单一材料梁的弯曲正应力实验

合集下载

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。

二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。

由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。

在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。

在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。

三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。

2. 将梁固定在纯弯曲实验台上。

3. 在梁的一端加上一定荷载。

4. 通过测力仪测量在梁部位不同位置受到的正应力。

5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。

6. 重复以上操作,直到梁发生破坏。

五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。

实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。

不同的材料具有不同的弯曲特性,不同的性能和抗断性能。

而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。

七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。

实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。

同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。

单一材料梁的弯曲正应力实验指导

单一材料梁的弯曲正应力实验指导

单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。

梁是一种常见的结构,在受到外力作用时会发生弯曲变形。

为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。

实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。

实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。

在梁的顶部和底部,会出现正应力和负应力。

本实验主要关注梁上的正应力分布。

根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。

实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。

具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。

实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。

通常情况下,梁上的正应力分布呈现出一定的规律性。

在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。

这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。

实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。

例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。

这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。

此外,梁的截面形状也对梁的弯曲正应力分布有影响。

例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。

本实验旨在通过对梁的纯弯曲正应力实验,了解梁在纯弯曲状态下的受力情况,掌握梁的弯曲应力分布规律,加深对梁的力学性能的理解。

二、实验原理。

梁是一种常见的结构构件,在工程中应用广泛。

梁在受外力作用下会发生弯曲变形,产生弯曲应力。

在纯弯曲状态下,梁上任意截面的应力都是正应力,弯矩对梁上任意一点的作用会引起该点产生正应力。

梁的弯曲应力分布规律受到梁的截面形状、材料性质以及外力大小和作用形式的影响。

三、实验装置与仪器。

本次实验所使用的实验装置包括,梁的支撑装置、加载装置、测力传感器、位移传感器、数据采集系统等。

测力传感器用于测量梁上各点的受力情况,位移传感器用于测量梁上各点的位移情况,数据采集系统用于采集并记录实验数据。

四、实验步骤。

1. 将梁放置在支撑装置上,并调整支撑装置,使梁处于自由悬臂梁状态。

2. 将加载装置作用在梁的中央位置,施加均匀分布的外力。

3. 通过测力传感器和位移传感器采集梁上各点的受力和位移数据。

4. 记录实验数据,并进行数据处理和分析。

五、实验数据处理与分析。

通过对实验数据的处理和分析,得到了梁在纯弯曲状态下的应力分布规律。

实验结果表明,在梁的中央位置受力最大,呈现出最大的正应力;而在梁的两端位置受力较小,呈现出较小的正应力。

梁的弯曲应力分布呈现出一定的规律性,符合理论预期。

六、实验结论。

通过本次实验,我们深入了解了梁在纯弯曲状态下的受力情况,掌握了梁的弯曲应力分布规律。

实验结果表明,在纯弯曲状态下,梁上任意截面的应力都是正应力,呈现出一定的规律性。

这对于工程结构设计和实际应用具有一定的指导意义。

七、实验心得。

通过本次实验,我们对梁的纯弯曲正应力有了更深入的了解,也增强了对力学知识的理解和应用能力。

在今后的学习和工作中,我们将继续努力,不断提高自己的实验技能和科研能力,为工程实践和科学研究做出更大的贡献。

八、参考文献。

1. 钱七虎. 结构力学实验教程[M]. 北京,中国建筑工业出版社,2008.2. 吴光辉. 结构力学[M]. 北京,高等教育出版社,2011.以上为本次梁的纯弯曲正应力实验报告的全部内容。

单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告单一材料梁弯曲正应力实验报告引言:在工程领域中,了解材料的力学性能对于设计和制造结构至关重要。

其中,梁的弯曲是一种常见的力学行为。

通过对梁的弯曲实验,我们可以研究材料在受力时的变形和应力分布情况。

本实验旨在通过对单一材料梁的弯曲实验,探究其正应力分布规律。

实验目的:1. 了解单一材料梁在弯曲过程中的应力分布情况;2. 掌握梁弯曲实验的基本操作方法;3. 分析实验结果,验证梁的弯曲公式。

实验原理:在梁弯曲实验中,我们使用一根单一材料的梁,将其固定在两个支撑点上,并在中间加力使其产生弯曲。

在梁的顶部和底部,会产生正应力和负应力。

我们将重点研究梁的顶部正应力分布情况。

实验步骤:1. 准备工作:选择合适的梁材料,测量梁的长度、宽度和厚度,并计算其截面面积;2. 搭建实验装置:将梁固定在两个支撑点上,确保梁的长度与支撑点之间的距离一致;3. 施加力:在梁的中间位置施加力,使其产生弯曲;4. 测量数据:使用应变计或应变片等设备,测量梁顶部正应力的数值;5. 重复实验:根据需要,可以进行多次实验,以提高数据的准确性和可靠性;6. 数据处理:根据实验结果,绘制出梁顶部正应力与距离的关系曲线;7. 分析结果:根据实验数据和曲线,分析梁顶部正应力的分布规律。

实验结果与分析:通过实验测量得到的数据,我们可以绘制出梁顶部正应力与距离的关系曲线。

根据实验结果,我们可以得出以下结论:1. 梁顶部正应力随距离的增加而逐渐减小。

这是由于梁在弯曲过程中,顶部受到拉力,导致顶部产生正应力;2. 梁的顶部正应力分布呈现出一定的曲线形状。

通常情况下,梁的中间部分正应力较大,而两端部分正应力较小;3. 梁的材料性质对于正应力分布有重要影响。

不同材料的梁在相同条件下,其正应力分布可能会有所不同。

结论:通过本次实验,我们成功地探究了单一材料梁弯曲过程中的正应力分布规律。

实验结果表明,梁顶部正应力随距离的增加而逐渐减小,并呈现出一定的曲线形状。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

一、实验目的1. 通过实验,了解梁在弯曲状态下的应力分布规律;2. 验证梁的弯曲正应力计算公式的准确性;3. 掌握应变电测法的基本原理和操作方法;4. 培养学生严谨的实验态度和科学的研究方法。

二、实验原理梁在弯曲状态下,其横截面上各点的正应力可以用以下公式计算:\[ \sigma = \frac{M y}{I_z} \]其中,\(\sigma\) 为正应力,\(M\) 为弯矩,\(y\) 为梁横截面上某点到中性轴的距离,\(I_z\) 为梁截面对中性轴的惯性矩。

实验中,通过测量梁横截面上不同位置的应变,根据虎克定律,可计算出相应位置的应力。

实验装置主要包括梁、应变片、静态数字电阻应变仪等。

三、实验仪器与设备1. 梁材料:矩形截面试件,尺寸为 \(b \times h\);2. 应变片:电阻应变片,用于测量梁横截面上的应变;3. 静态数字电阻应变仪:用于测量应变片输出的电阻变化,从而计算出应变;4. 加载装置:用于对梁施加弯矩;5. 游标卡尺:用于测量梁的尺寸;6. 计算器:用于计算实验数据。

四、实验步骤1. 准备实验装置,包括梁、应变片、应变仪等;2. 将应变片粘贴在梁的预定位置,确保应变片与梁表面紧密贴合;3. 接通应变仪电源,调整应变仪的量程和灵敏度;4. 使用游标卡尺测量梁的尺寸,记录数据;5. 在梁上施加预定的弯矩,确保梁处于弯曲状态;6. 使用应变仪测量梁横截面上不同位置的应变,记录数据;7. 根据实验数据和应变片的位置,计算出梁横截面上不同位置的应力;8. 比较实验测得的应力与理论计算值,分析误差原因。

五、实验结果与分析1. 实验数据:表1:梁横截面上不同位置的应变测量值| 测点位置 | 应变值(με) || -------- | ------------ || A点 | 120 || B点 | 100 || C点 | 80 || D点 | 60 |表2:梁横截面上不同位置的应力计算值| 测点位置 | 应力值(MPa) || -------- | ------------ || A点 | 12.00 || B点 | 10.00 || C点 | 8.00 || D点 | 6.00 |2. 结果分析:通过实验数据与理论计算值的比较,可以看出,在梁的弯曲状态下,应力在梁横截面上呈线性分布。

梁的纯弯曲正应力实验

梁的纯弯曲正应力实验
2.温度补偿: 由于温度对电阻值变化影响很 大, 利用电桥特性, 可以采用适 当的方法消除这种影响。
梁的纯弯曲正应力实验
工作片
R1
B
A
R2 温度补偿片 C 固定电阻
相同应变片R1.R2,R1贴 在构件受力处,R2贴在附 近不受力处,环境温度对 R1.R2引起的阻值变化相 同,为DRT,则
R4
R3
D
梁的纯弯曲正应力实验
五、实验数据的记录与计算
梁的纯弯曲正应力实验
六、注意事项
1.加载时要缓慢, 防止冲击。 2.读取应变值时, 应保持载荷稳定。 3.各引线的接线柱必须拧紧, 测量过程中不要触动引线, 以 免引起测量误差。
梁的纯弯曲正应力实验
一、实验目的
1.测定纯弯曲下矩形截面梁横截面上正应力的 分布规律,并与理论值比较;
2.熟悉电测法基本原理和电阻应变仪的使用。 二、实验仪器 1.纯弯曲试验装置;
2.YD-15型静态数字电阻应变仪。
梁的纯弯曲正应力实验
三、试验原理
1. 结构示意图及理论值计算
b hz
y
F/2 a
F/2
DR1 R1
-
DR2 R2
DR3 R3
-
DR4 R4
)
E 4
K
(
1
-
2
3
-
4
)
梁的纯弯曲正应力实验
4.电桥接法及温度补偿 1.电桥接法: 全桥接法(四个电阻均为应变片);
半桥接法(R1、R2为应变片, R3.R4为固定电阻)
两种接法中的应变片型号、阻值尽可能相同 或接近, 固定电阻与应变片阻值也应接近。
F F/2
ma m
FQ +

纯-弯曲梁的正应力实验

纯-弯曲梁的正应力实验

纯-弯曲梁的正应力实验本实验旨在研究弯曲梁在受力时的正应力分布情况,通过实验数据的测量及分析,探讨影响梁正应力分布的因素,并对梁的强度进行评估。

1. 实验原理1.1 弯曲梁正应力分析弯曲梁是一种常用的结构元件,例如桥梁、楼层结构等,她受到外力的作用会发生弯曲形变,产生正应力和剪应力。

弯曲梁的正应力是沿着截面法向的应力,在梁的顶部为拉应力,底部为压应力。

正应力的计算公式如下:$$\sigma = \frac{My}{I}$$其中,$\sigma$为正应力,$M$为弯矩,$y$为受力点到截面重心的距离,$I$为截面惯性矩。

弯曲梁正应力的分布情况受到多种因素的影响,主要包括:① 梁材料的弹性模量:弹性模量越大,弯曲梁的刚度越大,相同外力作用下,梁的形变和正应力都会相应减小。

② 梁截面形状和尺寸:梁截面的惯性矩影响正应力的大小和分布情况。

截面抗弯性能越强,正应力越小。

③ 受力位置和方向:受力位置和作用方向是影响正应力大小和分布情况的重要因素。

不同位置和方向的外力作用会导致不同的正应力分布规律。

2. 实验设备和方法本实验采用的主要设备有:弯曲梁试验机、电子天平、千分尺等。

2.2 实验步骤1. 准备弯曲梁样品,将其加工成常用的矩形截面和半圆形截面,分别测量其截面形状和尺寸。

2. 调整弯曲梁试验机,设置好取样位置和取样方式。

3. 将弯曲梁放入试验机,设置试验参数,包括荷重大小、位移速率等。

4. 开始试验,记录每个荷载下的跨中挠度和荷载大小,并计算出弯矩大小。

5. 在试验过程中,用电子天平测量梁的重量,并用千分尺对梁的跨中直径和截面高度进行测量,计算出截面惯性矩。

6. 根据测量数据,计算出每个荷载下的正应力,并绘制出正应力分布图。

3. 结果分析3.1 实验数据记录本实验用常见的矩形和半圆形弯曲梁进行了试验,记录了不同工况下的荷载和跨中挠度等数据。

根据数据计算得出弯矩以及正应力等数据,具体数据结果如下表:1. 矩形截面弯曲梁(1)弯曲梁在起始荷载下出现了微小的振动,但并未发生失稳。

梁的弯曲正应力测定

梁的弯曲正应力测定

梁的弯曲正应力实验梁弯曲变形时,其横截面上会产生弯曲正应力和弯曲切应力,测定梁横截面上弯曲正应力分布规律,了解约束对梁弯曲正应力的影响,使学生对弯曲理论有进一步的了解。

直梁(单一材料矩形截面梁,俗称直梁)和组合梁(如叠梁、楔块梁和夹层梁)均可作为弯曲正应力实验试样,而叠梁、楔块梁和夹层梁又均可以是几种不同材料的组合。

它们的测试原理、实验方法基本相同,仅组合截面上应力分布规律不一样而已。

学生可自己选择其中一种试样完成梁的弯曲正应力实验。

本节结合直梁和夹层梁、叠梁叙述其测试原理和实验方法。

一、实验目的1.熟悉电测法的基本原理和静态电阻应变仪的使用方法。

2.测定梁纯弯曲段横截面上的正应力分布规律,将实测值与理论计算值进行比较。

二、仪器、设备1.力学试验台。

2.静态应变仪。

3. 辅助工具和量具。

三、实验原理与方法直梁和组合梁的结构、尺寸和加载方式如图4.1(a)、(b)、(c)、(d)所示。

图4.1(a)为直梁,二端铰支,四点弯曲加载;图4.1(b)为夹层梁,二端铰支,四点弯曲加载;图4.1(c)为叠梁,二端铰支,三点弯曲加载;图4.1(d)为悬臂叠梁,在自由端加载。

直梁可采用铝合金或45号钢制成。

在梁指定截面的梁侧面上,沿与梁轴线平行的中性层、±h/6和±h/3处共贴有五枚应变片;上下表面各布置了两枚应变片,以检查载荷是否偏斜,及用于各种组桥方式测定最大应变值。

夹层梁上、下层是45号钢板,厚度相同,中层是铝合金板,三层用螺栓联结,锥销定位。

在梁指定截面的上、下表面各粘贴两枚应变片,一个侧面上等间距地粘贴五枚应变片。

(a)直梁(矩形截面)实验装置参考尺寸:a=130mm b=18mm C=140mm(b)夹层梁实验装置(四点弯曲加载)参考尺寸:a=155mm b=18mm L=400mm(c) 叠梁实验装置(三点弯曲加载)叠梁上、下梁可以是同一材料,亦可以是不同材料,可任意组合。

图示是由45号钢和LY 12CZ 铝合金叠合而成的组合梁,截面为正方形。

梁弯曲正应力电测实验报告

梁弯曲正应力电测实验报告
hhhh
yy5????15mm;E=210Gpa。
2442
23
抗弯曲截面模量WZ=bh/6惯性矩JZ=bh/12
(2)应变?记录:
(3)取各测点?值并计算各点应力:
??1=16×10;??2=7×10;??3= 0;??4=8×10;??5=15×10;??1=E?1=;??2=E??2=;??3=0;
二、实验仪器和设备
1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。4、温度补偿块一块。三、实验原理和方法
弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:
图4-1
此值与理论公式计算出的各点正应力的增量即
?理?
?MyIZ
?pa2
进行比较,就可验证弯曲正应力公式。这里,弯矩增量?M?。
梁上各点的应变测量,采用1/4桥接线,各工作应变片共用一个温度补偿块。
四、实验步骤
1.记录实验台参数,设计实验方法。
2.准备应变仪:把梁上各测量点的应变片(工作应变片)按编号逐点接到电阻应变仪A、B接线柱上,将温度补偿片接到电阻应变仪接线柱上作公共补偿。
把Δσ实与理论公式算出的应力??式中的M应按下式计算:

来依次求出各点应力。
??
比较,从而验证公式的正确性,上述理论公??
??
四、实验步骤
1
?Pa(3.16)2
1、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。
2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验

纯弯曲梁的正应力电测实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图20(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图20 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺三、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图20(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。

梁的弯曲正应力实验

梁的弯曲正应力实验

梁的弯曲正应力实验引言在力学学科中,我们研究物体的形变和变形时,经常需要考虑应力的问题。

应力是物体内部的力分布情况,可以用来描述物体对外界施加力的能力。

弯曲正应力实验是一种常见的实验方法,用来研究材料在弯曲过程中产生的正应力分布情况。

本文将详细介绍梁的弯曲正应力实验的原理、实验装置、实验步骤以及实验结果的分析。

实验原理在材料力学中,当梁受到作用力而产生弯曲时,梁内部会产生正应力和剪应力。

弯曲的平面称为中性面,中性面附近的纤维受到压应力,而远离中性面的纤维则受到拉应力。

梁上不同位置的正应力大小不同,正应力随着距离中性面的距离增大而减小。

实验装置梁的弯曲正应力实验需要以下装置: 1. 实验梁:选择一块具有一定长度和宽度的梁作为实验梁。

梁的截面形状可以选择矩形、圆形等。

2. 支座:用于支撑实验梁的底部,使其能够固定在位置上。

3. 加载装置:通过施加作用力,使实验梁产生弯曲。

可以使用重物、液压等方式施加作用力。

4. 测力计:用于测量实验梁上的正应力大小。

5. 测量仪器:使用光学显微镜或拉伸计等设备来测量梁的形变情况。

实验步骤1.准备实验梁:选择一块长度和宽度适当的梁,使其能够适应实验要求。

可以根据需要对梁进行截割和加工。

2.搭建实验装置:将支座固定在实验台上,将实验梁放置在支座上,并调整支座的位置和角度,使实验梁能够产生弯曲。

3.施加作用力:根据实验要求,选择适当的加载装置施加作用力。

可以逐渐增加作用力的大小,以逐渐产生弯曲。

4.测量正应力:使用测力计测量实验梁上的正应力大小,并记录测得的数据。

5.测量形变:使用测量仪器测量梁的形变情况,可以测量梁的弯曲角度、梁的变形量等。

6.结束实验:根据实验要求,结束实验并记录实验数据。

实验结果分析在实验结束后,根据测得的数据进行结果分析。

可以绘制出梁上不同位置的正应力大小与距离中性面的距离的关系图,分析正应力随距离的变化规律。

还可以计算梁的弯曲刚度、弯曲变形等参数,以便进一步研究材料的力学性质。

单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告

单一材料梁弯曲正应力实验报告
梁是工程结构中常见的构件,在实际工程中经常受到弯曲载荷的作用。

因此,了解梁在弯曲过程中的应力分布规律对于工程设计和结构分析具有重要意义。

本实验旨在通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量,探究梁在弯曲过程中的力学性能。

实验装置主要包括梁、加载装置、应变测量装置和数据采集系统。

首先,将梁放置在加载装置上,施加一定的弯曲载荷,然后通过应变测量装置采集梁上不同位置处的应变数据。

最后,利用数据采集系统对应变数据进行处理分析,得到梁在弯曲过程中的应力分布规律。

实验结果表明,梁在弯曲过程中的应力分布呈现出一定的规律性。

在梁的上表面,应力呈现出线性分布,最大应力出现在梁的上表面中点处;而在梁的下表面,应力也呈现出线性分布,最大应力出现在梁的下表面中点处。

此外,梁的中性轴处应力为零。

通过实验数据的分析,我们得到了梁在弯曲过程中的应力分布曲线,进一步验证了梁在弯曲载荷作用下的力学性能。

总之,本实验通过对单一材料梁在弯曲载荷作用下的应力分布进行实验测量和分析,得到了梁在弯曲过程中的应力分布规律。

这对于工程设计和结构分析具有一定的指导意义,也为进一步深入研究梁的力学性能提供了一定的参考。

通过本次实验,我们对梁在弯曲载荷作用下的力学性能有了更深入的了解,也为今后的相关研究工作奠定了基础。

希望通过本实验报告的编写,能够对相关领域的研究工作提供一定的参考和帮助。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:梁是工程中常见的结构元件,其在受力过程中会产生弯曲。

了解梁在弯曲过程中的应力分布对于工程设计和结构分析具有重要意义。

本实验旨在通过悬臂梁的弯曲实验,研究梁在不同加载条件下的正应力分布规律。

实验目的:1. 了解悬臂梁的弯曲原理及其正应力分布规律;2. 掌握悬臂梁弯曲实验的基本操作和数据处理方法;3. 分析不同加载条件下悬臂梁的正应力变化。

实验装置和材料:1. 悬臂梁实验台;2. 弯曲实验仪;3. 悬臂梁样品;4. 负荷传感器;5. 数据采集系统。

实验步骤:1. 将悬臂梁样品固定在实验台上,并调整实验仪的位置,使其与悬臂梁接触;2. 通过数据采集系统连接负荷传感器,确保能够准确测量悬臂梁的受力情况;3. 依次施加不同大小的荷载,记录悬臂梁在不同加载条件下的挠度和负荷数据;4. 根据挠度和负荷数据,计算悬臂梁在不同位置处的正应力;5. 分析实验数据,得出悬臂梁在不同加载条件下的正应力分布规律。

实验结果与分析:通过实验数据的处理和分析,我们得到了悬臂梁在不同加载条件下的正应力分布规律。

实验结果表明,悬臂梁在受力过程中,正应力的分布呈现出以下特点:1. 负荷集中区域正应力较大:在悬臂梁的受力过程中,负荷集中的区域正应力较大。

这是由于在该区域,悬臂梁受到了较大的外力作用,导致该区域的纤维受到较大的拉伸力,从而产生较大的正应力。

2. 负荷作用点附近正应力较小:在悬臂梁的负荷作用点附近,正应力较小。

这是因为在该点附近,悬臂梁的受力相对均匀,各个纤维受力相近,因此正应力较小。

3. 悬臂梁中部正应力分布均匀:在悬臂梁的中部区域,正应力分布相对均匀。

这是由于在该区域,悬臂梁受力相对均匀,各个纤维受力相近,因此正应力分布较为均匀。

4. 正应力随负荷增大而增大:随着施加在悬臂梁上的负荷增大,悬臂梁的正应力也随之增大。

这是由于负荷增大会导致悬臂梁的挠度增大,从而使悬臂梁各个纤维的受力增大,进而使正应力增大。

梁的弯曲正应力实验报告总结

梁的弯曲正应力实验报告总结

梁的弯曲正应力实验报告总结梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。

本文将对梁的弯曲正应力实验进行总结。

一、实验原理梁的弯曲正应力实验是通过在梁上施加一定的弯曲力,使梁发生弯曲变形,然后通过测量梁的变形量和力的大小,计算出梁的弯曲正应力。

梁的弯曲正应力可以用公式σ=M*y/I来计算,其中M为弯矩,y为梁上某一点到中性轴的距离,I为梁的截面惯性矩。

二、实验步骤1. 准备工作:将实验室内的环境调整到稳定状态,准备好实验所需的仪器和材料。

2. 实验装置:将梁放置在实验台上,将弯曲力施加在梁的一端,另一端固定在实验台上。

3. 测量变形量:通过测量梁的变形量,确定梁上某一点到中性轴的距离y。

4. 测量力的大小:通过测量施加在梁上的力的大小,确定弯矩M。

5. 计算弯曲正应力:根据公式σ=M*y/I,计算出梁的弯曲正应力。

三、实验结果通过实验,我们得到了梁的弯曲正应力的计算结果。

在实验中,我们可以通过改变施加在梁上的力的大小和位置,来观察梁的弯曲变形规律和弯曲正应力的变化情况。

实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。

四、实验分析通过梁的弯曲正应力实验,我们可以了解到梁的弯曲变形规律和弯曲正应力的计算方法。

在实际工程中,梁的弯曲正应力是一个非常重要的参数,它可以用来评估梁的强度和稳定性。

因此,对于工程师和设计师来说,了解梁的弯曲正应力的计算方法是非常必要的。

五、实验结论通过本次梁的弯曲正应力实验,我们得到了梁的弯曲正应力的计算结果。

实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。

因此,在实际工程中,我们需要根据梁的实际情况来选择合适的材料和截面形状,以保证梁的强度和稳定性。

梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。

在实际工程中,了解梁的弯曲正应力的计算方法是非常必要的,可以帮助我们评估梁的强度和稳定性,从而保证工程的安全和可靠性。

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告

梁的弯曲正应力实验报告
一、实验目的
本实验旨在通过实验手段,探究梁在弯曲状态下的正应力分布情况,验证理论分析结果,加深对梁弯曲正应力的理解。

二、实验原理
梁的弯曲正应力是指梁在弯曲状态下,截面上的正应力分布情况。

根据弹性力学理论,梁的弯曲正应力与截面的几何形状、材料性质以及外力分布等因素有关。

本实验通过测量梁的弯曲正应力,验证相关理论。

三、实验步骤
1. 准备实验器材:包括梁试件、加载装置、应变计、测量仪器等。

2. 安装应变计:在梁试件的指定位置粘贴应变计,确保粘贴牢固。

3. 加载实验:通过加载装置对梁试件施加弯曲力,记录加载过程中的应变数据。

4. 数据处理:对实验数据进行处理,计算梁截面上的正应力分布。

5. 数据分析:将实验结果与理论分析结果进行比较,分析误差原因。

四、实验结果
通过实验测量,得到梁在弯曲状态下的正应力分布数据如下:
五、数据分析与结论
根据实验结果,我们可以看到梁在弯曲状态下,截面上的正应力分布并不均匀。

在靠近加载点的位置,正应力较大;而在远离加载点的位置,正应力逐渐减小。

这与理论分析结果一致。

同时,实验结果与理论分析结果的误差也在可接受范围内。

通过本实验,我们验证了梁在弯曲状态下的正应力分布规律,加深了对梁弯曲正应力的理解。

同时,实验结果也为我们提供了实际工程中设计梁结构的重要依据。

梁弯曲正应力测定实验报告

梁弯曲正应力测定实验报告

梁弯曲正应力测定实验报告1. 实验背景嘿,大家好,今天咱们要聊聊一个很酷的实验——梁弯曲正应力测定。

说到这个,很多人可能会皱眉头,觉得这听起来像个高大上的课题,其实不然,咱们就像聊家常一样,轻松又愉快地来探讨一下这个话题。

1.1 梁的定义首先,什么是梁呢?梁就是一种承重的结构,通常用在建筑、桥梁、机器等地方,能帮助咱们支撑起各种重量。

想象一下,如果没有梁,咱们的家岂不是随时可能塌掉?所以,梁在工程中可是个大明星,绝对是重要角色。

1.2 为什么要测定正应力那正应力又是什么呢?简单来说,就是当梁承受外力时,内部的应力分布。

测定正应力的目的,就是为了确保梁在承重的时候不会“出岔子”,说白了,就是避免它“脆弱得像豆腐”!如果我们能测得这些数据,就能更好地设计和优化梁的结构,避免“翻车”事故,嘿嘿,谁也不想看见自己的作品变成废铁。

2. 实验设备与步骤接下来,咱们聊聊实验的设备和步骤。

别担心,这些都是一些常见的玩意儿,听我慢慢说来。

2.1 实验设备在这个实验中,我们需要用到一些小工具。

首先是“弯曲试验机”,这是个庞然大物,看起来就像个肌肉男,能施加超大的力量,逼得梁在它面前“屈服”。

然后还有一些传感器,用来测量梁在受力时的变形,最后还有称重工具,确保我们施加的力是精确的,绝对不能让“公说公有理,婆说婆有理”!2.2 实验步骤实验步骤可简单了。

首先,我们把梁放在试验机上,调整好位置。

接着,慢慢施加外力,看着梁在我们面前“挣扎”。

这个过程就像看一场精彩的比赛,心里不禁替梁捏了一把汗。

最后,记录下数据,回头分析一下,看看梁的表现如何,真是一场精彩的“较量”啊!3. 数据分析与结果好了,实验做完了,接下来就是重头戏——数据分析。

大家准备好了吗?让我们看看梁的表现吧!3.1 数据记录通过实验,我们得到了很多数据,比如梁在不同力下的变形量和应力值。

这些数据就像小精灵,带着我们去揭示梁的“秘密”。

看着这些数字,心里真是五味杂陈,既兴奋又紧张。

梁的纯弯正应力实验报告

梁的纯弯正应力实验报告

梁的纯弯正应力实验报告梁的纯弯正应力实验报告引言:梁是一种常见的结构元件,广泛应用于建筑、桥梁、机械等领域。

在实际工程中,梁的受力状态是非常重要的,而纯弯正应力是梁受力状态中的一种典型情况。

本实验旨在通过对梁的纯弯正应力进行实验研究,探究梁的受力规律,为工程设计和实践提供参考。

实验目的:1. 了解梁的受力特点,掌握梁的纯弯正应力的计算方法;2. 掌握实验仪器的使用,学会进行梁的纯弯正应力实验;3. 分析实验结果,验证梁的受力理论,提高实验操作和数据处理的能力。

实验原理:梁的纯弯正应力是指在梁的跨度方向上,上下表面受到相等大小、反向作用的弯矩,使得梁产生弯曲变形。

在梁的纯弯正应力状态下,梁上任意一点的应力是纯弯应力,即只有剪应力,没有正应力。

实验装置:1. 弯曲试验机:用于施加弯矩,产生梁的弯曲变形;2. 梁:选择合适的材料和尺寸,用于进行实验。

实验步骤:1. 准备工作:选择合适的梁材料和尺寸,根据实验要求调整弯曲试验机的参数;2. 实验操作:将梁固定在弯曲试验机上,施加适当的弯矩,记录梁的变形情况;3. 数据采集:使用应变计等仪器,测量梁上不同位置的应变值,并记录;4. 数据处理:根据实验数据,计算梁上不同位置的剪应力,并绘制应力分布曲线;5. 结果分析:对实验结果进行分析,验证梁的受力理论,探讨梁的纯弯正应力规律。

实验结果与讨论:通过实验测量得到的应变数据,可以计算出梁上不同位置的剪应力值。

根据剪应力的分布情况,可以绘制出应力分布曲线。

实验结果表明,在梁的纯弯正应力状态下,梁上的剪应力呈线性分布,且最大剪应力出现在梁的中心位置。

这与梁的受力理论相符合。

实验的误差主要来自于测量仪器的精度和实验操作的不确定性。

为了提高实验结果的准确性,可以采用更精密的测量仪器,并进行多次重复实验,取平均值。

此外,对于梁的材料和尺寸的选择也会对实验结果产生影响,需要根据具体情况进行合理的选择。

结论:通过对梁的纯弯正应力进行实验研究,我们了解了梁的受力特点,掌握了梁的纯弯正应力的计算方法。

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告引言:梁是一种常见的结构元件,广泛应用于建筑、桥梁和机械等领域。

在实际使用中,梁常常会承受弯曲载荷。

了解梁在弯曲载荷下的力学性能对于设计和优化结构非常重要。

本实验旨在通过纯弯曲实验,研究梁在弯曲过程中的正应力分布规律。

实验原理:在纯弯曲实验中,梁在两端受到相等大小的力矩作用,使梁产生弯曲变形。

根据梁的几何形状和力学性质,可以推导出梁在弯曲过程中的正应力分布规律。

根据梁的截面形状和材料性质,可以计算出梁在不同位置的正应力值。

实验装置:本实验使用了一台弯曲试验机和一根标准梁。

弯曲试验机通过施加力矩,使梁产生弯曲变形。

标准梁的截面形状和材料性质已知,可以用于测量和计算梁在不同位置的正应力。

实验步骤:1. 将标准梁放置在弯曲试验机上,并固定好。

2. 调整弯曲试验机的参数,使两端施加相等大小的力矩。

3. 在梁上选择几个不同位置,使用应变计测量该位置的应变值。

4. 根据应变值和标准梁的材料性质,计算出该位置的正应力值。

5. 重复步骤3和步骤4,测量和计算其他位置的正应力值。

6. 绘制出梁在不同位置的正应力分布曲线。

实验结果:通过实验测量和计算,得到了梁在不同位置的正应力值。

根据实验数据,可以绘制出梁在弯曲过程中的正应力分布曲线。

实验结果显示,梁在上表面受压,下表面受拉,且最大正应力出现在梁的截面中心位置。

正应力随着距离截面中心的距离增加而逐渐减小。

讨论和分析:通过实验结果的分析,可以得出以下结论:1. 梁在弯曲过程中受到的正应力分布规律符合理论推导的结果。

2. 梁的截面形状和材料性质对正应力分布有重要影响。

不同形状和材料的梁,在相同弯曲载荷下,其正应力分布可能存在差异。

3. 梁的弯曲变形会导致正应力集中。

在梁的截面中心位置,正应力达到最大值。

因此,在设计和优化梁结构时,需要考虑正应力集中问题。

结论:本实验通过纯弯曲实验,研究了梁在弯曲过程中的正应力分布规律。

实验结果表明,梁在上表面受压,下表面受拉,且最大正应力出现在梁的截面中心位置。

单一材料梁的弯曲正应力实验

单一材料梁的弯曲正应力实验

单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单一材料梁的弯曲正应力实验
一、实验目的
1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、预习思考要点
1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?
2.梁处于纯弯曲状态时其内力分布有何特征?
3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?
三、实验装置和仪器
1.纯弯曲实验装置
本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,
弯矩为一常量M=
2a
F ,即梁的CD段处于纯弯曲状态。

图1-26 弯曲正应力实验装置及试样贴片位置图
2.静态电阻应变仪
3.游标卡尺、钢直尺
四、实验原理
由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设
成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。

载荷分为3—5级,最终载荷的选取,应依据梁上的最大应力σmax <(0.7-0.8)σs (σs 为材料的屈服极限)。

当加载至最后一级,测完各应变值后即卸载,最后算出各测点应变增量的算术平均值实ε∆,依次求出各点的应力增量Δσ实。

Δσ实=E·
实ε∆ (1-43) 把Δσ实与理论公式计算的应力增量
Δσ理=
z
I y
M ⋅∆ (1-44) 进行比较,算出截面上各测点的应力增量实验值与理论值的相对误差,即
%100⨯∆∆-∆=


实σσση
(1-45)
从而验证梁的弯曲正应力公式的正确性。

五、实验步骤
1.用游标卡尺和钢直尺测量梁的矩形截面的宽度b 和高度h ,载荷作用点到梁支点的距离a 。

2.根据梁的截面尺寸和支承条件,材料的σs 值,确定分级加载的载荷增量和级次,(每级加载应使梁上各点的应变有较明显的变化),最终载荷值。

3.本实验采用多点半桥公共补偿测量法,将5枚应变测量计和公共温度补偿计分别接入静态电阻应变仪的相邻桥臂上,根据电阻应变计所给出的灵敏系数k 值调好电阻
应变仪的灵敏系数。

4.依照静态电阻应变仪的操作规程对应变仪进行检验并调平衡,然后再对各测点预调平衡,反复几次以确保各测点的电桥处于初始平衡状态。

5.按照所拟定的加载方案逐级加载,每加一级载荷,相应测读一次各点的应变值εi ,并随时算出各点的应变增量Δεi ,观察其线性程度,直至加到预计的最终载荷为止。

然后全部卸载,应变仪回到初始平衡状态,对于应变增量线性程度不好的测点可分析其原因,重复上述测试步骤几次取其实测值的应变增量的算术平均值。

6.实验结束,卸载。

关闭应变仪,清理现场。

六、实验数据处理
1.将梁材料的弹性模量,梁的尺寸及测点位置,应变计的灵敏系数,实验荷载及其相应测点的应变值填入表1-15中并将计算的应变增量的平均值,应力的实验值和理论值,相对误差等也列入该表中
表1-15 梁的弯曲正应力实验测量记录表
2.将各点的σ实和σ理描绘在同一个σ-y 坐标系中,并运用数理统计的知识分别作出σ实-y 和σ理-y 分布曲线,以便进行比较,从而检验梁的弯曲正应力理论公式的正确性。

七、思考与分析
1.实验为何采用“等增量法”加载?为何取各测点应变增量的算术平均值作为实验值?
2.电阻应变计是布设在梁的表面上,为什么把测得的表面上的应变看作是梁横截面上的应变?其依据是什么?
3.如果梁采用的是拉压不等强度材料(E 拉≠E 压),其弯曲正应力在整个横截面上的
分布曲线较之拉压等强度材料梁将会有何变化?。

相关文档
最新文档