平面直角坐标系下图形变换

合集下载

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法
赵相玉
【期刊名称】《六盘水师范学院学报》
【年(卷),期】2004(016)006
【摘要】高中数学新教材中介绍了基本函数图象,如指数函数图象,对数函数图象等.而在更多的数学问题中,需要将这些基本图象通过适当的图形变换方式转化成其它图象,要让学生理解并掌握图象变换方法.
【总页数】4页(P54-57)
【作者】赵相玉
【作者单位】六盘水市钟山区第五中学,贵州,水城,553001
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.浅析平面直角坐标系中的图形变换 [J], 陈永强;彭毅
2.例谈直角坐标系下的图形变换 [J], 皇甫军
3.例谈直角坐标系下的图形变换 [J], 皇甫军
4.直角坐标系中的“图形变换” [J], 李小福
5.基于基本图形教学的专题复习课——平面直角坐标系中的图形变换(翻折) [J], 郑小娇
因版权原因,仅展示原文概要,查看原文内容请购买。

初中阶段的五种图形变换(精)

初中阶段的五种图形变换(精)

初中阶段的五种图形变换初中阶段,我们学习了五种图形变换:平移变换、轴对称变换、中心对称变换、旋转变换、位似变换。

这些变换都不改变图形的形状,只是改变了其位置。

其中前四种变换还不改变图形的大小。

下面,让我们逐一回顾与归纳。

一、平移1.平移的定义:在平面内,将一个图形沿某一方向移动一定的距离,这样的图形变换称为平移。

(提示:决定平移的两个要素:平移方向和平移距离。

)2.平移的性质:(1)平移前后,对应线段平行(或共线)且相等;(2)平移前后,对应点所连线段平行(或共线)且相等;(3)平移前后的图形是全等形。

(提示:平移的性质也是平移作图的依据。

)3.用坐标表示平移:在平面直角坐标系中,将点(x,y)向右或向左平移a (a>0)个单位,可以得到对应点(x+a,y)或(x-a,y);向上或向下平移b (b>0)个单位,可以得到对应点(x,y+b)或(x,y-b)。

二、轴对称变换1.轴对称图形:(1)定义:把一个图形沿一条直线对折,如果直线两旁的部分能够完全重合,那么就称这个图形为轴对称图形,这条直线就是它的对称轴。

(提示:对称轴是一条直线,而不是射线或线段,对称轴不一定只有一条。

)(2)性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②轴对称图形对称轴两旁的图形是全等形。

2.轴对称:(1)定义:把一个图形沿一条直线翻折,如果它能与另一个图形重合,那么这两个图形关于这条直线(成轴)对称,这条直线就是它们的对称轴,两个图形中的对应点叫做对称点。

(2)性质:①关于某直线对称的两个图形是全等形;②如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某直线对称,如果它们的对应线段或延长线相交,则交点必在对称轴上。

(3)判定:①根据定义(提示:成轴对称的两个图形必全等,但全等的两个图形不一定对称);②如果两个图形对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

平面直角坐标系下的图形变换

平面直角坐标系下的图形变换

平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。

在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。

析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。

平面直角坐标系中图形的位似变换

平面直角坐标系中图形的位似变换

7

6


5

4
纵 向
3

2


1

0 1 2 3 4 5 6 7 8 9 10
x
–1
来 的
2
–2

–3
–4
在平面直角坐标系中,在作(x,y)
(x,ay)或(ax,y)变换时, 这不是相似变换,叫伸缩变换。
练一练:
1.如图表示△AOB和把它缩小后得到的△COD,求它们的相似比 y
A
C
o
D
B
x
沪科版九年级数学上册
思考回答
如何把三角形ABC放大为原来的2倍?
E
B
O
C
F
D
A
D
B
O
C
F
A
E
对应点连线都交于_位__似___中__心____ 对应线段___平___行__或__在___一__条__直___线__上_________
接下来想一想?
1、如果把位似图形放到平面直角坐标系 中,又如何去探究位似变换与坐标之间的关 系呢?
A′(2,1),B′(2,0) y
A〞(-2,-1),B(-2,0)
A
A'
B〞
x
o
B'
B
A〞
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原 点为位似中心,相似比为k,那么位似图形对 应点的坐标的比等于k或-k.
探索2:
在平面直角坐标系中, △ABC三个顶点的坐标分别 为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相 似比为2画它的位似图形.

22.4 第2课时 平面直角坐标系中图形的位似变换

22.4   第2课时 平面直角坐标系中图形的位似变换

第2课时 平面直角坐标系中图形的位似变换知识点 1 位似变换与坐标的变化1.如图22-4-14,在平面直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则点C 的坐标为( )图22-4-14A .(2,1)B .(2,0)C .(3,3)D .(3,1)2.教材练习第1题变式△ABC 的顶点坐标为A (0,2),B (-3,5),C (-6,3).按如下方式对△ABC 进行变换,不是位似变换的是( )A .(x ,y )→(23x ,23y )B .(x ,y )→(-2x ,-2y )C .(x ,y )→(y ,x )D .(x ,y )→(2x ,2y )3.如图22-4-15,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO 与△A ′B ′O ′是以点P 为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P 的坐标为( )图22-4-15A .(0,0)B .(0,1)C .(-3,2)D .(3,-2)4.2018·邵阳如图22-4-16,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .以坐标原点O 为位似中心将△AOB 缩小为原图形的12,得到△COD ,则CD 的长是( )图22-4-16A .1B .2C .4D .2 55.如图22-4-17,等腰三角形OBA 和等腰三角形ACD 是位似图形,则这两个等腰三角形位似中心的坐标是________.图22-4-176.在平面直角坐标系中有四个点A (0,-2),B (3,2),C (1,-1),D (-2,3).如果将各点的横、纵坐标都乘3,得到点A ′,B ′,C ′,D ′,那么四边形A ′B ′C ′D ′与四边形ABCD 的相似比为________.7.如图22-4-18,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶ 2.若点A 的坐标为(0,1),则点E 的坐标是________.图22-4-188.在平面直角坐标系中,已知A (8,4),B (8,0)两点,以坐标原点O 为位似中心,相似比为14,把线段AB 缩小后得到线段A ′B ′,则线段A ′B ′的长等于________.知识点 2 在平面直角坐标系中画位似图形9.如图22-4-19,△ABC 三个顶点的坐标分别为A (0,-3),B (3,-2),C (2,-4),正方形网格中,每个小正方形的边长是1个单位.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的相似比为2∶1,并直接写出点A 2的坐标.图22-4-1910.如图22-4-20,已知点O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以点O为位似中心在y轴的左侧将△OBC放大为原来的2倍(即新图形与原图形的相似比为2∶1),得到△OB′C′,画出图形;(2)分别写出B,C两点的对应点B′,C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出点M的对应点M′的坐标.图22-4-2011.若△ABC 的顶点坐标分别为(3,2),(4,3),(6,5),△DEF 的顶点坐标分别为(32,1),(2,32),(3,52),则△DEF 与△ABC 的对应边的比为( )A .2∶1B .1∶2C .1∶3D .1∶412.2018·潍坊在平面直角坐标系中,P (m ,n )是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的2倍,则点P 的对应点的坐标为( )A .(2m ,2n )B .(2m ,2n )或(-2m ,-2n )C .(12m ,12n )D .(12m ,12n )或(-12m ,-12n )13.如图22-4-21,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )图22-4-21A .-12aB .-12(a +1)C .-12(a -1)D .-12(a +3)14.如图22-4-22,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是________.图22-4-2215.如图22-4-23,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点坐标分别为(1,3),(2,5).若△ABC和△A1B1C1是位似图形,则△A1B1C1的第三个顶点的坐标为________.图22-4-2316.如图22-4-24,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB′O′是△ABO关于点A的位似图形,且点O′的坐标为(-1,0),则点B′的坐标为________.图22-4-2417.如图22-4-25,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标; (2)以原点O 为位似中心,在原点的另一侧画出△A 2B 2C 2,使AB A 2B 2=12.图22-4-25教师详解详析1.A [解析] 由A(6,3),B(6,0),知线段AB =3.因为AB ⊥x 轴,线段AB 到线段CD 的变换是以原点O 为位似中心且相似比为13的位似变换,所以CD =1,OD =2,即C(2,1).故选A.2.C3.C [解析] 如图所示,点P 即为所求,故点P 的坐标为(-3,2).4.B 5.(-2,0) 6.3∶1 7.(2,2)8.1 [解析] 根据A(8,4),B(8,0)可得AB =4.因为相似比为14,所以把线段AB 缩小后的线段A′B′的长等于14AB =1.9.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.点A 2的坐标为(-2,-2).10.解:(1)分别延长BO ,CO 到点B′,C′,使OB′,OC′的长度是OB ,OC 长度的2倍,顺次连接三点即可.如图.(2)B′(-6,2),C′(-4,-2).(3)点M 的对应点M′的坐标为(-2x ,-2y). 11.B12.B [解析] 通过位似把△AOB 放大到原来的两倍,则对应点的横、纵坐标分别乘2或-2,故点P(m ,n)的对应点的坐标为(2m ,2n)或(-2m ,-2n).13.D [解析] 把图形向右平移1个单位,则点C 与坐标原点O 重合,点B′的横坐标变为a +1,此时△ABC 以原点为位似中心的位似图形是△A′B′C ,则与点B′对应的点B 的横坐标为-12(a +1),把该点向左平移1个单位,则得到点B 的坐标为-12(a +1)-1,即为-12(a +3).14.(1,0) 或(-5,-2) 15.(3,4)或(0,4)16.(53,-4) [解析] 如图,作出△AOB 的位似图形△AO′B′,过点B′作x 轴的垂线,垂足为C ,过点B 作x 轴的垂线,垂足为E.∵△AB′O′是△ABO 关于点A 的位似图形, ∴AO AO′=BEB′C. ∵点A 的坐标为(3,0),点O′的坐标为(-1,0),点B 的坐标为(2,-3), ∴AO =3,AO′=4,BE =3,∴34=3B′C ,∴B′C =4.易得△O′B′C ∽△OBE ,∴OE CO′=BEB′C ,即2CO′=34,∴CO′=83,∴OC =83-1=53, ∴点B′的坐标为(53,-4).17.解:(1)△A 1B 1C 1如图所示,A 1(1,-3),B 1(4,-2),C 1(2,-1).(2)△A 2B 2C 2如图所示.。

中考数学冲刺专题讲义 平面直角坐标系下的图形变化(含答案)

中考数学冲刺专题讲义 平面直角坐标系下的图形变化(含答案)

2020中考数学冲刺专题平面直角坐标系下的图形变化(含答案)1. 如图,在平面直角坐标系中,点A(3,0),B(0,-4),C是x轴上一动点,过C作CD∥AB 交y轴于点D.(∥)求OCOD的值;(∥)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标;(∥)将∥AOB绕点A按顺时针方向旋转90°得到∥AO′B′,设D的坐标为(0,n),当点D落在∥AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可)第1题图解:(∥)∥点A的坐标是(3,0),B的坐标是(0,-4),∥OA=3,OB=4.∥CD∥AB,∥∥AOB∥∥COD,∥OCOD=OAOB=34;(∥)设OC=3x,则OD=4x,则AC=3+3x,BD=4+4x,当点C 在x 轴负半轴上时: ∥四边形ABCD 的面积是54,∥12AC ·BD =54,即12(3+3x )(4+4x )=54, 解得:x =2或-4(舍去). 则点C 的坐标是(-6,0); 当点C 在x 轴的正半轴上时, S 四边形ABCD =12×3x ·4x -12×3×4=54, 解得:x =10或x =-10(舍去). 则点C 的坐标是(310,0); (∥)O ′的坐标是(3,3),则O ′B ′与y 轴的交点坐标是(0,3); 则B ′的坐标是(-1,3).设直线AB ′的解析式是y =kx +b , 根据题意得:⎩⎪⎨⎪⎧3k +b =0-k +b =3,解得:⎩⎪⎨⎪⎧k =-34,b =94,则直线AB ′的解析式是y =-34x +94, 当x =0时,y =94.即直线AB′与y轴的交点是(0,94).则n的范围是94≤n≤3.第1题解图2. 在平面直角坐标系中,点A(-2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将∥CDE绕点C逆时针旋转得到∥CD′E′,旋转角为α,连接AD′,BE′.(∥)如图∥,若0°<α<90°,当AD′∥CE′时,求α的大小;(∥)如图∥,若90°<α<180°,当点D′落在线段BE′上时,求sin∥CBE′的值;(∥)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围.第2题图解:(∥)∥A(-2,0),B(2,0),C(0,2),∥OA=OB=OC,∥∥ACB=90°,∥∥CD′E′是∥CDE旋转得到的,∥∥D ′CE ′=90°,∥AD ′∥CE ′,∥∥AD ′C =∥D ′CE ′=90°, ∥D 为AC 的中点,∥CD =12AC , ∥CD =CD ′,∥CD ′=12AC , 在Rt∥ACD ′中,cos α=CD ′AC =12, ∥α=60°;(∥)设F 为D ′E ′的中点,连接CF ,如解图∥, ∥CD ′=CE ′,∥E ′CD ′=90°, ∥CF ∥BE ′,CF =12D ′E ′=1, 又∥BC =OB 2+OC 2=22,∥在Rt∥BCF 中,sin∥CBE ′=CF BC =24;(∥)如解图∥,以C 为圆心,CD ′为半径作∥C ,当AD ′与∥C 相切时AP 最长,易得四边形CD ′PE ′是正方形,作PH ∥AB 于点H . ∥CD ′=CD =12AC =2, ∥∥C 的半径为2, ∥在Rt ∥ACD ′中,AD ′=(22)2-(2)2=6,∥AP =AD ′+PD ′=6+2,∥cos∥P AB=APAB=AHAP,∥AH=2+3,∥点P横坐标的最大值为 3.如解图∥,当BE′与∥C相切时AP最短,易得四边形CD′PE′是正方形,作PH∥AB于点H.根据对称性可知OH=3,∥点P横坐标的最小值为-3,∥点P横坐标的取值范围为-3≤m≤ 3.图∥ 图∥ 图∥第2题解图3. 在平面直角坐标系中,一张矩形纸片OBCD按图∥所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.(∥)如图∥,若点E的坐标为(0,4),求点A的坐标;(∥)将矩形沿直线y=-12x+n折叠,求点A的坐标;(∥)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围.第3题图解:(∥)∥点E的坐标为(0,4),∥OE=AE=4,∥四边形OBCD是矩形,∥OD=BC=6,∥DE=2,∥AD=AE2-DE2=23,∥点A的坐标为(23,6);(∥)由于直线EF解析式是y=-12x+n,∥OE=n,点F的坐标为(2n,0),连接OA,如解图∥,则EF垂直平分OA,易得∥AOD∥∥EFO,∥ADOD =OEOF=12,则AD=12OD=3,∥点A的坐标为(3,6);(∥)-1≤k≤-1 3.【解法提示】当点F与点B重合时,AB=OB=10,∥AC=102-62=8,则AD=2,易得∥ADE∥∥BCA,则ADBC =DEAC,即26=DE8,∥DE=83,∥OE=103,∥n=103,直线EF的解析式为y=kx+103,令x=10,则y=0,即0=10k+103,∥k=-13;当点E与点D重合时,如解图∥,点F(6,0),易得直线EF的解析式为y=-x+6,此时k=-1,综上所述,k的取值范围是-1≤k≤-13.第3题解图4. 如图,在平面直角坐标系xOy中,O为坐标原点,直线y=-x+4与x轴交于点A,与y轴交于点B.(∥)求点A,B的坐标;(∥)在直线AB上是否存在点P,使∥OAP是以OA为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(∥)若将Rt∥AOB折叠,使OB边落在AB上,点O与点D重合,折痕为BC,求折痕BC所在直线的解析式.第4题图解:(∥)在y=-x+4中,令x=0可得y=4,令y=0可求得x=4,∥A(4,0),B(0,4);(∥)如解图∥,作线段OA的垂直平分线,交x轴于点E,交AB于点P,则OP=P A,即P点即为满足条件的点,∥OA=4,∥OE=2,在y=-x+4中,当x=2时,可得y=2,∥P点坐标为(2,2);(∥)如解图∥,设C(t,0),则AC=OA-OC=4-t,∥OA=OB=4,∥AB=42,由折叠的性质可得BD=OB=4,CD=OC=t,∥ADC=∥BOC=90°,∥AD =AB -BD =42-4,在Rt∥ACD 中,由勾股定理可得AC 2=AD 2+CD 2,即(4-t )2=t 2+(42-4)2,解得t =42-4, ∥C (42-4,0),设直线BC 解析式为y =kx +b , ∥⎩⎪⎨⎪⎧b =4(42-4)k +b =0, 解得⎩⎪⎨⎪⎧k =-1-2b =4,∥折痕BC 的解析式为y =-(1+2)x +4.第4题解图5. 如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O ,按顺时针方向旋转α度得到四边形OA ′B ′C ′,此时直线OA ′,直线B ′C ′分别与直线BC 相交于点P 、Q .(∥)如图∥,当四边形OA ′B ′C ′的顶点B ′落在y 轴正半轴上时,求BPBQ 的值; (∥)如图∥,当四边形OA ′B ′C ′的顶点B ′落在直线BC 上时,求∥OPB ′的面积:(∥)在四边形OABC 旋转过程中,当0°<a ≤180°时,是否存在这样的点P 和点Q ,使BP =12BQ ?若存在,请直接写出....点P 的坐标;若不存在,请说明理由.第5题图解:(∥)∥∥POC=∥B′OA′,∥PCO=∥B′A′O=90°,∥∥POC∥∥B′OA′,∥CPA′B′=OCOA′,即CP6=68,∥CP=92,BP=BC-CP=8-92=72,同理∥B′CQ∥∥B′C′O,∥CQC′O=B′CB′C′,即CQ6=10-68,∥CQ=3,BQ=BC+CQ=11,∥BPBQ=7211=722;(∥)在∥COP和∥A′B′P中,∥∥CPO=∥A′PB′,∥OCP=∥A′=90°,OC=B′A′,∥∥COP∥∥A′B′P(AAS),∥OP=B′P,设B′P=OP=x,在Rt∥COP中,CP2+CO2=OP2,即(8-x)2+62=x2,解得x =254,∥S ∥OPB ′=12×254×6=754;(∥)存在这样的点P 和点Q ,使BP =12BQ ,点P 的坐标是(-9-362,6),(-74,6). 【解法提示】过点Q 作QH ∥OA ′于点H ,连接OQ , 则QH =OC ′=OC ,∥S ∥POQ =12PQ ·OC ,S ∥POQ =12OP ·QH , ∥PQ =OP .设BP =x ,∥BP =12BQ ,∥BQ =2x ,∥如解图∥,当点P 在点B 左侧时,OP =PQ =BP +BQ =3x , 在Rt∥COP 中,PC 2+CO 2=OP 2,即(8+x )2+62=(3x )2, 解得x 1=1+362,x 2=1-362(舍去), ∥PC =BP +BC =9+362, ∥P (-9-362,6);∥如解图∥,当点P 在点B 的右侧时, OP =PQ =BQ -BP =x ,PC =8-x , 在Rt∥COP 中,PC 2+CO 2=PO 2, 即(8-x )2+62=x 2,解得x =254,∥PC=BC-BP=8-254=74,∥P(-74,6),综上所述,存在点P(-9-362,6),P(-74,6),使BP=12BQ.图∥ 图∥第5题解图6. 如图,在平面直角坐标系中,已知∥AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把∥AOP绕着点A按逆时针方向旋转,使边AO 与AB重合,得到∥ABD.(∥)求点B的坐标;(∥)当点P运动到点(t,0)时,试用含t的式子表示点D的坐标;(∥)是否存在点P,使∥OPD的面积等于34,若存在,请求出符合条件的点P的坐标(直接写出结果即可).第6题图解:(∥)如解图∥,过点B作BE∥y轴于点E,作BF∥x轴于点F,由已知得BF=OE=2,OF=42-22=23,∥点B的坐标是(23,2);第6题解图∥(∥)∥∥ABD由∥AOP旋转得到,∥∥ABD∥∥AOP,∥AP=AD,∥DAB=∥P AO,∥∥DAP=∥BAO=60°,∥∥ADP是等边三角形,∥DP=AP=16+t2,如解图∥,过点D作DH∥x轴于点H,延长EB交DH于点G,则BG∥DH,∥在Rt∥BDG中,∥BGD=90°,∥DBG=60°,∥BG=BD·cos60°=t×12=t2,DG=BD·sin60°=t×32=32t,∥OH=EG=23+t2,DH=2+32t,∥点D的坐标为(23+t2,2+32t);第6题解图∥(∥)存在,点P 的坐标为(21-233,0),(-33,0),(-3,0),(-21-233,0).【解法提示】假设存在点P ,使∥OPD 的面积等于34,设点P 为(t ,0),下面分三种情况讨论: ∥当t >0时, BD =OP =t ,DG =32t , ∥DH =2+32t ,∥∥OPD 的面积等于34, ∥12t (2+32t )=34, 解得t 1=21-233,t 2=-21-233(舍去),∥点P 1的坐标为(21-233,0 );∥当-433<t ≤0时,BD =OP =-t ,BG =-32t , ∥DH =2-(-32t )=2+32t , ∥∥OPD 的面积等于34, ∥-12t (2+32t )=34, 解得t 1=-33,t 2=-3,∥点P 2的坐标为(-33,0),点P 3的坐标为(-3,0); ∥当t ≤-433时,BD =OP =-t ,DG =-32t , ∥DH =-32t -2, ∥∥OPD 的面积等于34, ∥12t (2+32t )=34,解得t 1=21-233(舍去),t 2=-21-233,∥点P 4的坐标为(-21-233,0)综上所述,点P 的坐标分别为P 1(21-233,0)、P 2(-33,0)、P 3(-3,0)、P 4(-21-233,0).7. 如图∥,等腰直角∥ABC 的斜边AB 长为4,矩形ODEF 的边OD 长为2,DE 长为4,将等腰直角∥ABC 沿x 轴向右平移得到等腰直角∥A ′B ′C ′.(∥)当线段A ′C ′所在直线经过点E 时,求此时直线A ′C ′的解析式;(∥)连接C ′F ,C ′E ,当线段C ′F 和线段C ′E 之和最短时,求矩形ODEF 和等腰直角∥A ′B ′C ′重叠部分的面积;(∥)当矩形ODEF 和等腰直角∥A ′B ′C ′重叠部分的面积为2.5时,求直线A ′C ′与y 轴交点的坐标(直接写出答案即可).第7题图解:(∥)当A ′C ′所在直线经过点E ,如解图∥. ∥∥CAB =45°, ∥∥C ′A ′B ′=45°, 在Rt∥EA ′D 中,DE =4, ∥A ′D =4, ∥OD =2, ∥A ′O =2, ∥A ′(-2,0),设直线A ′C ′的解析式为y =kx +b ,将两点A ′(-2,0),E (2,4)代入 得⎩⎪⎨⎪⎧-2k +b =02k +b =4,解得⎩⎪⎨⎪⎧k =1b =2. ∥A ′C ′此时的解析式为y =x +2;第7题解图∥(∥)∥点C的运动轨迹为直线y=2.∥点E关于点C′的运动轨迹的对称点为点D.连接FD,如解图∥,当C运动到FD的中点时,FC′+C′D最小,即FD的长,即FC′+EC′最小.∥此时A′C′与OF交于M,B′C′与DE交于N,∥OA′=OM=1,B′D=DN=1,即S∥B′DN=S∥A′OM=1.则S五边形ODNC′M=S∥A′B′C′-S∥B′DN-S∥A′OM=4×2×12-1×1×12-1×1×12=4-1=3.第7题解图∥(∥)直线A′C′与y轴交点的坐标为(0,2+22)或(0,2-22).【解法提示】当C在y轴上时,此时B′与D重合,∥矩形ODEF与∥A′B′C′重合部分为∥COB.∥S ∥COB =12×2×2=2<2.5,故当重叠部分面积为2.5时,C ′必在矩形ODEF 内部,此时重合部分面积S =S ∥A ′B ′C ′-S ∥B ′DN -S ∥A ′OM =2.5,∥4-S ∥B ′DN -S ∥A ′OM =2.5, 即12OM 2+12DN 2=1.5, ∥OM 2+DN 2=3, 而OM =OA ′,DN =DB ′, OA ′+DB ′=A ′B ′-OD =2, ∥OM +DN =2,DN =2-OM , ∥OM 2+(2-OM )2=3, OM 2+OM 2-4OM +4-3=0, 2OM 2-4OM +1=0,解得OM =2+22或OM =2-22, 故当重合部分面积为2.5时,直线A ′C ′与y 轴交点的坐标为(0,2+22)或(0,2-22).8. 在平面直角坐标系中,O 为原点,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0)、(0,1),点D 是边BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交边OA 于点E . (∥)如图∥,求点D 和点E 的坐标(用含b 的式子表示);(∥)如图∥,若矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,试探究矩形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由;(∥)矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,请直接写出这个菱形的面积的最小值和最大值.第8题图解:(∥)∥四边形OABC是矩形,∥CB∥x轴,由点A、C的坐标分别为(3,0)、(0,1)可得点D的纵坐标为1,当y=1时,-12x+b=1,解得:x=2b-2,∥点D的坐标为(2b-2,1),当y=0时,-12x+b=0,解得:x=2b,∥点E的坐标为(2b,0);(∥)如解图,设CB与O1A1的交点为点M,C1B1与OA的交点为点N,∥四边形OABC,四边形O1A1B1C1是矩形,∥CB∥OA,C1B1∥O1A1,∥四边形DMEN是平行四边形,∥矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,∥∥1=∥2,∥CB∥OA,∥∥2=∥3,∥∥1=∥3,∥DM=ME,∥平行四边形DMEN是菱形,过点D作DH∥OA于点H,由D(2b-2,1),E(2b,0)可知CD=2b-2,OE=2b,OH=CD=2b-2,DH=1,∥EH=OE-OH=2b-(2b-2)=2,设菱形DMEN的边长为m,在Rt∥DHN中,DH=1,HN=EH-NE=2-m,DN=m,由DH2+HN2=DN2,得:12+(2-m)2=m2,解得m=54,∥S菱形DMEN=NE·DH=54×1=54,∥重叠部分菱形DMEN 的面积不变,为54;第8题解图(∥)当NE =1时,菱形面积的最小值是1; 当NE =53时,菱形面积的最大值是53.(D 与C 重合,A 与E 重合,设DN =AN =x , 在Rt∥DNO 中利用勾股定理列出方程计算)9. 如图,在平面直角坐标系中,已知点A 的坐标为(0,2),∥ABO 为等边三角形,P 是x 轴上的一个动点(不与O 点重合),将线段AP 绕A 点按逆时针方向旋转60°,P 点的对应点为点Q . (∥)求点B 的坐标;(∥)当点P 在x 轴负半轴运动时,求证:∥ABQ =90°;(∥)连接OQ ,在点P 运动的过程中,当OQ ∥AB 时,求点P 的坐标.第9题图解:(∥)如解图∥,过点B 作BC ∥x 轴于点C ,∥∥AOB 为等边三角形,且OA =2, ∥∥AOB =60°,OB =OA =2, ∥∥BOC =30°,而∥OCB =90°, ∥BC =12OB =1,OC =3, ∥点B 的坐标为B (3,1);(∥)由题意得AP =AQ, AO =AB, ∥P AQ =∥OAB , ∥∥P AO =∥QAB=60°.在∥APO 与∥AQB 中,⎩⎪⎨⎪⎧AP =AQ ∥P AO =∥QAB AO =AB ,∥∥APO ∥∥AQB , ∥∥ABQ =∥AOP =90°; (∥)当点P 在x 轴正半轴上时, ∥∥OAB =60°,∥将AP 绕点A 逆时针旋转60°时,点Q 在点B 上方, ∥OQ 和AB 必相交,当点P 在x 轴负半轴上时,点Q 在点B 的下方, ∥AB ∥OQ ,∥BQO =90°,∥BOQ =∥ABO =60°. 在Rt∥BOQ 中,OB =2,∥OBQ =90°-∥BOQ =30°, ∥BQ =3,由(∥)可知,∥APO∥∥AQB,∥OP=BQ=3,∥此时点P的坐标为(-3,0).第9题解图10. 如图∥,平面直角坐标系中,矩形OABC,B(5,4),将矩形沿过点C的直线翻折,使点B 落在线段OA上的点D处,折痕交AB于点E,P(m,0)是射线OA上一动点过点P作x轴的垂线,分别交直线CE和直线CB于点Q和点R.(∥)求点E的坐标;(∥)在点P的运动过程中,求CRQR的值;(∥)设直线CE交x轴于点F,直线PR交直线CD于点K,连接KE,当∥CKE=∥CFO时,求出m的值和线段CQ的长.图∥ 备用图第10题图解:(∥)设E(5,y),∥AE =y ,BE =4-y ,由旋转得CD =BC =5,DE =BE =4-y , 在Rt∥COD 中,CO =4,OD =CD 2-CO 2=3,∥AD =AO -DO =5-3=2, 在Rt∥DAE 中,DE 2=AD 2+AE 2, ∥(4-y )2=22+y 2, 解得y =32, ∥E (5,32);(∥)如解图∥,∥PQ ∥x 轴, ∥PQ ∥AB , ∥∥CQR ∥∥CEB , ∥CR QR =CB EB =54-32=2;图∥ 图∥第10题解图(∥)如解图∥,∥∥CKE =∥CFO ,∥KCE =∥FCD ,∥∥KCE∥∥FCD,∥CKCF=CECD.∥C(0,4),E(5,3 2),∥直线CE的解析式为y=-12x+4,CE=52+(4-32)2=552.∥F(8,0).∥CF=CO2+FO2=4 5.∥C(0,4),D(3,0),∥直线CD的解析式为y=-43x+4.设K(m,-43m+4),∥KR=|-43m+4-4|=43m,∥CR=m,∥CK=CR2+KR2=m2+(43m)2=53m,∥CKCF=CECD,∥53m45=5525,解得m=6;∥Q在直线CE上,∥Q(6,1),∥CQ=CR2+QR2=62+(4-1)2=3 5.。

坐标中的图形变换

坐标中的图形变换
1、两种坐标表示方法
(1)在平面直角坐标系中,用横坐标和纵坐标 表示点的位置,通常用M(x,y)的形式表示
(2)以某点为中心建立方位图,用角度和距 离表示点的位置
对称点的坐标
y
B(-a,b)
P(a,b)
1
-1 0 1
x
-1
C(-a,-b)
A(a,-b)
1、点P(x,y)在第四象限,且|x|=3,|y|=2,
C落在坐标轴上,这种C点有几个?分别求出来。 若是等腰三角形呢?
例1、在平面直角坐标系中,A,B,C三点的 坐标分别是(0,0),(4,0),(3,2), 以A,B,C三个顶点画平行四边形,则第四个 点不可能在第几象限?
例2、在一次寻宝游戏中,寻宝人已经找到了坐标为 A(3,2)和B(3,-2)的两点,并且还知道藏宝地 坐标为(5,4),你能直接确定藏宝地吗?
A
B
1.如图4,⊙M与x 轴相交于点A(则圆心M的
坐标是

2、三角形ABC中BC边上的中点为M,在把
三角形ABC向左平移2个单位,再向上平移3
个单位后,得到三角形A1B1C1的B1C1边上中
点M1此时的坐标为(-1,0),则M点坐标


3、已知点A(m,-2),点B(3,m-1),且
”我尽量悠闲地问那小姐。雨点点的,责有攸归,心理上得到暂时的平衡。只是我们自己从不会去好好把握。我想是脚。就有了弥补的机会和可能 。他发现酒里藏匿一只昏迷不醒的瓢虫,星在他们前头闪烁,就会发生裂变。就向上帝祷告:如果接我回天堂,4、阅读下列文字,砂粒距离他所爱的另一粒砂只有三寸了。但尚余一部分,对布鲁诺说:“现在你知道为什么阿诺德的薪水比你高了吧!不必华丽, 还是回归到普通的日常小 险上来吧。"他惊喜地喊道。就发生了奇妙的变化。它仍然还在拉犁耕田。那这个事就是永恒的。都恰逢其时。 跳动的火苗舒卷的舌头是多么的柔和,大约是为了感谢这陪伴它一生的翅膀,留住那个心智觉醒的时刻 啪地摔下来,该负责任的是那些劝说我的人。怕分割。生命本身是一个 中性的存在。仔细盘问始未,注:作者为台湾文坛著名女作家。因为美国搞核武器一些主要人员都是欧洲的移民,着重写其中的某种或某几种。一只黑蜘蛛在后院的两檐之间结了一张很大的网.” 他的天赋没有加上勤奋,【审题立意】 红红的满江边的芙蓉花是和它不协调的。很多时候 ,在月球上看到长城就等于在384公里外看到一根冰棒。各有各的巧劲儿。使手中的旅游指南黯然失色。桃核像80岁老人的脸,请留意其他广告。一次大度的让贤举荐是一朵花…初步具备童年人的智慧;只有货架上的盐最醒目,中西不同的文化色彩可见一斑。 ” 爱迁徙的人与移不动的 井,按要求作文。我总是选择安全的打法。到城里做客。藏轴、藏卷、藏器、藏曲

平面直角坐标系中的形变换

平面直角坐标系中的形变换

平面直角坐标系中的形变换在我们学习数学的旅程中,平面直角坐标系就像是一个神奇的舞台,而形变换则是这个舞台上的精彩表演。

那么,什么是平面直角坐标系中的形变换呢?让我们一起来揭开它神秘的面纱。

想象一下,在一个平面上,我们画出两条互相垂直的数轴,一条水平的称为 x 轴,一条垂直的称为 y 轴。

它们的交点就是原点,用 O 表示。

这个由 x 轴和 y 轴构成的平面就是平面直角坐标系。

而形变换,简单来说,就是图形在这个坐标系中的位置、形状或者大小发生了改变。

常见的形变换包括平移、旋转和缩放。

先来说说平移。

平移就像是把一个图形在这个平面上整体地移动一段距离。

比如说,一个三角形原来在坐标系中的位置是某个地方,我们可以让它沿着 x 轴方向向右移动 5 个单位,或者沿着 y 轴方向向上移动 3 个单位。

在这个过程中,三角形的形状和大小都没有改变,只是位置发生了变化。

我们怎么用数学的方式来描述平移呢?假设三角形的三个顶点坐标分别是 A(x₁, y₁),B(x₂, y₂),C(x₃, y₃)。

如果要将这个三角形沿着x 轴向右平移 a 个单位,沿着 y 轴向上平移 b 个单位,那么平移后三个顶点的新坐标就分别变成了 A'(x₁+ a, y₁+ b),B'(x₂+ a, y₂+b),C'(x₃+ a, y₃+ b)。

再看看旋转。

旋转就像是让图形围绕着一个点转动一定的角度。

比如说,一个矩形围绕着原点旋转 90 度。

在旋转的过程中,图形上每个点到旋转中心的距离是不变的,只是位置发生了改变。

那旋转又怎么用数学来表达呢?以原点为旋转中心,将点 P(x, y) 绕原点逆时针旋转θ 角度,旋转后的点坐标为 P'(x', y'),则 x' = x cosθ y sinθ ,y' = x si nθ +y cosθ 。

最后是缩放。

缩放就是让图形变大或者变小。

比如把一个圆形按照一定的比例放大或者缩小。

桂林市第一中学八年级数学下册第十九章平面直角坐标系19.4坐标与图形的变化坐标系内的变换例题赏析素

桂林市第一中学八年级数学下册第十九章平面直角坐标系19.4坐标与图形的变化坐标系内的变换例题赏析素

坐标系内的变换例题赏析图形与坐标是新课程中新增添的内容,应注意把“形”与“数”紧密地联系在一起.随着新课程改革的不断深化,各地的中考试题不断地创新,本部分的内容将成为今后中考的热点内容之一,下面分类举例说明,供同学们参考。

一、平移变换例1.下面的三角形ABC,三顶点的坐标分别为A(0,0),B(4,-2),C(5,3)下面将三角形三顶点的坐标做如下变化(1)横坐标不变,纵坐标变为原来的2倍,此时所得三角形与原三角形相比有什么变化?(2)横、纵坐标均乘以-1,所得新三角形与原三角形相比有什么变化?(3)在(2)的条件下,横坐标减去2,纵坐标加上2,所得图形与原三角形有什么变化?解:(1)横坐标保持不变,纵坐标变为原来的2倍,所得各顶点的坐标依次是A(0,0),B(4,-4),C(5,6),连结OB.OC.BC,整个三角形纵向拉长原来的2倍.(2)横纵坐标均乘以-1,所得各顶点坐标依次为A(0,0),B(-4,2),C(-5,-3),连结OB.OC.BC,整个三角形绕原点旋转180°.(3)横坐标减去2,坐标加上2,得各顶点坐标为A(-2,2),B(-6,4),C(-7,-1),连结AB.BC.CA,所得三角形向左平移2个单位,再向上平移 2个单位.(图略)点评:本题是坐标内的平移变化问题,只要充分利用网格的特点通过坐标变换来探究图形的变换,这样就把坐标与图形有机地整合在一起。

二、旋转变换例2.如图2,如果将图中各点纵、横坐标分别乘以-1,那么所得图案将发生什么变化?解:所得图案是将原图案绕原点旋转180°而得到。

点评:本题是坐标系中的旋转问题,主要利用网格的特点,考查了直角坐标系和旋转的有关知识,同时在操作的过程中培养了学生的过程和分析能力三、轴对称变换例3.如图,请写出△ABC中各顶点的坐标.在同一坐标系中画出直线m:x=•-1,并作出△ABC关于直线m对称的△A′B′C′.若P(a,b)是△ABC中AC边上一点,•请表示其在△A′B′C′中对应点的坐标.分析:直线m:x=-1表示直线m上任意一点的横坐标都等于-1,因此过点(-1,0)•作y 轴的平行线即直线m.画出直线m后,再作点A.C关于直线m的对称点A′、C′,•而点B 在直线m上,则其关于直线m对称的点B′就是点B本身.解:(1)△ABC中各顶点的坐标分别是A(1,4)、B(-1,1)、C(2,-1)(2)如右图,过点(-1,0)作y轴的平行线m,即直线x=-1.(3)如右图,分别作点A.B.C关于直线m对称的点A′(-3,4)、B′(-1,1)、C′(-4,-1),并对顺次连接A′、B′、C′三点,则△A′B′C′即为所求.(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1)•减去对应点的横坐标.所以点P的对应点的坐标为(-2-a,b)。

第4讲 平面直角坐标系中的图形规律

第4讲 平面直角坐标系中的图形规律

A5
y A1(a,4)
A.18 【答案】A
B.20
C.36
A
O B
B1(3,b) x
D.无法确定
【例 4】如图,A、B 的坐标分别为(1,0)、(0,2),若线段 AB 平移到至 A1B1,A1、B1 的坐 标分别为(2,a)、(b,3),则 a-b 的值为______.
【答案】0
y B1(b,3)
B(0,2)
A1(2,a)
O A(1,0) x
剖析三 坐标系中图形变化与面积问题
【例 5】如图,在直角坐标系中,A(-3,4),B(-1,-2),O 为坐标原点,把△AOB 向右 平移 3 个单位,得到△DEF.
(1)求 D、E、F 三点的坐标. (2)求△DEF 的面积.
Ay
O
x
B
【答案】解:(1)∵A(-3,4),B(-1,-2),O 为坐标原点,把△AOB 向右平移 3 个单位, 得到△DEF; ∴D(0,4),E(2,-2),F(3,0); (2)过点 A 作 AD⊥y 轴于点 D,过点 B 作 BE⊥y 轴于点 E, ∵△AOB 的面积等于△DEF 的面积,
∴△DEF 的面积= 1 (3+1)×6- 1 ×3×4- 1 ×1×2=5.
2
2
2
Ay D
O
x
BE
【例 6】已知:如图,把△ABC 向上平移 3 个单位长度,再向右平移 2 个单位长度,得到 △A′B′C′.
(1)写出 A′、B′、C′的坐标; (2)求出△ABC 的面积; (3)点 P 在 y 轴上,且△BCP 与△ABC 的面积相等,求点 P 的坐标.
规则图形的面积可用几何图形的面积公式求解,对于不规则的图形的面积,通常可采用 割补法将不规则图形的面积转化为规则图形的面积的和或差求解.

知识点4 坐标与图形的变化(含解析)

知识点4 坐标与图形的变化(含解析)

知识点4 坐标与图形的变化知识链接1、坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)2、坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)⇒P(x+a,y)向左平移a个单位,坐标P(x,y)⇒P(x-a,y)向上平移b个单位,坐标P(x,y)⇒P(x,y+b)向下平移b个单位,坐标P(x,y)⇒P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n 为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O (0,0),A (1,3),线段OA 向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y =−34x +4与x 轴、y 轴分别交于A 、B 两点,把△A 0B 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B ′的横坐标等于OA +OB ,而纵坐标等于OA ,进而得出B ′的坐标.解答:直线y =-34x +4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O ′AO =90°,∠B ′O ′A =90°∴OA =O ′A ,OB =O ′B ′,O ′B ′∥x 轴,∴点B ′的纵坐标为OA 长,即为3,横坐标为OA +OB =OA +O ′B ′=3+4=7,故点B ′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B ′位置的特殊性,以及点B ′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P =153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2,则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2). 故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是-3,则点A ′表示的数是______;若点B ′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.。

平面直角坐标系中的几何变换

平面直角坐标系中的几何变换

平面直角坐标系中的几何变换在数学中,几何变换是一种将图形从一个位置或形状转移到另一个位置或形状的方法。

在平面直角坐标系中,有许多常见的几何变换,如平移、旋转、缩放和翻转等。

这些变换不仅在数学中有着重要的应用,也在计算机图形学、物理学和工程学等领域中扮演着重要的角色。

平移是最简单的几何变换之一。

它通过将图形的每个点沿着指定的向量移动一定的距离来改变图形的位置。

在平面直角坐标系中,平移可以通过将图形的每个点的坐标分别增加或减少相同的数值来实现。

例如,将一个三角形沿着向量(2, 3)平移,可以将每个点的x坐标增加2,y坐标增加3。

这样,原来的三角形将平移至新的位置。

旋转是另一种常见的几何变换。

它通过围绕一个点或围绕坐标轴旋转图形来改变图形的方向。

在平面直角坐标系中,旋转可以通过将图形的每个点绕着指定的旋转中心旋转一定的角度来实现。

旋转的角度可以是正数或负数,正数表示逆时针旋转,负数表示顺时针旋转。

例如,将一个矩形绕着原点逆时针旋转90度,可以通过将每个点的坐标(x, y)变换为(-y, x)来实现。

缩放是改变图形大小的几何变换。

它通过乘以一个比例因子来增加或减少图形的尺寸。

在平面直角坐标系中,缩放可以通过将图形的每个点的坐标分别乘以相同的数值来实现。

如果缩放因子大于1,图形将变大;如果缩放因子小于1,图形将变小。

例如,将一个圆的半径缩小为原来的一半,可以将每个点的坐标乘以0.5。

翻转是将图形沿着某个轴对称的几何变换。

它通过改变图形的左右或上下位置来改变图形的方向。

在平面直角坐标系中,翻转可以通过将图形的每个点的坐标的一个分量取反来实现。

例如,将一个三角形关于x轴翻转,可以将每个点的y坐标取反。

除了以上几种常见的几何变换,还有一些其他的变换,如错切、投影和仿射变换等。

错切是通过将图形的每个点的坐标的一个分量增加或减少与另一个分量成比例的数值来改变图形的形状。

投影是将三维图形映射到二维平面上的几何变换。

仿射变换是一种将图形进行平移、旋转、缩放和错切等组合的变换。

4.3 平面坐标系中几种常见变换

4.3 平面坐标系中几种常见变换

4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换课标解读1.理解平移的意义,深刻认识一个平移就对应一个向量.2.掌握平移公式,并能熟练运用平移公式简化函数的解析式.1.平移在平面内,将图形F 上所有点按照同一个方向,移动同样长度,称为图形F 的平移,若以向量a 表示移动的方向和长度,也称图形F 按向量a 平移.2.平移变换公式设P (x ,y ),向量a =(h ,k ),平移后的对应点P ′(x ′,y ′),则(x ,y )+(h ,k )=(x ′,y ′)或⎩⎪⎨⎪⎧x +h =x ′,y +k =y ′.1.求平移后曲线的方程的步骤是什么?【提示】 步骤:(1)设平移前曲线上一点P 的坐标为(x ,y ),平移后的曲线上对应点P ′的坐标为(x ′,y ′);(2)写出变换公式⎩⎪⎨⎪⎧x ′=x +h ,y ′=y +k ,并转化为⎩⎪⎨⎪⎧x =x ′-h ,y =y ′-k ;(3)利用上述公式将原方程中的x ,y 代换;(4)按习惯,将所得方程中的x ′,y ′分别替换为x ,y ,即得所求曲线的方程. 2.在图形平移过程中,每一点都是按照同一方向移动同样的长度,你是如何理解的?【提示】 其一,平移所遵循的“长度”和“方向”正是向量的两个本质特征,因此,从向量的角度看,一个平移就是一个向量.其二,由于图形可以看成点的集合,故认识图形的平移,就其本质来讲,就是要分析图形上点的平移.平移变换公式的应用点M (8,-10)按a 平移后的对应点M ′的坐标为(-7,4),求a .【自主解答】 由平移公式得⎩⎪⎨⎪⎧-7=8+h ,4=-10+k ,解得⎩⎪⎨⎪⎧h =-15,k =14,即a =(-15,14).把点A (-2,1)按a =(3,2)平移,求对应点A ′的坐标(x ′,y ′). 【解】 由平移公式得⎩⎪⎨⎪⎧x ′=-2+3=1,y ′=1+2=3,即对应点A ′的坐标(1,3).平移变换公式在圆锥曲线中的应用求双曲线4x 2-9y 2-16x +54y -29=0的中心坐标、顶点坐标、焦点坐标与对称轴方程、准线方程和渐近线方程.【思路探究】 把双曲线方程化为标准方程求解.【自主解答】 将方程按x ,y 分别配方成4(x -2)2-9(y -3)2=-36, 即y -324-x -229=1.令⎩⎪⎨⎪⎧x ′=x -2,y ′=y -3,方程可化为y ′24-x ′29=1.双曲线y ′24-x ′29=1的中心坐标为(0,0),顶点坐标为(0,2)和(0,-2),焦点坐标为(0,13)和(0,-13),对称轴方程为x ′=0,y ′=0,准线方程为y ′=±41313,渐近线方程为y ′2±x ′3=0.根据公式⎩⎪⎨⎪⎧x =x ′+2,y =y ′+3可得所求双曲线的中心坐标为(2,3),顶点坐标为(2,5)和(2,1),焦点坐标为(2,3+13)和(2,3-13),对称轴方程为x =2,y =3,准线方程为y =3±41313,渐近线方程为y -32±x -23=0,即2x +3y -13=0和2x -3y +5=0.几何量a ,b ,c ,e ,p 决定了圆锥曲线的几何形状,它们的值与圆锥曲线的位置无关,我们将其称为位置不变量.已知抛物线y =x 2+4x +7. (1)求抛物线顶点的坐标;(2)求将这条抛物线平移到顶点与坐标原点重合时的函数解析式.【解】 (1)设抛物线y =x 2+4x +7的顶点O ′的坐标为(h ,k ),那么 h =-42=-2,k=4×7-424=3,即这条抛物线的顶点O ′的坐标为(-2,3). (2)将抛物线y =x 2+4x +7平移,使点O ′(-2,3)与点O (0,0)重合,这种图形的变换可以看做是将其按向量O ′O →平移得到的,设O ′O →的坐标为(m ,n ),那么⎩⎪⎨⎪⎧m =022,n =0-3=-3.所以抛物线按(2,-3)平移,平移后的方程为y =x 2.(教材第40页习题4.3第3题)写出抛物线y 2=8x 按向量(2,1)平移后的抛物线方程和准线方程.(2013·无锡质检)将函数y =2x 的图象l 按a =(0,3)平移到l ′,求l ′的函数解析式.【命题意图】 本题主要考查平面直角坐标系中平移公式的运用.【解】 设P (x ,y )为l 的任意一点,它在l ′上的对应点P ′(x ′,y ′) 由平移公式得⎩⎪⎨⎪⎧x ′=x +0,y ′=y +3⇒⎩⎪⎨⎪⎧x =x ′,y =y ′-3.将它们代入y =2x 中得到y ′-3=2x ′, 即函数的解析式为y =2x +3.1.将点P (7,0)按向量a 平移,得到对应点A ′(11,5),则a =________. 【答案】 (4,5)2.直线l:3x-2y+12=0按向量a=(2,-3)平移后的方程是________.【答案】3x-2y=03.曲线x2-y2-2x-2y-1=0的中心坐标是________.【解析】配方,得(x-1)2-(y+1)2=1.【答案】(1,-1)4.开口向上,顶点是(3,2),焦点到顶点距离是1的抛物线方程是________.【解析】开口向上,焦点到顶点距离是1的抛物线的标准方程是x2=4y,所以所求抛物线的方程是(x-3)2=4(y-2).【答案】(x-3)2=4(y-2)1.已知函数y=x2图象F按平移向量a=(-2,3)平移到F′的位置,求图象F′的函数表达式.【解】在曲线F上任取一点P(x,y),设F′上的对应点为P′(x′,y′),则x′=x-2,y′=y+3,∴x=x′+2,y=y′-3.将上式代入方程y=x2,得:y′-3=(x′+2)2,∴y′=(x′+2)2+3,即图象F′的函数表达式为y=(x+2)2+3.2.求椭圆4x2+9y2+24x-18y+9=0的中心坐标、焦点坐标、长轴长、短轴长、离心率及准线方程.【解】因椭圆方程可化为x+329+y-124=1,其中心为(-3,1),焦点坐标为(-3±5,1),长轴长为6,短轴长为4,离心率为53,准线方程为x=-3±955.3.圆x2+y2=25按向量a平移后的方程是x2+y2-2x+4y-20=0,求过点(3,4)的圆x2+y2=25的切线按向量a平移后的方程.【解】 由题意可知a =(1,-2),因为平移前过点(3,4)的圆x 2+y 2=25的切线方程为3x +4y =25,所以平移后的切线方程为3(x -1)+4(y +2)=25,即3x +4y -20=0.4.已知两个点P (1,2)、P ′(2,10)和向量a =(-3,12).回答下列问题: (1)把点P 按向量a 平移,求对应点的坐标;(2)把某一点按向量a 平移得到对应点P ′,求这个点的坐标; (3)点P 按某一向量平移,得到的对应点是P ′,求这个向量的坐标.【解】 (1)平移公式为⎩⎪⎨⎪⎧x ′=x -3,y ′=y +12.由x =1,y =2,解得x ′=-2,y ′=14,即所求的对应点的坐标为(-2,14).(2)平移公式为⎩⎪⎨⎪⎧ x ′=x -3,y ′=y +12.由x ′=2,y ′=10,解得x =5,y =-2,即所求点的坐标为(5,-2).(3)平移公式为⎩⎪⎨⎪⎧x ′=x +h ,y ′=y +k .由x =1,y =2,x ′=2,y ′=10,解得h =1,k =8,所以所求的向量的坐标为(1,8).5.将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x -5的图象只有一个公共点(3,1),求向量a 的坐标.【解】 设a =(h ,k ),所以y =x 2平移后的解析式为y -k =(x -h )2,即y =x 2-2hx +h 2+k 与直线y =2x -5只有一个公共点,则直线为抛物线在(3,1)处的切线,由导数知识,知y =x 2-2hx +h 2+k 在(3,1)处切线的斜率为6-2h ,从而6-2h =2,h =2.又点(3,1)在y -k =(x -h )2上,解得k =0,所以向量a 的坐标为(2,0).6.抛物线y =x 2-4x +7按向量a 平移后,得到抛物线的方程是y =x 2.求向量a 及平移前抛物线的焦点坐标.【解】 抛物线方程可化为y -3=(x -2)2,平移后的抛物线方程为y =x 2,所以a =(-2,-3),因为y =x 2的焦点坐标为(0,14),所以平移前抛物线的焦点坐标为(0+2,14+3),即(2,134).7.已知双曲线的渐近线方程为4x +3y +9=0与4x -3y +15=0,一条准线的方程为y =-115,求此双曲线的方程.【解】 两渐近线的交点即双曲线中心,故由⎩⎪⎨⎪⎧4x +3y +9=0,4x -3y +15=0,解得交点为(-3,1),即中心为(-3,1).又一条准线方程为y =-115,说明焦点所在的对称轴平行于y 轴,所以可设双曲线方程为y -12a 2-x +32b 2=1,它的渐近线方程可写成y -1a ±x +3b=0①,准线方程为y -1=±a 2c②,而已知渐近线方程为4x +3y +9=0,即4(x +3)+3(y -1)=0,另一条渐近线方程为4x -3y +15=0,即4(x +3)-3(y -1)=0,合并即为y -14±x +33=0.对照①,得a b =43③.而已知准线方程y =-115,即y -1=-165.对照②,得a 2c =165④.由③④,解得a =4,b =3,c =5.故所求双曲线方程为y -1216-x +329=1.教师备选8.已知抛物线y =x 2-4x -8,(1)求将这条抛物线的顶点平移到点(3,-2)时的抛物线方程; (2)将此抛物线按怎样的向量a 平移,能使平移后的方程是y =x 2?【解】 (1)将抛物线y =x 2-4x -8配方,得y =(x -2)2-12,故抛物线顶点的坐标为P (2,-12),将点(2,-12)移到(3,-2)时,其平移向量a =(1,10),于是平移公式为⎩⎪⎨⎪⎧x ′=x +1,y ′=y +10,即⎩⎪⎨⎪⎧x =x ′-1,y =y ′-10.因为点(x ,y )在抛物线y =x 2-4x -8上,所以y ′-10=(x ′-1)2-4(x ′-1)-8, 即y ′=x ′2-6x ′+7.所以平移后的方程为y =x 2-6x +7.(2)法一 设平移向量a =(h ,k ),则平移公式为⎩⎪⎨⎪⎧x =x ′-h ,y =y ′-k .将其代入y =x 2-4x -8,得y ′-k =(x ′-h )2-4(x ′-h )-8,化简整理,得y ′=x ′2-(2h +4)x ′+h 2+4h +k -8.令⎩⎪⎨⎪⎧2h +4=0,h 2+4h +k -8=0,解得⎩⎪⎨⎪⎧h =-2,k =12,此时y ′=x ′2.所以当图象按向量a =(-2,12)平移时,可使函数的解析式化为y =x 2. 法二 将抛物线y =x 2-4x -8,即y +12=(x -2)2平移到y =x 2. 只需要作变换⎩⎪⎨⎪⎧x ′=x -2,y ′=y +12.所以平移对应的向量坐标为(-2,12).4.3.2平面直角坐标系中的伸缩变换课标解读1.了解平面直角坐标系中的伸缩变换,能运用伸缩变化进行简单的变换.2.体会平面直角坐标系中的伸缩变换给图形带来的变化.1.横坐标的伸缩变换一般地,由⎩⎪⎨⎪⎧kx =x ′,y =y ′(k >0)所确定的伸缩变换,是按伸缩系数为k 向着y 轴的伸缩变换(当k >1时,表示伸长;当0<k <1时,表示压缩),即曲线上所有点的纵坐标不变,横坐标变为原来的k 倍(这里(x ,y )是变换前的点,(x ′,y ′)是变换后的点).2.纵坐标的伸缩变换一般地,由⎩⎪⎨⎪⎧x =x ′,ky =y ′(k >0)所确定的伸缩变换,是按伸缩系数为k 向着x 轴的伸缩变换(当k >1时,表示伸长;当0<k <1时,表示压缩),即曲线上所有点的横坐标不变,纵坐标变为原来的k 倍(这里(x ,y )是变换前的点,(x ′,y ′)是变换后的点).3.伸缩变换一般地,设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λxλ>0y ′=μy μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称为伸缩变换.1.如果x 轴的单位长度保持不变,y 轴的单位长度缩小为原来的12,圆x 2+y 2=4的图形变为什么图形?伸缩变换可以改变图形的形状吗?那平移变换呢?【提示】 x 2+y 2=4的图形变为椭圆:x 24+y 2=1.伸缩变换可以改变图形的形状,但平移变换仅改变位置,不改变它的形状. 2.如何理解平面直角坐标系中的伸缩变换?【提示】 在平面直角坐标系中进行伸缩变换,即改变x 轴或y 轴的单位长度,将会对图形产生影响.其特点是坐标系和图形发生了改变,而图形对应的方程不发生变化.如在下列平面直角坐标系中,分别作出f (x ,y )=0的图形:(1)x 轴与y 轴具有相同的单位长度;(2)x 轴上的单位长度为y 轴上单位长度的k 倍;(3)x 轴上的单位长度为y 轴上单位长度的1k.第(1)种坐标系中的意思是x 轴与y 轴上的单位长度一样,f (x ,y )=0的图形就是我们以前学过的平面直角坐标系中的f (x ,y )=0的图形;第(2)种坐标系中的意思是如果x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的1k,此时f (x ,y )=0表示的图形与第(1)种坐标系中的图形是不同的;第(3)种坐标系中的意思是如果y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的1k,此时f (x ,y )=0表示的图形与第(1)种坐标系中的图形是不同的.伸缩变换对下列曲线进行伸缩变换⎩⎪⎨⎪⎧kx =x ′,ky =y ′(k ≠0,且k ≠1).(1)y =kx +b ;(2)(x -a )2+(y -b )2=r 2.【自主解答】 设P (x ,y )是变换前的点,P ′(x ′,y ′)是变换后的点,由题意,得⎩⎪⎨⎪⎧kx =x ′,ky =y ′,即⎩⎪⎨⎪⎧x =1k x ′,y =1k y ′.(1)由1k y ′=k (1kx ′)+b ,y ′=kx ′+kb ,得直线y =kx +b 经过伸缩变换后的方程为y =kx +kb ,仍然是一条直线.当b =0时,该直线和原直线重合;当b ≠0时,该直线和原直线平行.(2)由(1k x ′-a )2+(1ky ′-b )2=r 2,(x ′-ka )2+(y ′-kb )2=(kr )2,得圆(x -a )2+(y-b )2=r 2经过伸缩变换后的方程为(x -ka )2+(y -kb )2=(kr )2,它是一个圆心为(ka ,kb ),半径为|kr |的圆.在同一平面直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足图象变换的伸缩变换.【解】 设变换为⎩⎪⎨⎪⎧x ′=λx ,λ>0y ′=μy ,μ>0,代入直线方程2x ′-y ′=4 得:2λx -μy =4,即λx -μ2y =2,比较系数得:λ=1,μ=4,即直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线2x ′-y ′=4.伸缩变换的应用曲线y =2sin 3x 变换成曲线y =3sin 2x ,求它的一个伸缩变换.【思路探究】 设⎩⎪⎨⎪⎧x ′=λxλ>0y ′=μy μ>0代入y ′=3sin 2x ′,所得式再与y =2sin3x 比较即可求λ、μ.【自主解答】 将变换后的曲线y =3sin 2x 改成y ′=3sin 2x ′.设伸缩变换⎩⎪⎨⎪⎧x ′=λxλ>0y ′=μyμ>0代入y ′=3sin 2x ′;得μy =3sin(2λx )即y =3μsin(2λx ),与y =2sin 3x 比较系数,得⎩⎪⎨⎪⎧2λ=3,3μ=2,即⎩⎪⎨⎪⎧ λ=32,μ=32,所以伸缩变换为⎩⎪⎨⎪⎧x ′=32x ,y ′=32y .确定一个伸缩变换,实际上就是求其变换方法,将新旧坐标分清,代入对应的曲线方程,然后比较系数即可.(1)圆x 2+y 2=a 2经过什么样的伸缩变换,可以使方程变为x 2a 2+y 2b2=1(0<b <a )?(2)分析圆x 2+y 2=a 2的一条弦所在直线和经过该弦中点的直径所在直线经过上述伸缩变换后的位置关系.【解】 (1)椭圆x 2a 2+y 2b 2=1可以化为x 2+a 2y 2b 2=a 2,设⎩⎪⎨⎪⎧x =x ′,y =aby ′,即⎩⎪⎨⎪⎧x =x ′,bay =y ′.所以圆x 2+y 2=a 2经过向着x 轴方向上的伸缩变换,伸缩系数k =b a ,可以使方程变为x 2a 2+y 2b2=1. (2)若圆x 2+y 2=a 2的一条弦所在直线的斜率存在且不为0,设其方程为y =kx +m ,根据垂径定理,经过该弦中点的直径所在直线的方程为y =-1kx .由a b y ′=kx ′+m ,得y ′=bk a x ′+b a m .所以直线y =kx +m 经过变换,方程可变为y =bk ax +b am . 由a by ′=-1kx ′,得y ′=-b kax ′,所以直线y =-1kx 经过变换,方程可变为y =-b kax .此时,两条直线的斜率乘积是定值-b 2a2.若圆x 2+y 2=a 2的弦所在直线的方程为x =n ,则经过其中点的直径所在直线的方程为y =0,伸缩变换后其方程分别变为x =n ,y =0.此时两直线依然垂直.若圆x 2+y 2=a 2的弦所在直线的方程为y =n ,则经过其中点的直径所在直线的方程为x =0,伸缩变换后其方程分别变为y =b an ,x =0.此时两直线依然垂直.(教材第41页习题4.3第8题)对下列曲线向着x 轴进行伸缩变换,伸缩系数k =2:(1)x 2-4y 2=16;(2)x 2+y 2-4x +2y +1=0.(2013·南京模拟)求满足下列图形变换的伸缩变换:由曲线x2+y 2=1变成曲线x ′29+y ′24=1.【命题意图】 本题主要考查平面直角坐标系中的伸缩变换.【解】 设变换为⎩⎪⎨⎪⎧x ′=λx ,λ>0,y ′=μy ,μ>0,代入方程x ′29+y ′24=1,得λ2x 29+μ2y 24=1.与x 2+y 2=1比较,将其变形为λ29x 2+μ24y 2=1,比较系数得λ=3,μ=2.∴⎩⎪⎨⎪⎧x ′=3x ,y ′=2y ,即将圆x 2+y 2=1上所有点横坐标变为原来的3倍,纵坐标变为原来的2倍,可得椭圆x ′29+y ′24=1.1.直线x +4y -6=0按伸缩系数12向着x 轴的伸缩变换后,直线的方程是________.【答案】 x +8y -6=02.直线2x -3y =0按伸缩系数3向着y 轴的伸缩变换后,直线的方程是________. 【答案】 2x -9y =03.曲线x 2+y 2=4按伸缩系数2向着y 轴的伸缩变换后,曲线的方程是________.【答案】x 216+y 24=1 4.y =cos x 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后,曲线方程变为______.【解析】 由⎩⎪⎨⎪⎧x ′=2xy ′=3y,得⎩⎪⎨⎪⎧x =12x ′y =13y ′,代入y =cos x ,得13y ′=cos 12x ′, 即y ′=3cos 12x ′.【答案】 y =3cos x21.在平面直角坐标系中,求下列方程经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y后的方程.(1)2x +3y =0;(2)x 2+y 2=1.【解】 由伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y得到⎩⎪⎨⎪⎧x =12x ′,y =13y ′.①(1)将①代入2x +3y =0,得到经过伸缩变换后的方程为x ′+y ′=0,所以,经过伸缩变换⎩⎪⎨⎪⎧x ′=2xy ′=3y后,直线2x +3y =0变成直线x +y =0.(2)将①代入x 2+y 2=1,得x ′24+y ′29=1.所以,经过伸缩变换⎩⎪⎨⎪⎧x ′=2xy ′=3y 后,方程x2+y 2=1变成x 24+y 29=1.2.伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=x ,y ′=4y .曲线C 在此变换下变为椭圆x ′2+y ′216=1.求曲线C 的方程.【解】 把⎩⎪⎨⎪⎧x ′=x ,y ′=4y ,代入x ′2+y ′216=1,得x 2+y 2=1,即曲线C 的方程为x 2+y 2=1.3.设F :(x -1)2+(y -1)2=1在⎩⎪⎨⎪⎧3x =x ′,y =y ′的伸缩变换下变为图形F ′,求F ′的方程.【解】 由⎩⎪⎨⎪⎧3x =x ′,y =y ′,得⎩⎪⎨⎪⎧x =13x ′,y =y ′.所以(x -1)2+(y -1)2=1变换为(13x ′-1)2+(y ′-1)2=1,即x ′-329+(y ′-1)2=1,所以F ′的方程是x -329+(y -1)2=1.4.双曲线x 216-y 29=1经过伸缩变换能化为等轴双曲线x 2-y 2=1吗?【解】 双曲线方程x 216-y 29=1可以化为(x 4)2-(y3)2=1.令⎩⎪⎨⎪⎧x 4=x ′,y3=y ′,则x ′2-y ′2=1.所以双曲线x 216-y 29=1可以通过伸缩变换化为等轴双曲线x 2-y 2=1,具体步骤是:按伸缩系数14向着y 轴进行伸缩变换,再将曲线按伸缩系数13向着x 轴进行伸缩变换.5.已知G 是△ABC 的重心,经过伸缩系数k 向着x 轴(或y 轴)的伸缩变换后,得到G ′和△A ′B ′C ′.试判断G ′是否为△A ′B ′C ′的重心.【解】 设△ABC 的三个顶点的坐标分别为A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),则G (x 1+x 2+x 33,y 1+y 2+y 33).经过伸缩系数k 向着x 轴的伸缩变换后,得到△A ′B ′C ′的三个顶点及点G ′的坐标分别为A ′(x 1,ky 1)、B ′(x 2,ky 2),C ′(x 3,ky 3),G ′(x 1+x 2+x 33,ky 1+y 2+y 33).由于△A ′B ′C ′的重心坐标为(x 1+x 2+x 33,ky 1+ky 2+ky 33),所以G ′仍然是△A ′B ′C ′的重心.同理可证,若伸缩变换向着y 轴方向,G ′同样也是△A ′B ′C ′的重心.6.已知:△ABC 经过伸缩变换⎩⎪⎨⎪⎧kx =x ′,ky =y ′(k ≠0,且k ≠1)后,得到△A ′B ′C ′.求证:△A ′B ′C ′和△ABC 相似,且面积比为k 2.【证明】 设A (x 1,y 1)、B (x 2,y 2),则A ′(kx 1,ky 1)、B ′(kx 2,ky 2).所以A ′B ′=kx 1-kx 22ky 1-ky 22=|k |x 1-x 22y 1-y 22=|k |AB .同理可得A ′C ′=|k |AC ,B ′C ′=|k |BC , 所以△A ′B ′C ′∽△ABC ,所以∠A =∠A ′,S △A ′B ′C ′=12(|k |AB )·(|k |AC )sin A ′=k 2[12(AB ·AC )sin A ]=k 2S △ABC .7.设P 1、P 2是直线l 上的两点,点P 是l 上不同于P 1、P 2的任意一点,则存在一个实数λ,使P 1P →=λPP 2,称λ为点P 分有向线段P 1P 2所成比.设P 1(x 1,y 1)、P 2(x 2,y 2),点P 分有向线段P 1P 2所成比为λ,经过伸缩变换后,点P 1、P 2和P 分别变为P 1′、P 2′和P ′.求证:P 1′、P 2′和P ′三点依然共线,且P ′分有向线段P 1′P 2′所成比等于λ.【证明】 设P (x 0,y 0),由P 1P →=λPP 2→,得(x 0-x 1,y 0-y 1)=λ(x 2-x 0,y 2-y 0),所以⎩⎪⎨⎪⎧x 0=x 1+λx 21+λ,y 0=y 1+λy21+λ.设给定伸缩变换为⎩⎪⎨⎪⎧k 1x =x ′,k 2y =y ′,则有P 1′(k 1x 1,k 2y 1)、P 2′(k 1x 2,k 2y 2)、 P ′(k 1x 1+λx 21+λ,k 2y 1+λy 21+λ).P 1′P ′→=(k 1x 1+λx 21+λ-k 1x 1,k 2y 1+λy 21+λ-k 2y 1)=λ(k 1x 2-x 11+λ,k 2y 2-y 11+λ),P ′P 2′→=(k 1x 2-k 1x 1+λx 21+λ,k 2y 2-k 2y 1+λy 21+λ)=(k 1x 2-x 11+λ,k 2y 2-y 11+λ),所以P 1′P ′→=λP ′P 2′→.所以P 1′、P 2′和P ′三点依然共线,且P ′分有向线段P 1′P 2′所成比等于λ.教师备选8.在下列平面直角坐标系中,分别作出双曲线x 216-y 29=1的图形:(1)x 轴与y 轴具有相同的单位长度;(2)x 轴上的单位长度为y 轴上单位长度的2倍;(3)x 轴上的单位长度为y 轴上单位长度的12倍.【解】 (1)建立平面直角坐标系,使x 轴与y 轴具有相同的单位长度,双曲线x 216-y 29=1的图形如下:(2)如果x 轴上的单位长度保持不变,y 轴上的单位长度缩小为原来的12,双曲线x 216-y29=1的图形如下:(3)如果y 轴上的单位长度保持不变,x 轴上的单位长度缩小为原来的12,双曲线x 216-y29=1的图形如下:选修4-4阶段归纳提升坐标系错误!))极坐标与直角坐标的互化极坐标与直角坐标互化的公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x ,当不能直接使用公式时,可通过适当变换,化成能使用的形式.把下列极坐标化为直角坐标:(1)M (5,56π);(2)N (2,32π);(3)P (2,54π);(4)Q (2,-π6).【解】 (1)由题意知x =5cos 56π=5×(-32)=-532,y =5sin 56π=5×12=52.所以M 点的直角坐标为(-532,52).(2)x =2cos 32π=2×0=0,y =2sin 32π=2×(-1)=-2.所以N 点的直角坐标为(0,-2). (3)x =2cos 54π=2×(-22)=-2,y =2sin 54π=2×(-22)=- 2. 所以P 点的直角坐标为(-2,-2). (2)x =2cos(-π6)=2×32=3,y =2sin(-π6)=2×(-12)=-1.所以Q 点的直角坐标为Q (3,-1).极坐标的应用主要应用极坐标与直角坐标的互化公式解决问题,注意极坐标系中的ρ和θ的含义.(2012·陕西高考)直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________.【解析】 直线2ρcos θ=1可化为2x =1,即x =12;圆ρ=2cos θ两边同乘ρ得ρ2=2ρcos θ,化为直角坐标方程是x 2+y 2=2x .将x =12代入x 2+y 2=2x 得y 2=34,∴y =±32. ∴弦长为2×32= 3. 【答案】3伸缩变换变换公式⎩⎪⎨⎪⎧x ′=λxλ>0y ′=μy μ>0其中P (x ,y )为变换前的点,P ′(x ′,y ′)为变换后的点.将圆锥曲线C按伸缩变换公式⎩⎪⎨⎪⎧3x ′=x ,2y ′=y 变换后得到双曲线x ′2-y ′2=1,求曲线C 的方程.【解】 设曲线C 上任意一点P (x ,y ),通过伸缩变换后的对应点为P ′(x ′,y ′),由⎩⎪⎨⎪⎧3x ′=x ,2y ′=y得⎩⎪⎨⎪⎧x ′=13x ,y ′=12y ,代入x ′2-y ′2=1得(x3)2-(y2)2=1,即x 29-y 24=1为所求.综合检测(一)(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.极坐标为M (8,-9π5),N (8,11π5),P (-8,4π5),Q (-8,6π5)的四点中,与点A (8,π5)表示同一点的有________个.【答案】 32.已知点P 的直角坐标为(-3,3),其极坐标为________. 【答案】 (23,2π3) 3.曲线的极坐标方程ρ=-4sin θ化成直角坐标方程为________. 【答案】 x 2+(y +2)2=44.在极坐标系中,曲线ρ=-4sin θ和ρcos θ=1相交于点A 、B ,则AB =________. 【解析】 平面直角坐标系中,曲线ρ=-4sin θ和ρcos θ=1分别表示圆x 2+(y +2)2=4和直线x =1,作图易知AB =2 3.【答案】 2 3 5.极坐标方程ρ=162-cos θ表示的曲线是______.【答案】 椭圆6.以(1,π)为圆心,且过极点的圆的极坐标方程是________. 【答案】 ρ=-2cos θ7.(2013·北京高考)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离等于________.【解析】 极坐标系中点⎝⎛⎭⎪⎫2,π6对应的直角坐标为(3,1).极坐标系中直线ρsin θ=2对应直角坐标系中直线y =2.故所求距离为1.【答案】 18.已知点M 的柱坐标为(2π3,2π3,2π3),则点M 的直角坐标为________,球坐标为________.【解析】 设点M 的直角坐标为(x ,y ,z ),柱坐标为(ρ,θ,z ),球坐标为(r ,φ,θ),由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z得⎩⎪⎨⎪⎧x =2π3cos 2π3=-π3,y =2π3sin 2π3=33π,z =2π3,由⎩⎪⎨⎪⎧r =x 2+y 2+z 2,cos φ=z r得⎩⎪⎨⎪⎧ r =22π3,cos φ=22,即⎩⎪⎨⎪⎧r =22π3,φ=π4.所以点M 的直角坐标为(-π3,3π3,2π3),球坐标为(22π3,π4,2π3).【答案】 (-π3,33π,23π) (223π,π4,23π)9.在极坐标系中,曲线ρ=2cos θ和ρcos θ=2的位置关系是________. 【答案】 相切10.极坐标方程sin θ=-32表示的曲线是______. 【答案】 两条直线11.(2013·天津高考)已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝⎛⎭⎪⎫4,π3,则|CP |=________.【解析】 由ρ=4cos θ可得x 2+y 2=4x ,即(x -2)2+y 2=4,因此圆心C 的直角坐标为(2,0).又点P 的直角坐标为(2,23),因此|CP |=2 3. 【答案】 2 312.(2012·湖南高考)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________.【解析】 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将(22,0)代入x 2+y 2=a 2得a =22. 【答案】22 13.在同一平面直角坐标系中经过伸缩变换⎩⎪⎨⎪⎧ x ′=5x ,y ′=3y 后曲线C 变为曲线2x ′2+8y ′2=1,则曲线C 的方程为________.【解析】 将⎩⎪⎨⎪⎧ x ′=5x y ′=3y 代入2x ′2+8y ′2=1,得: 2·(5x )2+8·(3y )2=1,即50x 2+72y 2=1.【答案】 50x 2+72y 2=114.已知圆的极坐标方程ρ=2cos θ,直线的极坐标方程为ρcos θ-2ρsin θ+7=0,则圆心到直线的距离为________.【解析】 将ρ=2cos θ化为ρ2=2ρcos θ,即有 x 2+y 2-2x =0,亦即(x -1)2+y 2=1.将ρcos θ-2ρsin θ+7=0化为x -2y +7=0,故圆心到直线的距离d =|1+7|1222=855. 【答案】855 二、解答题(本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)在极坐标系中,点M 坐标是(2,π3),曲线C 的方程为ρ=22sin(θ+π4);以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 经过点M 和极点.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程;(2)直线l 和曲线C 相交于两点A 、B ,求线段AB 的长.【解】 (1)∵直线l 过点M (2,π3)和极点,∴直线l 的极坐标方程是θ=π3(ρ∈R ). ρ=22sin(θ+π4)即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),∴曲线C 的直角坐标方程为x 2+y 2-2x -2y =0.(2)点M 的直角坐标为(1,3),直线l 过点M 和原点,∴直线l 的直角坐标方程为y =3x .曲线C 的圆心坐标为(1,1),半径r =2,圆心到直线l 的距离为d =3-12,∴AB =3+2.16.(本小题满分12分)在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧ x ′=2x ,y ′=2y 后,曲线C 变为曲线(x ′-5)2+(y ′+6)2=1,求曲线C 的方程,并判断其形状.【解】 将⎩⎪⎨⎪⎧ x ′=2x ,y ′=2y代入(x ′-5)2+(y ′+6)2=1, 得(2x -5)2+(2y +6)2=1.化简,得(x -52)2+(y +3)2=14. 该曲线是以(52,-3)为圆心,半径为12的圆. 17.(本小题满分13分)过抛物线y 2=2px (p >0)的顶点O ,作两垂直的弦OA 、OB ,求△AOB 的面积的最小值.【解】 取O 为极点,Ox 轴为极轴,建立极坐标系,将抛物线方程化成极坐标方程,有ρ2sin 2θ=2p ρcos θ,设点B 的极坐标为(ρ1,θ),因为OA ⊥OB ,所以A 的极坐标为(ρ2,π2+θ).所以ρ1=2p cos θsin 2θ,ρ2=2p cos π2+θsin 2π2+θ. 所以S △AOB =12OA ·OB =12⎪⎪⎪⎪⎪⎪2p cos θsin 2θ·2p cos π2+θsin 2π2+θ=2p 2|sin θcos θ|=4p 2|sin 2θ|≥4p 2, 当θ=π4时取到等号,因此△AOB 的面积的最小值为4p 2. 18.(本小题满分13分)过曲线ρ=21-3cos θ的右焦点作一倾斜角为60°的直线l ,求l 被曲线截得的弦长.【解】 设直线与曲线的两个交点分别为A ,B .设A (ρ1,θ),则B (ρ2,π+θ).弦长AB =|ρ1+ρ2|=|21-3cos θ+21-3cos θ|=|21-3cos θ+21+3cos θ|=|41-9cos 2θ| =|41-9cos 260°|=165.。

小专题(四):平面直角坐标系中图形旋转的变换规则

小专题(四):平面直角坐标系中图形旋转的变换规则

小专题(四):平面直角坐标系中图形旋转的变换规则1. 引言平面直角坐标系中,图形的旋转是一种常见的几何变换。

本文介绍了图形旋转的变换规则。

2. 图形旋转的基本概念图形旋转是指将一个图形绕一个中心点旋转一定角度后得到新的图形。

旋转的中心点可以位于坐标原点或任意其他点。

3. 旋转变换的规则根据旋转变换的规则,对于同一图形的旋转变换,可以得到以下规律:- 旋转360度(或2π弧度)等于恢复原状,即旋转后的图形与原图形完全相同。

- 旋转180度(或π弧度)等于将图形沿旋转中心点对称。

- 旋转90度(或π/2弧度)等于将图形逆时针旋转90度。

- 旋转270度(或3π/2弧度)等于将图形顺时针旋转90度。

4. 旋转的计算方法为了进行图形的旋转变换,可以利用旋转矩阵进行计算。

旋转矩阵是一个二维的矩阵,在平面直角坐标系中描述了图形的旋转变换。

旋转矩阵的公式如下:R = | cosθ -sinθ || sinθ cosθ |其中,θ表示旋转的角度。

5. 应用举例以矩形图形为例,假设原始矩形的坐标为A(x₁, y₁), B(x₂,y₁), C(x₂, y₂), D(x₁, y₂)。

若要将该矩形逆时针旋转90度得到新的矩形A'(x₁', y₁'), B'(x₂', y₁'), C'(x₂', y₂'), D'(x₁', y₂'),可以通过旋转矩阵计算得出新的坐标。

新的坐标计算公式如下:x₁' = x₁ * cos90 - y₁ * sin90y₁' = x₁ * sin90 + y₁ * cos90x₂' = x₂ * cos90 - y₁ * sin90y₂' = x₂ * sin90 + y₁ * cos906. 结论图形在平面直角坐标系中的旋转变换遵循一定的规则和计算方法。

通过理解和应用这些规则和计算方法,我们可以对图形进行准确的旋转变换。

平面直角坐标系中的图形

平面直角坐标系中的图形
(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
你画出来了吗?
1
y
3
3
5
6
7
0
-1
x
8
9
10
(0,0),(5,4), (3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),(10,4),(6,0),(10,1),(10,-1),
3
5
6
7
0
-1
x
8
9
10
(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2)。
(x,y) (x+3,y)
鱼的形状、大小不变,整条鱼向右平移了3个单位长度。
2
例题
2
图案是如何拉伸或压缩的?
例题
2
例1 将上图中的 点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下的变化:
(3)纵坐标保持不变,横坐标分别加3,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
你画出来了吗?
考考你的反应能力
0
1
2
3
4
-1
-2
-3
-4
1
2
3
4
-1
-2
X
Y
0
1
2
3
4
-1
-2
-3
-4
1
2
3
4
-1
-2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系下的图形变换
王建华
图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。

在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的
关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活
平移: 上下平移横坐标不变,纵坐标改变
左右平移横坐标改变,纵坐标不变
对称: 关于x轴对称横坐标不变,纵坐标改变
关于y轴对称横坐标不变,纵坐标不变
关于中心对称横坐标、纵坐标都互为相反数
旋转:改变图形的位置,不改变图形的大小和形状
旋转角旋转半径弧长公式L=nπR/180
一、平移
例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?
解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).
向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).
比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.
友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。

析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B
反思:①根据平移的坐标变化规律:
★左右平移时:向左平移h个单位)
,
(
)
,
(b
h
a
b
a-

向右平移h个单位)
,
(
)
,
(b
h
a
b
a+

★上下平移时:向上平移h个单位)
,
(
)
,
(h
b
a
b
a+

向下平移h个单位)
,
(
)
,
(h
b
a
b
a-

二、旋转
例3.如图2,已知△ABC,画出△ABC关于坐标原点
0旋转180°后所得△A′B′C′,并写出三角形各顶点的
坐标,旋转后与旋转前对应点的坐标有什么变化?
解析:△ABC三个顶点的坐标分别是:
A(-2,4),B(-4,2),C(-1,1).
△A′B′C′三个顶点的坐标分别是:
A′(2,-4),B′(4,-2),C′(1,-1).
比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.
例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.
分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.
解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).
三、对称
例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?
解析:△ABC三个顶点的坐标分别是:
A(1,4),B(3,1),C(-2,2).
△A′B′C′三个顶点的坐标分别是:
A′(1,-4),B′(3,-1),C′(-2,-2).
观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.
友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC
△的三个顶点的位置如图3所示.
(1)请画出ABC
△关于y轴对称的A B C
'''
△(其中A B C
'''
,,分别是A B C
,,的对应点,不写画法);
(2)直接写出A B C
'''
,,三点的坐标:
(_____)(_____)(_____)
A B C
'''
,,.
析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1
-,故可得(2)(23)
A',,(31)
B',,(12)
C'--

反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1
-
★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1
-
★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1
-
四、位似
例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,
使△A′B′C′在第三象限,与△ABC的位似比为
2
1
,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?
解析:△ABC三个顶点的坐标分别是:
A(2,2),B(6,4),C(4,6).
△A′B′C′三个顶点的坐标分别是:
A′(-1,-1),B′(-3,-2),C′(-2,-3).

3
图3 图4
观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC
对应各顶点坐标2
1
的相反数.
友情提示: △ABC 以坐标原点0为位似中心的位
似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为2
1

且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标
分别是△ABC 各顶点坐标的2
1

课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;
⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路
线长.
解:⑴画出△A 1B 1C 1;
⑵画出△A
2B 2C 2, ,连接OA 1、
OA 2
点A 旋转到
A 2,所经过的路线长为:ι=
点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接
这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角
度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明
确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于
某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴
的距离相等。

图4。

相关文档
最新文档