt 的直线下降函数: pt = pM - a xt ; (2) 这一时期的商品数量 xt 是前两个时期的商品价格 pt-1 与 pt-2 的 算术平均值的直线上升函数(企业对市场的分析、判断应更成 b( pt 1 pt 2 ) 熟一些): 模型建立:
p ( 0 ) = p0 ,p(1) = p1 ( 初始价格 ) . (二阶线性常系数差分方程)
r1, 2
ab ab(ab 8) 4
p M axm p* 1 ab
(2) 当 ab = 8 时,
ab t pt ( A1 A2 t )( ) p * ( A1 A2 t )(2) t p * 4 ab t ) p* (3) 当 ab < 8 时, pt ( A1 sin kt A2 cos kt)(

数学建模之差分方程

数学建模之差分方程

差分方程模型①建立差分方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立差分方程模型。

一阶常系数线性差分方程的一般形式为1(),(0)t t y ay f t a +-=≠(1)②求解一阶常系数齐次线性差分方程10,(0)t t y ay a +-=≠(2)常用的两种解法1)迭代法假设0y 已知,则有2112210(),n n n n n n y ay a ay a y a y a y ----======一般有0(0,1,2,).t t y a y t ==10t t y ay +-=(3)2)特征方程法假设(0)t Y λλ=≠为方程(3)的解,代入(3)得方程的特征方程10(0),t t a λλλ+-= ≠解得特征根:.a λ=则t t y a =是方程(3)的解,所以齐次方程的通解为 (t t y ca c =为任意常数)例题:设某房屋总价为a 元,先付一半可入住,另一半由银行以年利r 贷款, n 年付清,问平均每月付多少元?共付利息多少元?解:设每月应付x 元,月利率为12r ,则第一个月应付利息为 1.12224r a ra y =⨯=第二月应付利息为2111,2121212a r r rx y x y y ⎛⎫⎛⎫=-+⨯=+- ⎪ ⎪⎝⎭⎝⎭以此类推得到 11,1212t t r rx y y +⎛⎫=+- ⎪⎝⎭此方程为一阶常系数非线性差分方程。

其相应的特征方程为(1)012r λ-+= 特征根为112r + 则得到通解为1(12t t r y c c ⎛⎫=+ ⎪⎝⎭为任意常数). 解得特解为t y x *=所以原方程通解为 112t t r y c x ⎛⎫=++ ⎪⎝⎭当112224r a ra y =⨯=时,解得24112ra x c r -=+。

所以解得满足初始条件的特解为112411211211.2121212t t t t ra x r y x r a r r r x x ---⎛⎫=++ ⎪⎝⎭+⎛⎫⎛⎫=⨯⨯++-+ ⎪ ⎪⎝⎭⎝⎭ 于是得到n 年的利息之和为11212121212121221112nnn I y y a r r a n r =++⎛⎫⨯+⨯ ⎪⎝⎭=⨯-⎛⎫+- ⎪⎝⎭ 元,平均每月需要付12121212121112nna r rr⎛⎫⨯+⨯⎪⎝⎭⎛⎫+-⎪⎝⎭元。

第4章差分模型(数学建模)

第4章差分模型(数学建模)

A n
0 1 2 3 4 5 6 7 8 9 10 0.1 0.15 0.175 0.1875 0.19375 0.196875 0.1984375 0.1992187 5 0.1996093 8 0.1998046 9 0.1999023 4
B
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
4.3 动力系统的解法
储蓄存单an=1.01an-1 ,n=1,2,3,…a0=10000 容易解得 an=10000(1.01)n 一般 an=ran-1 有 an=a0r n
例 4.5污水处理
一家污水处理厂通过去去掉污水中所有的污物来处理未经处理的 污水,以生产有用的肥料和清洁水。该处理过程每小时 每小时去掉处理 污水,以生产有用的肥料和清洁水。该处理过程每小时去掉处理 池中剩余的污物的12%。1天后处理池中将留下百分之几的污物? 天后处理池中将留下百分之几的污物? 池中剩余的污物的 。 天后处理池中将留下百分之几的污物 要多少时间才能把污物的量减少一半? 要多少时间才能把污物的量减少一半?要把污物减少到原来的 10%,需要多少时间 ,需要多少时间?
你每个月买车最多能支付475美元,利用系统动力 美元, 你每个月买车最多能支付 美元 学模型来决定你应该买哪家公司的汽车? 学模型来决定你应该买哪家公司的汽车?
4.2 用差分方程近似描述变化
例4.3.酵母培养物的增长 表中数据是从酵母培养物的增 长的实验中收集来的 从图中看到可令:△pn =kpn 从图中看到可令 △ K=0.5,则pn+1=1.5pn
以小时计 的时间n 的时间 0 1 2 3 4 5 6 7
300 250 200 150 系列1
观察到的酵母 生物量pn 生物量 9.6 18.3 29.0 47.2 71.1 119.1 174.6 257.3

第16章 差分方程模型——【数学建模讲义 精】

第16章 差分方程模型——【数学建模讲义 精】

-192-第十六章 差分方程模型离散状态转移模型涉及的范围很广,可以用到各种不同的数学工具。

下面我们对差分方程作一简单的介绍,下一章我们将介绍马氏链模型。

§1 差分方程1.1 差分方程简介规定t 只取非负整数。

记t y 为变量y 在t 点的取值,则称t t t y y y −=Δ+1为t y 的一阶向前差分,简称差分,称t t t t t t t y y y y y y y +−=Δ−Δ=ΔΔ=Δ+++12122)(为t y 的二阶差分。

类似地,可以定义t y 的n 阶差分t n y Δ。

由t y t 、及t y 的差分给出的方程称为t y 的差分方程,其中含t y 的最高阶差分的阶数称为该差分方程的阶。

差分方程也可以写成不显含差分的形式。

例如,二阶差分方程02=+Δ+Δt t t y y y 也可改写成012=+−++t t t y y y 。

满足一差分方程的序列t y 称为差分方程的解。

类似于微分方程情况,若解中含有的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解。

若解中不含任意常数,则称此解为满足某些初值条件的特解。

称如下形式的差分方程)(110t b y a y a y a t n t n t n =+++−++L (1) 为n 阶常系数线性差分方程,其中n a a a ,,,10L 是常数,00≠a 。

其对应的齐次方程为0110=+++−++t n t n t n y a y a y a L (2)容易证明,若序列)1(t y 与)2(t y 均为(2)的解,则)2(2)1(1t tt y c y c y +=也是方程(2)的解,其中21,c c 为任意常数。

若)1(t y 是方程(2)的解,)2(t y 是方程(1)的解,则)2()1(t t t y y y +=也是方程(1)的解。

方程(1)可用如下的代数方法求其通解:(I )先求解对应的特征方程00110=+++−a a a n n L λλ (3) (II )根据特征根的不同情况,求齐次方程(2)的通解。

数学模型(差分方程)

数学模型(差分方程)

定义为
X ( z ) Z [ x(k )] x(k ) z k
k 0 k

其中z是复变量,因此级数 x(k ) z 的收敛域为某个圆的外部。
k 0
X ( z)
的Z反变换记作 x(k ) Z 1[ X ( z)]
(k )

1.几个常用离散函数的变换
一部分为当月新生的,而由题设知当月新生的兔子对数等于上上月
兔子对数,所以
h(n) h(n 1) h(n 2), n 3 h(1) h(2) 1
一、常系数线性齐次差分方程的求解方法-解析法 形如
h(n) a1h(n 1) a2h(n 2) ak h(n k ) 0 (n k , k 1,) (1)
h(n) h(n 1) 3h(n 2) 5h(n 3) 2h(n 4) 0 ( n 4,5, )
的特解 . 解:该差分方程对应的特征方程为
x 4 x3 3x 2 5 x 2 0
x 其根为:1 x2 x3 1, x4 2 ,所以
令l k N
特别地 Z[ x(k 1)] z[ X ( z) X (0)] 证 : Z[ x(k N )] x(k N ) z
k 0 N
l l 0
k

x(l ) z
l N
l N
z
N
=z [ x(l ) z x(l ) z l ] z N [ X ( z ) x(k ) z k ]
差分方程的通解为:
t
mi
重根,则该
h(n) h1 (n) h2 (n) ht (n) hi (n)

数学建模中的差分法

数学建模中的差分法

用Euler法求出前三次逼近,初始条件为
t0 0, x0 1, y0 2, t 0.1

t1 t0 t 0.1
t2 t1 t 0.2 t3 0.3
( x0 , y0 ) (1,2)
第一组点: x1 x0 f (t0 , x0 , y0 )t x0 (3x0 x0 y0 )t 1 (3 2) 0.1 1.1
xk 1 axk b, k 0,1,2,, (1)
满足方程 x ax b 的解,称为上方程的平衡点。
b . 即平衡点为 x 1 a

当k 时,xk x , 则称 x 是稳定的, 否则是不稳定的。
西北大学数学系
xk 1 axk b,
k 0,1,2,,
例1 从 t 0 出发并取 t 0.1 ,求下列初值问题 的近似解。
1 x, x x(0) 1

t0 0, x0 1 t1 t0 t 0.1
t2 t1 t 0.2 t3 0.3
x1 x0 f (t0 , x0 )t x0. (1 x0 )t 1 (1 1) 0.1 1.2
西北大学数学系
二阶差分
(xt ) xt 1 xt xt 2 xt 1 xt 1 xt
2 xt xt 2 2xt 1 xt
同理,可定义三阶差分等。 二阶及二阶以上的差分称为高阶差分。 差分的性质:
(cxt ) cxt ( xt yt ) xt yt
(1)
b b xk 1 axk b , 1 a 1 a
b ab xk 1 axk , 1 a 1 a

《数学建模》课件:第7章 差分方程模型(投影版)

《数学建模》课件:第7章 差分方程模型(投影版)

求得的方程的解
x=x =
b
n
称为该差分方程的平衡点(奇解)。
ai
i0
若记该差分方程的一般解(通解)为 xk,它若满足:lkim xk x,
则称 x 是稳定的, 否则,称 x 是不稳定的。
6. 特征方程
称代数方程: an n an1 n1 a1 a0 0
为差分方程 an xkn a1xk1 a0xk b 对应的特征方程。
x1 y1 x2 y2 x3
xk x0 , yk y0
P1 P2 P3 P0
xk x0 , yk y0 P1 P2 P3 P0
P0是稳定平衡点
y
f
y2 P3
yy30 y1
P2
g 曲线斜率
P4
P0
K f Kg
P1
0 x2 x0 x3 x1 x
P0是不稳定平衡点
y
P3 f
根据导数的定义:
f
'(xk )
lim =
x xk
f
(x) f (xk ) x xk
lim = f (x) f (xk ) lim = f (x) f (xk )
x xk
x xk
x xk-
x xk
于是,当分割足够细时,用差商代替微商,则得到如下差分公式:
向前差分:
f
'(xk )
数学建模
第七章 差分方程模型
数学建模
第七章 差分方程与代数方程模型
主讲教师:邵红梅
数学建模
第七章 差分方程模型
差分方程稳定性理论简介
一、差分方程
所谓n阶差分方程,简单地说,是指对于一个点列 xk ,把它的前n+1项

数学建模差分方程模型

数学建模差分方程模型

yk
x k 1 bk(1 x x k) (2 )
记br1 一阶(非线性)差分方程
(1)的平衡点y*=N
(2)的平衡点 x* r 11 r1 b
讨论 x* 的稳定性
补充知识
一阶非线性差分方程 xk1f(xk)(1)的平衡点及稳定性 (1)的平衡点 x*——代数方程 x=f(x)的根 (1)的近似线性方程 x k 1 f(x * ) f(x * )x k ( x * )( 2 ) 稳定性判断 x*也是(2)的平衡点
需求函数不变 y k y 0 (x k x 0 ) 2 x x x 2 ( 1 ) x , k 1 , 2 ,
k 2 k 1 k
0
二阶线性常系数差分方程
x0为平衡点 研究平衡点稳定,即k, xkx0的条件
模型的推广 2 x k 2 x k 1 x k 2 ( 1 ) x 0
• 运动(内容同前) C 80 0 0 .00 2 78 5 16(千 80 )
3 差分形式的阻滞增长模型
连续形式的阻滞增长模型 (Logistic模型)
x(t) ~某种群 t 时刻的数量(人口)
x (t)rx(1 x) N
t, xN, x=N是稳定平衡点(与r大小无关)
离散
yk ~某种群第k代的数量(人口)
y
g
需求曲线变为水平 y0 以行政手段控制价格不变
0
2. 使 尽量小,如 =0 y
供应曲线变为竖直
靠经济实力控制数量不变
0
f
x g
f
x0
x
模型的推广 生产者管理水平提高 xk1h(yk)
• 生产者根据当前时段和前一时 段的价格决定下一时段的产量。
xk1
h

数学建模中的差分法

数学建模中的差分法

西北大学数学系
三 常微分方程向差分方程转化(数值解)
1 Euler 方法 求初值问题的近似解。
先把自变量所在的区间 n 等分;
dx

dt

f (t, x)
x(t0 ) x0
t1 t0 t t2 t1 t x f (t, x)t
tn tn1 t
1 1, 2 1
时,方程(4)的平衡点是稳定的。
非齐次线性方程(5)的稳定性可转化为齐次方 程(4)来研究。
xk2 a1xk1 a2 xk b,
(5)
对于n阶线性方程平衡点稳定的条件是特征根
i 1,(i 1,2,n,)
西北大学数学系
3 一阶非线性差分方程
xk1 f (xk )
由于
xk 1

b 1 a

a( xk
b) 1 a

0,
(1) k 0,1,2,
方程(1)平衡点的稳定性问题可转化为下面 方程零点的稳定性。
xk1 axk 0, k 0,1,2, (2)
方程(2)的解可表示为
xk (a)k x0 , k 1,2,
可得到下面的稳定性结论。
(6)
平衡点 x 通过求解方程 x f (x)
而得到。
研究稳定性的方法之一是研究其对应的线性部 分的稳定性。
将方程(6)的右端在 x 点作泰勒展开只取 一次项, (6)近似为
xk1 f (x )( xk x ) f (x )
(7)
x 也是(7)平衡点。
西北大学数学系
xk1 axk b, k 0,1,2,,
(1)
满足方程 x ax b 的解,称为上方程的平衡点。

最新数模(差分方程模型)1概要教学讲义PPT

最新数模(差分方程模型)1概要教学讲义PPT

设贷款额为a0,每月还贷额为x,月利率为r,第n个月后的欠 款额为an,则
a0=200000, a1=(1+r)a0-x, a2=(1+r)a1-x, ……
an=(1+r)an-1-x, n=1,2,3,…
重庆邮电大学市级精品课程------数学建模
一阶线性差分方程
在上述模型中,给出了an+1与an之间的递推公式. 将它们写成 统一的形式:
重庆邮电大学市级精品课程------数学建模
7.1 差分方程基本知识
• 1、差分方程: 差分方程反映的是关于离散变量的取值 与变化规律。通过建立一个或几个离散变量取值所满 足的平衡关系,从而建立差分方程。
• 差分方程就是针对要解决的目标,引入系统或过程中 的离散变量,根据实际背景的规律、性质、平衡关系, 建立离散变量所满足的平衡关系等式,从而建立差分 方程。通过求出和分析方程的解,或者分析得到方程 解的 特别性质(平衡性、稳定性、渐近性、振动性、 周期性等),从而把握这个离散变量的变化过程的规 律,进一步再结合其他分析,得到原问题的解。
此规律对于(7.1)也成立。
重庆邮电大学市级精品课程------数学建模
的形式,其对应的齐次方程为
a 0 x n t a 1 x n t 1 . .a .n x t 0 (7.2)
容易证明,若序列
x
( t
1
)

x (2) t
均为方程(7.2)的解,则
xt c1xt(1)c2xt(2)
也是方程(7.2)的解,其 中c1、c2为任意常数,这说明, 齐次方程的解构成一个 线性空间(解空间)。
1. 银行存款与利率
假如你在银行开设了一个1000元的存款账户,银行的年利 率为7%. 用an表示n年后你账户上的存款额,那么下面的数列 就是你每年的存款额:

差分方程模型介绍

差分方程模型介绍
function x=zwfz(x0,n,b) c=10;a1=0.5;a2=0.25; p=a1*b1*c; q=a2*b*91-a1)*b*c; x(1)=x0; x(2)=p*x(1); for k=3:n x(k)=p*x(k-1)+q*x(k-2); end
结果分析:Xk= pXk-1 + qXk-2
∗ 以k=0时X0=M代入,递推n次可得n年后本息为
xn = (1 + r ) M
n
∗ 例2 污水处理厂每天可将处理池的污水浓度降低一个固 定比例q,问多长时间才能将污水浓度降低一半? ∗ 记第k天的污水浓度为Ck,则第k+1天的污水浓度为 Ck+1=(1q)Ck, k=0,1,2,···· 从k=0开始递推n次得
模型及其求解
∗ 记一棵植物春季产种的平均数为C,种子能活过一个冬天的 (1岁种子)比例为b,活过一个冬天没有发芽又活过一个冬天 的(2岁种子)比例仍为b,1岁种子发芽率a1,2岁种子发芽 率a2。 ∗ 设C,a1,a2固定,b是变量,考察能一直繁殖的条件 ∗ 记第k年植物数量为Xk,显然Xk与Xk-1,Xk-2有关,由Xk-1决 定的部分是 a1bCXk-1,由Xk-2决定的部分是 a2b(1-a1)bCXk-2
• 用矩阵表示
x1 (k + 1) 0.6 0.2 0.1 x1 (k ) x2 (k + 1) = 0.3 0.7 0.3 x2 ( k ) x (k + 1) 0.1 0.1 0.6 x ( k ) 3 3
λ1,2 < 1, xk → 0(k → ∞)
λ 1, 2 > 1, x k → ∞ ( k → ∞ )

第1讲:差分方程模型

第1讲:差分方程模型
• 预报对象特征的未来性态 预报对象特征的未来性态
特征
• 研究控制对象特征的手段 研究控制对象特征的手段
在研究实际问题时, 在研究实际问题时, 我们常常不能直接得出变量 之间的关系, 之间的关系,但却能容易得出包含变量导数在内的关系 这就是微分方程. 式,这就是微分方程. 在现实社会中,又有许多变量是离散变化的, 在现实社会中,又有许多变量是离散变化的,如人 口数、生产周期与商品价格等, 口数、生产周期与商品价格等, 而且离散的运算具有 可操作性, 差分正是联系连续与离散变量的一座桥梁. 可操作性, 差分正是联系连续与离散变量的一座桥梁. 不管是微分方程还是差分方程模型, 不管是微分方程还是差分方程模型,有时无法得 到其解析解(必要时,可以利用计算机求其数值解), ),既 到其解析解(必要时,可以利用计算机求其数值解),既 使得到其解析解,尚有未知参数需要估计( 使得到其解析解,尚有未知参数需要估计(这时可利用 参数估计方法). 参数估计方法). 而在实际问题中,讨论问题的解的变化趋势很重要, 而在实际问题中,讨论问题的解的变化趋势很重要, 因此,以下只对其平衡点的稳定性加以讨论. 因此,以下只对其平衡点的稳定性加以讨论.
若有常数a是差分方程 的解 若有常数 是差分方程(1)的解 即 是差分方程 的解, F (n; a, a, … , a ) = 0, 则称 a是差分方程 的平衡点. 是差分方程(1)的平衡点 是差分方程 又对差分方程(1)的任意由初始条件确定的解 又对差分方程 的任意由初始条件确定的解 xn= x(n)都有 都有 →∞), xn→a (n→∞ →∞ 则称这个平衡点a是稳定的 则称这个平衡点 是稳定的. 一阶常系数线性差分方程 xn+1 + axn= b, (其中 b为常数 且a ≠-1, 0)的通解为 其中a, 为常数, 其中 为常数 的通解为 xn=C(- a) n + b/(a + 1) 易知b/(a+1)是其平衡点 由上式知 当且仅当 是其平衡点, 易知 是其平衡点 由上式知, |a|<1时, b/(a +1)是稳定的平衡点 是稳定的平衡点. < 时 是稳定的平衡点

《数学建模》课件:第7章 差分方程模型(投影版)

《数学建模》课件:第7章 差分方程模型(投影版)

ai
i0
下面仅对 1阶情形给予证明,其余情形证明思想类似。
不妨设一阶线性常系数差分方程为: xk1 axk b
其对应的特征方程为 a 0, 故特征根为 = a. 那么由定理1得:
它的平衡点 x = b 稳定的充要条件是 a 1. 下面证明这个结论.
1 a
差分方程稳定性理论简介
数学建模
求得的方程的解
x=x =
b
n
称为该差分方程的平衡点(奇解)。
ai
i0
若记该差分方程的一般解(通解)为 xk,它若满足:lkim xk x,
则称 x 是稳定的, 否则,称 x 是不稳定的。
6. 特征方程
称代数方程: an n an1 n1 a1 a0 0
为差分方程 an xkn a1xk1 a0xk b 对应的特征方程。
x= b 1 a
稳定的充要条件是
a 1.
差分方程稳定性理论简介
数学建模
第七章 差分方程模型
三、一阶非线性差分方程的平衡点和稳定性
考虑方程 xk1 f (xk )
(II)
其平衡点 x 由代数方程 x f (x) 解出。为了分析 x 的稳定性,
将f ( x )在 x 点作Taylor展开,只取一次项,方程(II)近似为
差分方程稳定性理论简介
数学建模
第七章 差分方程模型
微分方程的差分方法
一、微分的差分方法
设 函数 f (x)在 a, b 一阶连续可微,任给一个分割:a=x0 x1 xn b
已知 f (x) 在节点 xk 的函数值 f (xk ) (k 0,1, , n),试求函数 f (x) 在节点
xk 处的导数值 f '(xk ) 的近似值。

数学建模中的差分法

数学建模中的差分法

步数n可任意大,但n太大,会有误差积累。
优点:容易编程计算。
西北大学数学系
例2 从 t0 出发并取 t 1
的近似解。 dN rN , dt
,求下列初值问题 N (0) N0
解 t0 0, N (0) N0
t1 t0 t 1 t2 t1 t 2 t3 3
(t, x, t) (1 ) f (t, x) f (x t , y t f (t, x)) 2 2
西北大学数学系
(t, x, t) (1 ) f (t, x) f (x t , y t f (t, x)) 2 2
(t, x, t) f (t, x)

yn1

yn

g(tn ,
xn ,
yn )t
步数n可任意大,但n太大,会有误差积累。
西北大学数学系
对捕食模型
dx dt

3x

xy

dy
dt

xy

2
y
用Euler法求出前三次逼近,初始条件为
t0 0, x0 1, y0 2, t 0.1
解 t1 t0 t 0.1 t2 t1 t 0.2 t3 0.3
xk1 axk b, k 0,1,2,,
(1)
满足方程 x ax b 的解,称为上方程的平衡点。
即平衡点为 x b . 1 a
当k 时,xk x, 则称 x 是稳定的, 否则是不稳定的。
西北大学数学系
xk1 axk b, k 0,1,2,,
(4)
平衡点为 x 0. 为了得到(4)零点的稳定性
我们求解方程(4)。

数模 差分方程模型

数模 差分方程模型
注:设 y1 , y2 ,, yn为定义在区间I 内的n
个函数.如果存在n 个不全为零的常数,
使得当 x 在该区间内有恒等式成立
k1 y1 k2 y2 kn yn 0
那么称这些函数在区间内线性相关; 否则称线性无关.
2.n阶常系数非齐次线性差分方程解的结构
定理 8 设 yx* 是 n 阶常系数非齐次线性差分方程
2(n 1) 1 (2n 1) 2
3 yn 3(n2 ) 2 2 0
例2 求y n! 的一阶差分,二阶差分.
解 yn yn1 yn
(n 1)!n!
n n!
2 yn yn n n!
(n 1) (n 1)!n n! (n2 n 1) n!
1. f ( x) pn x型
方程2为yx1 ayx pn x 即yx 1 ayx pn x
设n年后教育基金总额为an,每年向银行存入x元,依据复利 率计算公式,得到家庭教育基金的数学模型为:
a0=x, an+1=(1+r)an+x, n=0,1,2,3,…
3) . 抵押贷款
小李夫妇要购买二居室住房一套,共需30万元. 他们已经筹 集10万元,另外20万元申请抵押贷款. 若贷款月利率为0.6%, 还贷期限为20年,问小李夫妇每月要还多少钱?
2. 差分的四则运算法则
(1)(Cyn ) Cyn (C为常数) (2)( yn zn ) yn zn
3yn zn yn1zn znyn ynzn zn1yn
4
yn zn


znyn ynzn zn zn1
a0, a1, a2, a3, …, an,… 设r为年利率,由于an+1=an+r an, 因此存款问题的数学模型 是:

数学建模方法之差分方程模型

数学建模方法之差分方程模型

数学建模方法之差分方程模型差分方程模型是数学建模中常用的一种方法,它基于差分方程来描述问题,并用差分方程来求解问题。

所谓差分方程,是指用差分代替微分的方程,它是一种离散的模型。

在实际问题中,很多情况下,并不能直接通过微分方程来描述问题,而差分方程模型则可以通过离散化的方法来近似地描述问题。

差分方程模型的优点之一是可以适用于离散化的数据,对于实际问题的离散化模型建立是非常有帮助的。

差分方程模型的另一个优点是可以通过数值方法来求解,不需要进行繁琐的解析推导,因此适用于复杂问题的求解。

差分方程模型的基本形式为:yn+1 = fn(yn, yn-1, ..., yn-k)其中,yn表示第n个时刻的解,fn是一个给定的函数,表示通过前k个时刻的解来计算第n+1个时刻的解。

这个方程是离散的,通过已知的初始条件来逐步递推获得结果。

差分方程模型的适用范围非常广泛,可以用于描述和预测各种动态过程。

例如,差分方程模型可以用来描述人口增长模型、生态系统模型、传染病模型等等。

在这些例子中,差分方程模型可以通过已知的数据和初始条件来预测未来的发展趋势。

差分方程模型的建立步骤主要包括以下几个方面:1.确定问题的描述和目标:明确问题的背景和目标,确定需要建立差分方程模型的原因和用途。

2.确定模型的变量和参数:根据实际问题,确定需要用到的变量和参数。

3.确定差分方程的形式和函数:根据问题的特点和要求,选择合适的差分方程形式和函数。

这部分需要结合实际问题和数学方法来确定。

4.确定初始条件和边界条件:确定差分方程模型的初始条件和边界条件。

这部分是求解差分方程的前提条件。

5.差分方程的求解和分析:通过数值方法求解差分方程,得到数值解,并对结果进行分析和解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档