五年级奥数-行程问题2

合集下载

20.五年级奥数思维训练 行程问题(二)

20.五年级奥数思维训练  行程问题(二)

五年级奥数思维训练行程问题(二)
一、尝试练习
1.两辆汽车相距1500米,甲车在乙车前面,甲车每分钟行610米,乙车每分钟660米,乙车追上甲车需几分钟?
2.一个通讯员骑摩托车追赶前面部队乘的汽车。

汽车每小时行48千米,摩托车每小时行60千米。

通讯员出发后2小时追上汽车。

通讯员出发的时候和部队乘的汽车相距多少千米?
二、训练营地
1. 速滑队以每分钟行500米的速度从基地出发进行野外训练。

16分钟后通信员骑摩托车以每分钟900米的速度从基地出发去追速滑队,问多少分钟后通信员可以追上速滑队?
2.老王和老张从甲地到乙地开会,老张骑自行车的速度是15千米/小时,先出发2小时后,老王后出发,老王用了3小时追上老张,求老王骑车速度。

3. 兄妹两人同时离家去上学。

哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校多远?
4. 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?。

五年级奥数竞赛班专题讲义行程问题2速度的变化加答案

五年级奥数竞赛班专题讲义行程问题2速度的变化加答案

行程问题2·速度的变化3.用比来体现速度的变化【例1】A、B两地相距7200米,甲、乙分别从A、B两地同时出发,结果在距B地2400米处相遇.如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇.甲的速度是每分钟行多少米?【例2】甲、乙二人分别从A、B两地同时出发,相向而行.出发时速度比是3:2,两人相遇后,甲的速度提高20%,乙的速度提高50%.当甲到达B地时,乙离A还有4千米.A、B两地的距离是多少千米?【例3】一辆汽车从甲地开往乙地.如果将车速提高五分之一,可以比原定时间提前半小时到达;如果以原速行驶84千米后再将车速提高三分之一,也比原定时间提前半小时到达,那么甲、乙两地相距多少千米?【例4】在微风的催送下,一艘轮船由甲港到乙港要3小时,今天这艘船照例在微风的催送下从甲地出发,当行驶到全程的13处时,突然风向变化,速度减为原来的25,行驶8千米后,又变顺风,接着以原速的2倍行完剩下的航程,结果到达乙港比往常迟36分钟.求甲港到乙港的距离.【例5】快慢二车分别以各自速度同时从甲地开往乙地,返回时各自速度都减少20%,出发1.5小时后,快车在返回途中与慢车相遇,当慢车到达乙地时,快车离甲地还有甲乙两地之间路程的25,那么快车在甲乙两地往返一次需要多少小时?【例6】一辆大货车与一辆小轿车,分别以各自的速度同时从甲地开往乙地,到乙地后立刻返回,返回时各自的速度都提高20%.出发后1.5小时,小轿车在返回的途中与大货车相遇.当大货车到达乙地时,小轿车离甲地还有甲、乙两地之间路程的15.那么,小轿车在甲、乙两地之间往返一次共用多少小时?【例7】男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A 点出发.在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3秒.那么两人第二交迎面相遇的地点离A点多少米?【例8】A、B两人同时从700米长的山坡坡底出发向上跑,跑到坡顶立即返回.他们两的上坡速度不同,下坡速度则是两人各自上坡速度的二倍.B首先到达坡顶,立即沿原路返回,并且在离坡顶70米处与A相遇.当B到达坡底(注:起点)时,A落后多少米?计算达标1.213 52x xx +--=-解:2(2)5(1)3010x x x+--=-24553010x x x+-+=-25103045x x x-+=--721x=3x=2.3251 624x xx--+=-解:2(32)12303(1)x x x-+=--6412303x x x-+=-+ 3412303x x x-+=+-1127x=2711x=3.232132 x x--=+解:2(23)63(2)x x-=+-46663x x-=+-43666x x+=++718x=187x=4.121 23x x--+=解:3(1)2(2)6x x-+-=33246x x-+-=32643x x+=++513x=135x=练习1.一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【答案】5 18【解】车速提高20%,所用时间是原来的10051206=,从甲地到乙地,以原来行驶需51166⎛⎫÷-=⎪⎝⎭(时),车速提高30%后需86(130%)413÷+=(时),应提前1813小时.实际提前了1小时,所以车速提高30%行驶的路程占全程的181311318÷=,原速行驶了全程的13511818-=.2. 从上海开车去南京,原计划中午11:30到达,但出发后车速提高了17,11点名就到了.第二天返回时,同一时间从南京出发,按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市间的路程是多少千米? 【答案】288【解】从上海到南京,车速提高到原来的87,所用时间是原来的78,所以原计划行车时间为171428⎛⎫÷-= ⎪⎝⎭(时). 从南京回上海,车速提高到原来的76,所用时间是原来的67,因为到达上海提前了13小时,所以提速后行驶的时间相当于原速行驶1671373⎛⎫÷-= ⎪⎝⎭(时).两市之间相距7120442883⎛⎫÷-⨯= ⎪⎝⎭(千米 ).3. 一辆车从甲地开往乙地.如果把车减少10%,那么要比原定时间迟1小时到达.如果对原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少? 【答案】540千米【解】车速减少10%,所用时间就是原定时间的109.原定时间是101199⎛⎫÷-= ⎪⎝⎭(时).如果一开始车速就提高20%,那么应比原定时间少用9[11(220%)] 1.5⨯-÷+=(时).实际少用1小时,所以按原速行驶的路程占全程的1(1.51) 1.53-÷=,全程为11805403÷=(千米).4. 一辆汽车按计划速度行驶1小时,剩下路程用计划速度的35继续行驶到达目的地的时间比计划时间迟了2小时,如果按计划速度行驶的路程再增加60千米,那么到达目的地的时间比计划时间只迟1小时,问计划速度是多少?全程有多远? 【答案】40千米;160千米【解法1】剩下的路程行驶速度与原速度比为3:5,则时间比为5:3.2(53)33÷-⨯=(小时),314+=(小时);同样道理:31(53)32÷-⨯=(小时),36041402⎛⎫÷--= ⎪⎝⎭(千米)(计划速度)404160⨯=(千米)(全程).【解法2】设计划速度为V ,时间为t ,则有:3(1)(12)5t V V t -⨯=-+,4t =;60416014135V V V V -⨯-++=-,40V =,404160⨯=(千米).5. 甲、乙两人分别从A 、B 两地同时出发,相向而行.他们相遇时,甲比乙多跑90米,相遇后乙的速度减少50%,甲到B 后立即调头,追上乙时离A 还有90米,那么,AB 间的路程为 米. 【答案】450【解析1】如图,甲、乙相遇地点D 距离AB 中点C :90245÷=(米),那么45BD BC =-米.乙减速后行45DE =米90AC ÷-米45AC =-米45BC =-米.即乙减速前后行的路程一样.而乙减速前后的速度比为2:1,从而乙减速前后的时间比为1:2.即总时间是相遇前时间的3倍.相遇前甲行45AC +米,整个过程就应该行(45)33135AC AC +⨯=+米米,即135EC =米.所以,22(90135)450BC AC ==⨯+=(米).【解析2】因为90AD =,∴DC BC =,∴相遇到追上这个过程中,甲走了3倍的DC ,而乙走了一倍DC ,此时:3:1v v =甲乙,则原速比为3:2,则:3:2AC BC =.则3290450(m)32AB -⎛⎫=÷= ⎪+⎝⎭.6. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地,若车在行过丙地72千米的顶地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲、乙两地全程 千米.【解】从丙到乙正常与故障后的速度比为1:(75%)4:3=,则时间比为3:4.那么丙到乙计划用4026034(43)⎛⎫- ⎪⎝⎭⨯=-(时).所以原计划小李从甲地到乙地要走246+=(时). 从丁到乙正常与故障后的速度比为1:(75%)4:3=,则时间比为3:4.那么丁到乙计划用401.56032.5(43)-⨯=-(时),所以甲乙全程为722882 2.5166=--(千米).乙甲90DCBA。

五年级下册奥数题

五年级下册奥数题

行程问题(2)例1 甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车,若两列车齐尾并进,则甲车行30秒超过乙,求甲列车和乙,列车各长多少米?例2 在平行的轨道上两列火车齐头并进。

快车长240米,每秒行28米,慢长320米,每秒行16米。

从起头并道到快车完全超过慢车要多少时间?例3 客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原速前进。

到达对方站后立即返回,两车再次相遇时客车比货车多行21,6千米。

甲、乙两站间的路程是多少千米?例4 A、B两车分别从东西两城同时相向而行,A车的速度是90千米/时,B车的速度为80千米/时,两车相遇后继续前进,分别到达东西两城后立即返回,两车又距中点60千米处再相遇。

东西两城相距多少千米?例5 甲、乙两人分别在圆周直径两端的A、B两点同时出发。

甲顺时针,乙逆时针,途中两人的速度不变。

第一次相遇地点C距B60米,第二次相遇地点D距B100米。

求这个圆一圈的长度。

[课堂练习]1. 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。

这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。

求火车的全长。

2.两列在平行轨道上的火车齐尾并进。

快车长280米,每秒行28米,慢车长350米,每秒行21米。

从齐尾并进到快车完全超过慢车要多少时间?3.甲、乙两地相距216千米,客货两车同时从甲、乙两地相向而行。

已知客车每小时行58千米,货车每小时行50千米,到达对方出发点后立即返回两车第二次相遇时,客车比货车多行多少千米?4.海模比赛中,甲乙两船同时从池塘的东西两岸相对开出。

第一次在距东岸15米处相遇。

相遇后维续前进,到达对岸后立即返回,第二次相遇在离西岸8米处。

如果两路在行驶中速度不变,求池塘东西两岸的距离。

1.快车每秒行18米,慢车每秒行10米。

苏教版五年级上册数学奥数第七讲 行程问题(二)

苏教版五年级上册数学奥数第七讲  行程问题(二)

第七讲行程问题(二)【知识概述】我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:路程=速度×时间;总路程=速度和×时间;路程差=速度差×追及时间。

【例题精学】例1 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。

画图如下:【分析与解答】结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。

又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。

【同步精练】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?例2甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?【分析与解答】在相同的时间内,乙行了(200-20)=180(米),丙行了200-25【同步精练】老王从甲城骑自行车到乙城去办事,每小时骑15千米,回来时改骑摩托车,每小时骑33千米,骑摩托车比骑自行车少用1.8小时,求甲、乙两城间的距离。

例3甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。

五年级奥数:第25讲 行程问题(二)

五年级奥数:第25讲 行程问题(二)

五年级奥数:第25讲行程问题(二)本讲重点讲相遇问题和追及问题。

在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。

例1甲车每小时行40千米,乙车每小时行60千米。

两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。

求A,B两地的距离。

分析与解:先画示意图如下:图中C点为相遇地点。

因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。

这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B 两地的距离是(40+60)×2=200(千米)。

例2小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。

有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),所以小明比平时早出门900÷60=15(分)。

例3小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。

已知火车全长342米,求火车的速度。

分析与解:在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。

由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),从而求出火车的速度为19-2=17(米/秒)。

例4 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。

这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。

行程问题2

行程问题2

行程问题(二)1. 货车和客车同时从甲、乙两地相向而行,货车每小时行50千米,客车每小时行45千米,两车在距中点20米处相遇。

求甲、乙两地相距多少千米?2. 甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东西两地相距多少千米?3. 小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?4. 一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

甲乙两地相距多少千米?5.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

6.快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车和慢车还相距10千米。

慢车每小时行多少千米?7.兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?8.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?9.兄妹两人同时离家去上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门时,发现忘带课本,立即沿原路回家去取,行到离学校180米处与妹妹相遇。

他们家离学校有多远?10.甲乙两车同时从A地出发去B地,甲到B地后立即返回,在距B地90千米处与乙相遇,已知甲每小时行60千米,乙每小时行40千米。

那么A、B两地相距多少千米?11.兄弟两人同时离家去上学,学校离家700米,哥哥骑车每分钟行200米,弟弟步行每分钟走80米。

哥哥到校后,发现没带课本,立即返回,弟弟经过几分钟与返回的哥哥相遇?12.甲每小时行驶5千米,乙每小时行4千米,如果两人同时同地向同一方向出发,甲行45千米到达目的地,马上从原路返回,在途中与乙相遇,从出发到相遇共经过几小时?行程问题(三)1.甲、乙二人同时从东城区西城,甲每分钟行120米,乙每分钟行80米,甲到达西城后立即返回东城,在离西城700米处与乙相遇,东、西两城相距多少米?2.哥哥和弟弟分别从家和学校相向而行,哥哥每分钟行80米,弟弟每分钟行60米,两人在离中点100米处相遇,问:家到学校有多少米?3.一个水池注满水需要56吨,单开进水管需要7小时将水池注满,单开放水管需要8小时将池中水放完,如果两管齐开,需要多少小时将空池注满?4.小张和小赵两人同时从相距1000米的两地相向而行,小张每分钟行120米,小赵每分钟行80米,如果一只狗与小张同时同向而行,每分钟跑460米,遇到小赵后,立即回头向小张跑去,遇到小张再向小赵跑去,这样不断来回,直到小张和小赵相遇为止,狗共跑了多少米?5.甲、乙两队同时从相距50千米的两地相向而行,甲队每小时行2千米,乙队每小时行3千米,一个人骑车每小时行18千米在两队中间往返联络,问两队相遇时,骑车人行驶了多少千米?6.两船同时从AB两港对开,甲船每小时行28千米,比乙船每小时快3千米。

小学奥数行程问题经典整理2

小学奥数行程问题经典整理2

小学奥数行程问题经典整理2在小学奥数竞赛中,行程问题是一个经典且常见的题型。

在这篇文章中,我将为大家整理一些小学奥数行程问题的经典题目,并给出详细的解析方法。

希望通过这些例子的讲解,能够帮助大家更好地理解和掌握行程问题的解题技巧。

1、问题描述:小明参加一个马拉松比赛,在比赛开始后,他以每分钟的速度5米向前奔跑。

在第10分钟,他突然停下来休息了3分钟,然后以每分钟的速度8米向前奔跑。

请问小明跑了多少米?解题思路:我们可以将整个过程分为两段来计算,第一段是小明以每分钟5米的速度奔跑10分钟,共奔跑了10分钟×5米/分钟=50米;第二段是小明以每分钟8米的速度奔跑7分钟,共奔跑了7分钟×8米/分钟=56米。

所以,小明总共跑了50米+56米=106米。

2、问题描述:小华和小明从同一地点出发,他们同时开始向东行走。

小华以每小时5千米的速度向前走,小明以每小时6千米的速度向前走。

已知他们在5小时后相遇,相遇地点距离出发地点80千米。

请问这两个人出发后的行程分别是多少千米?解题思路:我们可以设小华出发后的行程为x千米,则小明出发后的行程为80千米-x千米。

由于小华的速度是小明的5/6倍,所以小明行走的距离是小华行走距离的5/6倍。

根据时间和速度的关系,我们可以列出以下等式:5小时×5千米/小时 = (5小时-1小时)×6千米/小时 + 80千米-x千米。

通过计算得到x=20千米,所以小华行走了20千米,小明行走了60千米。

3、问题描述:小强从A地出发,经过45分钟到达了B地,然后立即返回A地。

小明从A地出发,以每小时10千米的速度行走,他恰好在小强回到A地的时候到达B地。

请问小明行走的速度是多少千米/小时?解题思路:我们可以设从A地到B地的距离为x千米,则小强在45分钟内行走了x千米,小明在同样的时间内行走了10/60×45千米。

根据题意,小明的行走距离等于小强的行走距离的两倍,即10/60×45=2x。

五年级奥数专题-行程问题

五年级奥数专题-行程问题

五年级奥数专题-行程问题行程问题(一)【专题导引】行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

【典型例题】【例1】甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东、西两地相距多少千米?【试一试】1、小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校至少年宫有多少米?2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米,甲、乙两地相距多少千米?【例2】快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?【试一试】1、兄、弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?【例3】甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?【试一试】1、甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。

A、B两地间的距离是多少千米?2、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。

30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。

小红每分钟走多少千米?【例4】甲、乙两队学生从相距18千米的两地同时出发,相向而行。

五年级奥数行程问题二 (2)

五年级奥数行程问题二 (2)

行程问题二例题1中巴车每小时行60千米,小轿车每小时行84千米。

两车同时从相距60千米的两地同方向开出,且中巴在前。

几小时后小轿车追上中巴车?1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。

摩托车多长时间能够追上?2.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。

几分钟后哥哥追上弟弟?3.甲乙两人以每分钟60米的速度同时同地步行出发,走15分钟后甲返回原地取东西,而乙继续前进。

甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙,甲汽车多少分钟才能追杀乙?一辆汽车从甲地开往乙地,要行360千米。

开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

汽车是在离甲地多远处修车的?1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。

有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。

小王是在离工厂多远处遇到熟人的?2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。

这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。

为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。

加油站离乙地多少千米?3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。

汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发。

为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度驶向乙地?甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。

出发后10分钟,甲便从乙身后追上了乙。

已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?1.爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步。

爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问:至少经营几分钟爸爸从小明身后追上小明?2.在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米。

五年级奥数(二)

五年级奥数(二)

第七讲行程问题(一)1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行4.5千米。

小李下午3时半骑自行车出发,、经过2.5小时两人相遇。

小李骑自行车每小时行多少千米?2.A、B两地相距60千米。

两辆汽车同时从A地出发前往B地。

甲车比乙车早30分到达B地。

当甲车到达B地时,乙车离B地还有10千米。

甲国君从A地到B地共行了几小时?3.一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。

行了几小时后两车相距51千米?再行几小时两车又相距51千米?4.甲、乙两人同时从A、B两地相对而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。

甲离出发点62.4千米处与乙相遇。

A、B两地相距多少千米?5.小张的小王同时分别从甲、乙两村出发,相向而行。

步行1小时15分后,小张走了两村间路程的一半还多0.75千米,此时恰好与小王相遇。

小王的速度是每小时3.7千米,小张每小时行多少千米?6.东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇。

如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?7.甲、乙两车同时从东、西两地相向开出,甲车每小时行40千米,经过3小时已驶过中点25千米,这时乙车与甲车还相距7千米。

求乙车的速度。

8.甲、乙两车同时同地同向行进,甲车每小时行30千米,乙车每小时行的路程是甲车的1.5倍。

当乙车行到90千米的地方时立即按原路返回,又行了几小时和甲车相遇?9.A、B两地相距20千米,甲、乙两人同时从A地出发去B地。

甲骑车每小时行10千米,乙步行每小时行5千米。

甲在途中停了一段时间修车。

乙到达B地时,甲比乙落后2千米。

甲修车用了多少时间?10.A、B两地相距1000千米,甲列车从A地开出驶往B地,2小时后,乙列车从B 地开出驶往A地,经过4小时与甲列车相遇。

小学奥数系列3-1-1行程问题(二)及参考答案

小学奥数系列3-1-1行程问题(二)及参考答案

小学奥数系列3-1-1行程问题(二)一、1. 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.2. 某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?3. 胡老师骑自行车过一座桥,上桥速度为每小时12千米,下桥速度为每小时24千米,而且上桥与下桥所经过的路程相等,中间也没有停顿,问这个人骑车过这座桥的平均速度是多少?4. 小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。

小明往返一趟共行了多少千米?5. 小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.6. 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?7. 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?8. 小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同9. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

10. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.11. 一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如图).它爬行一周平均每分钟爬行多少厘米?12. 赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?13. 张师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,张师傅开车从A到D共需要多少时间?14. 老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?15. 小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?16. 王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?17. 解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?18. 某人要到 60千米外的农场去,开始他以 6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?19. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

五年级奥数:行程问题

五年级奥数:行程问题

五年级奥数:行程问题(总14页) -本页仅作为预览文档封面,使用时请删除本页-行程问题(一)讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。

行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。

行程问题内容丰富多彩、千变万化。

主要有一个物体的运动和两个或几物体的运动两大类。

两个或几个物体的运动又可以分为相遇问题、追及问题两类。

这一讲我们学习一个物体运动的问题的一些简单的相遇问题。

例题与方法:例1.小明上学时坐车,回家时步行,在路上一共用了90分。

如果他往返都坐车,全部行程需30分。

如果他往返都步行,需多少分?例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。

汽车行驶了一半路程,在中途停留30分。

如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?例3.一列火车于下午1时30分从甲站开出,每小时行60千米。

1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相员。

甲、乙两站相距多少千米?例4.苏步青教授是我国著名的数学家。

一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。

甲每小时行6千米,乙每小时行4千米。

甲带着一只狗,狗每小时行10千米。

这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。

这只狗一共走了多少千米?苏步青略加思索,就把正确答案告诉了这位外国数学家。

小朋友们,你能解答这道题吗?例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。

东、西两地相距多少千米?练习与思考:1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行千米。

小五奥数行程问题(二)相遇问题2

小五奥数行程问题(二)相遇问题2

课堂小结
课堂小测验
1. 甲村与乙村要挖一条长580米的水渠,甲村比乙村每天多挖两米,
于是乙村先开工5天,然后甲村再动工与乙村一起挖。

从开始到完成共用了35天,那么乙村每天挖 米。

2. 小玲和小明同时从学校出发,跑向距离学校1200米的公园,到公园后再跑回来。

小玲每分钟跑300
米;小明去时每分钟跑200米,回来时每分钟跑400米,结果是( )
A.两人同时到校
B.小玲先回到学校
C.小明先回到学校
D.无法判断
3.一列慢车在上午9点钟以每小时40千米的速度由甲城开往乙城,另一列快车在上午9点30分以每小时56千米的速度也由甲城开往乙城,铁路部门规定,有相同方向前进的两列火车之间相距不能小于8千米。

问这列慢车最迟在什么时候停车让快车超过?
每天告诉自己一次,“我真的很不错”。

五年级奥数题行程问题

五年级奥数题行程问题

五年级奥数题行程问题“奥数”是奥林匹克数学竞赛的简称。

下面是五年级奥数题行程问题,一起来看看吧!五年级奥数题行程问题1甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行、现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈、而甲行走45分钟,乙行走45分钟也能走完一圈、所以甲行走25分钟的路程相当于乙行走45分钟的路程、甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)、即乙走一圈的时间是126分钟、五年级奥数题行程问题2济南小学五年级奥数题及答案:行程问题1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?1、解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).2、解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米)。

五年级奥数题行程问题3行程问题:(高等难度)(2021年IMC6年级复赛第22题,10分)"有的母牛比一般人具有更健全的头脑,"有一位农夫就曾这样认为,"瞧!有一天我的那头老家伙,有着斑纹的母牛正站在距离桥梁中心点5英尺远的地方,平静地注视着河水发呆,突然,他发现一列特别快车以每小时90英里的速度向它奔驰而来,此时,火车已经到达靠近母牛一端的桥头附近,只有两座桥长的距离了。

小学五年级数学思维能力(奥数)行程问题训练题(二)

小学五年级数学思维能力(奥数)行程问题训练题(二)

小学五年级数学思维能力(奥数)行程问题训练题(二)
小学五年级数学思维能力(奥数)行程问题训练题(二)1、甲、乙两个车站相距550千米,两列火车同时由两站相向开出,5小时相遇。

快车每小时行60千米。

慢车每小时行多少千米?
2.A和B相距380公里。

公共汽车和卡车同时从这两个城市出发,4小时后会合。


车每小时比公共汽车快五公里。

这两列火车每小时行驶多少公里?
3、甲、乙两个城市相距980千米,两列火车由两城市同时相对开出,经过10小时相遇。

快车每小时行50千米,比慢车每小时多行多少千米?
4.甲乙双方相距486公里。

快车和慢车同时从甲方和乙方出发,6小时后见面。

据了解,快车与慢车的速度比为5:4。

快车和慢车每小时有多少公里?
5、两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。

一辆汽车每小时行37千米。

另一辆汽车每小时行多少千米?
6.甲乙双方从两地出发,相距40公里。

步行,每小时步行5公里,先开始0.8小时。

B骑自行车。

两小时后,他们在某处相遇。

B骑自行车每小时走多少公里?
7、甲、乙二人从相距50千米的两地相对而行。

甲先出发,每小时步行5千米。

1小
时后乙骑自行车出发,骑了2小时,两人相距11千米。

乙每小时行驶多少千米?
8、甲乙双方同时向同一方向出发,相距六公里。

B在前面,每小时5公里;在a之后,每小时的速度是B的1.2倍。

a能赶上B多少小时?。

五年级奥数第六、七讲--行程问题

五年级奥数第六、七讲--行程问题

第六讲行程问题(二)知识要点:相遇问题两个物体由于相向运动而相遇。

解答此类问题的关键是求出两个运动物体的速度和。

基本关系式有:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇路程:两个运动物体从两地同时相向运动所行的路程.例题精讲:【例1】一辆客车和一辆货车同时从A、B两城相对开出.客车的速度是62每小时千米,货车的速度是50千米每小时,经过4小时相遇,A、B两城相距多远?每小时62千米每小时50千米客车货车?千米小结:这是一道典型的相遇问题,还可以尝试直接套用相遇问题的公式:速度和×相遇时间=相遇路程进行解答。

【例2】解放军某部通讯兵在一次演习中,摩托车每小时行60千米,汽车每小时行40千米,汽车出发1.5小时后,摩托车沿同路去追赶汽车,需要几小时追上?小结:这是典型的求追及时间的问题:可根据公式速度差×追及时间=追及距离进行求解。

【例2】运动场的跑道400米,王芳和陈月两名运动员从起跑线同时出发,王芳每分钟跑390米,陈月每分钟跑310米,求多少分钟后王芳超过陈月一周?小结:本题是典型的环形跑道问题追及问题的综合。

基础巩固:1、小亚和小巧同时从自己家里走向学校。

小亚每分钟走65米,小巧每分钟走70米,经过4分钟两人在校门相遇,他们两家相距多少米?2、客车和货车同时从甲、乙两地相向开出,客车每小时行40千米,货车每小时行32千米,4小时后两车相遇,甲、乙两地相距多少千米?3、甲、乙两地相距288千米,客车和货车同时从甲、乙两地相向开出,客车每小时行40千米,货车每小时行32千米,几小时后两车相遇?4、一辆拖拉机要去拉货,每小时走30千米,出发30分钟后,家中有事派一辆小轿车50千米/小时的速度去追拖拉机,问小轿车用多少时间可以追上拖拉机?5、一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?6、客车和货车同时从丙地开出,向相反方向开出,客车每小时行40千米,货车每小时行32千米,开出4小时后,两车相距多少千米?7、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行,环形公路的一周是360米。

【沪教版】五年级上册奥数:第十一讲 行程问题(二) (含答案)

【沪教版】五年级上册奥数:第十一讲  行程问题(二) (含答案)

升五年级思维数学第十一讲行程问题(二)学习目标思维目标:进一步学会掌握路程、速度、时间,这三者之间的关系,并利用它进行问题的解决。

数学知识:探究因数与积之间的大小关系的规律。

知识梳理思维:通过画出线段图来分析路程、速度、时间之间的关系,找到解题的策略。

数学:如果两个因数都大于0,当一个因数>1时,积>另一个因数;当一个因数<1时,积<另一个因数;当一个因数=1时,积=另一个因数。

精讲精练例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。

东西两地相距多少千米?金钥匙:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。

由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。

因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要36÷6=6小时,即两车相遇的时间。

所以,两地相距90×6=540千米。

点金术:本题的关键在于,通过线段图来发现:当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。

试金石:1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。

两人相遇时距全程中点3千米,求全程长多少千米。

2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。

东西两城相距多少千米?3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时和慢车还相距7千米。

慢车每小时行多少千米?例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B 地同时出发相向而行,丙遇乙后10分钟和甲相遇。

五年级奥数起跑线——行程问题二

五年级奥数起跑线——行程问题二
1、甲乙两个人同时从两地出发,相向而行,距离是100千米。甲每小时 行6千米,乙每小时行4千米。甲带着一只狗,狗每小时行10千米。这 只狗同甲一道出发,向乙跑去。碰到乙的时候,它就调头朝甲这边跑, 碰到甲时又往乙那边跑,直到两人相遇。这只狗一共跑了多少千米?
【解】分步解答 (1)甲、乙两人相遇所用的时间: 100 ÷(6 + 4)= 10(小时) (2)狗跑的总路程: 10×10 = 100(千米) 列综合算式解答:10×[100 ÷(6 + 4)] = 10×10 = 100(千米) 答:狗一共跑了100千米
返回题目5
Over, Thanks!
答案:4000米
思考与练习题
3、小张和小王同时分别从甲、乙两村 出发,相向而行。步行1小时15分钟 后,小张走了两村间路程的一半还 多0.75千米,此时恰好与小王相遇。 小王的速度是每小时3.7千米,小张 每小时行多少千米?
答案:4.9千米
思考与练习题
4、兄弟俩骑自行车郊游。弟弟先出发,速度是每
答案:每小时行20千米
思考与练习题
8、A、B两地相距6千米,甲、乙两人分 别从A、B两地同时出发在两地间往 返行走,在出发40分钟后两人第一 次相遇。乙到达A地后马上返回,在 离A地2千米的地方两人第二次相遇。 求甲、乙两人行走的速度。
答案:甲5千米/小时,乙4千米/小时
思考与练习题
9、甲、乙两车同时、同地出发去同一 目的地,甲车每小时行40千米,乙 车每小时行35千米。途中甲车因故 障修车用了3小时,结果甲车比乙车 迟1小时到达目的地。两地间的距离 是多少千米?
解 答
上一题
下一题
例题与方法——例 例题与方法 例 4 兄妹两人同时离家去上学,哥哥每 分钟走90米,妹妹每分钟走60米。 哥哥到校门口时,发现忘带课本, 立即沿原路回家去取,行到离学校 180米处与妹妹相遇,他们家离学 校有多远?

五年级奥数行程问题

五年级奥数行程问题

五年级奥数第八讲——-行程问题(二) 教学目标:1、 能够利用以前学习的知识理清变速变道问题的关键点;2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题;3、 变速变道问题的关键是如何处理“变”;4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.知识精讲:比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了.比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.例题精讲:模块一、时间相同速度比等于路程比【例 1】甲、乙二人分别从A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 :3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).【例 2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程问题(二)
专题简析:
本周的主要问题是“追及问题”。

追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。

追及问题的基本数量关系是:
速度差×追及时间=追及路程
解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。

抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。

例1.中巴车每小时行60千米,小轿车每小时行84千米。

两车同时从相距60千米的两地同方向开出,且中巴在前。

几小时后小轿车追上中巴车?
变式训练
1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。

摩托车多长时间能够追上?
2.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。

几分钟后哥哥追上弟弟?
3.甲骑自行车从A地到B地,每小时行16千米。

1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。

A、B两地相距多少千米?
例2.一辆汽车从甲地开往乙地,要行360千米。

开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

汽车是在离甲地多远处修车的?
变式训练
1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。

有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。

小王是在离工厂多远处遇到熟人的?
2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。

这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。

为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。

加油站离乙地多少千米?
3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。

汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发。

为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度驶向乙地?
例3.甲、乙两人以每分钟60米的速度同时、同地、同向步行出发。

走15分钟后甲返回原地取东西,而乙继续前进。

甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙。

甲骑车多少分钟才能追上乙?
变式训练
1.兄弟二人同时从家出发去学校,哥哥每分钟走80米,弟弟每分钟走60米。

出发10分钟钟后,哥哥返回家中取文具,然后立即骑车以每分钟310米的速度去追弟弟。

哥哥骑车几分钟追上弟弟?
2.快车每小时行60千米,慢车每小时行40千米,两车同时从甲地开往乙地。

出发0.5小时后,快车因故停下修车1.5小时。

修好车后,快车仍用原速前进,经过几小时才能追上慢车?
3.甲、乙二人加工同样多的零件,甲每小时加工20个,乙每小时加工15个。

一天,乙比甲早工作2小时,到下午二人同时完成了加工任务。

他俩一共加工了多少个零件?
例4.甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。

出发后10分钟,甲便从乙身后追上了乙。

已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?
变式训练
1.爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步。

爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问:至少经营几分钟爸爸从小明身后追上小明?
2.在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米。

两人起跑后的第一次相遇点在起跑线前多少米?
3.环湖一周共400米,甲、乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙。

若二人同时从同一地点反向而行,只要2分钟二人就相遇。

求甲、乙的速度。

例5.甲、乙、丙三人步行的速度分别是每分钟100米、90米、75米。

甲在公路上A处,乙、丙在公路上B处,三人同时出发,甲与乙、丙相向而行。

甲和乙相遇3分钟后,甲和丙又相遇了。

求A、B之间的距离。

变式训练
2.甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。

甲、乙二人在B地,丙在A 地与甲、乙二人同时相向而行,丙和乙相遇后,又过2分钟和甲相遇。

求A、B两地的路程。

3.甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。

甲、乙二人从B地同时同向出发,丙从A地同时同向去追甲和乙。

丙追上甲后又经过10分钟才追上乙。

求A、B两地的路程。

3.A、B两地相距1800米,甲、乙二人从A地出发,丙同时从B地出发与甲、乙二人相向而行。

已知甲、乙、丙三人的速度分别是每分钟60米、80米和100米,当乙和丙相遇时,甲落后于乙多少米?。

相关文档
最新文档