地下室外墙计算原理及方法

合集下载

地下室外墙计算

地下室外墙计算

地下室外墙计算在建筑结构设计中,地下室外墙的计算是一个至关重要的环节。

地下室外墙不仅要承受上部结构传来的竖向荷载,还要承受土压力、水压力等水平荷载,以及温度变化、混凝土收缩等因素产生的内力。

因此,准确计算地下室外墙的受力情况,对于保证地下室的安全性和稳定性具有重要意义。

一、地下室外墙的受力分析地下室外墙所受的力主要包括竖向荷载和水平荷载。

竖向荷载主要来自于上部结构的自重以及地下室顶板传来的荷载。

水平荷载则包括土压力、水压力、地面活荷载产生的侧压力等。

土压力是地下室外墙承受的主要水平荷载之一。

土压力的大小和分布与土体的性质、墙体的位移情况以及地下水位等因素有关。

一般来说,土压力可以分为静止土压力、主动土压力和被动土压力三种。

在地下室外墙的计算中,通常根据墙体的位移情况和工程实际情况来确定采用哪种土压力计算方法。

水压力也是地下室外墙不可忽视的荷载。

当地下水位高于地下室底板时,水压力会对地下室外墙产生作用。

水压力的大小取决于地下水位的高低和水的重度。

此外,地面活荷载产生的侧压力也会对地下室外墙产生一定的影响,尤其是在靠近地面的部位。

二、地下室外墙的计算模型在进行地下室外墙的计算时,需要建立合理的计算模型。

常见的计算模型有单向板模型和双向板模型。

单向板模型适用于地下室外墙长度较长、厚度相对较小的情况。

在这种模型中,地下室外墙可以视为承受竖向荷载和水平荷载的单向板,按照单向受弯构件进行计算。

双向板模型则适用于地下室外墙长度和宽度比较接近的情况。

此时,地下室外墙需要同时考虑两个方向的弯矩和剪力,按照双向板进行计算。

在实际工程中,应根据地下室外墙的具体尺寸和边界条件选择合适的计算模型,以确保计算结果的准确性。

三、地下室外墙的计算方法1、荷载计算首先,需要准确计算作用在地下室外墙上的各种荷载。

竖向荷载可以根据上部结构的传力途径和地下室顶板的荷载分布进行计算。

水平荷载中的土压力可以采用朗肯土压力理论或库仑土压力理论进行计算,水压力则根据地下水位和水的重度进行计算。

(全埋式)地下室外墙计算

(全埋式)地下室外墙计算

一. 计算条件地下室层高L = 4.5室内外高差b =0.9 地下室外墙厚h =300 堆载p =20土容重γ18 地下水位为室外地坪下a =1.1 混凝土强度标号C30f c =14.3N/mm 2土层内摩擦角φ=10 钢筋抗拉强度设计值360 水容重γ水=10二. 荷载计算(取每延米板宽,按单向板计算)(一)土压力K 0=1-sin φ=0.826352 q1=K 0(γa+(γ-10)(L-b-a))=32.8888kN/m(二)水压力q2=γ水(L-b-a)=25kN/m(三)堆载q3=K0*p =16.52704kN/m 土压力 水压力堆载压力三. 内力计算(一)土压力引起的内力β=(L-b)/L=0.8底部负弯矩Mb =-(q1*(L-b)2*(4-3β+3β2/5))/24=-35.2357kN·m顶板支座处反力Ra=q1*(L-b)3*(1-β/5)/(8*L 2)=7.956459kN跨中最大弯矩Mmax=Ra(b+2*(L-b)*(2Ra/(q1*(L-b)))0.5/3)=14.16134kN·m(二)水压力引起的内力h1=a+b=-0.2m h2=L-h1=4.7mβ=h2/L=1.044444底部负弯矩Mb =-(q2*h22*(4-3β+3β2/5))/24=-35.0031kN·m 顶板支座处反力Ra=q2*h23*(1-β/5)/(8*L 2)=12.67524kN跨中最大弯矩Mmax =Ra*(h1+2*h2*(2Ra/(q2*h2))0.5/3)=15.91242kN·m(三)堆载引起的内力β=(L-b)/L=0.8底部负弯矩Mb=-(q3*(L-b)2*(2-β))/8=-38.5543kN·m顶板支座处反力Ra=q3*(L-b)3*(4-β)/(8*L2)=15.23132kN跨中最大弯矩Mmax=Ra(b+Ra/(q3*2))=20.72678kN·m(一)基本组合(以永久荷载效应控制γG=1.35)底部负弯矩S=γG S Gk+γQiψci S Qik=-132.606kN·m跨中最大弯矩S=γG S Gk+γQiψci S Qik=60.91182kN·mAs1=1682.868mm2As2=773.0181mm2As min=600mm2底部负弯矩实配钢筋面积753.9822mm2跨中最大弯矩实配钢筋面积753.9822mm2(一)标准组合底部负弯矩S=S Gk+S Qik=-108.793kN·m钢筋直径12mm间距150mmω1s,max=1.594693mm跨中最大弯矩S=S Gk+S Qik=50.80054kN·m钢筋直径12mm间距150mmω2s,max=0.438167mm。

地下室外墙计算

地下室外墙计算
为了满足抗渗要求,地下室外墙(以下简称外墙)的厚度一般不应小于250mm,混凝土强度等级常用C20~C30。
1. 荷载:竖向荷载有上部及各层地下室顶板传来的荷载和外墙自重;水平荷载有室外地坪活荷载、侧向土压力、地下水压力、人防等效静荷载。
(1) 室外地坪活荷载:一般民用建筑的室外地面(包括可能停放消防车的室外地面),活荷载可取5kN/m2。有特殊较重荷载时,按实际情况确定。(京院技措2.0.6)
a》 水平筋:外墙按连续梁计算时,水平筋为构造。但当外墙较长时,考虑到混凝土硬化过程及温度影响产生收缩裂缝的现象极为普遍,水平筋配筋率宜适当加大,宜采用变形钢筋,直径宜小间距宜密,最大间距不宜大于200mm。
b》 外墙根部节点:一般外墙厚度远小于基础底板,底板计算时在外墙端常按铰支座考虑,外墙计算时在底板端常按固端考虑,所以底板上下钢筋伸至外墙外侧即可,端头不必设弯钩。外墙外侧竖向钢筋在底板底部弯后直段长度满足与底板下筋搭接要求,即可形成对外墙的嵌固。
地面活荷载对外墙产生的压力为沿墙高度方向的均布荷载Px,
Px=qx.Ka= qx/3, qx为地面活荷载
(2)水压力:水位高度可按最近3~5年的最高水位确定,不包括上层滞水。(京院技措3.1.8)
(3)土压力:a. 当地下室采用大开挖方式,无护坡桩或连续墙支护时,地下室外墙承受的土压力宜取静止土压力,土压力系数K0,对一般固结土可取K0=1-sinφ(φ为土的有效内摩擦角),一般情况可取0.5。(京院技措2.0.16)
6. 外墙保护层厚度:按〈地下工程防水技术规范〉50108-2001-4.1.6条,“迎水面钢筋保护层厚度不应小于50mm。”为强制性条文。但实际操作有困难之处。一方面外墙截面有效厚度损失较大,另一方面外墙一般较厚,且拆模早,养护困难。施工单位为了避免开裂,在50mm厚保护层内附加Φ8@200构造筋,与外墙受力筋间距很小,垂直浇捣混凝土困难。按〈混凝土结构设计规范〉50010-2002,外墙外侧环境类别为“二b”,内侧“二a”,据此,外侧保护层厚度25mm,内侧20mm。也是强制性条文。按〈混凝土结构设计规范〉执行。

地下室外墙荷载计算

地下室外墙荷载计算

地下室外墙荷载计算在建筑结构设计中,地下室外墙荷载的计算是一个至关重要的环节。

准确计算地下室外墙所承受的荷载,对于保证地下室的结构安全、稳定性以及经济性都具有重要意义。

地下室外墙所承受的荷载主要包括土压力、水压力、地面活荷载以及地下室内部的使用荷载等。

下面我们将对这些荷载分别进行探讨和计算。

土压力是地下室外墙所承受的主要荷载之一。

土压力的计算方法有多种,常见的有朗肯土压力理论和库仑土压力理论。

朗肯土压力理论假定挡土墙墙背竖直、光滑,填土表面水平且无限延伸。

在这种情况下,主动土压力系数和被动土压力系数可以通过公式计算得出。

库仑土压力理论则考虑了墙背的倾斜、粗糙以及填土面的倾斜等实际情况,计算相对较为复杂,但更接近实际。

在实际工程中,需要根据具体的地质条件、挡土墙的形状和施工条件等因素选择合适的土压力计算理论。

同时,还需要考虑土的物理力学性质,如内摩擦角、粘聚力和重度等。

对于分层填土的情况,需要分别计算各层土的土压力,并进行叠加。

水压力也是地下室外墙不可忽视的荷载。

当地下水位高于地下室底板时,外墙将承受水压力的作用。

水压力的大小取决于地下水位的高度和水的重度。

通常情况下,水压力可以按照静水压力进行计算,即水压力等于水的重度乘以地下水位到计算点的深度。

然而,在实际情况中,地下水的流动可能会导致水压力的分布不均匀。

对于渗透性较强的土层,还需要考虑渗流力的影响。

此外,如果地下室采用了止水帷幕或降水措施,水压力的计算也需要相应调整。

地面活荷载是指地下室顶部地面上可能作用的各种荷载,如车辆荷载、人群荷载等。

在计算时,需要根据建筑的使用功能和所在地区的规范要求确定地面活荷载的取值。

一般来说,可以将地面活荷载等效为均布荷载作用在地下室外墙上。

除了上述外部荷载,地下室内部的使用荷载也会对地下室外墙产生影响。

例如,地下室可能用作停车场、仓库或设备间等,内部的车辆、货物和设备的重量会通过楼板传递到外墙。

这些荷载的大小和分布需要根据具体的使用情况进行分析和计算。

关于地下室外墙的计算

关于地下室外墙的计算
荷载设计值:以前的算法地面活荷载取1.4外,其他包括水压力均取1.2。现依据《建筑结构荷载规范,当活荷载占总荷载之比值不大于20%时,γG=1.35, γQ=1.40,ΨC=0.7,综合分析后外墙各项荷载分项系数均取1.30。
3. 计算简图: (1) 地下室无横墙或横墙间距大于层高2倍时,其底部与刚度很大的基础底板或基础梁相连,可认为是嵌固端;顶部的支座条件应视主体结构形式而定。当与外墙对应位置的主体结构墙为剪力墙时,首层墙体与地下一层外墙连续,可以对外墙形成一定的约束。但是,主体结构的外墙往往开有较大的门窗洞口,其对外墙的约束很有限。当主体结构为框架类结构(包括纯框架和框剪)时,外墙仅与首层底板相连,首层底板相对于外墙而言平面外刚度很小,对外墙的约束很弱。所以,外墙顶部应按铰接考虑。地下室中间层可按连续铰支座考虑。这样,地下室外墙就如同下端嵌固、上端铰支的连续梁。 (2) 地下室内横墙较多且间距不大于层高2倍时,地下室外墙就如同下端嵌固、上端铰支的连续双向板。 (3) 地下室无横墙但外墙上有附壁柱时,除非柱设计时考虑了外墙传来的水平荷载,否则该柱不应作为外墙的支座,仍应按(1)考虑。 (4) 有的工程基础底板上有较厚的覆土,这时最下层外墙的计算高度应视该层地面做法而定。如为混凝土面层较厚的刚性地面,且在基坑肥槽回填之前完成地面做法,则外墙计算高度可算至地下室地坪。而实际施工顺序往往是出地面后肥槽立即回填,而地下室地面在完成机电管线布置后才施工,相隔很长时间。这种情况下,外墙计算高度就应算至底板上皮。为了减小外墙计算高度,可在外墙根部与基础底板交接处覆土厚度范围内设八字角,并配构造钢筋,作为外墙根部的加腋,加腋坡度按1:2。这时外墙计算高度仍可算至地下室地坪。
第二、关于裂缝控制,裂缝控制时应该对应于荷载的标准组合,而承载力控制时对应于基本组合,且对于地下室的话,土压力(恒载)占绝大部分,因此基本组合荷载值一般都是标准组合荷载值的1.3倍以上,两种情况下算出的侧壁所需的含钢量和厚度应该是差不多的。且对于裂缝控制工况,我觉得支座负弯矩不应该调幅。

地下室外墙的计算

地下室外墙的计算

地下室外墙(挡土墙)的计算1 计算方法1、1计算简图①根据墙板长边与短边支承长度的比例关系,地下室外墙(挡土墙)、窗井外墙按双向板或单向板计算。

②对单层或多层地下室外墙,当基础底板厚度不小于墙厚时,可按底边固结于基础、顶边铰接于地下室顶板的单跨或连续板计算。

当基础底板厚度小于墙厚时,底边按铰接计算。

窗井外墙顶边按自由计算。

墙板两侧根据实际情况按固结或铰接考虑。

③墙板的支承条件应符合实际受力状态,作为墙板支座的基础与内墙(或扶壁柱),其内力与变形应满足设计要求。

1、2计算荷载图一地下室外墙压力分布地下室外墙承受竖向荷载与水平荷载。

竖向荷载包括地下室外墙自重、上部建筑(结构构件与围护构件)竖向荷载、地下室各层楼板传递的竖向荷载。

水平荷载包括土压力(地下水位以下为土水混合压力)、地下水压力、室外地面活荷载引起的侧压力、人防外墙等效静荷载。

2计算中需注意的问题2.1《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)[1]第5、8、11条与《北京市建筑设计技术细则-结构专业》(2005版)[2]第2、1、6条对室外地面活荷载,建议取5kN/m2(包括可能停放消防车的室外地面)。

该规定适用于有上部结构的地下室外墙,且当考虑消防车时消防车重不超过30吨。

其出发点就是行车道距离建筑物外墙总就是有一定距离的,即一般情况下汽车不可能紧贴上部建筑外墙行驶(《城市居住区规划设计规范》、《建筑设计防火规范》等对室外行车道距离建筑物外墙的距离有明确规定),消防车更不可能紧贴上部建筑外墙进行消防扑救(因消防云梯车在工作时受云梯高度与仰角的制约必须与建筑物外墙保持一定距离)。

但就是,对于没有上部结构的纯地下车库,或处于上部结构范围之外的地下室外墙,以及消防车重超过30吨的,笼统地按5kN/m2计算就是有问题的,应当根据车道与地下室外墙的位置关系、地下室顶板覆盖层厚度及其应力扩散角、车辆轮压按实际情况计算。

2.2文[1]第5、8、5条计算水压力时,当勘察报告提供了地下室外墙水压力分布时,按勘察报告计算;当勘察报告未提供时,可取历史最高水位与近3~5年的最高水位的平均值(水位高度包括上层滞水),水压力按静止压力直线分布计算。

地下室外墙(挡土墙)的计算

地下室外墙(挡土墙)的计算

精心整理地下室外墙(挡土墙)的计算1计算方法1.1计算简图①根据墙板长边与短边支承长度的比例关系,地下室外墙(挡土墙)、窗井外墙按双向板或单向板计算。

②对单层或多层地下室外墙,当基础底板厚度不小于墙厚时,可按底边固结于基础、顶边铰接于地下室顶板的单跨或连续板计算。

当基础底板厚度小于墙厚时,底边按铰接计算。

1.222.12(包(《城,重超过2.2告未提供时,可取历史最高水位和近3~5年的最高水位的平均值(水位高度包括上层滞水),水压力按静止压力直线分布计算。

则相对更为简化,要求验算地下室外墙承载力时,水位高度可按最近3~5年的最高水位(水位高度包括上层滞水)。

如果勘察报告提供了抗浮设计水位,在计算地下室外墙承载力时应按抗浮设计水位计算。

2.3 计算地下室外墙土压力时,对采用大开挖方式施工的地下室,当没有护坡桩或连续墙支护时,地下室外墙土压力取静止土压力。

《建筑地基基础设计规范GB50007-2011》静止土压力系数宜通过试验测定,当无试验条件时,对正常固结土,静止土压力系数可按表24估算。

静止土压力系数K=1-sin φ(φ为土的内摩擦角)。

当基坑支护采用护坡桩或连续墙时,除考虑支护结构和地下室外墙共同作用的情况外,地下室外墙土压力按静止土压力系数K 乘以折减系数0.66计算(文[1]第5.8.11条,文[2]第2.1.16条)。

例如,北京地区静止土压力系数K 一般取0.5,乘以折减系数0.66后即为0.33。

2.4计算地下水位以下土对地下室外墙的侧压力时,土的重度应取有效重度。

有效重度=饱和重度-水重度(取10kN/m3),不应用天然重度减去水重度计算有效重度。

当岩土工程勘查报告只提供了土的天然重度而没有提供饱和重度时,可根据报告提供的土粒比重(土粒相对密度)和孔隙比求出饱和重度,即:饱和重度=[(土粒比重-1)/(1+孔隙比)]×水重度有效重度一般在8~13kN/m3。

北京地区一般第四纪土的有效重度可取11kN/m3。

地下室外墙及水池侧壁的计算方法(全文)

地下室外墙及水池侧壁的计算方法(全文)

地下室外墙及水池侧壁的计算方法(全文)一:正式风格地下室外墙的计算方法1. 概述地下室外墙的计算方法是为了确保地下室外墙的结构安全可靠,同时满足建筑设计的需求。

本文介绍地下室外墙的计算方法,包括结构设计、材料选择、荷载计算等方面的内容。

2. 结构设计2.1 地下室外墙的厚度设计2.2 地下室外墙的抗倾覆计算2.3 地下室外墙的抗震设计3. 材料选择3.1 地下室外墙的材料要求3.2 地下室外墙的防水材料选择3.3 地下室外墙的保温材料选择4. 荷载计算4.1 地下室外墙的横向荷载计算4.2 地下室外墙的纵向荷载计算4.3 地下室外墙的稳定荷载计算5. 相关附件本文涉及的附件包括地下室外墙结构设计图纸、地下室外墙的材料规格等。

详情请参见附件。

6. 法律名词及注释6.1 土建工程设计规范:指土地建设工程设计过程中,需要遵循的相关法律法规和技术规范。

6.2 地下室外墙的荷载:指地下室外墙承受的各种力,包括垂直荷载、水平荷载等。

本文介绍了地下室外墙的计算方法,包括结构设计、材料选择和荷载计算等方面的内容。

希望本文对相关从业人员提供参考,并确保地下室外墙的结构安全可靠。

---二:活泼风格水池侧壁的计算方法1. 概述水池侧壁的计算方法是为了确保水池侧壁的稳定性和结构安全。

本文详细介绍水池侧壁的计算方法,包括荷载计算、防渗设计、保护措施等内容,为水池侧壁的设计与施工提供指导。

2. 荷载计算2.1 水压荷载的计算2.2 水土荷载的计算2.3 地震荷载的计算3. 防渗设计3.1 水池侧壁的防渗材料选择3.2 防渗层的厚度计算3.3 防渗层的施工要求4. 保护措施4.1 水池侧壁的防腐保护4.2 水池侧壁的防冻措施4.3 水池侧壁的防蚀设计5. 相关附件本文涉及的附件包括水池侧壁设计图纸、防渗层施工工艺等。

详情请参见附件。

6. 法律名词及注释6.1 水池侧壁的稳定性:指水池侧壁结构在水压力和外部荷载作用下的安全性。

地下室外墙挡土墙的计算

地下室外墙挡土墙的计算

地下室外墙挡土墙的计算1.挡土墙的稳定性计算:挡土墙的稳定性计算主要考虑挡土墙的抗倾覆能力和抗滑移能力。

在计算抗倾覆能力时,需要考虑挡土墙和土体的重心位置、土壤的强度特性以及挡土墙的几何形状等因素。

常用的方法有平衡法、极限平衡法和荷载线法等。

在计算抗滑移能力时,需要考虑土壤的内摩擦角、挡土墙下方土体的水平地表投影面积以及地震作用等因素。

常用的方法有摩擦圆形法、规划法和剪力面法等。

2.挡土墙的抗震性设计:地下室外墙挡土墙在地震作用下容易发生破坏,因此需要进行抗震性设计。

设计时需要考虑挡土墙的水平地震作用力、地震剪切力以及离心力等因素。

常用的方法有地震力法和离心力法等。

在挡土墙的设计中,还需要采用抗震加固措施,如设置加固墙、增加钢筋等。

3.挡土墙的排水系统设计:地下室外墙挡土墙需要设置排水系统,以避免土水压力对挡土墙的破坏。

排水系统可以采用土工合成材料、排水板等。

其中,土工合成材料是一种能够保持良好排水性能和抗腐蚀性能的材料。

排水板也是一种常用的排水系统,可以有效排除土壤中的水分。

4.挡土墙的结构设计:地下室外墙挡土墙的结构设计需要考虑挡土墙的高度和宽度、墙体厚度以及使用材料等。

挡土墙的高度应根据土壤类型和地下室的布置情况决定,同时需要考虑土壤斜坡的稳定性。

挡土墙的宽度可以根据需求和土壤类型确定,通常需要满足挡土墙稳定性和排水性能的要求。

挡土墙的墙体厚度一般为200mm以上,需要根据施工要求和结构设计进行确定。

挡土墙的使用材料一般使用混凝土或砖石等。

综上所述,地下室外墙挡土墙的计算需要考虑挡土墙的稳定性、抗震性以及排水系统的设计等因素。

根据地下室的布置情况和土壤特性,可以采用适当的方法和措施进行设计。

砌体地下室外墙(挡土墙)验算:

砌体地下室外墙(挡土墙)验算:

砌体地下室外墙(挡土墙)验算:【正文】砌体地下室外墙(挡土墙)验算1. 引言砌体地下室外墙(挡土墙)是建筑工程中用来抵御土压力、桩基水压和地下水的一种结构墙体。

本文旨在提供详细的验算方法和步骤,以确保砌体地下室外墙(挡土墙)的结构安全和稳定。

2. 地基条件在开始砌体地下室外墙(挡土墙)的验算之前,需要详细了解地基条件。

包括地下水位、土壤类型、土层厚度、土壤分类等参数。

3. 地下水位与土压力计算根据地下水位和土层厚度,计算土压力的大小。

考虑在地基中可能存在的不同土层,采用等效土层法进行土压力的计算。

4. 挡土墙的结构设计砌体地下室外墙(挡土墙)的结构设计是确保其稳定性和承载能力的关键。

需考虑墙体的高度、宽度、厚度、墙身坚固程度等参数,以满足承受土压力和地下水压力的要求。

5. 墙体荷载的计算考虑到墙体承受的其他荷载,如冲击力、风载和地震力等因素,对墙体荷载进行详细计算。

6. 抗倾覆验算由于挡土墙在承受土压力时可能发生倾覆,需要对其进行抗倾覆验算。

通过计算倾覆稳定性系数,确定挡土墙的设计安全性。

7. 挡土墙的加固措施针对砌体地下室外墙(挡土墙)在验算中可能出现的安全隐患,提出相应的加固措施和建议。

8. 结构施工方案提供详细的结构施工方案,包括挡土墙的砌筑方法、材料选用、连接件的设置等,以确保施工质量和结构稳定。

9. 扩展内容1)本所涉及的附件如下:附件1:地基条件调查报告附件2:土压力计算表格附件3:挡土墙结构设计图纸附件4:墙体荷载计算表格附件5:倾覆验算计算表格附件6:挡土墙加固方案2)本所涉及的法律名词及注释:法律名词1:地基条件调查 - 指对建筑工程所在地的地基情况进行调查的活动。

法律名词2:土层厚度 - 土壤层的垂直厚度,用于计算土压力。

法律名词3:倾覆稳定性系数 - 用于评价挡土墙抗倾覆能力的指标。

地下室外墙计算书(纯手算)

地下室外墙计算书(纯手算)

地下室外墙计算书(纯手算)地下室外墙计算书(纯手算)一:设计要求1.1 墙体高度:5米1.2 墙体长度:20米1.3 墙体厚度:0.5米1.4 墙体材料:砖混结构二:风载荷计算2.1 风压标准值:0.8kN/m²2.2 风压高度变化系数:0.852.3 风荷载计算公式:F = 0.5 × C × P × A其中,F为风荷载,C为风压高度变化系数,P为风压标准值,A为墙体面积三:水压力计算3.1 地下水位高度:2.5米3.2 地下水压力计算公式:P = γ × H × A其中,P为水压力,γ为水的密度,H为水位高度,A为墙体面积四:自重计算4.1 砖的单位体积重量:20kN/m³4.2 混凝土的单位体积重量:25kN/m³4.3 墙体自重计算公式:G = A × [(t1 × γ1) + (t2 × γ2)]其中,G为墙体自重,A为墙体面积,t1、t2分别为砖和混凝土的厚度,γ1、γ2分别为砖和混凝土的单位体积重量附录:计算表格、技术图纸法律名词及注释:1. 风载荷:指风力作用在建筑物表面的力量2. 风压标准值:根据地区气象条件和建筑物高度确定的一定值3. 风压高度变化系数:考虑建筑物风压分布随高度变化的系数4. 水压力:指地下水对建筑物墙体施加的力量5. 砖混结构:指由砖和混凝土组成的建筑结构体系6. 自重:指建筑物结构本身所产生的重力地下室外墙计算书(纯手算)一:设计要求1.1 墙体高度:4米1.2 墙体长度:15米1.3 墙体厚度:0.4米1.4 墙体材料:钢筋混凝土结构二:风载荷计算2.1 风压标准值:1.2kN/m²2.2 风压高度变化系数:0.92.3 风荷载计算公式:F = 0.5 × C × P × A其中,F为风荷载,C为风压高度变化系数,P为风压标准值,A为墙体面积三:水压力计算3.1 地下水位高度:3.5米3.2 地下水压力计算公式:P = γ × H × A其中,P为水压力,γ为水的密度,H为水位高度,A为墙体面积四:自重计算4.1 钢筋混凝土的单位体积重量:24kN/m³4.2 墙体自重计算公式:G = A × t × γ其中,G为墙体自重,A为墙体面积,t为墙体厚度,γ为钢筋混凝土的单位体积重量附录:计算表格、技术图纸法律名词及注释:1. 风载荷:指风力作用在建筑物表面的力量2. 风压标准值:根据地区气象条件和建筑物高度确定的一定值3. 风压高度变化系数:考虑建筑物风压分布随高度变化的系数4. 水压力:指地下水对建筑物墙体施加的力量5. 钢筋混凝土结构:指由钢筋和混凝土组成的建筑结构体系6. 自重:指建筑物结构本身所产生的重力。

地下室外墙(挡土墙)的计算

地下室外墙(挡土墙)的计算

地下室外墙(挡土墙)的计算1 计算方法1.1计算简图①根据墙板长边与短边支承长度的比例关系,地下室外墙(挡土墙)、窗井外墙按双向板或单向板计算。

②对单层或多层地下室外墙,当基础底板厚度不小于墙厚时,可按底边固结于基础、顶边铰接于地下室顶板的单跨或连续板计算.当基础底板厚度小于墙厚时,底边按铰接计算。

窗井外墙顶边按自由计算。

墙板两侧根据实际情况按固结或铰接考虑。

③墙板的支承条件应符合实际受力状态,作为墙板支座的基础和内墙(或扶壁柱),其内力和变形应满足设计要求.1.2计算荷载图一地下室外墙压力分布地下室外墙承受竖向荷载和水平荷载.竖向荷载包括地下室外墙自重、上部建筑(结构构件和围护构件)竖向荷载、地下室各层楼板传递的竖向荷载。

水平荷载包括土压力(地下水位以下为土水混合压力)、地下水压力、室外地面活荷载引起的侧压力、人防外墙等效静荷载。

2计算中需注意的问题2.1《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)[1]第5.8.11条和《北京市建筑设计技术细则-结构专业》(2005版)[2]第2.1。

6条对室外地面活荷载,建议取5kN/m2(包括可能停放消防车的室外地面)。

该规定适用于有上部结构的地下室外墙,且当考虑消防车时消防车重不超过30吨.其出发点是行车道距离建筑物外墙总是有一定距离的,即一般情况下汽车不可能紧贴上部建筑外墙行驶(《城市居住区规划设计规范》、《建筑设计防火规范》等对室外行车道距离建筑物外墙的距离有明确规定),消防车更不可能紧贴上部建筑外墙进行消防扑救(因消防云梯车在工作时受云梯高度和仰角的制约必须与建筑物外墙保持一定距离)。

但是,对于没有上部结构的纯地下车库,或处于上部结构范围之外的地下室外墙,以及消防车重超过30吨的,笼统地按5kN/m2计算是有问题的,应当根据车道与地下室外墙的位置关系、地下室顶板覆盖层厚度及其应力扩散角、车辆轮压按实际情况计算。

2.2文[1]第5。

地下室外墙计算(按悬臂适合坡道外墙)

地下室外墙计算(按悬臂适合坡道外墙)
地下室外墙计算书
WQ-11
混凝土标号C
30
钢筋强度设计值为(N/mm2)fy=
300
室内外高差(m) H1=
0.6
地下水位标高(m) H2=
0.5
地下室层高(m) H=
3.1
故取外墙厚度hw(m)
0.3
土有效内摩擦角 φ'=
22
土的重度(KN/m3) r=
18
地面堆载(KN/m2) qo=
10
混凝土强度fc= 混凝土抗拉强度标准值 ft= 混凝土抗拉强度标准值 ftk= 钢筋弹性模量(N/m2) Es=
剪力承载力(kN)Vd= 0.7*βh*ft*b*ho=
0.63 0.21
171.62 1.13% 1.13% 0.43 0.43 0.1710
32.52 1
270.27
满足要求
<0.2 满足 >V 满足
故取有效配筋率 ρte= (当ρte<0.01时取0.01) 钢筋应变的不均匀系数 ψ= GB50010-2002式(8.1.2-2)
故取不均匀系数 ψ= (0.2≤ψ≤1) 最大裂缝宽度(mm) ωmax= GB50010-2002式(8.1.2-1)
底部剪力(kN) V= 5/8*(P2-P0)+2/5*P0= 截面高度影响系数βh= (800/ho)^0.25>1=
14300 1.43 2.01 200000
静止土压力系数 K= 地下水重度(KN/m3) rw= 土浮重度(KN/m3)ro=
0.63 10 8
1. 土压力计算
活载等效土压力(kN/m) Po= 1.4*0.7*P0*K=
土压力(kN/m) P1= P0+1.35*K*H2*γ=

地下室外墙的计算

地下室外墙的计算

地下室外墙的计算在建筑工程中,地下室外墙的设计和计算是一个至关重要的环节。

它不仅要承受来自土壤、地下水等外部环境的压力,还要保证建筑物的整体稳定性和安全性。

下面,我们就来详细探讨一下地下室外墙的计算方法和相关要点。

首先,我们需要明确地下室外墙所承受的荷载。

一般来说,主要包括土压力、水压力、地面超载以及地下室内部的使用荷载等。

土压力是其中最为重要的荷载之一,它的大小和分布受到土壤类型、地下水位、墙的位移模式等多种因素的影响。

在计算土压力时,常用的理论有朗肯土压力理论和库仑土压力理论。

朗肯土压力理论基于土的极限平衡条件,计算较为简单,但对于墙背倾斜、粗糙等情况适用性有限;库仑土压力理论则考虑了墙背与填土之间的摩擦作用,适用范围更广,但计算相对复杂。

实际工程中,需要根据具体情况选择合适的土压力计算理论。

水压力的计算也不容忽视。

如果地下水位较高,水压力会对地下室外墙产生较大的作用。

通常情况下,水压力可以按照静水压力进行计算,即与地下水位的高度成正比。

但在一些特殊情况下,如存在渗流等,还需要考虑动水压力的影响。

地面超载是指地面上的车辆、人群等对地下室顶板产生的荷载,通过顶板传递到地下室外墙上。

这部分荷载的大小和分布需要根据实际情况进行合理的估计。

除了上述外部荷载,地下室内的使用荷载,如货架、设备等,也会对地下室外墙产生一定的作用。

在计算时,需要将这些荷载与外部荷载进行组合,以确定最不利的受力情况。

在确定了荷载之后,接下来就是对地下室外墙进行内力分析。

常见的计算模型有单向板和双向板两种。

对于长度较大的地下室外墙,可以简化为单向板进行计算,只考虑垂直于墙长方向的弯矩和剪力;而对于长宽比较小的情况,则需要按照双向板进行计算,同时考虑两个方向的内力。

在计算弯矩时,需要根据墙的支承条件和荷载分布情况选择合适的计算方法。

如果墙的上下端均为固定支承,可以采用连续梁的计算方法;如果一端固定、一端简支,则需要采用相应的简支梁或悬臂梁的计算方法。

地下室外墙计算原理及方法

地下室外墙计算原理及方法

地下室外墙计算原理及方法地下室外墙的力学计算原理主要包括受力分析和变形分析两个方面。

受力分析是指通过分析外墙受到的各种力,包括水压力、土压力、荷载力等,判断外墙的受力情况和受力强度。

变形分析是指通过分析外墙的变形情况,包括水平变形和竖向变形等,判断外墙的稳定性和变形控制。

地下室外墙的力学计算方法主要包括静力计算和动力计算两种方法。

静力计算是指通过受力分析和变形分析,采用弹性力学和塑性力学的理论和方法,计算地下室外墙的受力和变形。

动力计算是指通过频率分析和地震响应分析,采用结构地震学的理论和方法,计算地下室外墙在地震作用下的响应和稳定性。

地下室外墙的抗震计算方法主要包括静力方法和动力方法两种方法。

静力方法是指通过受力分析和变形分析,采用地震工程力学的理论和方法,计算地下室外墙在静力地震作用下的强度和稳定性。

动力方法是指通过模态分析和时程分析,采用结构动力学的理论和方法,计算地下室外墙在动力地震作用下的响应和稳定性。

在地下室外墙的计算过程中,需要考虑以下几个方面。

首先是地下室外墙的材料和结构,包括墙体的厚度、强度等。

其次是地下室外墙的受力情况,包括各种力的大小和方向,以及受力点的位置。

然后是地下室外墙的变形情况,包括水平变形和竖向变形。

最后是地下室外墙的抗震性能,包括地震作用下的响应和稳定性。

在计算地下室外墙时,需要使用一些工程软件和工具,包括CAD绘图软件、结构分析软件、地震响应分析软件等。

同时,还需要参考相关的国家标准和规范,比如《建筑抗震设计规范》、《地下工程设计规范》等。

总之,地下室外墙的计算原理和方法是力学计算原理、力学计算方法和抗震计算方法。

在计算过程中需要考虑材料和结构、受力情况、变形情况和抗震性能等方面。

同时还需要使用工程软件和工具,并参考相关的标准和规范。

地下室外墙的计算是确保地下室稳定和安全的重要工作,需要严谨和专业的处理。

地下室外墙计算(绝对经典)

地下室外墙计算(绝对经典)

地下室外墙计算(绝对经典)地下室外墙计算1.引言地下室外墙计算是在建造设计与施工中至关重要的一部份,它涉及到地下室的结构稳定性和保温性能。

本文将通过细致的章节分解和详细的内容描述,为您提供一份最新最全的地下室外墙计算模板。

2.设计要求在地下室外墙的计算中,需要考虑以下设计要求:2.1 承载力要求:地下室外墙需要能够承受地下水压力和地下室内外的差异温度引起的应力。

2.2 抗渗透性要求:地下室外墙需要具备良好的抗渗透性能,以防止地下水渗入地下室内部。

2.3 保温隔热要求:地下室外墙需要提供良好的保温隔热效果,以减少能量损失和提高室内舒适度。

3.设计步骤在进行地下室外墙计算时,需要按照以下步骤进行:3.1 地下水压力计算:根据地下水位和土壤力学参数,计算出地下室外墙所承受的地下水压力。

3.2 墙体受力分析:根据地下水压力和墙体结构进行受力分析,确定墙体的受力状态。

3.3 墙体尺寸设计:根据墙体受力分析结果,设计出合适的墙体尺寸,包括墙体厚度、高度等。

3.4 材料选型:根据设计要求和墙体受力分析结果,选择适合的材料,包括墙体材料和保温材料。

3.5 施工方案设计:根据地下室外墙的具体情况,设计出合理的施工方案,包括施工顺序、施工工艺等。

4.附件本涉及的附件如下:附件一:地下室外墙施工图纸附件二:地下室外墙结构计算表格附件三:地下室外墙施工工艺说明书5.法律名词及注释本涉及的法律名词及其注释如下:5.1 土建工程设计规范:国家出版的建造设计规范,包括土建工程的设计要求和技术规范。

5.2 地下室设计规范:国家出版的地下室设计规范,包括地下室结构设计和施工要求等。

5.3 施工工艺规范:国家发布的建造施工工艺规范,包括施工流程、安全要求等。

6.结语通过本,我们详细介绍了地下室外墙计算的设计要求、步骤和附件内容。

相信这份将对您在地下室外墙计算中提供。

如果还有任何问题或者需要进一步解释,请随时连系我们。

关于地下室外墙应如何计算

关于地下室外墙应如何计算

关于地下室外墙应如何计算1计算方法1.1计算简图(1)根据墙板长边与短边支承长度的比例关系,地下室外墙(挡土墙)、窗井外墙按双向板或单向板计算.(2)对单层或多层地下室外墙,当基础底板厚度不小于墙厚时,可按底边固结于基础、顶边铰接于地下室顶板的单跨或连续板计算;当基础底板厚度小于墙厚时,底边可按铰接计算或按弯矩平衡计算.不论采用何种计算简图,均应采用适宜的构造做法.窗井外墙顶边按自由计算.墙板两侧根据实际情况按固结或铰接考虑.(3)墙板的支承条件应符合实际受力状态,作为墙板支座的基础和内墙(或扶壁柱),其内力和变形应满足设计要求.1.2计算荷载地下室外墙承受竖向荷载和水平荷载.竖向荷载包括地下室外墙自重、上部建筑(结构构件和围护构件)竖向荷载、地下室各层楼板传递的竖向荷载.水平荷载包括土压力(地下水位以下为土水混合压力)、地下水压力、室外地面活荷载引起的侧压力、人防外墙等效静荷载.2计算中需注意的问题(1)《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)第5.8.11条和《北京市建筑设计技术细则-结构专业》(2005版)第2.1.6条对室外地面活荷载,均建议取5kN/m2(包括可能停放消防车的室外地面).该规定对于有上部结构的地下室外墙是适用的,且当考虑消防车时消防车重不超过30吨.其出发点是行车道距离建筑物外墙是有一定距离的,即一般情况下汽车不可能紧贴上部建筑外墙行驶(《城市居住区规划设计规范》、《建筑设计防火规范》等对室外行车道距离建筑物外墙的距离有明确规定),消防车更不可能紧贴上部建筑外墙进行消防扑救(因消防云梯车在工作时受云梯高度和仰角的制约必须与建筑物外墙保持一定距离).对于没有上部结构的地下车库外墙,或处于上部结构范围之外的地下室外墙,以及消防车重超过30吨的,若笼统地按5kN/m2计算就可能因地面荷载取值偏小而引起结构安全问题.这时候应当根据车道与地下室外墙的位置关系、地下室顶板覆盖层厚度及其应力扩散角、车辆轮压分布按实际情况计算.(2)《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)第5.8.5条计算水压力时,当勘察报告提供了地下室外墙水压力分布时,按勘察报告计算;当勘察报告未提供时,可取历史最高水位和近3~5年的最高水位的平均值(水位高度包括上层滞水),水压力按静止压力直线分布计算.《北京市建筑设计技术细则-结构专业》(2005版)第3.1.8条则相对更为简化,要求验算地下室外墙承载力时,水位高度可按最近3~5年的最高水位(水位高度包括上层滞水).当勘察报告缺少对地下水变化规律的描述,或勘察报告依据的场地标高与设计目标的差别可能影响设计结果时,应请勘察单位补充说明.如果勘察报告提供了抗浮设计水位,在计算地下室外墙承载力时应按抗浮设计水位计算.(3)计算地下室外墙土压力时,对采用大开挖方式施工的地下室,当没有护坡桩或连续墙支护时,地下室外墙土压力取静止土压力.《建筑地基基础设计规范GB50007-2011》第9.3.2条的条文说明指出,静止土压力系数宜通过试验测定,当无试验条件时,对正常固结土,静止土压力系数可按表24估算.静止土压力系数K=1-sinφ(φ为土的内摩擦角).当基坑支护采用护坡桩或连续墙时,除考虑支护结构和地下室外墙共同作用的情况外,地下室外墙土压力按静止土压力系数K乘以折减系数0.66计算(《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)第5.8.11条,《北京市建筑设计技术细则-结构专业》(2005版)第2.1.16条).例如,北京地区静止土压力系数K一般取0.5,乘以折减系数0.66后即为0.33.(4)计算地下水位以下土对地下室外墙的侧压力时,土的重度应取有效重度:有效重度=饱和重度-水重度(水的重度取10kN/m3).注意,不能用天然重度减去水重度来计算有效重度,这是错误的概念.当勘查报告只提供了土的天然重度而没有提供饱和重度时,可根据报告提供的土粒比重(土粒相对密度)和孔隙比求出饱和重度,即:饱和重度=[(土粒比重-1)/(1+孔隙比)]×水重度,或根据勘察报告提供的其他参数计算有效重度,必要时应请勘察单位补充.有效重度一般在8~13kN/m3,北京地区一般第四纪土的有效重度可取11kN/m3.(5)《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)第5.8.11条提出,配筋计算时,地下室外墙的侧向压力分项系数取1.3.这是指在完成荷载组合之后,对其荷载效应乘以该分项系数,适用于仅考虑水平荷载的情况.从受力状态上讲,地下室外墙属于压弯构件,同时存在水平荷载和竖向荷载.一般情况下,地下室外墙计算时可以忽略竖向荷载作用,是因为竖向荷载引起的效应在荷载效应组合中所占比例很低,对配筋结果的影响很小.但是对于地下室外墙上部有较大荷载的情况,例如地下室外墙与上部结构剪力墙相连的情况,当竖向荷载较大已经不可忽略时,仍应按恒、活荷载效应的比例确定具体分项系数,按压弯构件计算,并与按纯弯计算的结果比较,选较大值作为配筋设计的依据.(6)计算地下室外墙配筋时,如果考虑地下室外墙扶壁柱的支承作用,就必须考虑按外墙传递的荷载计算扶壁柱的内力和变形.当扶壁柱与上部结构框架柱相连时,扶壁柱的内力要考虑上部结构的整体作用.当上部结构的柱距较大时,可在地下室外墙加设扶壁柱,用以减小墙板的跨度,进而减小扶壁柱承担的水平荷载.当扶壁柱承担较大的上部结构传递的竖向荷载时,应按压弯构件计算.当扶壁柱承担的竖向荷载较小时,例如仅地下室设置的扶壁柱,可按底端固结、顶端连续的竖向单跨梁(或连续梁)计算.(7)对剪力墙结构的地下室挡土墙,应尽可能利用垂直于外墙方向的剪力墙作为外墙板的支座,按双向板计算配筋.对框架结构的地下室挡土墙,按竖向单向板计算配筋较为稳妥.挡土墙配筋可以采用通长钢筋+附加短筋(竖向、水平或两者兼有)的方式,而不必一律通长,可以节约钢材.对平面长度较大的窗井墙,可在其中部设置内隔墙作为窗井墙的支座,根据窗间墙长度确定工字形截面,按底部嵌固于基础、顶部铰接于地下室顶板的竖向梁计算其承载力和变形.图2设有内隔墙的窗井墙(8)根据一般民用建筑工程混凝土结构所处的环境类别,外墙外侧钢筋的混凝土保护层厚度取30mm已经足够,如无特殊需要,不必加厚.对《地下工程防水技术规范》(GB50108-2008)第4.1.7条的规定应慎重对待.设有防水层的人防外墙,混凝土保护层厚度取30mm.(2009年版全国民用建筑工程设计技术措施-防空地下室)(9)地下室外墙的厚度,当有防水要求时不小于250mm,具体厚度应根据计算确定.当为多层地下室时,其外墙可根据侧向压力、层高的大小,自下而上逐层减小墙厚,以节约混凝土和钢材.如果层高较大且室内有回填土及刚性地坪时,可以利用刚性地坪减小外墙的计算高度.此时,应要求施工时先回填室内,后回填室外,回填土的压实系数不应小于0.94.当有条件时,可在外墙根部设置加腋或地梁,用以减小外墙的计算高度.加腋或地梁的刚度应能约束外墙使之符合计算简图.当地下室外墙计算时确定底部为固结支座(即外墙固结于基础),侧壁底部与相连的基础底板应满足弯矩平衡条件,底板的抗弯能力不应小于侧壁.尤其对窗井外墙、地下车道外墙敞口段,车道侧壁等悬臂构件,要特别注意底板的抗弯能力不应小于侧壁底部.同时,对于地下室顶板开洞部位(如楼梯间、地下车道),地下室外墙顶部没有楼板支撑,应注意计算模型的支座条件和配筋构造要与实际情况相符.(10)由于一般地下室外墙所受弯矩是底部最大,因此一般竖向钢筋置于外层,水平钢筋置于内层,使挡土墙在承受水平荷载时有效高度最大,抗弯能力最高.《混凝土结构施工图平面整体表示方法制图规则和构造详图(现浇钢筋混凝土框架、剪力墙、梁、板)16G101-1》规定地下室外墙的水平筋在内层,但当设计有不同要求时,应按设计要求施工.需要注意的是,当大多数墙板的两侧弯矩相较于底端为大时,就应改变竖向钢筋和水平钢筋的内外位置,保障最大的有效高度.(11)地下室外墙的混凝土强度等级应尽量采用较低等级,以不超过C30为宜.因为混凝土强度等级越高,水泥用量越大,就越容易产生收缩裂缝.当地下室外墙(或扶壁柱)与上部结构剪力墙(或框架柱)相连时,若上部结构剪力墙(或框架柱)的混凝土强度等级高于地下室外墙的混凝土强度等级,应通过计算确定地下室外墙的混凝土强度等级,此时,不应简单地将地下室外墙的混凝土强度等级取与上部结构相同.混凝土强度等级的确定,尚应符合规范规定的环境类别.当地下室有防水要求时,根据相关规范,地下室外墙的抗渗等级应由最大水头与墙厚之比确定,且不应低于P6.3结论地下室外墙(挡土墙)既承担竖向荷载,亦承担水平荷载,经济、合理地设计地下室外墙,对结构安全、投资优化都会产生积极的影响.本文简单地讨论了地下室外墙(挡土墙)计算的相关问题,期待各位同行批评指正.。

地下室外墙挡土墙的计算

地下室外墙挡土墙的计算

地下室外墙挡土墙的计算集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]地下室外墙(挡土墙)的计算1计算方法1.1计算简图①根据墙板长边与短边支承长度的比例关系,地下室外墙(挡土墙)、窗井外墙按双向板或单向板计算。

②对单层或多层地下室外墙,当基础底板厚度不小于墙厚时,可按底边固结于基础、顶边铰接于地下室顶板的单跨或连续板计算。

当基础底板厚度小于墙厚时,底边按铰接计算。

窗井外墙顶边按自由计算。

墙板两侧根据实际情况按固结或铰接考虑。

③墙板的支承条件应符合实际受力状态,作为墙板支座的基础和内墙(或扶壁柱),其内力和变形应满足设计要求。

1.2计算荷载图一地下室外墙压力分布地下室外墙承受竖向荷载和水平荷载。

竖向荷载包括地下室外墙自重、上部建筑(结构构件和围护构件)竖向荷载、地下室各层楼板传递的竖向荷载。

水平荷载包括土压力(地下水位以下为土水混合压力)、地下水压力、室外地面活荷载引起的侧压力、人防外墙等效静荷载。

2计算中需注意的问题2.1《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)[1]第5.8.11条和《北京市建筑设计技术细则-结构专业》(2005版)[2]第2.1.6条对室外地面活荷载,建议取5kN/m2(包括可能停放消防车的室外地面)。

该规定适用于有上部结构的地下室外墙,且当考虑消防车时消防车重不超过30吨。

其出发点是行车道距离建筑物外墙总是有一定距离的,即一般情况下汽车不可能紧贴上部建筑外墙行驶(《城市居住区规划设计规范》、《建筑设计防火规范》等对室外行车道距离建筑物外墙的距离有明确规定),消防车更不可能紧贴上部建筑外墙进行消防扑救(因消防云梯车在工作时受云梯高度和仰角的制约必须与建筑物外墙保持一定距离)。

但是,对于没有上部结构的纯地下车库,或处于上部结构范围之外的地下室外墙,以及消防车重超过30吨的,笼统地按5kN/m2计算是有问题的,应当根据车道与地下室外墙的位置关系、地下室顶板覆盖层厚度及其应力扩散角、车辆轮压按实际情况计算。

地下室外墙、人防外墙计算

地下室外墙、人防外墙计算

地下室侧墙计算1:单层地下室外墙(土、水在顶板下)2:单层地下室外墙-(土、水在顶板上)3:单层地下室外墙-(土在顶板上,水在下)4:单层悬臂地下室外墙5:水池侧壁 (1)6:水池侧壁 (2)悬臂模式7:双层地下室外墙(土水顶板上)8:双层地下室外墙(土在顶板上水在-1层)9:双层地下室外墙(土在顶板上水在-2层)10:双层地下室外墙(土水均在-1层)11:双层地下室外墙(土在-1层水在-2层)12:悬臂双层地下室外墙=(土水在悬臂)修改记录一:R2版第一次修改为新规范更改:计算改进及新规范修改说明1:根据新规范,计算裂缝采用准永久组合,对挡土墙地面活荷载采用了消防车的准永久组合系数0.62:根据新规范,裂缝公式修改A,构件受力特征系数2.1改为1.9;B,当外墙水平筋在外侧时,裂缝计算公式中c考虑了水平筋3:水、土与顶板关系相同情况下的人防与非人防计算表格统一为一个表格,所以表格增加可选项确定人防还是非人防墙4:表格增加可选项确定墙体水平筋与竖向筋之间关系,计算时予以考虑5:单层地下室计算模型为下部固端,上部简支的单跨梁;悬臂墙为悬臂梁模型6:表格仅考虑弹性工作状态,不考虑塑性工作状态,即不考虑弯矩调幅7:跨中内侧弯矩为各种图形荷载弯矩最大值的简单叠加,实际情况中最大弯矩并非出现在同一位置,因此本表格对跨中弯矩8:本次表格调整了计算高度的考虑,不再简化地认为实配竖向筋直径为20,相对精确地考虑实配钢筋的最大直径,即拉通筋二:2011.11.4 修改了新版边缘构件中剪力墙配箍率中fc取值问题,小于C35时将按照C35取值-高规6.4.7及7.2.15三:2011.12.10~12.24 柱、边缘构件中L形及T字形增加了外箍和内箍直径的选项,外箍分为X向和Y向,内箍取统一数值,箍四:2011.12.111:删除抗浮验算中1.05F浮单元格批注,系数1.05引自2009年版全国民用建筑工程技术措施/结构/地基与基础》中7.1.22:增加人防封堵面顶板梁及封堵面侧边柱抗扭验算3:增加底板人防封堵翻边受力计算4:对人防门框墙as的计算中fc疏漏混凝土人防调整系数修改五:2011.12.12 根据北京市建筑设计标准化办公室2008六:2012.3.6 增加悬臂双层地下室外墙七:1:2012.3.20修改边柱与角柱抗冲切计算,当满足规范要求时角柱可按边、中柱计算,边柱可按中柱计算2:增加基础承台及无梁楼盖大分项八:2012.4.2修正人防封堵梁、柱中的梁宽错误,梁宽由1000改为梁宽b九: 2012.4.18底板倒无梁楼盖考虑集水井影响十:2012.4.20增加普通灌注桩抗裂验算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地下室外墙计算原理及方法
1、高层建筑一般都设有地下室,根据使用功能及基础埋置深度的不同要求,地下室的层数1至4层不等。

2、地下室外墙的厚度和混凝土强度等级,应根据荷载情况、防水抗渗和有关规范的构造要求确定。

《高层建筑箱形与筏形基础技术规范》(JGJ 6-99)规定,箱形基础外墙厚度不应小于250mm,混凝土强度等级不应低于C20;《人民防空地下室设计规范》(。

GB50038-05)规定,承重钢筋混凝土外墙的最小厚度为250mm,混凝土强度等级不应低于C25
地下室外墙的混凝土强度等级,考虑到由于强度等级过高混凝土的水泥用量大,容易产生收缩裂缝,一般采用的混凝土强度等级宜低不宜高,常采用C20~C30。

有的工程地下室外墙有上部结构的承重柱,此类柱在首层为控制轴压比混凝土的强度等级较高,因此在与地下室墙顶交接处应进行局部受压的验算,柱进入墙体后其截面面积已扩大,形成附壁柱,当墙体混凝土采用低强度等级,其轴压比及承载力一般也能满足要求。

3、地下室外墙所承受的荷载,竖向荷载有上部及地下室结构的楼盖传重和自重,水平荷载有地面活载、侧向土压力、地下水压力、人防等效静荷载。

风荷载或水平地震作用对地下室外墙平面内产生的内力值较小。

在实际工程的地下室外墙截面设计中,竖向荷载及风荷载或地震作用产生的内力一般不起控制作用,墙体配筋主要由垂直于墙面的水平荷载产生的弯矩确定,而且通常不考虑与竖向荷载组合的压弯作用,仅按墙板弯曲计算墙的配筋。

4、地下室外墙的水平荷载组合:见图11.12-1外墙水平荷载
(1)地面活荷载(取10KN/m2)、土侧压力;
(2)地面活荷载、地下水位以上土侧压力、地下水位以下土侧压力、水压力;
(3)上列(1)加人防等效静荷载或(2)加人防等效静荷载。

图11.12-1中的各值:见p475
荷载分项系数除地面活荷载的为1.4外,其他均为1.2。

5、地下室外墙可根据支承情况按双向板或单向板计算水平荷载作用下的弯矩。

由于地下室内墙间距不等,有的相距较远,因此在工程设计中一般把楼板和基础底板作为外墙板的支点按单向板(单跨、两跨或多跨)计算,在基础底板处按固端,顶板处按铰支座。

在与外墙相垂直的内墙处,由于外墙的水平分布钢筋一般也有不小的数量,不再另加负弯矩构造钢筋。

6、地下室外墙可按考虑塑性弯矩内力重分布计算弯矩,有利配筋构造及节省钢筋用量。

按塑性计算不仅在有外防水的墙体中采用,在考虑混凝土自防水的墙体中也可采用。

考虑塑性变形内力重分布,只在受拉区混凝土可能出现弯曲裂缝,但由于裂缝较细微不会贯通整个界面厚度,对防水仍有足够抗渗能力。

7、有窗井的地下室,为房屋基础能有有效埋置深度和有可靠的侧向约束,窗井外墙应有足够横隔墙与主体地下室外墙连接,此时窗井外侧墙应承受水平荷载(1)或(2),因为窗井外侧墙顶部敞开无顶板相连,其计算简图可根据窗井深度按三边连续一边自由,或水平多跨连续板计算。

如按多跨连续板计算时,因为荷载上下差别大,可上下分段计算弯矩确定配筋。

8、当只有一层地下室,外墙高度不满足首层柱荷载扩散刚性角(柱间中心距离大于墙的高度),或者窗洞较大时,外墙平面内在基础底板反力作用下。

应按深梁或空腹桁架验算,确定墙底部及墙顶部的所需钢筋。

当有多层地下室,或外墙高度满足了柱荷载扩散刚性角时,外墙顶部宜配置两根直径不小于20mm的水平通长构造钢筋,墙底部由于基础底板钢筋较大没有必要另配附加构造钢筋。

9、地下室外墙竖向钢筋与基础底板的连接,因为外墙厚度一般远小于基础底板,底板计算时在外墙端常按铰支座考虑,外墙在地板端计算时按固端,因此底板上下钢筋可伸至外墙外
侧,在端部可不设弯钩(底板上钢筋锚入支座按需要5d或15d就够)。

外墙外侧竖向钢筋在基础底板弯后直段长度按其搭接与地板下钢筋相连,按此构造底板端部实际已具有与外墙固端弯矩同值的承载力,工程设计时底板计算也可考虑此弯矩的有利影响。

10、当有多层地下室的外墙,各层墙厚度和配筋可以不相同。

墙的外侧竖向钢筋宜在距楼板1/4~1/3层高处接头,内侧竖向钢筋可在楼板处接头。

墙外侧水平钢筋宜在内墙间中部接头,内侧水平钢筋宜在内墙处接头。

钢筋接头当直径小于22mm时可采用搭接接头,直径等于大于22mm时宜采用机械接头或焊接。

11、地下室外墙的竖向和水平钢筋,除按计算确定外,每侧均不应小于受弯构件的最小配筋率。

当外墙长度较长时,考虑到混凝土硬化过程及温度影响可能产生收缩裂缝,水平钢筋配筋率宜适当增大。

外墙的竖向和水平钢筋宜采用变形钢筋,直径宜小间距宜密,最大间距不宜大于200mm。

外侧水平钢筋与内侧水平钢筋之间应设拉接钢筋,其直径可选6mm,间距不大于600mm梅花形布置,人防外墙时拉接钢筋间距不大于500mm。

12、地下室计算参数取值
(1)、应根据实际情况考虑其荷载作用影响,一般竖向荷载有上部结构和地下室楼盖传来的荷载及本身自重;水平方向有室外地面活荷载,土和地下水等侧向压力。

邻近建筑物、构筑物的侧压力影响。

通常容易漏计考虑消防车道及过街楼部位活荷载的作用影响。

有人防部分应考虑人防的等效静荷载,其取值应符合《人防规范》GB50038第4.3.14条规定且应注意5级人防时,当上部建筑物外墙为钢筋混凝土承重墙时,上部建筑物自重取全部重量,其他结构形式时只取其自重之半。

(2)、地下室外墙截面设计时,由可变荷载控制的基本组合,永久荷载的分项系数取1.2;由永久荷载控制的基本组合,永久荷载的分项系数取1.35;可变荷载的分项系数取1.4。

土压力引起的效应为永久荷载效应。

地下室外墙承受的土压力宜取静止土压力。

水位稳定的水压力按永久荷载考虑,分项系数可取1.2;水位急剧变化的水压力按可变荷载考虑,分项系数宜取1.3。

有人防要求的地下室外墙的永久荷载分项系数。

当其效应对结构不利时取1.2,有利时取1.0;抗爆等效静荷载分项系数取1.0。

13、地下室外墙计算步骤
1、计算侧向力
2、根据侧向力计算弯矩按单向板一边简支一边固端计算查静力计算手册
3、根据最大弯矩算墙体配筋
4、验算配筋率
引:李国胜《简明高层钢筋混凝土结构设计手册》第二版
05SG109-1《民用建筑工程设计常见问题分析及图示》(结构设计原则、荷载及荷载效应组合和地震作用、地基基础)。

相关文档
最新文档