三角函数的定义域与值域题库

合集下载

三角函数的定义域、值域

三角函数的定义域、值域
23
要使y 1 sin z有最小值- 1,
必须
2
z
2
2k ,k z
2
要使y 1 sin z有最大值 1,
1 x 2k
必须
2
z
2
2k ,k z
1
x
2
2k
x
4k
2 x
35
2
4k
3
使原函数取得最小值的集合是
2 32
3
y sin x
x
|
x
5
3
4k ,k
Z
y sin x

练习 求函数 y=cos2x+4sin x 的最值及取到最大值和最小值 时的 x 的集合.
解 y=cos2x+4sin x=1-sin2x+4sin x =-sin2x+4sin x+1=-(sin x-2)2+5.
∴当 sin x=1,即 x=2kπ+2π,k∈Z 时,ymax=4; 当 sin x=-1 时,即 x=2kπ-2π,k∈Z 时,ymin=-4. 所以 ymax=4,此时 x 的取值集合是{x|x=2kπ+π2,k∈Z}; ymin=-4,此时 x 的取值集合是{x|x=2kπ-π2,k∈Z}.
2
所以结论要相反 y sin z 最小
3.二次函数的某些知识点
例 求函数 y=sin2x-sin x+1,x∈R 的值域.
解 设 t=sin x,t∈[-1,1],f(t)=t2-t+1. ∵f(t)=t2-t+1=t-122+34. ∵-1≤t≤1, ∴当 t=-1,即 sin x=-1 时,ymax=f(t)max=3;
x x sinx
忘掉的同学再去看看课本, 后面的老师还会讲到
课堂小结

高中三角函数专题练习题含答案

高中三角函数专题练习题含答案

高中三角函数专题练习题含答案一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.在ABC 中,AB =BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.3.已知()()()cos sin 0f x x x x ωωωω=>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.4.在ABC 中,记角,,A B C 所对的边分别是,,a b c ,面积为S ,则24Sb ac+的最大值为___________.5.log sin()3y x ππ=+的单调增区间为________.6.设向量OA a =,OB b =,OC c =,2a b a b ==⋅=,点C 在AOB ∠内,且向量c 与向量a c -的夹角为3π,则||||c c b -的取值范围是____________.7.已知向量a 与b 的夹角为θ,sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.8.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________. 9.若向量x y ,满足2212x y +=,则21||2x x y ++的最大值是___________. 10.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且222a c b ac +-=,则sin cos A C 的最大值为______.二、单选题11.已知30.4tan(1),tan0.1,a b c πππ=+-==,则( ).A .b c a <<B .c a b <<C .a c b <<D .a b c <<12.已知ABC 的内角分别为,,A B C ,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1213.已知函数()()cos 33f x a x x a ππ⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭R 是偶函数.若将曲线()2y f x =向左平移12π个单位长度后,再向上平移1个单位长度得到曲线()y g x =,若关于x 的方程()g x m =在70,12π⎡⎤⎢⎥⎣⎦有两个不相等实根,则实数m 的取值范围是( )A .[]0,3B .[)0,3C .[)2,3D .)1,3 14.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .1615.已知函数()*()cos 3f x x πωω⎛⎫=+∈ ⎪⎝⎭N ,若函数()f x 图象的相邻两对称轴之间的距离至少为4π,且在区间3(,)2ππ上存在最大值,则ω的取值个数为( ) A .4B .3C .2D .116.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A.1B C .1D .217.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( ) A .125 B .85C .165D .18518.设函数()cos 2sin f x x x =+,下述四个结论: ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点 其中所有正确结论的编号是( ) A .①②B .①②③C .①③④D .②③④19.△ABC 中,BD 是AC 边上的高,A=4π,BD AC =( )A .14B .12C .23D .3420.函数()cos(1)x f x e ax x x =+--,当0x >时,()0f x >恒成立,则a 的取值范围为( ) A .()0,∞+B .()1,e -+∞C .(),e -∞D .(),e +∞三、解答题21.已知向量()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,若函数()12f x a b =⋅+的最小正周期为π. (1)求()f x 的解析式;(2)若关于x 的方程22cos 22cos 23301212a f x x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦在04π⎡⎤⎢⎥⎣⎦,有实数解,求实数a 的取值范围.22.已知函数()cos f x x =.(1)若,αβ为锐角,()f αβ+= 4tan 3α=,求cos2α及tan()βα-的值;(2)函数()(2)3g x f x =-,若对任意x 都有2()(2)()2g x a g x a ≤+--恒成立,求实数a 的最大值;(3)已知3()()()=2f f f αβαβ+-+,,(0,)αβπ∈,求α及β的值.23.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米,为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE .记CBD ∠为θ.()1用θ表示栈道的总长度()f θ,并确定sin θ的取值范围;()2求当θ为何值时,栈道总长度最短.24.已知函数()sin(3)(0)f x x ϕϕπ=+<<,其图象的一个对称中心是,09π⎛⎫- ⎪⎝⎭,将()f x 的图象向左平移9π个单位长度后得到函数()g x 的图象. (1)求函数()g x 的解析式;(2)若对任意12,[0,]x x t ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,求实数t 的最大值;(3)若对任意实数,()(0)a y g x ωω=>在,4a a π⎡⎤+⎢⎥⎣⎦上与直线12y =-的交点个数不少于6个且不多于10个,求实数ω的取值范围.25.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.26.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.27.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间; (2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.28.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?29.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域(2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值30.函数f (x )=A sin (2ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示 (1)求A ,ω,φ的值;(2)求图中a ,b 的值及函数f (x )的递增区间; (3)若α∈[0,π],且f (α)=2,求α的值.【参考答案】一、填空题1.3π2.①③3.14032425.(2,2)(Z)36k k k ππππ-++∈6. 7.258.910.12+二、单选题 11.D 12.A 13.C 14.B 15.C 16.D 17.A 18.B 19.A 20.B 三、解答题21.(1)()sin(2)6f x x π=-;(2)1a 或732a +-.【解析】(1)根据向量数量积的坐标运算及三角公式,化简可得()f x 的解析式; (2)先化简()sin 212f x x π+=,利用换元法,设sin 2cos2t x x =-,把目标方程转化为关于t 的方程,分离参数后进行求解.【详解】 (1)因为()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,所以()2111cos 213sin cos 22222x f x a b x x x x ωωωωω+=⋅+=-+=-+ sin(2)6x πω=-.因为()f x 的最小正周期为π,所以22ππω=,即1ω=,所以()sin(2)6f x x π=-.(2)由(1)可知()sin 212f x x π+=.因为2(sin 2cos 2)x x +22sin 22sin 2cos 2cos 2x x x x =++12sin 2cos2x x =+, 222(sin 2cos 2)sin 22sin 2cos 2cos 2x x x x x x -=-+12sin 2cos2x x =-,所以22(sin 2cos2)12sin 2cos211(sin 2cos2)x x x x x x ⎡⎤+=+=+--⎣⎦.令sin 2cos2t x x =-,则22(sin 2cos 2)2x x t +=-,则方程22cos 22cos 23301212a fx x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦可化为()2222330a t t a ---+=,即22230at t a +--=.因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2cos 22[1,1]4t x x x π⎛⎫=-=-∈- ⎪⎝⎭.所以由题意可知,方程22230at t a +--=在[1,1]t ∈-时有解; 令2()223g t at t a =+--,当0a =时,()23g t t =-,由()0g t =得32t =(舍);当0a ≠时,则22230at t a +--=可化为212132t a t-=-,令22132t y t-=-,[1,1]t ∈-,设32u t =-,则1(3),[1,5]2t u u =-∈,2212(3)11(3)222u u y u u ⎡⎤--⎢⎥--⎣⎦==⨯1762u u ⎛⎫=+- ⎪⎝⎭,因为7u u+≥u =当1u =时,7u u+取到最大值8,所以3,1]y ∈,所以13,1]a ∈,解得1a 或732a +-. 所以实数a 的取值范围是1a 或732a +- 【点睛】本题主要考查三角函数的性质,利用向量的坐标运算及三角公式把目标函数化简为最简形式,是这类问题常用求解方向,方程有解问题通常利用分离参数法来解决,侧重考查数学运算的核心素养. 22.(1)72cos 2,tan()2511αβα=--=;(2)265-;(3)3παβ== 【解析】 【分析】(1)根据同角三角函数的关系和二倍角的余弦公式可求得cos2α的值,利用二倍角的正切公式、同角三角函数的基本关系以及两角差的正切公式可求解tan()βα-的值;(2)由余弦函数的有界性求得()g x 的值域,再将不等式分离参数,并令()1t g x =-,可得1a t t ≤+对[5,3]t ∈--恒成立.易知函数1y t t=+在[5,3]t ∈--单调递增,求出其最小值,则可得265a ≤-,从而求得a 的最大值; (3)利用和差化积公式(需证明)以及二倍角公式,将该式化简,配凑成22(2coscos)sin 0222αβαβαβ+---+=,再结合,(0,)αβπ∈,即可求出α及β的值.【详解】 解:(1)4tan 3α=,且α为锐角, 4sin 5α∴=,3cos 5α=,22tan 24tan 21tan 7ααα==--则227cos 2cos sin 25ααα=-=-,又()cos()f αβαβ+=+=,αβ为锐角,sin()αβ∴+=,tan()2αβ+=-, tan()tan[()2]βααβα∴-=+-242()tan()tan 227241tan()tan 2111(2)()7αβααβα---+-===+++-⨯-; (2)()(2)3cos 23[4,2]g x f x x =-=-∈--,2()(2)()2g x a g x a ≤+--对任意x 恒成立,即2()2()2(()1)g x g x g x a -+≤-对任意x 恒成立, 令()1[5,3]t g x =-∈--,211t a t t t+∴≤=+对[5,3]t ∈--恒成立,又函数1y t t=+在[5,3]t ∈--单调递增,∴当5t =-时,min 126()5t t +=-,265a ∴≤-,则a 的最大值为265-; (3)3()()()2f f f αβαβ+-+=, 即3cos cos cos()2αβαβ+-+=,cos cos()22αβαβα+-=+coscossinsin2222αβαβαβαβ+-+-=-,cos cos()22αβαββ+-=-coscos+sinsin2222αβαβαβαβ+-+-=,cos cos 2coscos22αβαβαβ+-∴+=,又2cos()2cos12αβαβ++=-,232coscos2cos 12222αβαβαβ+-+∴-+=, 则24cos 4coscos10222αβαβαβ++--+=, 22(2coscos)1cos 0222αβαβαβ+---+-=, 即22(2coscos)sin 0222αβαβαβ+---+=,2cos cos 022sin 02αβαβαβ+-⎧-=⎪⎪∴⎨-⎪=⎪⎩, 又0απ<<,0βπ<<, 3παβ∴==.【点睛】本题考查了同角三角函数间的关系,两角和与差的三角函数公式,二倍角余弦和正切公式,不等式恒成立问题,考查了运算能力和转化能力,属于综合性较强的题. 23.()1()1232sin tan f θπθθθ=-+++,1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2当3πθ=时,栈道总长度最短.【解析】()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==,130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 则()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,进而确定sin θ的取值范围; ()2根据()12cos 23sin f θθθπθ-=-++求导得()()2cos 2cos 1sin f θθθθ--'=,利用增减性算出()min 533f πθ=+,进而求θ得取值.【详解】解:()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==, CBE CBD θ∠=∠=,又CD BD ⊥,CE BE ⊥,故2DCE πθ∠=-,则劣弧DE 的长为2πθ-,因此,优弧DE 的长为2πθ+, 又3AC =,故130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 所以,()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,则1sin ,13θ⎡⎫∈⎪⎢⎣⎭; ()2()12cos 23sin f θθθπθ-=-++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,其中01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,()()2cos 2cos 1sin f θθθθ--'=故3θ=时,()min 33f θ=+ 所以当3πθ=时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题. 24.(1)2()sin(3)3g x x π=+;(2)6π;(3)4083ω<≤.【解析】 【分析】(1)根据正弦函数的对称性,可得函数()f x 的解析式,再由函数图象的平移变换法则,可得函数()g x 的解析式;(2)将不等式进行转化,得到函数()()f x g x -在[0,t ]上为增函数,结合函数的单调性进行求解即可;(3)求出()y g x ω=的解析式,结合交点个数转化为周期关系进行求解即可. 【详解】(1)因为函数()sin(3)(0)f x x ϕϕπ=+<<,其图象的一个对称中心是,09π⎛⎫- ⎪⎝⎭,所以有()0sin[3()]0()(0)9933f k k Z ππππϕϕπϕπϕ-=⇒-+=⇒-=∈<<∴=,()f x 的图象向左平移9π个单位长度后得到函数()g x 的图象.所以2()sin[3()]sin(3)933g x x x πππ=++=+;(2)由()()()()()()()()12121122f x f x g x g x f x g x f x g x -<-⇒-<-,构造新函数为()()()sin3h x f x g x x =-=,由题意可知:任意12,[0,]x x t ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,说明函数()sin3h x x =在[0,]x t ∈上是单调递增函数,而()sin3h x x =的单调递增区间为:22232()()226363k k k x k k Z x k Z ππππππππ-+≤≤+∈⇒-+≤≤+∈,而[0,]x t ∈, 所以单调递增区间为:06x π≤≤,因此实数t 的最大值为:6π;(3)2()sin(3)3y g x x πωω==+,其最小正周期23T πω=, 而区间,4a a π⎡⎤+⎢⎥⎣⎦的长度为4π,直线12y =-的交点个数不少于6个且不多于10个,则34T π≤,且54T π>,解得:4083ω<≤. 【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.25.(1)()23f x x π⎛⎫+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+ ⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222x x x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.26.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tanα.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ在△OPQ 中,OQOP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ. 由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π. 故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f ′(θ)令f ′(θ)=0,得sinθθ0满足0sin θ则0cos θ=,即()02f θ===列表如下:由(1)可知tanα=f (θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭, tanα单调递增则当tanα取最大值2时,α也取得最大值.故游客在观赏亭P 处的观赏效果最佳时,sinθ 【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 27.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题. 28.(1)0ϕ=(2)当4x π=时,min ()4g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()g x =当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题29.(1)1,02⎡⎤--⎢⎥⎣⎦(2)265- 【解析】 【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值. 【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫-⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦,此时sin t ⎡⎤∈⎢⎥⎣⎦,所以值域为1,02⎡⎤-⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立 令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩,解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-. 【点睛】本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题. 30.(1)π2,1,6A ωϕ===;(2)7π,112a b =-=,递增区间为()πππ,π36k k k Z ⎡⎤-+∈⎢⎥⎣⎦;(3)π24或7π24. 【解析】 【分析】(1)利用函数图像可直接得出周期T 和A ,再利用=2Tπω,求出ω,然后利用待定系数法直接得出ϕ的值.(2)通过第一问求得的值可得到()f x 的函数解析式,令()=0f x ,再根据a 的位置确定出a 的值;令0x =得到的函数值即为b 的值;利用正弦函数单调增区间即可求出函数的单调增区间.(3)令()f α=0απ,即可求得α的取值.【详解】解:(1)由图象知A =2,34T =512π-(-3π)=912π, 得T =π, 即22πω=2,得ω=1, 又f (-3π)=2sin[2×(-3π)+φ]=-2, 得sin (-23π+φ)=-1,即-23π+φ=-2π+2k π, 即ω=6π+2k π,k ∈Z , ∵|φ|<2π,∴当k =0时,φ=6π,即A =2,ω=1,φ=6π;(2)a =-3π-4T =-3π-4π=-712π,b =f (0)=2sin 6π=2×12=1,∵f (x )=2sin (2x +6π),∴由2k π-2π≤2x +6π≤2k π+2π,k ∈Z ,得k π-3π≤x ≤k π+6π,k ∈Z ,即函数f (x )的递增区间为[k π-3π,k π+6π],k ∈Z ;(3)∵f (α)=2sin (2α+6π)即sin (2α+6π) ∵α∈[0,π],∴2α+6π∈[6π,136π], ∴2α+6π=4π或34π,∴α=24π或α=724π.【点睛】关于三角函数图像需记住: 两对称轴之间的距离为半个周期; 相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为14个周期.关于正弦函数单调区间要掌握:当2,222x k k ππωϕππ⎡⎤+∈-+⎢⎥⎣⎦时,函数单调递增;当32+,222x k k ππωϕππ⎡⎤+∈+⎢⎥⎣⎦时,函数单调递减.。

三角函数与解三角形题型归纳及习题含详解

三角函数与解三角形题型归纳及习题含详解
2 简而言之即“奇变偶不变,符号看象限”. 题型归纳及思路提示
题型 53 终边相同的角的集合的表示与区别 思路提示
(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方 法解决.
(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也 可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标
4. 熟练运用同角三角函数函数关系式和诱导公式进行三角函数式的化简、求值
和简单恒等式的证明.
命题趋势探究
1.一般以选择题或填空题的形式进行考查.
2.角的概念考查多结合函数的基础知识.
3.利用同角三角函数关系式和诱导公式进行三角函数式的化简、求值是重要考点. 知识点精讲 一、基本概念
正角---逆时针旋转而成的角; (1)任意角 负角---顺时针旋转而成的角;
二、任意角的三角函数 1.定义 已 知 角 终 边 上 的 任 一 点 P(x, y) ( 非 原 点 O ), 则 P 到 原 点 O 的 距 离
r OP x2 y2 0 . sin y , cos x , tan y .
r
r
x
此定义是解直三角形内锐角三角函数的推广.类比,对 y ,邻 x ,斜 r , 如图 4-2 所示.
的终边逆时针旋转整数圈,终边位置不变.
注:弧度或 rad 可省略 (5)两制互化:一周角= 3600 2 r 2 (弧度),即 1800 .
r
1(弧度)
180
0
57.30
57018
故在进行两制互化时,只需记忆 1800 ,10 两个换算单位即可:如: 180
5 5 1800 1500 ; 360 36 .
C. 0, ,是第一、二象限角

三角函数的定义域与值域题库(精)

三角函数的定义域与值域题库(精)

专题三:三角函数的定义域与值域(习题库)一、选择题1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()A、[﹣,]B、[,]C、[2kπ+,2kπ+](k∈Z)D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,解答(k∈Z)∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.2、函数的定义域是()A、.B、.C、D、.解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.3、函数的定义域为()A、 B、C、 D、解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),∴,故选D.4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()A、[1,]B、C、D、解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx===又∵∴∴则1≤f(x)≤故选A.5、函数y=﹣cos2x+sinx﹣的值域为()A、[﹣1,1]B、[﹣,1]C、[﹣,﹣1]D、[﹣1,]解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣=sin2x+sinx﹣1=﹣∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.6、函数值域是()A、 B、C、 D、[﹣1,3]解答:因为,所以sinx∈[],2sinx+1∈故选B7、函数的最大值是()A、5B、6C、7D、8解答:∵==∈[﹣7,7] ∴函数的最大值是78、若≤x≤,则的取值范围是()A、[﹣2,2]B、C、D、解答:=2(sinx+cosx)=2sin(),∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,则函数f(x)的取值范围是:.故选C.9、若,则函数y=的值域为()A、 B、 C、 D、解答:函数y===因为,所以sin∈(0,)∈故选D10、函数,当f(x)取得最小值时,x的取值集合为()A、 B、C、 D、解答:∵函数,∴当 sin(﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,∴函数取得最小值时所对应x的取值集合:为{x|x═﹣+4kπ,k∈Z} 故选A.11、函数y=sin2x﹣sinx+1(x∈R)的值域是()A、[,3]B、[1,2]C、[1,3]D、[,3]解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],由二次函数性质,当t=时,y取得最小值.当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.12、已知函数,则f(x)的值域是()A、[﹣1,1]B、C、D、解答:解:由题=,当 x∈[,]时,f(x)∈[﹣1,];当 x∈[﹣,]时,f (x)∈[﹣1,]可求得其值域为.故选D.13、函数的值域为()A、 B、 C、[﹣1,1] D、[﹣2,2]解答:=﹣sinxcosx+cos2x=cos2x ﹣sin2x=cos (2x+)∴函数的值域为[﹣1,1] 故选C .14、若≥,则sinx 的取值范围为( ) A 、 B 、 C 、∪D 、∪解答:∵≥,∴解得x ∈[,)∪(,] ∴sinx ∈故选B15、函数y=sin2x+2cosx 在区间[﹣,]上的值域为( )A 、[﹣,2]B 、[﹣,2)C 、[﹣,]D 、(﹣,] 解答:∵x ∈[﹣,] ∴cosx ∈[﹣,1]又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx ﹣1)2+2 则y ∈[﹣,2] 故选A 二、填空题(共7小题) 16、已知,则m 的取值范围是 .解答:∵=2(sinθ+cosθ)=2sin(θ+),∴﹣2≤≤2,∴m≥,或m≤﹣,故m的取值范围是(﹣∝,﹣]∪[,+∞).17、函数在上的值域是___________.解答:因为,故故答案为:18、函数的值域为.解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x﹣1∴p≥4﹣(sin2x+)而sin2x+≥2∴4﹣(sin2x+)的最大值为2则p≥2 故答案为:[2,+∞)20、函数的值域是.解答:令t=sinx+cosx=,t2=1+2sinxcosx∵∴x+∴从而有:f(x)==﹣2 在单调递增当t+1=2即t=1时,此时x=0或x=,函数有最小值当t+1=1+即t=时此时x=,函数有最大值2﹣2故答案为:[﹣2]21、函数的定义域为.解答:要使函数有意义,必须解得,故答案为:(0,).三、解答题(共8小题)22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域;分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin (cosx)>0,这里的cosx以它的值充当角。

三角函数的定义域、值域及单调区间(含答案)

三角函数的定义域、值域及单调区间(含答案)

三角函数的定义域、值域及单调区间一、单选题(共12道,每道8分)1.与函数定义域相同的一个函数是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:三角函数的定义域2.函数的定义域是( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:三角函数的定义域3.函数的定义域是( ) A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:三角函数的定义域4.的值域是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:三角函数的值域5.函数的值域是( )A.{3}B.{3,﹣1}C.{3,1,﹣1}D.{3,1,﹣1,﹣3}答案:B解题思路:试题难度:三颗星知识点:三角函数的值域6.函数的值域是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:三角函数的值域7.已知函数,则f(x)在区间上的最大值与最小值分别是( )A.1,﹣2B.2,﹣1C.1,﹣1D.2,﹣2答案:A解题思路:试题难度:三颗星知识点:三角函数的最值8.已知函数的定义域为,值域为,则函数上,( )A.有最大值2B.有最小值2C.有最大值1D.有最小值1答案:B解题思路:试题难度:三颗星知识点:三角函数的最值9.函数的单调增区间为( ) A.B.C.D.答案:A解题思路:试题难度:三颗星知识点:复合三角函数的单调性10.设函数,在区间D上单调递增,则区间D可以是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合三角函数的单调性11.函数的单调增区间是( )A.B.C.D.答案:A解题思路:先确定函数的定义域是全体实数,记,则,∵是递增函数,∴根据口诀“同增异减”可得,只需要找到的递增区间即可,∴.故选A试题难度:三颗星知识点:复合三角函数的单调性12.函数的单调递减区间是( ) A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:复合三角函数的单调性第11页共11页。

三角函数的值域问题

三角函数的值域问题
x 2k
y sin x
y cos x

2
(k∈z)
2
时y min 1 x 2k 时y min 1
(k∈z)
二、新课讲解
• 下列函数有最大值、最小值吗?如果有,请写出 取最大值、最小值时的自变量x的集合,并说出 最大值、最小值分别是什么? • (1)y=2sinx, xR • (2)y=-3sinx,xR • (3)y=asinx,xR(a>0) • (4)y=asinx,xR(a<0) • (5)y=asinx,xR(a≠0)

类型二:求y A sin( x )型函数的的值域与最值
例3:求函数y 2 sin( 2 x )的最值,并求取得最值时 3 自变量x的集合。

1 变式1:函数y 3 2 sin( x )的值域为 ______ . 2 3 变式2:已知y a sin( 2 x ) b(a 0)的最大值为3, 3 最小值为 1, 求a, b的值.
当题目中有出现自变量x属于某个小区间,那么
要用换元 2 x )的范围。 3


类型三:值域与最值的应用
延伸:
0 (2014 湖北高考改编)某实验室一天的温度(单位: C)
随时间t (单位:h)的变化近似满足函数: t ),t 0,24 12 6 求实验室一天的最大温差。 f (t ) 10 2 sin(
1.在同一坐标系内,用五点法分别画出函数 y= sinx和 y= cosx, x[0, 2]的简图:
y
1
一.复习
y=cosx,x[0, 2]

2
o
-1
2

3 2

三角函数10道大题(带答案)

三角函数10道大题(带答案)

三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。

Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。

2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。

Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。

3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。

1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。

4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。

Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。

5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。

1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。

6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.已知函数f(x)=(a≠1).(1)若a>0,则f(x)的定义域是________;(2)若f(x)在区间(0,1]上是减函数,则实数a的取值范围是________.【答案】(1)(-∞,](2)(-∞,0)∪(1,3]【解析】(1)当a>0且a≠1时,由3-ax≥0得x≤,即此时函数f(x)的定义域是(-∞,].(2)当a-1>0,即a>1时,要使f(x)在(0,1]上是减函数,则需3-a×1≥0,此时1<a≤3.当a-1<0,即a<1时,要使f(x)在(0,1]上为减函数,则需-a>0,此时a<0.综上a的取值范围(-∞,0)∪(1,3].2.已知函数f(x)= (a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)在R上是单调函数;③若f(x)>0在[,+∞)上恒成立,则a的取值范围是a>1;④对任意x1<0,x2<0且x1≠x2,恒有f()<.其中正确命题的所有序号是________.【答案】①③④【解析】作出函数f(x)的图象如图所示,显然f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数f(x)的最小值为f(0)=-1,故命题①正确;显然,函数f(x)在R上不是单调函数,②错误;因为f(x)在(0,+∞)上单调递增,故函数f(x)在[,+∞)上的最小值为f()=2a×-1=a-1,所以若f(x)>0在[,+∞)上恒成立,则a-1>0,即a>1,故③正确;由图象可知,在(-∞,0)上,对任意x1<0,x2<0且x1≠x2,恒有f()<成立,故④正确.3.函数的定义域是________.【答案】【解析】得.【考点】函数的定义域.4. (2014·荆州模拟)函数y=ln(2-x-x2)+的定义域是()A.(-1,2)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.[-2,1)【答案】C【解析】使函数有意义,则有解得-2<x<1,即定义域为(-2,1).5.某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低?【答案】(1)y=+,定义域(2)32个【解析】(1)设转盘上总共有n个座位,则x=即n=,y=+,定义域.(2)y=f(x)=k2,y′=k2,令y′=0得x=.当x∈时,f′(x)<0,即f(x)在x∈上单调递减,当x∈时,f′(x)>0,即f(x)在x∈上单调递增,y的最小值在x=时取到,此时座位个数为=32个.6.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.7.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.∪(1,+∞)B.[0,+∞)C.D.∪(2,+∞)【答案】D【解析】令x<g(x),即x2-x-2>0,解得x<-1或x>2.令x≥g(x),即x2-x-2≤0,解得-1≤x≤2.故函数f(x)=当x<-1或x>2时,函数f(x)>f(-1)=2;当-1≤x≤2时,函数≤f(x)≤f(-1),即≤f(x)≤0.故函数f(x)的值域是∪(2,+∞).选D.8.已知则的值为【解析】由题意有,解得,∴原式=.【考点】函数的定义域.9.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>110.求下列函数的值域:(1) y=x-;(2) y=x2-2x-3,x∈(-1,4];(3) y=,x∈[3,5];(4) y= (x>1).【答案】(1)(2)[-4,5].(3)(4)[2-2,+∞).【解析】(1) (换元法)设=t,t≥0,则y= (t2+2)-t=2-,当t=时,y有最小值-,故所求函数的值域为.(2) (配方法)配方,得y=(x-1)2-4,因为x∈(-1,4],结合图象知,所求函数的值域为[-4,5].(3) (解法1)由y==2-,结合图象知,函数在[3,5]上是增函数,所以ymax =,ymin=,故所求函数的值域是.(解法2)由y=,得x=.因为x∈[3,5],所以3≤≤5,解得≤y≤,即所求函数的值域是.(4) (基本不等式法)令t=x-1,则x=t+1(t>0),所以y==t+-2(t>0).因为t+≥2=2,当且仅当t=,即x=+1时,等号成立,故所求函数的值域为[2-2,+∞).11.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域。

三角函数的定义域与值域题库

三角函数的定义域与值域题库

专题三:三角函数的定义域与值域(习题库)一、选择题1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()A、[﹣,]B、[,]C、[2kπ+,2kπ+](k∈Z)D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,解答(k∈Z)∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.2、函数的定义域是()A、.B、.C、D、.解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.3、函数的定义域为()A、B、C、 D、解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),∴,故选D.4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()A、[1,]B、C、D、解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx===又∵∴∴则1≤f(x)≤故选A.5、函数y=﹣cos2x+sinx﹣的值域为()A、[﹣1,1]B、[﹣,1]C、[﹣,﹣1]D、[﹣1,]解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣=sin2x+sinx﹣1=﹣∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.6、函数值域是()A、B、 C、D、[﹣1,3]解答:因为,所以sinx∈[],2sinx+1∈故选B7、函数的最大值是()A、5B、6C、7D、8解答:∵==∈[﹣7,7] ∴函数的最大值是78、若≤x≤,则的取值范围是()A、[﹣2,2]B、C、D、解答:=2(sinx+cosx)=2sin(),∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,则函数f(x)的取值范围是:.故选C.9、若,则函数y=的值域为()A、B、 C、D、解答:函数y===因为,所以sin∈(0,)∈故选D10、函数,当f(x)取得最小值时,x的取值集合为()A、 B、C、 D、解答:∵函数,∴当 sin(﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,∴函数取得最小值时所对应x的取值集合:为{x|x═﹣+4kπ,k∈Z}故选A.11、函数y=sin2x﹣sinx+1(x∈R)的值域是()A、[,3]B、[1,2]C、[1,3]D、[,3]解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],由二次函数性质,当t=时,y取得最小值.当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.12、已知函数,则f(x)的值域是()A、[﹣1,1]B、C、D、解答:解:由题=,当x∈[,]时,f(x)∈[﹣1,];当x∈[﹣,]时,f(x)∈[﹣1,] 可求得其值域为.故选D.13、函数的值域为()A、B、 C、[﹣1,1] D、[﹣2,2]解答:=﹣sinxcosx+cos2x=cos2x﹣sin2x=cos(2x+)∴函数的值域为[﹣1,1] 故选C.14、若≥,则sinx的取值范围为()A、 B、C、∪D、∪解答:∵≥,∴解得x∈[,)∪(,] ∴sinx∈故选B15、函数y=sin2x+2cosx在区间[﹣,]上的值域为()A、[﹣,2]B、[﹣,2)C、[﹣,]D、(﹣,]解答:∵x∈[﹣,] ∴cosx∈[﹣,1]又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2则y∈[﹣,2] 故选A二、填空题(共7小题)16、已知,则m的取值范围是.解答:∵=2(sinθ+cosθ)=2sin(θ+),∴﹣2≤≤2,∴m≥,或m≤﹣,故m的取值范围是(﹣∝,﹣]∪[,+∞).17、函数在上的值域是___________.解答:因为,故故答案为:18、函数的值域为.解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x ﹣1∴p≥4﹣(sin2x+)而sin2x+≥2∴4﹣(sin2x+)的最大值为2则p≥2故答案为:[2,+∞)20、函数的值域是.解答:令t=sinx+cosx=,t2=1+2sinxcosx∵∴x+∴从而有:f(x)==﹣2在单调递增当t+1=2即t=1时,此时x=0或x=,函数有最小值当t+1=1+即t=时此时x=,函数有最大值2﹣2故答案为:[﹣2]21、函数的定义域为.解答:要使函数有意义,必须解得,故答案为:(0,).三、解答题(共8小题)22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域;分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin(cosx)>0,这里的cosx以它的值充当角。

三角函数定义域-值域-周期测试题

三角函数定义域-值域-周期测试题

数学限时测试三 一、选择题1、 在同一坐标系中函数[]π2,0,sin ∈=x x y 与[]ππ4,2,sin ∈=x x y 的图象A .重合B .形状相同,位置不同C .形状不同,位置相同D .形状不同,位置不同2、函数[]π2,0,sin 1∈+=x x y 的图象与直线2=y 的交点个数为A .0B .1C .2D .33、在(02)π,内,使sin cos x x <成立的x 的取值范围是( )A.ππ5π⎛⎫⎛⎫π ⎪⎪424⎝⎭⎝⎭,, B.π⎛⎫π ⎪4⎝⎭, C.02π5π⎛⎫⎛⎫π ⎪ ⎪44⎝⎭⎝⎭,, D.5ππ⎛⎫⎪44⎝⎭,4、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为()A B .1 CD .25、当-π2≤x≤π2时,函数f(x)= sinx +3cosx 的( )A 、最大值是1,最小值是--1B 、最大值是1,最小值是--2C 、最大值是2,最小值是--2D 、最大值是2,最小值是--1 6、函数f (x )=3sin x +sin(π2+x )的最大值是( )A .1BCD .27、函数y=1-sinx+3cosx 的周期是( )A. πB. π2C. π21D. 32π 8、求y=sin 2x+2sinxcosx+3cos 2x 的周期是( )A. πB. π2C. π3D. 4π 9、函数y = 12cos 2sin -+x x 的定义域是A [ 0 ,4π] B [ 42,2πππ+k k ]C [2,πππ+k k ] D [432,42ππππ++k k ]10.函数2cos 3cos 2++=x x y 的最小值为( )A .2B .0C .1D .6班别__________ 姓名__________二.填空题:11.如果直线m y =与函数[)π2,0,sin ∈=x x y 无交点,则∈m __________;12.求函数y =2cos 2x +5sinx -4的值域为__________;三.解答题:13.求函数)2474(cos sin 4sin 3cos 35)(22ππ≤<-+=x x x x x x f 的最值,并求取得最值时x 的值。

三角函数求值域专题

三角函数求值域专题

三角函数求值域专题求三角函数值域及最值的常用方法:(1)一次函数型:或利用为:y asinx bcosx a2b2sin(x ),利用函数的有界性或单调性求解;化为一个角的同名三角函数形式,(1):y 2sin(3x —) 5,y sin xcosx12(2)y 4sin x 3cosx(3) _____________________________________ .函数在区间上的最小值为_1.(4 )函数且的值域是—(,1] [1,)(2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、换元及图像法求解;二倍角公式的应用:女口. ( 1) y sin x cos2x3(2)函数的最大值等于3.4(3) _____________________________ .当时,函数的最小值为_4 •(4).已知k v—4,则函数y = cos2x + k(cos x-1)的最小值是 1 •(5).若,则的最大值与最小值之和为2— _ •(3) 借助直线的斜率的关系用数形结合求解;a sin x b型如f(x) 型。

此类型最值问题可考虑如下几种解法:ccos x d①转化为asinx bcosx c再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。

例1 :求函数y sinx的值域。

cosx 2结合图形可知,此函数的值域是[』3,』3]。

33例2.求函数的最小值.解法一:原式可化为,得,即, 故,解得或(舍),所以的最小值为. 解法二:表示的是点与连线的斜率,其中点 B 在左半圆上,由图像知,当 AB 与半圆相切时,最小, 此时,所以的最小值为.(4) 换元法•识,易求得过Q 的两切线得斜率分别为 解法2:将函数ycosx sinx_变形为 2y cosx sin x2y ,二 sin( x )2y 1 y 2|sin(x )| 理 1V 1 y2(2y)y2,解得:彳,故值域是3]解法 3:利用万能公式求解: 由万能公式sin x -1 2t cosx 口;,代入1 t 2sinx得到cosx 22t2厂沪则有3yt2t0知:当t0,则y满足条件;当0,由24 12y 0 ,乜,故所求函数的值域是3解法4:利用重要不等式求解:由万能公式sinx -12t T , cosx.代入t 2sinx得到cosx 20,2t1 3t 20时,则y 0,满足条件;当t 0时,2 1" t 3t——,如果t >3t)2 ([)(3t)2 ~1 (:3t)2 2、于,此时即有如果t2、( ;)( 3t)彳,此时有0 y 于。

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.已知向量,设函数.(1)求函数在上的单调递增区间;(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.【答案】(1)函数在上的单调递增区间为,;(2)边的长为.【解析】(1)根据平面向量的数量积,应用和差倍半的三角函数公式,将化简为.通过研究的单调减区间得到函数在上的单调递增区间为,.(2)根据两角和的正弦公式,求得,利用三角形的面积,解得,结合,由余弦定理得从而得解.试题解析:(1)由题意得3分令,解得:,,,或所以函数在上的单调递增区间为, 6分(2)由得:化简得:又因为,解得: 9分由题意知:,解得,又,所以故所求边的长为. 12分【考点】平面向量的数量积,和差倍半的三角函数,三角函数的图像和性质,正弦定理、余弦定理的应用.6.函数的最小正周期为,若其图象向右平移个单位后关于y轴对称,则()A.B.C.D.【答案】B【解析】由题意可知:,得,函数关于对称,所以,,又因为,解得,故选B.【考点】的图像和性质7.已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是()A.B.C.D.【答案】D【解析】函数的最小正周期为,所以从而.将各选项代入验证可知选【考点】1、三角函数的周期;2、函数图象的变换8.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性9.在中,(1)求角B的大小;(2)求的取值范围.【答案】(1) ;(2) .【解析】(1)由正弦定理实现边角互化,再利用两角和与差的正余弦公式化简为,再求角的值;(2)二倍角公式降幂扩角,两角差余弦公式展开,同时注意隐含条件,即可化为一角一函数,再结合求其值域.求解时一定借助函数图象找其最低点与最高点的纵坐标.试题解析:(1)由已知得:,即∴∴ 5分(2)由(1)得:,故+又∴所以的取值范围是. 12分【考点】1.正余弦定理;2.三角函数值域;3.二倍角公式与两角和与差的正余弦公式.10.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.11.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。

三角函数测试题及答案

三角函数测试题及答案

三角函数测试题及答案试题一:一、选择题1. 下列各三角函数式中,值为正数的是 ( )A. B. C. D.2. 若=,且为锐角,则的值等于 ( )A. B. C. D.3. 若=,,则的值为 ( )A. 1B. 2C.D.4. 已知,则 ( )A. B.C. D.5. a=,则成立的是 ( )A. ab>c C. a6. 函数的定义域是( )A. B.C. D.7. 下面三条结论:①存在实数,使成立;②存在实数,使成立;③若cosacosb=0,则其中正确结论的个数为( )A. 0B. 1C. 2D. 38. 函数的值域是 ( )A. [-2,2]B. [-1,2]C. [-1,1]D. [,2]9. 函数y=-x·cosx的部分图象是( )10. 函数f(x)=cos2x+sin(+x)是( )A. 非奇非偶函数B. 仅有最小值的奇函数C. 仅有最大值的偶函数D. 既有最大值又有最小值的偶函数二、填空题1、函数的最小值等于并使函数y 取最小值的x的集合为2、若函数的图象关于直线对称,则函数的值域为3、已知函数三、解答题1、已知,求的值2、在DABC中,已知三边满足,试判定三角形的形状。

试题二:1、若sinα=-5/13,且α为第四象限角,tanα=?(文.6)A.12/5B.-12/5C.5/12D.-5/12解析:主要考察基础知识。

α是第四象限角,所以cosα为正,tanα为负。

cos2α=1-sin2α,且cosα是正数,所以cosα=12/13,t anα=sinα/cosα=-5/12,选D。

2、已知函数f(x)=10√3sin(x/2)*cos(x/2)+10cos2(x/2)1)求f(x)的最小正周期2)将f(x)的函数图像向右平移π/6个单位长度,再向下平移a个单位长度后得到g(x)的函数图像,且函数g(x)的`最大值为2.i)求g(x)的解析式ii)证明存在无穷多互不相同个正整数x0,使得g(x0)>0.解析:1)函数的化简,可以看到两个式子都跟两倍角公式有关系,可以考虑先都变成两倍角。

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法(一)一次函数型或利用:=+=x b x a y cos sin )sin(22ϕ+⋅+x b a化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512y x π=--+,x x y cos sin =(3)函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 .(4)函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是 (,1][1,)-∞-⋃+∞(二)二次函数型利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。

(2)函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于43.(3).当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 4 .(4).已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是 1 .(5).若2αβπ+=,则cos 6sin y βα=-的最大值与最小值之和为____2____.(三)借助直线的斜率的关系,用数形结合求解型如dx c bx a x f ++=cos sin )(型。

此类型最值问题可考虑如下几种解法:①转化为c x b x a =+cos sin 再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。

例1:求函数sin cos 2xy x =-的值域。

解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。

作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2xy x =-得最值,由几何知识,易求得过Q 的两切线得斜率分别为33-、33。

结合图形可知,此函数的值域是33[,]33-。

(完整)三角函数习题及答案

(完整)三角函数习题及答案

第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sin cos 22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B)第二象限 (C)第三象限 (D )第四象限 二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角.7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。

11.已知Cos(α+β)+1=0, 求证:sin (2α+β)+sin β=0。

12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值. §4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A)0 (B )1- (C)2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D ±4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5.的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C)一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。

高中数学三角函数专项训练(含答案)

高中数学三角函数专项训练(含答案)

高中数学三角函数专项训练(含答案)一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________3.如图,在矩形ABCD 中,AB a ,2BC a =,点E 为AD 的中点,将△ABE 沿BE 翻折到△A BE '的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为______.4.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.5.平行六面体1111ABCD A B C D -的各棱长均相等,1160BAD DAA A AB ∠=∠=∠=,直线1AC ⋂平面1A BD E =,则异面直线1D E 与AD 所成角的余弦值为_________.6.在直角坐标系中,ABC 的顶点()cos ,sin A αα,()cos ,sin B ββ,432C ⎝,且ABC 的重心G 的坐标为232⎝,()cos αβ-=__________. 7.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,32b =7sin BAD ∠=,2cos 4BAC ∠=,则AD =__________.8.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.9.已知正四棱柱1111ABCD A B C D -中,2AB =,1AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.10.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( )A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭13.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ= 14.已知02πθ<<,()()cos 1sin 110sin cos f m m m θθθθθ--⎛⎫=+++> ⎪⎝⎭,则使得()f θ有最大值时的m 的取值范围是( )A .1,22⎛⎫⎪⎝⎭B .1,33⎛⎫ ⎪⎝⎭C .[]1,3D .1,14⎡⎤⎢⎥⎣⎦15.如图,设1F ,2F 是双曲线()22210xy a a -=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足1e <<为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A 13B .2 C 31 D .317.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1618.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .21B 3C .31D .219.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .16320.设函数()3xf x mπ,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞三、解答题21.函数()()303f x x πωω⎛⎫=+> ⎪⎝⎭在一个周期内的图象如图所示,A 为图象的最高点,B ,C 为图象与x 轴的交点,ABC ∆为等边三角形.将函数()f x 的图象上各点的横坐标变为原来的π倍后,再向右平移23π个单位,得到函数()y g x =的图象.(Ⅰ)求函数()g x 的解析式;(Ⅱ)若不等式()23sin 324x m g x m π⋅-≤+对任意x ∈R 恒成立,求实数m 的取值范围.22.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.23.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值; (2)求角D 的最大值.24.已知函数()()()()223cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.25.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.26.已知函数22cos 3sin 2f xxx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值.27.已知向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S . 28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .29.已知函数21()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若ABC ∆是钝角三角形,且面积为24a ,求2b ac的值.【参考答案】一、填空题1.3π 2.4734 5.566.237.48.742ω<<或91322ω<≤.910.80π 二、单选题 11.A 12.C 13.C 14.A 15.B 16.C 17.C 18.D 19.A 20.C 三、解答题21.(Ⅰ)()12g x x =(Ⅱ)2,23⎡⎤-⎢⎥⎣⎦【解析】 【分析】(Ⅰ)利用等边三角形的性质,根据已知,可以求出函数的周期,利用正弦型函数的最小正周期公式求出ω,最后根据正弦型函数图象的变换性质求出()y g x =的解析式; (Ⅱ)根据函数()y g x =的解析式,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立,利用换元法,构造二次函数,分类讨论进行求解即可. 【详解】(Ⅰ)点A ABC ∆为等边三角形,所以三角形边长为2,所以24T πω==,解得2πω=,所以()23f x x ππ⎛⎫+ ⎪⎝⎭,将函数()f x 的图象上各点的横坐标变为原来的π倍后,得到()123h x x π⎛⎫=+ ⎪⎝⎭,再向右平移23π个单位,得到()12g x x =.(Ⅱ)()22g x x x ππ⎛⎫-=-= ⎪⎝⎭,所以()223sin 233cos 3cos x g x x m x π⋅-=--,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立. 令cos x t =,[]1,1t ∈-,即23310t mt m +++≥在[]1,1t ∈-上恒成立.设()2331t t mt m ϕ=+++,对称轴2m t =-, 当12m-≤-时,即2m ≥时,()1240m ϕ-=-+≥,解得2m ≤,所以2m =; 当12m-≥时,即2m ≤-时,()1440m ϕ=+≥,解得1m ≥-(舍); 当112m -<-<时,即22m -<<时,231024m m m ϕ⎛⎫-=-++≥ ⎪⎝⎭,解得223m -≤<.综上,实数m 的取值范围为2,23⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了正弦型函数的图象变换和性质,考查了利用换元法、构造法解决不等式恒成立问题,考查了数学运算能力.22.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果. 【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为M x 在区间00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤,综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.23.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α, 在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BD D Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤ 所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.24.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题. 25.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.26.(1)1,,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 2212sin 216x x a x a f x π⎛⎫=++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=,所以()1235tan 2tan33x x x π++==-.【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.27.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))222n n -+【解析】 【分析】(1)由向量数量积的坐标运算可得()2sin 2322sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()222222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)22442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 64a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 24b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 2322sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭, 所以()()222222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,)2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+.【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==,所以集合{S =0. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33,,022S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】 【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间.(2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数21()sin 24f x x x =11cos 2sin 242x x +=11sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭ 故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦ (2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,则2()(1)n f x m +-⋅的最小值大于零. 当n 为偶数时,10m -+>,所以,1m 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.30.(Ⅰ)证明见解析;(Ⅱ)2 【解析】 【分析】(Ⅰ)将正切化弦,结合两角和差正弦公式可求得()sin sin C B C =+,根据三角形内角和可整理为sin sin C A =,则由正弦定理可得到结论;(Ⅱ)利用三角形面积公式可求得1sin 2B =;根据三角形为钝角三角形且(Ⅰ)中的c a =,可知B 为钝角,求得cos B ;利用余弦定理可构造方程求得,a b 之间关系,从而得到所求结果. 【详解】 (Ⅰ)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-则:()sin sin cos cos sin sin C B C B C B C =+=+A B C π++= ()()sin sin sin B C A A π∴+=-= sin sin C A ∴=由正弦定理可知:c a =ABC ∆∴为等腰三角形(Ⅱ)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =ABC ∆为钝角三角形,且a c = B ∴为钝角 cos B ∴=由余弦定理得:(2222222cos 22b a c ac B a a =+-==+2222b b ac a ∴==【点睛】本题考查三角形形状的求解、利用余弦定理、三角形面积公式求解三角形边之间的关系问题,涉及到两角和差正弦公式、三角形内角和、诱导公式、同角三角函数值的求解等知识.。

史上最全面的函数定义域值域求法好题集含详解

史上最全面的函数定义域值域求法好题集含详解

史上最全面的函数定义域、值域的求法好题集一、单选题1 .函数y = ∕(x+l )的值域是[-2,3],则函数y = "x-2)的值域是( )A. [-1,4]B. [1,6]C. [-2,3]D. [-3,2]2 .己知函数/(1)=1。

82(--+6工+ 7)的值域记为集合4,函数g (χ) = Ji6-0的值域为B ,则有(),・/、 sin4x + √3cos4x 八函数∕(x) == ----------- - ------- 的值域为()sin2x-√3 cos 2xg(x) + x+4,x< g(x)、 :、,则函数/(幻的值域 g(x)-x,x≥g(x)—Q.CUC + 3cι +1, x < 1,, , 的值域为R,则实数。

的取值范围是()A. (一2,2)B. (-U )C. [-M]D. [-2,2]6. 函数∕∙(χ)二工-2+2-』在区间(0,4]上的值域为(A.xc / 15η B∙ (-∞,-]4C∙ [|,2] D. (—8,2]A.9、[一:,+8)4 B. 9 —,0(1,÷∞)4C. 97一二,。

(二,+8)4 4 D∙ 9—,0 D (2,+”5) 4 A. β⊂QΛB. A ⊂ C κBC. Au83∙ 若函数V= ∕(Λ)的值域为则函数 ∕7(.v)∕(.v) +的值域为() /(二)A.B. C.5 1() 2 ’ 3D.4.已知函数∕(x) = lnx-0r 2+(4z-l)x + 6z(4z > 0)的值域与函数∕(∕(x))的值域相同,则。

的取值范围为(A. (0』B.(L+8)C.D. 4一,+835. 7. 8. 已知∕(x) =lnx,x≥∖A. (-00,-1]B. (-1,0)C. [-1,0)D. [-1,09.己知函数 ∕(x) = ------ --- 2sinx + 3x'在区间[-2,2]的值域为, ∣jiιj m+n =3Λ +1 ()取值范围是()A. (l,+∞)B. (2,+∞)cosx. x<a,11.若函数∕(x) = { 1 的值域为[T1],则实数4的取值范围是(),x a x A. [l,+oo) B. (―00,—1]C. (0, 1] D∙ (—1,0)12 .已知函数八力的定义域A ,值域是3 = {y ∣Q<y≤M' g(x)定义域C,值域是 3 = {y c≤ y≤d^.甲:如果任意再wA,存在々£0,使得/(5)二g(毛),那么4口。

求三角函数定义域和值域题型

求三角函数定义域和值域题型

二.求 三角函值域的几种典型形式
一)一次型 y=asinx+b
直接代入法
例1:求y 2sin x 1 值域。
分析:利用 sinx 1 cos x 1有界性
函数y 2sin x 1的值域为1,3
练习:口答下列函数的值域
(1)y=-2sinx+1
[-1,3]
(2) y=3cosx+2
[-1,5]
cos
x
t2
1 2
例5:y sin x cos x sin x cos x
y
解: 设t=sinx+cosx,则t 2, 2
原式化为: y=t+ t2 1 2
= 1 t2 t 1 = 1(t 1)2 1
2, 2
ymin =-1 ,
ymax
=
1 2
+
2
练习:y sin x cos x 1 sin x cos x
(2)cosx ≤1/2
解:作出余弦函数y=cosx,x∈[0,2π]的图象:
y
1
1/2
o
/2
3/2
2 x
-1
由图形可以得到,满足条件的x的集合为:
[π/3+2kπ,5 π/3+2kπ] k Z
题型二. 求三角函定义域:
【例 2】 求下列函数的定义域: (1)y= 36-x2+lg cos x; (2)y=logsin x(cos x+12).
例4. y sin x 3 cos x的值域.
解:原式= 12 ( 3)2 sin( x ) 2 sin( x )
3
3
原式的值域为2,2
练习:y 2sin x cos x的值域. 值域为 5, 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
专题三:三角函数的定义域与值域(习题库)
一、选择题
1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()
A、[﹣,]
B、[,]
C、[2kπ+,2kπ+](k∈Z)
D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)
分析:由题意知,求出x的围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,
解答(k∈Z)
∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.
2、函数的定义域是()
A、.
B、.
C、
D、.
解答:由题意可得sinx﹣≥0⇒sinx≥又x∈(0,2π)∴函数的定义域是.故选B.
3、函数的定义域为()
A、B、
C、D、
解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),
∴,故选D.
4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()
A、[1,]
B、
C、
D、
解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx=
==又∵∴
∴则1≤f(x)≤故选A.
5、函数y=﹣cos2x+sinx﹣的值域为()
A、[﹣1,1]
B、[﹣,1]
C、[﹣,﹣1]
D、[﹣1,]
解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣
=sin2x+sinx﹣1=﹣
∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣.
sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.
6、函数值域是()
A、B、C、D、[﹣1,3]
解答:因为,所以sinx∈[],2sinx+1∈故选B
7、函数的最大值是()
A、5
B、6
C、7
D、8
解答:∵=
=∈[﹣7,7] ∴函数的最大值是7
8、若≤x≤,则的取值围是()
A、[﹣2,2]
B、
C、
D、
解答:=2(sinx+cosx)=2sin(),
∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1,
则函数f(x)的取值围是:.故选C.
9、若,则函数y=的值域为()
A、B、C、D、
解答:函数y===因为,所以sin∈(0,)∈故选D
10、函数,当f(x)取得最小值时,x的取值集合为()
A、B、
C、D、
解答:∵函数,∴当sin(﹣)=﹣1时函数取到最小值,
∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,
∴函数取得最小值时所对应x的取值集合:
为{x|x═﹣+4kπ,k∈Z} 故选A.
11、函数y=sin2x﹣sinx+1(x∈R)的值域是()
A、[,3]
B、[1,2]
C、[1,3]
D、[,3]
解答:令sinx=t,则y=t2﹣t+1=(t﹣)2+,t∈[﹣1,1],
由二次函数性质,当t=时,y取得最小值.
当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.
12、已知函数,则f(x)的值域是()
A、[﹣1,1]
B、
C、
D、
解答:解:由题=,
当x∈[,]时,f(x)∈[﹣1,];当x∈[﹣,]时,f(x)∈[﹣1,] 可求得其值域为.故选D.
13、函数的值域为()
A、B、C、[﹣1,1] D、[﹣2,2]
解答:=﹣sinxcosx+cos2x
=cos2x﹣sin2x=cos(2x+)
∴函数的值域为[﹣1,1] 故选C.
14、若≥,则sinx的取值围为()
A、B、
C、∪
D、∪
解答:∵≥,∴
解得x∈[,)∪(,] ∴sinx∈故选B
15、函数y=sin2x+2cosx在区间[﹣,]上的值域为()
A、[﹣,2]
B、[﹣,2)
C、[﹣,]
D、(﹣,]
解答:∵x∈[﹣,] ∴cosx∈[﹣,1]
又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2
则y∈[﹣,2] 故选A
二、填空题(共7小题)
16、已知,则m的取值围是.
解答:∵=2(sinθ+cosθ)=2sin(θ+),
∴﹣2≤≤2,∴m≥,或m≤﹣,
故m的取值围是(﹣∝,﹣]∪[,+∞).
17、函数在上的值域是___________.
解答:因为

故故答案为:
18、函数的值域为.
解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为
19、(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的围为.
解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x﹣1 ∴p≥4﹣(sin2x+)而sin2x+≥2
∴4﹣(sin2x+)的最大值为2则p≥2 故答案为:[2,+∞)
20、函数的值域是.
解答:令t=sinx+cosx=,t2=1+2sinxcosx
∵∴x+∴从而有:
f(x)==﹣2
在单调递增
当t+1=2即t=1时,此时x=0或x=,函数有最小值
当t+1=1+即t=时此时x=,函数有最大值2﹣2
故答案为:[﹣2]
21、函数的定义域为.
解答:要使函数有意义,必须解得,
故答案为:(0,).
三、解答题(共8小题)
22.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;
(2)求函数y=lgsin(cosx)的定义域;
分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin(cosx)>0,这里的cosx 以它的值充当角。

解析:(1)0≤cosx<12kπ-≤x≤2kπ+,且x≠2kπ(k∈Z)。

∴所求函数的定义域为{x|x∈[2kπ-,2kπ+]且x≠2kπ,k∈Z}。

(2)由sin(cosx)>02kπ<cosx<2kπ+π(k∈Z)。

又∵-1≤cosx≤1,
∴0<cosx≤1。

故所求定义域为{x|x∈(2kπ-,2kπ+),k∈Z}。

23、(2007•)已知函数.
(Ⅰ)求f(x)的定义域;
(Ⅱ)若角a在第一象限,且cosa=3/5,求f(a)
解答:(Ⅰ)由≠0得x+≠kπ,即x≠,
故f(x)的定义域为.
(Ⅱ)由已知条件得.
从而=
==.
24、(2006•上海)求函数的值域和最小正周期.解答:
===
∴函数的值域是[﹣2,2],
最小正周期是π;
25、设,定义.
(Ⅰ)求函数f(x)的周期;
(Ⅱ)当时,求函数f(x)的值域.
解答:(Ⅰ)=sinxcosx﹣cos2x=﹣=,∴周期T=π.
(Ⅱ)∵,∴,
∴,∴f(x)的值域为.
26、已知函数:
(1)求函数f(x)的周期、值域和单调递增区间;
(2)当时,求函数f(x)的最值.
解答:(1)=sin2x+cos2x+=sin(2x+)+
∴函数的最小正周期T==π,﹣1≤sin(2x+)≤1,故函数的值域为[﹣,]
当2kπ﹣≤2x+≤2kπ+,即kπ﹣≤x≤kπ+,函数单调增,
故函数的单调增区间为[kπ﹣,kπ+](k∈Z)
(2)∵∴2x+∈[,]
∴当2x+=时函数的最小值为﹣;当2x+=时函数的最大值为+=1
27、已知函数.
(I)求f(x)的单调递增区间;
(Ⅱ)若不等式f(x)≥m对都成立,数m的最大值.
解答:(I)因为=
由得
所以f(x)的单调增区间是;
(Ⅱ)因为,所以所以
所以故m≤1,即m的最大值为1.
28、已知函数
(1)求的值;
(2)写出函数函数在上的单调区间和值域.
解答:=
(1)当时,f(x)=2﹣sinx﹣cosx,故.
(2)当时,|cosx|=﹣cosx,|sinx|=sinx,
故,
当时,
故当是,函数f(x)单调递增,
当时,函数f(x)单调递减;函数的值域是.
29、已知函数
(1)设ω>0为常数,若y=f(ωx)在区间上是增函数,求w的取值围(2)设集合,若A⊆B,数m的取值围.解答:(1)
∵f(ωx)=2sinωx+1在上是增函数.
∴,即
(2)由|f(x)﹣m|<2得:﹣2<f(x)﹣m<2,即f(x)﹣2<m<f(x)+2
∵A⊆B,∴当时,f(x)﹣2<x<f(x)+2恒成立.
∴[f(x)﹣2]max<m<[f(x)+2]min
又时,∴m∈(1,4)30、已知点A(1,,0),B(0,,1),C(2sinθ,cosθ).
(Ⅰ)若,求tanθ的值;
(Ⅱ)设O为坐标原点,点C在第一象限,求函数的单调递增区间与值域.
解答:(Ⅰ)∵A(1,0),B(0,1),C(2sinθ,cosθ)
∵∵
∴化简得2sinθ=cosθ.
∵cosθ≠0(若cosθ=0,则sinθ=±1,上式不成立),∴
(Ⅱ)∵,
∴y=2sinθ+2cosθ=
∴求函数的单调递增区间为
值域是。

相关文档
最新文档