工程数学习题十一解答10页

合集下载

工程数学 习题七、九、十、十一解答

工程数学  习题七、九、十、十一解答

习题七解答1. 设X 的分布律为,求(1)EX ,(2))1(+-X E ,(3))(X E ,(4)DX 。

解 由随机变量X所以()1111111(1)01236261243E X =-⨯+⨯+⨯+⨯+⨯=()11111121210(1)36261243E X -+=⨯+⨯+⨯+⨯+-⨯=()2111111351014364612424E X =⨯+⨯+⨯+⨯+⨯=22235197()()(())()24372D XE X E X =-=-=另外,也可根据数学期望的性质可得:()()1211133E X E X -+=-+=-+=2.设随机变量X 服从参数为()0>λλ的泊松分布,且已知()()[]232=--X X E ,求λ的值。

解()()[]()()()()()()()()204526526565322222==+-+=+-+=+-=+-=--λλλλX E X E X D X E X E X X E X X E3. 设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,试求2X 的数学期望()2X E 。

解 ()4.0,10~B X所以 ()()4.26.04.010,44.010=⨯⨯==⨯=X D X E故 ()()()()4.1844.2222=+=+=X E X D X E4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量,它在[2000,4000](单位:吨)上服从均匀分布。

若每售出一吨,可得外汇3万美元,若销售不出而积压,则每吨需保养费1万美元。

问应组织多少货源,才能使平均收益最大?解 设随机变量Y 表示平均收益(单位:万元),进货量为a 吨Y=()aX a X 33--ax ax ≥< 则()()()800000014000220001200013200014220004000-+-=+-=⎰⎰a a dxa dx a x Y E aa要使得平均收益()Y E 最大,所以()080000001400022='-+-a a得 3500=a (吨)5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为0.1,0.2,0.3,假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望()X E 和方差()X D 。

工程数学试题10.11A卷参考答案

工程数学试题10.11A卷参考答案

中国石油大学(北京)2010 --2011 学年第 一 学期研究生期末考试试题标准答案A (闭卷考试)课程名称:工程数学课程编号:063001 一、 填空题(每小题4分,共20分)1、4510-⨯ 2、1a < 3、21n - 4、3 5、1000.5102.501⎛⎫ ⎪- ⎪ ⎪⎝⎭二、(15分)解: 1 0 0 2 -1 7Q=0 -0.6 -0.8,0 -5 -100 -0.8 0.60 0 -5R ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 或 1 0 0 2 -1 7Q=0 0.6 0.8,0 5 100 0.8 -0.60 0 5R ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦解Qy b =, 得 (10,5,5)Ty =--解Rx y =, 得 (1,1,1)Ty =-三、(15分)解:(1) Jac 迭代格式为:(1)()()123(1)()()213(1)()()3121223522k k k k k k k k k x x x x x x x x x +++⎧=-+⎪=--⎨⎪=--⎩ 迭代3步的结果为:(1)(2)(3)(1,3,5),(5,3,3),(1,1,1)T T T x x x ==--=G-S 迭代格式为:(1)()()123(1)(1)()213(1)(1)(1)3121223522k k k k k k k k k x x x x x x x x x ++++++⎧=-+⎪=--⎨⎪=--⎩迭代3步的结果为:(1)(2)(3)(1,2,1),(5,9,3),(23,29,7)T T T x x x =-=--=--(2)Jac 迭代矩阵为:1022()101220J B D L U --⎛⎫ ⎪=+=-- ⎪ ⎪--⎝⎭3J I B λλ-=故()01J B ρ=< 所以Jac 迭代收敛; G —S 迭代矩阵为:1022()023002G B D L U --⎛⎫ ⎪=-=- ⎪ ⎪⎝⎭2(2)G I B λλλ-=-故()21G B ρ=> 所以G-S 迭代不收敛。

工程数学(本)形考1-5参考答案

工程数学(本)形考1-5参考答案

参考答案1(数学里面公式只能以图片形式显示)
参考答案2(数学里面公式只能以图片形式显示)试题
1:
试题
2:
参考答案3(数学里面公式只能以图片形式显示)
参考答案4(数学里面公式只能以图片形式显示)
试题10答案:
证明:(A+A′)′=A′+(A′) ′=A′+A=A+A′
∴A+A′是对称矩阵
试题11答案:
证明:∵A是n阶方阵,且AA′=I
∴|AA′|=|A||A′|=|A|2=|I|=1
∴|A|=1或|A|= -1
试题12答案:
证明:设AX=B为含n个未知量的线性方程组
该方程组有解,即R(?)= R(A)=n
从而AX=B有唯一解当且仅当R(A)=n
而相应齐次线性方程组AX=0只有零解的充分必要条件是R(A)=n
∴AX=B有唯一解的充分必要条件是:相应的齐次线性方程组AX=0只有零解
参考答案5(数学里面公式只能以图片形式显示)。

工程数学线性代数(同济大学第六版)课后习题答案(全)

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章 行列式1? 利用对角线法则计算下列三阶行列式?(1)381141102---?解 381141102---解 解 (4)y x y x x y x y yx y x +++?解 yx y x x y x y yx y x +++?x (x ?y )y ?yx (x ?y )?(x ?y )yx ?y 3?(x ?y )3?x 3 ?3xy (x ?y )?y 3?3x 2 y ?x 3?y 3?x 3 ??2(x 3?y 3)?2?按自然数从小到大为标准次序?求下列各排列的逆序数?(1)1 2 3 4?解逆序数为0(2)4 1 3 2?解逆序数为4? 41? 43? 42? 32?(3)3 4 2 1?解逆序数为5? 3 2? 3 1? 4 2? 4 1, 2 1?解解解4 2(1个)6 2? 6 4(2个)??????(2n)2? (2n)4? (2n)6????? (2n)(2n?2) (n?1个) 3?写出四阶行列式中含有因子a11a23的项?解含因子a11a23的项的一般形式为(?1)t a11a23a3r a4s?其中rs 是2和4构成的排列? 这种排列共有两个? 即24和42? 所以含因子a 11a 23的项分别是(?1)t a 11a 23a 32a 44?(?1)1a 11a 23a 32a 44??a 11a 23a 32a 44? (?1)t a 11a 23a 34a 42?(?1)2a 11a 23a 34a 42?a 11a 23a 34a 42? 4? 计算下列各行列式?(1)71100251020214214? 解解 解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=?(4)dc b a 100110011001---?解 d c b a 100110011001---dc b aab ar r 10011001101021---++=====cdad ab +-+--=+111)1)(1(23?abcd ?ab ?cd ?ad ?1? 5? 证明:(1)1112222b b a a b ab a +?(a ?b )3;5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4?c 3? c 3?c 2得) 022122212221222122222=++++=d d c c b b a a ?(4)444422221111d c b a d c b a d c b a ?(a ?b )(a ?c )(a ?d )(b ?c )(b ?d )(c ?d )(a ?b ?c ?d ); 证明=(a ?b )(a ?c )(a ?d )(b ?c )(b ?d )(c ?d )(a ?b ?c ?d )?当 则D n 6?翻转? D 1证明D 1 证明 因为D ?det(a ij )? 所以 D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=?同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=? D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(?7? 计算下列各行列式(D k 为k 阶行列式)?(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a ? 未写出的元素都是0?解D n=( 解 (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n n n n ; 解 根据第6题结果? 有 此行列式为范德蒙德行列式? ∏≥>≥+-=11)(j i n j i ?(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解于是而所以 (5) D ?det(a ij )? 其中a ij ?|i ?j |; 解 a ij ?|i ?j |??(?1)n ?1(n ?1)2n ?2?(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ? ? ? a n?0?解)11)((121∑=+=ni in a a a a ? 8? 用克莱姆法则解下列方程组?(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ?解 因为所以 解 150751001651000651000650000611==D ? 114551010651000650000601000152-==D ?70351100650000601000051001653==D ? 39551000601000051000651010654-==D ? 2121105100065100651100655==D ? 所以9? 解 令于是? 10 解 ?(1??)3?2(1??)2???3? 令D ?0? 得??0? ??2或??3?于是? 当??0? ??2或??3时? 该齐次线性方程组有非零解?第二章 矩阵及其运算1? 已知线性变换?⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ? 求从变量x 1? x 2? x 3到变量y 1? y 2? y 3的线性变换? 解 由已知?⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ?故 2? 求从z 1 3? 设⎪⎪⎭⎫ ⎝⎛--=111111111A ? ⎪⎪⎭⎫⎝⎛--=150421321B ? 求3AB ?2A 及A T B ?解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503?⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T ? 4? 计算下列乘积?(1)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134? 解 ⎪⎫ ⎛⎪⎫ ⎛-27321134⎪⎫ ⎛⨯+⨯-+⨯⨯+⨯+⨯=132)2(71112374⎪⎫ ⎛=635? ⎭⎝-204 (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ? 解?(a 11x 1?a 12x 2?a 13x 3 a 12x 1?a 22x 2?a 23x 3 a 13x 1?a 23x 2?a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=?5? 设⎪⎭⎫ ⎝⎛=3121A ? ⎪⎭⎫ ⎝⎛=2101B ? 问? (1)AB ?BA 吗?解 AB ?BA ?因为⎪⎭⎫ ⎝⎛=6443AB ? ⎪⎭⎫ ⎝⎛=8321BA ? 所以AB ?BA ? 222但 所以(A 而 故(A ?B )(A ?B )?A 2?B 2? 6? 举反列说明下列命题是错误的?(1)若A 2?0? 则A ?0?解 取⎪⎭⎫ ⎝⎛=0010A ? 则A 2?0? 但A ?0? (2)若A 2?A ? 则A ?0或A ?E ?解 取⎪⎭⎫ ⎝⎛=0011A ? 则A 2?A ? 但A ?0且A ?E ? (3)若AX ?AY ? 且A ?0? 则X ?Y ?解 取 ⎪⎭⎫ ⎝⎛=0001A ? ⎪⎭⎫ ⎝⎛-=1111X ? ⎪⎭⎫ ⎝⎛=1011Y ? 则AX ?AY ? 且A ?0? 但X ?Y ?7? 8? ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ? ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A ? ? ? ? ? ? ??⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ ? 用数学归纳法证明?当k ?2时? 显然成立?假设k 时成立,则k ?1时,⎫⎛++--+111)1()1(k k k k k k λλλ 9?? 从而B AB ?BA (AB )T ?(BA )T ?A T B T ?AB ?即AB 是对称矩阵?必要性? 因为A T ?A ? B T ?B ? 且(AB )T ?AB ? 所以AB ?(AB )T ?B T A T ?BA ?11? 求下列矩阵的逆矩阵?(1)⎪⎭⎫ ⎝⎛5221?解 ⎪⎭⎫ ⎝⎛=5221A ? |A |?1? 故A ?1存在? 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ? 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225? (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ?所以 所以 (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2? ? ?a n ?0) ?解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021? 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 ? 12? 解下列矩阵方程?(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ?(4)⎪⎪⎭⎝--=⎪⎪⎭ ⎝⎪⎪⎭ ⎝021102010100100001X ? 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012? 13? 利用逆矩阵解下列线性方程组?(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ? 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ? 故 ⎪⎫ ⎛⎪⎫ ⎛⎪⎫ ⎛⎪⎫ ⎛-1132111x 故 故有 证明 因为A k ?O ? 所以E ?A k ?E ? 又因为E ?A k ?(E ?A )(E ?A ?A 2?? ? ??A k ?1)?所以 (E ?A )(E ?A ?A 2?? ? ??A k ?1)?E ?由定理2推论知(E ?A )可逆? 且(E ?A )?1?E ?A ?A 2?? ? ??A k ?1?证明 一方面? 有E ?(E ?A )?1(E ?A )?另一方面? 由A k ?O ? 有E ?(E ?A )?(A ?A 2)?A 2?? ? ??A k ?1?(A k ?1?A k )?(E ?A ?A 2?? ? ??A k ?1)(E ?A )?故 (E ?A )?1(E ?A )?(E ?A ?A 2?? ? ??A k ?1)(E ?A )?两端同时右乘(E ?A )?1? 就有(E ?A )?1(E ?A )?E ?A ?A 2?? ? ??A k ?1?15? 设方阵A 满足A 2?A ?2E ?O ? 证明A 及A ?2E 都可逆? 并求A ?1及(A ?2E )或 或 即 故 |A |?0?所以A 可逆? 而A ?2E ?A 2? |A ?2E |?|A 2|?|A |2?0? 故A ?2E 也可逆?由 A 2?A ?2E ?O ?A (A ?E )?2E?A ?1A (A ?E )?2A ?1E ?)(211E A A -=-? 又由 A 2?A ?2E ?O ?(A ?2E )A ?3(A ?2E )??4E? (A ?2E )(A ?3E )??4 E ?所以 (A ?2E )?1(A ?2E )(A ?3E )??4(A ?2 E )?1?)3(41)2(1A E E A -=+-? 16? 设A 为3阶矩阵? 21||=A ? 求|(2A )?1?5A *|? 解 因为*||11A A A =-? 所以 ?|?2A ?1|?(?2)3|A ?1|??8|A |?1??8?2??16??1?1从而 又A 所以A *?O ? 这与|A *|?0矛盾,故当|A |?0时? 有|A *|?0?(2)由于*||11A A A =-? 则AA *?|A |E ? 取行列式得到 |A ||A *|?|A |n ?若|A |?0? 则|A *|?|A |n ?1?若|A |?0? 由(1)知|A *|?0? 此时命题也成立?因此|A *|?|A |n ?1?19? 设⎪⎪⎭⎫ ⎝⎛-=321011330A ? AB ?A ?2B ? 求B ? 解 由AB ?A ?2E 可得(A ?2E )B ?A ? 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330? 20? 设⎪⎫ ⎛=020101A ? 且AB ?E ?A 2?B ? 求B ? 即 ??8(?2E ?2A )?1?4(E ?A )?1?4[diag(2? ?1? 2)]?1?2diag(1? ?2? 1)?22? 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A ?且ABA ?1?BA ?1?3E ? 求B ?解 由|A *|?|A |3?8? 得|A |?2?由ABA ?1?BA ?1?3E 得AB ?B ?3A ?B ?3(A ?E )?1A ?3[A (E ?A ?1)]?1A⎪⎪⎫ ⎛=⎪⎪⎫ ⎛-=-06060060000601010010000161? 而 故 求?(A ) ?diag(1?1?58)[diag(5?5?5)?diag(?6?6?30)?diag(1?1?25)]?diag(1?1?58)diag(12?0?0)?12diag(1?0?0)??(A )?P ?(?)P ?1⎪⎪⎭⎫ ⎝⎛=1111111114? 25? 设矩阵A 、B 及A ?B 都可逆? 证明A ?1?B ?1也可逆? 并求其逆阵? 证明 因为A ?1(A ?B )B ?1?B ?1?A ?1?A ?1?B ?1?而A ?1(A ?B )B ?1是三个可逆矩阵的乘积? 所以A ?1(A ?B )B ?1可逆? 即A ?1?B ?1可逆? (A ?1?B ?1)?1?[A ?1(A ?B )B ?1]?1?B (A ?B )?1A ?26? 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121? 解 设⎪⎭⎫ ⎝⎛=10211A ? ⎪⎭⎫ ⎝⎛=30122A ? ⎪⎭⎫ ⎝⎛-=12131B ? ⎪⎭⎫ ⎝⎛--=30322B ? 则而 所以 即 而 01111|||||||| ==D C B A ? 故 |||||||| D C B A D C B A ≠? 28? 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ? 求|A 8|及A 4?解 令⎪⎭⎫ ⎝⎛-=34431A ? ⎪⎭⎫ ⎝⎛=22022A ? 则 ⎪⎭⎫ ⎝⎛=21A O O A A ? 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ? 1682818281810||||||||||===A A A A A ? ⎫⎛405 所以 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A ? 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321? 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121?⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ?所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A ? 30? 求下列矩阵的逆阵?(1)⎪⎪⎪⎭⎫ ⎝⎛2500380000120025? 解 设⎪⎭⎫ ⎝⎛=1225A ? ⎪⎭⎫ ⎝⎛=2538B ? 则于是 1? 把下列矩阵化为行最简形矩阵?(1)⎪⎪⎭⎫ ⎝⎛--340313021201? 解 ⎪⎪⎭⎫ ⎝⎛--340313021201(下一步? r 2?(?2)r 1? r 3?(?3)r 1? )~⎪⎪⎭⎫ ⎝⎛---020*********(下一步? r 2?(?1)? r 3?(?2)? ) ~⎪⎪⎭⎫ ⎝⎛--010*********(下一步? r 3?r 2? ) ~⎪⎪⎭⎫ ⎝⎛--300031001201(下一步? r 3?3? ) ~⎪⎪⎭⎫ ⎝⎛000031005010? (3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311?解 ⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步? r 2?3r 1? r 3?2r 1? r 4?3r 1? ) ~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步? r 2?(?4)? r 3?(?3) ? r 4?(?5)? ) ⎪⎫ ⎛---2210034311 ⎭⎝41000 ~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步? r 2?r 3? ) ~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201?2? 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ? 求A ? 解 ⎪⎪⎭⎫ ⎝⎛100001010是初等矩阵E (1? 2)? 其逆矩阵就是其本身? ⎪⎪⎭⎫ ⎝⎛100010101是初等矩阵E (1? 2(1))? 其逆矩阵是 3? 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267? (2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023?解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321 ⎪⎫ ⎛---01002321 4?⎪⎭ ⎝-113⎪⎭⎝-13 解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ? 所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X ?(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A ? ⎪⎭⎫ ⎝⎛-=132321B ? 求X 使XA ?B ? 解 考虑A T X T ?B T ? 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ? 所以 ⎪⎫ ⎛--==-7142)(1TT T B A X ? 从而 5? 所以 6?r 阶子式?0的r 例如? ⎪⎪⎭⎫ ⎝⎛=010*********A ? R (A )?3? 0000是等于0的2阶子式? 010001000是等于0的3阶子式? 7? 从矩阵A 中划去一行得到矩阵B ? 问A ? B 的秩的关系怎样? 解 R (A )?R (B )?这是因为B 的非零子式必是A 的非零子式? 故A 的秩不会小于B 的秩? 8? 求作一个秩是4的方阵? 它的两个行向量是(1? 0? 1? 0? 0)? (1? ?1? 0? 0? 0)?解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵?⎪⎪⎪⎪⎫ ⎛-01000001010001100001? 9? (2)⎪⎪⎭⎫ ⎝⎛-------815073*********? 解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步? r 1?r 2? r 2?2r 1? r 3?7r 1? ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步? r 3?3r 2? )~⎪⎭⎫ ⎝⎛----0000059117014431? 矩阵的秩是2? 71223-=-是一个最高阶非零子式? (3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812?10? 设A 、B 都是m ?n 矩阵? 证明A ~B 的充分必要条件是R (A )?R (B )? 证明 根据定理3? 必要性是成立的?充分性? 设R (A )?R (B )? 则A 与B 的标准形是相同的? 设A 与B 的标准形为D ? 则有A ~D ? D ~B ?由等价关系的传递性? 有A ~B ?11? 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ? 问k 为何值? 可使 (1)R (A )?1? (2)R (A )?2? (3)R (A )?3?解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r ?于是 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数)? (2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ? 解 对系数矩阵A 进行初等行变换? 有A ?⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021? 于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ? 故方程组的解为⎫⎛⎫⎛-⎫⎛121x 于是 ⎪⎩==0043x x (4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ? 解 对系数矩阵A 进行初等行变换? 有A ?⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000001720171910171317301?于是⎪⎪⎪⎨⎧=-=-=33432431172017191713173x x x x x x x x ? 于是R (2)⎪⎩⎪⎨-=+-=-+-=+-69413283542z y x z y x z y x ? 解 对增广矩阵B 进行初等行变换? 有B ?⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201?于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212? 即 ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k 为任意常数)? (3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ?于是 即 ⎪⎭ ⎝--25341⎭⎝00000于是 ⎪⎪⎩⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171?即 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1? k 2为任意常数)? 14? 写出一个以为通解的齐次线性方程组?解 根据已知? 可得或 或 ⎩321 (1)有唯一解? (2)无解? (3)有无穷多个解?解 ⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr? (1)要使方程组有唯一解? 必须R (A )?3? 因此当??1且???2时方程组有唯一解.(2)要使方程组无解? 必须R (A )?R (B )? 故(1??)(2??)?0? (1??)(??1)2?0?因此???2时? 方程组无解?(3)要使方程组有有无穷多个解? 必须R (A )?R (B )?3? 故(1??)(2??)?0? (1??)(??1)2?0?因此当??1时? 方程组有无穷多个解.当? 即 ⎭⎝⎭⎝⎭⎝013x 当???2时?⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫ ⎝⎛--000021102101? 方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x ? 即 ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数)? 17? 设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x ? 问??所以当??1时? 方程组有无穷多解?此时,增广矩阵为B ~⎪⎪⎭⎫ ⎝⎛-000000001221? 方程组的解为⎪⎩⎪⎨⎧==++-=3322321 1x x x x x x x ?或 ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1? k 2为任意常数)? 18? 证明R (A )?1的充分必要条件是存在非零列向量a 及非零行向量b T ? 使A ?ab T ?证明 必要性? 由R (A )?1知A 的标准形为)0 , ,0 ,1(01000001⋅⋅⋅⎪⎪⎫ ⎛=⎪⎪⎫ ⎛⋅⋅⋅⋅⋅⋅? ? 且A ? A )?1? 所以R (1)方程AX ?E m 有解的充分必要条件是R (A )?m ?证明 由定理7? 方程AX ?E m 有解的充分必要条件是R (A )?R (A ? E m )?而| E m |是矩阵(A ? E m )的最高阶非零子式? 故R (A )?R (A ? E m )?m ? 因此? 方程AX ?E m 有解的充分必要条件是R (A )?m ?(2)方程YA ?E n 有解的充分必要条件是R (A )?n ?证明 注意? 方程YA ?E n 有解的充分必要条件是A T Y T ?E n 有解? 由(1)A T Y T?E n有解的充分必要条件是R(A T)?n?因此,方程YA?E n有解的充分必要条件是R(A)?R(A T)?n?20?设A为m?n矩阵?证明?若AX?AY?且R(A)?n?则X?Y?证明由AX?AY?得A(X?Y)?O?因为R(A)?n?由定理9?方程A(X?Y)?O只有零解?即X?Y?O?也就是X?Y?第四章向量组的线性相关性1?T T T2?a2?(103?证明B知R(A)?R(A?B)?3?所以B组能由A组线性表示?由知R(B)?2?因为R(B)?R(B?A)?所以A组不能由B组线性表示?4?已知向量组A?a1?(0? 1? 1)T?a2?(1? 1? 0)T?B?b1?(?1? 0? 1)T?b2?(1? 2? 1)T? b3?(3? 2??1)T?证明A 组与B 组等价? 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ?知R (B )?R (B ? A )?2? 显然在A 中有二阶非零子式? 故R (A )?2? 又R (A )?R (B ? A )?2? 所以R (A )?2? 从而R (A )?R (B )?R (A ? B )? 因此A 组与B 组等价? 5? ? 又由R (a 故a 4能由a a 2? a 3 6? 所以R (A )?2小于向量的个数? 从而所给向量组线性相关? (2)以所给向量为列向量的矩阵记为B ? 因为022200043012||≠=-=B ?所以R (B )?3等于向量的个数? 从而所给向量组线性相无关? 7? 问a 取什么值时下列向量组线性相关? a 1?(a ? 1? 1)T ? a 2?(1? a ? ?1)T ? a 3?(1? ?1? a )T ?解 以所给向量为列向量的矩阵记为A ? 由 知? 当a ??1、0、1时? R (A )?3? 此时向量组线性相关?8? 设a 1? a 2线性无关? a 1?b ? a 2?b 线性相关? 求向量b 用a 1? a 2线性表示的表示式?解 因为a 1?b ? a 2?b 线性相关? 故存在不全为零的数?1? ?2使 ?1(a 1?b )??2(a 2?b )?0? 1121λλλλλλλλλλλλ设=c 9 而a 1? 示?m 线性相关? 但a 1不能由a 2? ? ? ?? a m 线性表示? (2)若有不全为0的数?1? ?2? ? ? ?? ?m 使?1a 1? ? ? ? ??m a m ??1b 1? ? ? ? ??m b m ?0成立? 则a 1? a 2? ? ? ?? a m 线性相关, b 1? b 2? ? ? ?? b m 亦线性相关? 解 有不全为零的数?1? ?2? ? ? ?? ?m 使?1a 1? ? ? ? ??m a m ??1b 1? ? ? ? ??m b m ?0?原式可化为?1(a1?b1)??????m(a m?b m)?0?取a1?e1??b1?a2?e2??b2?????a m?e m??b m?其中e1?e2?????e m为单位坐标向量?则上式成立?而a1?a2?????a m和b1?b2?????b m均线性无关?(3)若只有当?1??2??????m全为0时?等式?1a1??????m a m??1b1??????m b m?0才能成立?则a1?a2?????a m线性无关, b1?b2?????b m亦线性无关?解由于只有当?1??2??????m全为0时?等式成立?成立??但a1?0的数???1??2?11?设b1?a1?a2?b2?a2?a3? b3?a3?a4? b4?a4?a1?证明向量组b1?b2?b3?b4线性相关?证明由已知条件得a1?b1?a2?a2?b2?a3? a3?b3?a4? a4?b4?a1?于是a1 ?b1?b2?a3?b1?b2?b3?a4?b1?b2?b3?b4?a1?从而 b 1?b 2?b 3?b 4?0?这说明向量组b 1? b 2? b 3? b 4线性相关?12? 设b 1?a 1? b 2?a 1?a 2? ? ? ?? b r ?a 1?a 2? ? ? ? ?a r ? 且向量组a 1? a 2? ? ? ? ? a r 线性无关? 证明向量组b 1? b 2? ? ? ? ? b r 线性无关? 证明 已知的r 个等式可以写成⎪⎪⎫⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅110111) , , ,() , , ,(2121r r a a a b b b ? ? b 2? ?? ? ? b r 知R (a 1 所以a 1? a 2 ⎪⎪⎭⎝⎪⎪⎭ ⎝----⎪⎪⎭⎝----=00000010180590763451) , ,(321a a a ? 知R (a 1T ? a 2T ? a 3T )?R (a 1? a 2? a 3)?2? 因为向量a 1T 与a 2T 的分量不成比例? 故a 1T ? a 2T 线性无关? 所以a 1T ? a 2T 是一个最大无关组?14? 利用初等行变换求下列矩阵的列向量组的一个最大无关组?(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125? 解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~r r r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125? ⎪⎭⎝----⎪⎭ ⎝---⎪⎭ ⎝=52001110611011103111332) , , ,(2143b a a b a b a a a a ?而R (a 1? a 2? a 3? a 4)?2? 所以a ?2? b ?5?16? 设a 1? a 2? ? ? ?? a n 是一组n 维向量? 已知n 维单位坐标向量e 1? e 2?? ? ?? e n 能由它们线性表示? 证明a 1? a 2? ? ? ?? a n 线性无关?证法一 记A ?(a 1? a 2? ? ? ?? a n )? E ?(e 1? e 2?? ? ?? e n )? 由已知条件知? 存在矩阵K ? 使E?AK?两边取行列式?得|E|?|A||K|?可见|A|?0?所以R(A)?n?从而a1?a2?????a n线性无关?证法二因为e1?e2?????e n能由a1?a2?????a n线性表示?所以R(e1?e2?????e n)?R(a1?a2?????a n)?而R(e1?e2?????e n)?n?R(a1?a2?????a n)?n?所以R(a1?a2?????a n)?n?从而?a2?a是??而a1?a2?????a n即R(aa k (2?k?m???? ?m?使?1a1??2a2??????m a m?0?而且?2??3??????m不全为零?这是因为?如若不然?则?1a1?0?由a1?0知?1?0?矛盾?因此存在k(2?k?m)?使?k?0??k?1??k?2??????m?0?于是?1a1??2a2??????k a k?0?a k??(1/?k)(?1a1??2a2??????k?1a k?1)?即a k 能由a 1? a 2? ? ? ?? a k ?1线性表示?19? 设向量组B ? b 1? ? ? ?? b r 能由向量组A ? a 1? ? ? ?? a s 线性表示为 (b 1? ? ? ?? b r )?(a 1? ? ? ?? a s )K ? 其中K 为s ?r 矩阵? 且A 组线性无关? 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )?r ?证明 令B ?(b 1? ? ? ?? b r )? A ?(a 1? ? ? ?? a s )? 则有B ?AK ? 必要性? 设向量组B 线性无关?及 因此R ?于是r 线性无关? 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ? 将上式记为B ?AK ? 因为0)1()1(0111101111011110||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n ? 所以K 可逆? 故有A ?BK ?1? 由B ?AK 和A ?BK ?1可知向量组?1? ?2? ? ? ?? ?n 与向量组?1? ?2? ? ? ?? ?n 可相互线性表示? 因此向量组?1? ?2? ? ? ?? ?n 与向量组?1??2? ? ? ?? ?n 等价?32? A x ? A 2x 所以B ? 故3x ?A x 22? 求下列齐次线性方程组的基础解系? (1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ?解 对系数矩阵进行初等行变换? 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ?于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x ?取(x 3? x 4)T ?(4? 0)T ? 得(x 1? x 2)T ?(?16? 3)T ? 取(x 3? x 4)T ?(0? 4)T ? 得(x 1? x 2)T ?(0? 1)T ? 因此方程组的基础解系为?1?(?16? 3? 4? 0)T ? ?2?(0? 1? 0? 4)T ? x n ??nx 1?(n ?1)x 2? ? ? ? ?2x n ?1?取x 1?1? x 2?x 3? ? ? ? ?x n ?1?0? 得x n ??n ?取x 2?1? x 1?x 3?x 4? ? ? ? ?x n ?1?0? 得x n ??(n ?1)??n ?1? ? ? ? ?取x n ?1?1? x 1?x 2? ? ? ? ?x n ?2?0? 得x n ??2? 因此方程组的基础解系为 ?1?(1? 0? 0? ? ? ?? 0? ?n )T ??2?(0? 1? 0? ? ? ?? 0? ?n ?1)T ? ? ? ???n ?1?(0? 0? 0? ? ? ?? 1? ?2)T ?23? 设⎪⎭⎫ ⎝⎛--=82593122A , 求一个4?2矩阵B , 使AB ?0, 且 R (B )?2.解 显然B 的两个列向量应是方程组AB ?0的两个线性无关的解? 因为 r⎪⎪⎪⎭ ⎝+⎪⎪⎪⎭⎝=⎪⎪⎪⎭ ⎝012321214321k k x x x , 即⎪⎩⎪⎨=+=+=1421321221322k x k k x k k x ? (k 1? k 2?R )? 消去k 1? k 2得⎩⎨⎧=+-=+-023032431421x x x x x x ? 此即所求的齐次线性方程组. 25? 设四元齐次线性方程组。

工程数学线性代数(同济大学第六版)课后习题答案(全)

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解逆序数为4:41, 43, 42, 32. (3)3 4 2 1;解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1.(4)2 4 1 3;解逆序数为3: 2 1, 4 1, 4 3.(5)1 3 ⋅⋅⋅ (2n-1) 2 4 ⋅⋅⋅ (2n);解逆序数为2)1(-nn:3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个) (6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)71100251020214214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++---= ))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x xn n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有nn n n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 00113322121321111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D ,426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 703511650000601000051001653==D , 39551601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2. 6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) . 解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x . 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫ ⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC OBC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413BC O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--000410*******20201.2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X .5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫⎝⎛-023010*********71210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组: (1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010********1k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x xx x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:。

工程数学习题加答案

工程数学习题加答案

一、 论述用单纯形方法解LP 问题的基本思想、步骤,并证明主要结论。

考虑标准形式的LP 问题min ..0T z c x s t Ax b x ⎧=⎪=⎨⎪≥⎩设r (A )=m ,A 的前m 列为线性无关。

(注意各向量、矩阵的维数)将A 分为左右两块,左边m 列为可逆方阵B ,右边记为N 。

(左面m 列是不是一定可逆?)对应将价值向量c 和决策向量x 的前m 行与后n -m 行分开,[,]A B N =,,[,]B T T T B N N c c c c c c ⎡⎤==⎢⎥⎣⎦,,[,]B T TT B N N x x x x x x ⎡⎤==⎢⎥⎣⎦[,]B B N N x Ax b B N b Bx Nx b x ⎡⎤=⇒=⇒+=⎢⎥⎣⎦11B N x B b B Nx --=-111111[,]()()[0,0,,0,]B T T T T TB N B B N N N T T B N N NT T T B B N NB T T T BBNN x z c x c c c x c x x c B b B Nx c x c B b c B N c x x c B b c B N c x ------⎡⎤===+⎢⎥⎣⎦=-+=--⎡⎤=--⎢⎥⎣⎦,令1[0,0,,0,]TT T B N c B N c ζ-=- ,则1T T B z c B b x ζ-=-,且111111[,][,][,][,]T T T T T B B B N T T T T B B B N T T B T TB c B B c c B N c c B B c B N c c c B B N c c B A c ζ------=--=-=-=-。

原LP 问题变形为111min ..0T T B B N z c B b xs t x B b B Nx x ζ---⎧=-⎪=-⎨⎪≥⎩若取0N x =,则1,B x B b -=得一个满足等式约束的解10B b x -⎡⎤=⎢⎥⎣⎦,其对应的指标值为 1T T B z c x c B b -==。

工程数学习题答案

工程数学习题答案

工程数学习题答案付里叶变换的推导(),,,f x l l ⎡⎤⎡⎤⎣⎦⎣⎦-∞+∞-定义在上在上可展开成付里叶级数。

()0cos sin121a n n f x a x b x n n l ln ππ⎛⎫⎪⎝⎭∞=++∑= 即001()cos ;1()sin ;1();0;n l a f d l n l ln l b f d l n l ll a f d l l b πζζζπζζζζζ= 2⎰-=⎰-=⎰-= 3 其中 将2,3式代入1式得:()11111()()cos cos ()sin sin 211()()cos 2l l l l l l n l l l l n n n n n f x f d f xd f xd l l l l l l l n n f d f x d l ll l ππππζζζζζζζζππζζζζζ∞---=∞--=⎡⎤=++⎢⎥⎣⎦⎛⎫=+- ⎪⎝⎭∑⎰⎰⎰∑⎰⎰ ()()01f x dx f x dx ∞∞-∞-∞⎰⎰设为有限值记为c ; 亦为有限值记为c()11lim()0;21lim ()cos lll l l l n l f d l n n l f x f x d l l l ζζππζζζ-→∞∞-→∞=→+∞=⎛⎫→∞=-⎪⎝⎭⎰∑⎰当时,当时,1212,,,n n n n l l l l lππλπλλππλλλλ+=∴==∆=-=∴=∆令()()()()1011lim ()cos lim ()cos ()cos 1()cos 2l l l n n n n n f x f x d ll l f x d d f x d d f x d λππζζζλζλζζπλζλζζπλζλζζπ∞-→∞=∞∞-∞∆→=+∞∞-∞+∞∞-∞-∞⎛⎫=-⎪⎝⎭∆=-=-=-∑⎰∑⎰⎰⎰⎰⎰该式称为付里叶积分。

定义()()1()sin 02g x d f x d λζλζζπ+∞∞-∞-∞=-=⎰⎰()()()()()1()21()212i x i xi i x f x f x ig x d f e d ed fe d e F d λζλλζλλζζπλζζπλλπ+∞∞--∞-∞+∞∞--∞-∞+∞--∞=+===⎰⎰⎰⎰⎰()()(),(),i i x F f e d F f x e dx λζλλζζλ∞∞-∞-∞==⎰⎰其中即()()()()()()1F , F F x x x λλλ-=℘ƒƒƒ=℘⎡⎤⎡⎤⎣⎦⎣⎦称为的付里叶变换,记为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题七解答1. 设X 的分布律为,求(1)EX ,(2))1(+-X E )(X E DX解 由随机变量X所以另外,也可根据数学期望的性质可得:2.设随机变量X 服从参数为()0>λλ的泊松分布,且已知()()[]232=--X X E ,求λ的值。

解3. 设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,试求2X 的数学期望()2X E 。

解 ()4.0,10~B X所以 ()()4.26.04.010,44.010=⨯⨯==⨯=X D X E 故 ()()()()4.1844.2222=+=+=X E X D X E4. 国际市场每年对我国某种出口商品的需求量X 是一个随机变量,它在[2000,4000](单位:吨)上服从均匀分布。

若每售出一吨,可得外汇3万美元,若销售不出而积压,则每吨需保养费1万美元。

问应组织多少货源,才能使平均收益最大?解 设随机变量Y 表示平均收益(单位:万元),进货量为a 吨Y=()aX a X 33--ax ax ≥< 则要使得平均收益()Y E 最大,所以 得 3500=a (吨)5. 一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率相应为0.1,0.2,0.3,假设各部件的状态相互独立,以X 表示同时需要调整的部件数,试求X 的数学期望()X E 和方差()X D 。

解 X 的可能取值为0,1,2,3,有 所以X 的分布律为6. 设X 的密度函数为()x e x f -=21,求(1)()X E ;(2)()2X E 。

解 (1)()⎰∞+∞--=⋅=021dx e x X E x(2)()⎰⎰∞+--∞+∞-==⋅=0222221221dx e x dx e x XE x x注:求解(1)时利用被积函数是奇函数的性质,求解(2)时化简为⎰+∞-02dx e x x 可以看成为是服从参数为1的指数分布随机变量的二阶原点矩。

7. 某商店经销商品的利润率X 的密度函数为)(x f ⎩⎨⎧-=0)1(2x 其他10,<<x ,求EX ,DX 。

解 (1)()1012(1)3E X x x dx =⋅-=⎰(2)()122012(1)6E X x x dx =⋅-=⎰故222111()()(())()6318D XE X E X =-=-=8. 设随机变量X 的密度函数为0 0≤x求()X E 、()X E 2、()X e X E 2-+、()X D 。

解9. 设随机变量()Y X ,的联合分布律为求()X E 、()Y E 、()Y X E 2-、(XY E 3X D Y D ()Y X ,cov 、Y X ,ρ。

解 关于X 与Y 10. 设随机变量 求()Y X D +。

解 ()2~E X ,所以()41212==X D , ()4~E Y ,所以()161412==Y D ,X,Y 相互独立,所以11. 设()Y X ,服从在A 上的均匀分布,其中A 为x 轴、y 轴及直线01=++y x 所围成的区域,求(1)()X E ;(2)()Y X E 23+-;(3)()XY E 的值。

解 先画出()y x f , 2 ()A y x ∈,0 其他0 其他 0 其他12. 设随机变量()Y X ,的联合密度函数为 0 其他 求()()()()()()Y D X D Y X E XY E Y E X E ,,,,,22+。

解 先画出区域10≤≤≤x y 的图其他其他13. 设随机变量X,Y 相互独立,且()()()(,2,1===YD X D YE X E ,求()XY D 。

解14. 设()()4.0,36,25,===YX Y D X D ρ,求(1)()Y X D +;(2)()Y X D -。

解:(1)()()()()()Y D X D Y D X D Y X D Y X ,2ρ++=+ (2)()()()()()Y D X D Y D X D Y X D Y X ,2ρ-+=-15. 设随机变量Y X ,相互独立,)1,1(~N X ,)1,2(~-N Y ,求)2(),2(Y X D Y X E ++。

解 ()1,()1;()2,()1E X D X E Y D Y ===-=16. 验证:当),(Y X 为二维连续型随机变量时,按公式⎰⎰+∞∞-+∞∞-=dydx y x xf EX ),(及按公式⎰+∞∞-=dx x xf EX )(算得的EX 值相等。

这里,),(y x f 、)(x f 依次表示X Y X ),,(的分布密度。

证明 (,)(,)EX xf x y dydx x f x y dydx +∞+∞+∞+∞-∞-∞-∞-∞==⎰⎰⎰⎰()xf x dx +∞-∞=⎰17. 设X 的方差为2.5,利用契比晓夫不等式估计}5.7{≥-EX X P 的值。

解 2(){7.5}7.5D X P X EX -≥≤22.517.522.5==18. 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,根据切比雪夫不等式估计()6≥+Y X P 的值。

解 ()()()022=+-=+=+Y E X E Y X E所以21. 在人寿保险公司里有3000个同龄的人参加人寿保险。

在1年内每人的死亡率为0.1%,参加保险的人在1年的第一天交付保险费10元,死亡时家属可以从保险公司领取2000元。

试用中心极限定理求保险公司亏本的概率。

解 设死亡人数为()001.0,3000~,B X X ,保险公司亏本当且仅当3000102000⨯>X ,即15>X。

于是,由棣莫弗—拉普拉斯定理,公司亏本的概率为习题九解答0 1xy 11. 设621,,,X X X 是来自服从参数为λ的泊松分布()λP 的样本,试写出样本的联合分布律。

解 ()!!!,,,621621621x ex ex ex x x f x x x λλλλλλ---⋅⋅⋅=2. 设621,,,X X X 是来自()θ,0上的均匀分布的样本,0>θ未知 (1)写出样本的联合密度函数;(2)指出下列样本函数中哪些是统计量,哪些不是?为什么?(3)设样本的一组观察是:0.5,1,0.7,0.6,1,1,写出样本均值、样本方差和标准差。

解(1)()=621,,,x x x f 6-θ θ<<621,,,0x x x 0 其他(2)1T 和4T 是,2T 和3T 不是。

因为1T 和4T 中不含总体中的唯一未知参数θ,而2T 和3T 中含有未知参数θ。

(3)样本均值()8.0116.07.015.061611611=+++++===∑∑==i i n i i X X n X样本方差()()261212611∑∑==-=-=i i ni i X X X X n S 样本标准差2082.00433.02===S S 。

3. 查表求)12(299.0χ,)12(201.0χ,)12(99.0t ,)12(01.0t 。

解 20.99(12)26.217χ=,20.01(12) 3.571χ=,0.99(12) 2.6810t =,0.01(12) 2.6810t =-。

4. 设()10~t T ,求常数c ,使()95.0=>c T P 。

解 由t 分布关于纵轴对称,所以()95.0=>c T P 即为()05.0=->c T P 。

由附表5.6可查得81.1=-c ,所以81.1-=c 。

5. 设n X X X ,,,21 是来自正态总体()2,0σN 的样本,试证: (1)()n X ni i 2122~1χσ∑=;(2)()1~12212χσ⎪⎭⎫ ⎝⎛∑=n i i X n 。

证明:(1)σiX 独立同分布于()1,0N ,由2χ分布的定义,()n X ni i 221~χσ∑=⎪⎭⎫ ⎝⎛,即()n X n i i 2122~1χσ∑=。

(2)易见,()21,0~σn X n i i N ∑=,即()1,0~21N ∑=σn X ni i,由2χ分布的定义,()1~2221χσ⎪⎪⎪⎪⎭⎫⎝⎛∑=n X n i i ,即()1~12212χσ⎪⎭⎫⎝⎛∑=n i i X n 。

6. 设521,,,X X X 是独立且服从相同分布的随机变量,且每一个()5,,2,1 =i X i 都服从()1,0N 。

(1)试给出常数c ,使得()2221X X c +服从2χ分布,并指出它的自由度; (2)试给出常数d ,使得25242321X X X X X d+++服从t 分布,并指出它的自由度。

解(1)易见,2221X X +即为二个独立的服从()1,0N 的随机变量平方和,服从()22χ分布,即1=c ;自由度为2。

(2)由于()2,0~21N +X X ,则()1,0~221N +X X 。

又()3~2252423χX X X ++,221X X +与252423X X X ++相互独立,则即 ()3~2625242321t X X X X X +++即26=d ,自由度为3。

7. 设()n X X X ,,,21 是取自总体X 的一个样本,在下列三种情况下,分别求()()()2,,S E X D X E :(1)()p B X ,1~;(2)()λE X ~;(3)()θ2,0~R X ,其中0>θ。

解(1)()p B X ,1~ (2)()λE X ~(3)()θ2,0~R X ,其中0>θ8. 某市有100000个年满18岁的居民,他们中10%年收入超过1万,20%受过高等教育。

今从中抽取1600人的随机样本,求:(1)样本中不少于11%的人年收入超过1万的概率; (2)样本中19%和21%之间的人受过高等教育的概率。

解(1)引入新变量:=i X 1,第i 个样本居民年收入超过1万 0,第i 个样本居民年收入没超过1万其中1600,,,2,1==n n i易见:()1.01===i X P p又因1000001600=<<=N n ,故可以近似看成有放回抽样,n X X X ,,21 相互独立。

样本中年收入超过1万的比例即为X ,由于1600=n 较大,可以使用渐近分布求解,即⎪⎪⎭⎫⎝⎛N n X 2,~σμ,所求概率即为 (2)同(1)解法 引入新变量:=i X 1,第i 个样本居民受过高等教育0,第i 个样本居民未受过高等教育其中1600,,,2,1==n n i 答:(1)样本中不少于11%的人年收入超过1万的概率为0.0918; (2)样本中19%和21%之间的人受过高等教育的概率为0.6826。

相关文档
最新文档