立体几何同步练习一(必修2)
高中数学高一必修2空间立体几何试卷(有详细答案)
高中数学立体几何测试试卷学校:___姓名:___班级:___考号:__一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.参考答案一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.答案:A解析:解:设圆锥的母线为l,所以圆锥的底面周长为:,底面半径为:=,底面面积为:.圆锥的侧面积为:,所以圆锥的表面积为:+=a,底面面积为:=.故选A.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n答案:D解析:解:对于选项A,若m,n与α所成角相等,m,n也可能相交、平行、异面;故A错误;对于选项B,若m∥α,n∥α,直线m,n也可能平行,也可能相交,还有可能异面;故B 错误;对于选项C,若m,n与α所成角互余,如与α所成角分别为30°和60°,直线m,n所成的角有可能为30°;故C错误;对于选项D,根据线面垂直的性质,容易得到m⊥n;故D正确;故选D.3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-ABCD中,过P作PO⊥平面ABCD于O,连接AO则AO是AP在底面ABCD上的射影.∴∠PAO即为所求线面角,∵AO=,PA=1,∴cos∠PAO==.∴∠PAO=45°,即所求线面角为45°.故选C.4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④答案:B解析:解:①根据线面垂直的判定,当m,n相交时,结论成立,故①不正确;②根据平行线的传递性,可得l∥n,故l⊥α时,一定有n⊥α,故②正确;③由垂直于同一平面的两直线平行得m∥n,再根据平行线的传递性,即可得l∥n,故③正确.④m⊂α,n⊥α,则n⊥m,∵l⊥n,∴可以选用正方体模型,可得l,m平行、相交、异面都有可能,如图所示,故④不正确故正确的命题是②③故选B.5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm答案:C解析:解:∵铜质的五棱柱的底面积为16cm2,高为4cm,∴铜质的五棱柱的体积V=16×4=64cm3,设熔化后铸成一个正方体的铜块的棱长为acm,则a3=64解得a=4cm故选C6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个答案:C解:∵线段A1C与线段PQ相交且互相平分,∴四边形A1QCP是平行四边形,因A l C的长为定值,为了使得四边形A1QCP面积最大,只须P到A l C的距离为最大即可,由正方体的特征可知,当点P位于B1、C1、D1时,平行四边形A1QCP面积相等,且最大.则使得四边形A1QCP面积最大的点P有3个.故选C.7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④答案:D解析:解:根据棱柱的放置和“看见的棱用实线、看不见的棱用虚线”,则①②③正确,④错误,故选D.二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.答案:2解:连接BE,则∵SB⊥底面ABCD,∠SEC=90°,∴BE⊥CE.故问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数.设AE=x,则DE=3-x,∵AB⊥AD,AB∥CD,AB=1,AD=3,CD=2,∴10=1+x2+4+(3-x)2,∴x2-3x+2=0,∴x=1或2,∴满足BE⊥CE的点E的个数为2,∴满足∠SEC=90°的点E的个数是2.故答案为:2.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.答案:B解析:解:由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对.故答案为:B.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.答案:①④解析:解:①若m⊥α,n⊂α,利用线面垂直的性质,可得m⊥n,正确;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;两条相交直线才行,不正确.③m∥α,n∥α,则m与n可能平行、相交、异面,不正确.④若α⊥β,α∩β=m,n⊂α,n⊥m,则由面面垂直的性质定理我们易得到n⊥β,正确.故答案为:①④.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.答案:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.答案:解:如图所示,正三棱台ABC-A1B1C1中,高OO1=3,底面边长为A1B1=2,AB=4,∴OA=×AB=,O1A1=×A1B1=,∴棱台的侧棱长为AA1==;又OE=×AB=,O1E1=×A1B1=,∴该棱台的斜高为EE1==.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.答案:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.。
(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。
高中数学必修空间立体几何大题
必修2空间立体几何大题一.解答题(共18小题)1.如图,在三棱锥V ﹣ABC 中,平面VAB⊥平面ABC ,△VAB 为等边三角形,AC⊥BC 且AC=BC=,O ,M 分别为AB ,VA 的中点.(1)求证:VB∥平面MOC ;(2)求证:平面MOC⊥平面VAB (3)求三棱锥V ﹣ABC 的体积.2.如图,三棱锥P ﹣ABC 中,PA⊥平面ABC ,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P ﹣ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC⊥BM,并求的值.3.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4.过E ,F 的平面α及此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值.4.如图,直三棱柱ABC ﹣A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点, (Ⅰ)证明:平面AEF⊥平面B 1BCC 1;(Ⅱ)若直线A 1C 及平面A 1ABB 1所成的角为45°,求三棱锥F ﹣AEC 的体积.5.如图,在直三棱柱ABC ﹣A 1B 1C 1中,已知AC⊥BC,BC=CC 1,设AB 1的中点为D ,B 1C∩BC 1=E . 求证:(1)DE∥平面AA 1C 1C ;(2)BC 1⊥AB 1.6.如题图,三棱锥P ﹣ABC 中,平面PAC⊥平面ABC ,∠ABC=,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE .(Ⅱ)若四棱锥P ﹣DFBC 的体积为7,求线段BC 的长.7.如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO=OB=1, (Ⅰ)若D 为线段AC 的中点,求证;AC⊥平面PDO ; (Ⅱ)求三棱锥P ﹣ABC 体积的最大值;8.如图,四边形ABCD 为菱形,G 为AC 及BD 的交点,BE⊥平面ABCD . (Ⅰ)证明:平面AEC⊥平面BED ;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E ﹣ACD 的体积为,求该三棱锥的侧面积.9.如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB=AC=3,BC=2,AA 1=,BB 1=2,点E 和F 分别为BC 和A 1C 的中点.(Ⅰ)求证:EF∥平面A 1B 1BA ;(Ⅱ)求证:平面AEA 1⊥平面BCB 1;(Ⅲ)求直线A 1B 1及平面BCB 1所成角的大小.10.如图所示,已知AB⊥平面BCD ,M 、N 分别是AC 、AD 的中点,BC⊥CD. (1)求证:MN∥平面BCD ;(2)求证:平面BCD⊥平面ABC .11.如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,BF⊥AE,F是垂足.(1)求证:BF⊥AC;(2)若CE=1,∠CBE=30°,求三棱锥F﹣BCE的体积.12.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.13.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB 为正三角形.(1)求证:DM∥平面APC;(2)若BC=4,AB=20,求三棱锥D﹣BCM的体积.14.如图,在四棱锥P ﹣ABCD 中,PD⊥平面ABCD ,底面ABCD 是菱形,∠BAD=60°,AB=2,PD=,O 为AC 及BD 的交点,E 为棱PB 上一点. (Ⅰ)证明:平面EAC⊥平面PBD ;(Ⅱ)若PD∥平面EAC ,求三棱锥P ﹣EAD 的体积.15.已知正四棱柱ABCD ﹣A 1B 1C 1D 1,底面边长为,点P 、Q 、R 分别在棱AA 1、BB 1、BC 上,Q 是BB 1中点,且PQ∥AB,C 1Q⊥QR (1)求证:C 1Q⊥平面PQR ; (2)若C 1Q=,求四面体C 1PQR 的体积.16.如图,直三棱柱ABC ﹣A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点. (1)证明BC 1∥平面A 1CD (2)设AA 1=AC=CB=2,AB=2,求三菱锥C ﹣A 1DE 的体积.17.如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,且∠CBA=∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题:(Ⅰ)求证:CB⊥DE;(Ⅱ)求三棱锥C﹣BOD的体积;(Ⅲ)在劣弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.18.如图:是直径为的半圆,O为圆心,C是上一点,且.DF⊥CD,且DF=2,,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:面BCE⊥面CDF;(Ⅱ)求证:QR∥平面BCD;(Ⅲ)求三棱锥F﹣BCE的体积.必修2空间立体几何大题参考答案及试题解析一.解答题(共18小题)1.(2015•北京)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC 且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MO C⊥平面VAB(3)求三棱锥V﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;直线及平面平行的判定;平面及平面垂直的判定.专题:综合题;空间位置关系及距离.分析:(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.解答:(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB , ∵OC ⊂平面MOC , ∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB 中,AC=BC=,∴AB=2,OC=1,∴S △VAB =,∵OC⊥平面VAB , ∴V C ﹣VAB =•S △VAB =,∴V V ﹣ABC =V C ﹣VAB =.点评: 本题考查线面平行的判定,考查平面及平面垂直的判定,考查体积的计算,正确运用线面平行、平面及平面垂直的判定定理是关键.2.(2015•安徽)如图,三棱锥P ﹣ABC 中,PA⊥平面ABC ,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P ﹣ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC⊥BM,并求的值.考点: 棱柱、棱锥、棱台的体积;点、线、面间的距离计算. 专题: 综合题;空间位置关系及距离.分析:(1)利用V P ﹣ABC =•S △ABC •PA,求三棱锥P ﹣ABC 的体积; (2)过B 作BN⊥AC,垂足为N ,过N 作MN∥PA,交PA 于点M ,连接BM ,证明AC⊥平面MBN ,可得AC⊥BM,利用MN∥PA,求的值.解答:(1)解:由题设,AB=1,AC=2,∠BAC=60°,可得S△ABC==.因为PA⊥平面ABC,PA=1,所以VP﹣ABC =•S△ABC•PA=;(2)解:过B作BN⊥AC,垂足为N,过N作MN∥PA,交PC于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB•cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.点评:本题考查三棱锥P﹣ABC的体积的计算,考查线面垂直的判定及性质的运用,考查学生分析解决问题的能力,属于中档题.3.(2015•黑龙江)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D 1C1上,A1E=D1F=4.过E,F的平面α及此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.考点:棱柱、棱锥、棱台的体积;平面的基本性质及推论.专题:综合题;空间位置关系及距离.分析:(Ⅰ)利用平面及平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.解答:解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.点评:本题考查平面及平面平行的性质,考查学生的计算能力,比较基础.4.(2015•湖南)如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点,(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若直线A1C及平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.考点:棱柱、棱锥、棱台的体积;平面及平面垂直的判定.专题:空间位置关系及距离.分析:(Ⅰ)证明AE⊥BB1,AE⊥BC,BC∩BB1=B,推出AE⊥平面B1BCC1,利用平面余平米垂直的判定定理证明平面AEF⊥平面B1BCC1;(Ⅱ)取AB的中点G,说明直线A1C及平面A1ABB1所成的角为45°,就是∠CA1G,求出棱锥的高及底面面积即可求解几何体的体积.解答:(Ⅰ)证明:∵几何体是直棱柱,∴BB1⊥底面ABC,AE⊂底面ABC,∴AE⊥BB 1,∵直三棱柱ABC ﹣A 1B 1C 1的底面是边长为2的正三角形,E 分别是BC 的中点,∴AE⊥BC,BC∩BB 1=B ,∴AE⊥平面B 1BCC 1, ∵AE ⊂平面AEF ,∴平面AEF⊥平面B 1BCC 1;(Ⅱ)解:取AB 的中点G ,连结A 1G ,CG ,由(Ⅰ)可知CG⊥平面A 1ABB 1,直线A 1C 及平面A 1ABB 1所成的角为45°,就是∠CA 1G ,则A 1G=CG=,∴AA 1==,CF=.三棱锥F ﹣AEC 的体积:×==.点评: 本题考查几何体的体积的求法,平面及平面垂直的判定定理的应用,考查空间想象能力以及计算能力.5.(2015•江苏)如图,在直三棱柱ABC ﹣A 1B 1C 1中,已知AC⊥BC,BC=CC 1,设AB 1的中点为D ,B 1C∩BC 1=E . 求证:(1)DE∥平面AA 1C 1C ; (2)BC 1⊥AB 1.考点: 直线及平面平行的判定;直线及平面垂直的性质. 专题: 证明题;空间位置关系及距离.分析: (1)根据中位线定理得DE∥AC,即证DE∥平面AA 1C 1C ;(2)先由直三棱柱得出CC 1⊥平面ABC ,即证AC⊥CC 1;再证明AC⊥平面BCC 1B 1,即证BC 1⊥AC;最后证明BC 1⊥平面B 1AC ,即可证出BC 1⊥AB 1.解答: 证明:(1)根据题意,得;E 为B 1C 的中点,D 为AB 1的中点,所以DE∥AC; 又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE∥平面AA 1C 1C ;(2)因为棱柱ABC ﹣A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC , 因为AC ⊂平面ABC , 所以AC⊥CC 1; 又因为AC⊥BC, CC 1⊂平面BCC 1B 1, BC ⊂平面BCC 1B 1, BC∩CC 1=C ,所以AC⊥平面BCC 1B 1;又因为BC 1⊂平面BCC 1B 1, 所以BC 1⊥AC;因为BC=CC 1,所以矩形BCC 1B 1是正方形, 所以BC 1⊥平面B 1AC ; 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.点评: 本题考查了直线及直线,直线及平面以及平面及平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.6.(2015•重庆)如题图,三棱锥P ﹣ABC 中,平面PAC⊥平面ABC ,∠ABC=,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE .(Ⅱ)若四棱锥P ﹣DFBC 的体积为7,求线段BC 的长.考点: 直线及平面垂直的判定;棱柱、棱锥、棱台的体积. 专题: 开放型;空间位置关系及距离.分析: (Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB 及平面PEF 内两条相交直线PE ,EF 都垂直,可证AB⊥平面PEF .(Ⅱ)设BC=x ,可求AB ,S △ABC ,由EF∥BC 可得△AFE≌△ABC,求得S △AFE =S △ABC ,由AD=AE ,可求S △AFD ,从而求得四边形DFBC 的面积,由(Ⅰ)知PE 为四棱锥P ﹣DFBC 的高,求得PE ,由体积V P ﹣DFBC=S DFBC •PE=7,即可解得线段BC 的长.解答: 解:(Ⅰ)如图,由DE=EC ,PD=PC 知,E 为等腰△PDC 中DC 边的中点,故PE⊥AC,又平面PAC⊥平面ABC ,平面PAC∩平面ABC=AC ,PE ⊂平面PAC ,PE⊥AC, 所以PE⊥平面ABC ,从而PE⊥AB. 因为∠ABC=,EF∥BC,故AB⊥EF,从而AB 及平面PEF 内两条相交直线PE ,EF 都垂直, 所以AB⊥平面PEF .(Ⅱ)设BC=x ,则在直角△ABC 中,AB==,从而S △ABC =AB•BC=x ,由EF∥BC 知,得△AFE≌△ABC,故=()2=,即S △AFE =S △ABC , 由AD=AE ,S △AFD ==S △ABC =S △ABC =x,从而四边形DFBC 的面积为:S DFBC =S △ABC ﹣S AFD =x ﹣x=x.由(Ⅰ)知,PE⊥平面ABC ,所以PE 为四棱锥P ﹣DFBC 的高. 在直角△PEC 中,PE===2, 故体积V P ﹣DFBC =S DFBC •PE=x =7,故得x 4﹣36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x=3或x=3.所以:BC=3或BC=3.点评:本题主要考查了直线及平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.7.(2015•福建)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;(Ⅱ)求三棱锥P﹣ABC体积的最大值;(Ⅲ)若BC=,点E在线段PB上,求CE+OE的最小值.考点:直线及平面垂直的判定;棱柱、棱锥、棱台的体积.专题:空间位置关系及距离.分析:(Ⅰ)由题意可证AC⊥DO,又PO⊥AC,即可证明AC⊥平面PDO.(Ⅱ)当CO⊥AB时,C到AB的距离最大且最大值为1,又AB=2,即可求△ABC面积的最大值,又三棱锥P﹣ABC的高PO=1,即可求得三棱锥P﹣ABC体积的最大值.(Ⅲ)可求PB===PC,即有PB=PC=BC,由OP=OB,C′P=C′B,可证E为PB中点,从而可求OC′=OE+EC′==,从而得解.解答:解:(Ⅰ)在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO,又PO垂直于圆O所在的平面,所以PO⊥AC,因为DO∩PO=O,所以AC⊥平面PDO.(Ⅱ)因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1,又AB=2,所以△ABC面积的最大值为,又因为三棱锥P﹣ABC的高PO=1,故三棱锥P﹣ABC体积的最大值为:.(Ⅲ)在△POB中,PO=OB=1,∠POB=90°,所以PB==,同理PC=,所以PB=PC=BC,在三棱锥P﹣ABC中,将侧面BCP绕PB旋转至平面BC′P,使之及平面ABP共面,如图所示,当O,E,C′共线时,CE+OE取得最小值,又因为OP=OB,C′P=C′B,所以OC′垂直平分PB,即E为PB中点.从而OC′=OE+EC′==.亦即CE+OE的最小值为:.点评:本题主要考查了直线及直线、直线及平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归及转化思想,属于中档题.8.(2015•河北)如图,四边形ABCD为菱形,G为AC及BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD 的体积为,求该三棱锥的侧面积.考点:平面及平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.专题:空间位置关系及距离.分析:(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC⊥平面BED;(Ⅱ)根据三棱锥的条件公式,进行计算即可.解证明:(Ⅰ)∵四边形ABCD为菱形,答:∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵AE⊥EC,△EBG为直角三角形,∴BE=x,∵三棱锥E﹣ACD的体积V===,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB•BCcosABC=4+4﹣2×=12,即AC=,在三个直角三角形EBA,EBG,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE 2=6, 则AE=,∴从而得AE=EC=ED=,∴△EAC 的面积S==3,在等腰三角形EAD 中,过E 作EF⊥AD 于F , 则AE=,AF==, 则EF=,∴△EAD 的面积和△ECD 的面积均为S==,故该三棱锥的侧面积为3+2.点评: 本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式.9.(2015•天津)如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB=AC=3,BC=2,AA 1=,BB 1=2,点E 和F 分别为BC 和A 1C 的中点. (Ⅰ)求证:EF∥平面A 1B 1BA ; (Ⅱ)求证:平面AEA 1⊥平面BCB 1;(Ⅲ)求直线A 1B 1及平面BCB 1所成角的大小.考点: 平面及平面垂直的判定;直线及平面平行的判定;直线及平面所成的角.专题: 空间位置关系及距离.分析: (Ⅰ)连接A 1B ,易证EF∥A 1B ,由线面平行的判定定理可得;(Ⅱ)易证AE⊥BC,BB 1⊥AE,可证AE⊥平面BCB 1,进而可得面面垂直;(Ⅲ)取BB 1中点M 和B 1C 中点N ,连接A 1M ,A 1N ,NE ,易证∠A 1B 1N 即为直线A 1B 1及平面BCB 1所成角,解三角形可得.解答: (Ⅰ)证明:连接A 1B ,在△A 1BC 中,∵E 和F 分别是BC 和A 1C 的中点,∴EF∥A 1B , 又∵A 1B ⊂平面A 1B 1BA ,EF ⊄平面A 1B 1BA , ∴EF∥平面A 1B 1BA ;(Ⅱ)证明:∵AB=AC,E 为BC 中点,∴AE⊥BC, ∵AA 1⊥平面ABC ,BB 1∥AA 1,∴BB 1⊥平面ABC , ∴BB 1⊥AE,又∵BC∩BB 1=B ,∴AE⊥平面BCB 1, 又∵AE ⊂平面AEA 1,∴平面AEA 1⊥平面BCB 1;(Ⅲ)取BB 1中点M 和B 1C 中点N ,连接A 1M ,A 1N ,NE ,∵N 和E 分别为B 1C 和BC 的中点,∴NE 平行且等于B 1B , ∴NE 平行且等于A 1A ,∴四边形A 1AEN 是平行四边形, ∴A 1N 平行且等于AE ,又∵AE⊥平面BCB 1,∴A 1N⊥平面BCB 1, ∴∠A 1B 1N 即为直线A 1B 1及平面BCB 1所成角, 在△ABC 中,可得AE=2,∴A 1N=AE=2, ∵BM∥AA 1,BM=AA 1,∴A 1M∥AB 且A 1M=AB , 又由AB⊥BB 1,∴A 1M⊥BB 1, 在RT△A 1MB 1中,A 1B 1==4, 在RT△A 1NB 1中,sin∠A 1B 1N==,∴∠A 1B 1N=30°,即直线A 1B 1及平面BCB 1所成角的大小为30°点评: 本题考查线面垂直及平行关系的证明,涉及直线及平面所成的角,属中档题.10.(2015•醴陵市)如图所示,已知AB⊥平面BCD ,M 、N 分别是AC 、AD 的中点,BC⊥CD. (1)求证:MN∥平面BCD ; (2)求证:平面BCD⊥平面ABC .考点: 平面及平面垂直的判定;直线及平面平行的判定. 专题: 空间位置关系及距离.分析:(1)由中位线定理和线面平行的判定定理,即可得证;(2)由线面垂直的性质和判定定理,可得CD⊥平面ABC,再由面面垂直的判定定理,即可得证.解答:证明:(1)因为M,N分别是AC,AD的中点,所以MN∥CD.又MN⊄平面BCD且CD⊂平面BCD,所以MN∥平面BCD;(2)因为AB⊥平面BCD,CD⊂平面BCD,所以AB⊥CD.又CD⊥BC,AB∩BC=B,所以CD⊥平面ABC.又CD⊂平面BCD,所以平面BCD⊥平面ABC.点评:本题考查线面平行的判定和面面垂直的判定,考查空间直线和平面的位置关系,考查逻辑推理能力,属于中档题.11.(2015•葫芦岛一模)如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,BF⊥AE,F是垂足.(1)求证:BF⊥AC;(2)若CE=1,∠CBE=30°,求三棱锥F﹣BCE的体积.考点:旋转体(圆柱、圆锥、圆台).专题:计算题;空间位置关系及距离.分析:(1)欲证BF⊥AC,先证BF⊥平面AEC,根据线面垂直的判定定理可知只需证CE⊥BF,BF⊥AE且CE∩AE=E,即可证得线面垂直;(2)VF﹣BCE =VC﹣BEF=•S△BEF•CE=••EF•BF•CE,即可求出三棱锥F﹣BCE的体积.解答:(1)证明:∵AB⊥平面BEC,CE⊂平面BEC,∴AB⊥CE ∵BC为圆的直径,∴BE⊥CE.∵BE⊂平面ABE,AB⊂平面ABE,BE∩AB=B∴CE⊥平面ABE,∵BF⊂平面ABE,∴CE⊥BF,又BF⊥AE且CE∩AE=E,∴BF⊥平面AEC,∵AC⊂平面AEC,∴BF⊥AC…(6分)(2)解:在Rt△BEC中,∵CE=1,∠CBE=30°∴BE=,BC=2又∵ABCD为正方形,∴AB=2,∴AE=,∴BF•AE=AB•BE,∴BF=,∴EF=∴V F ﹣BCE =V C ﹣BEF =•S△BEF •CE=••EF•BF•CE =••••1=…(12分)点评: 本小题主要考查空间线面关系、圆柱性质、空间想象能力和逻辑推理能力,考查三棱锥F ﹣BCE 的体积的计算,属于中档题.12.(2015•商丘三模)如图,已知四边形ABCD 和BCEG 均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG ,BC=CD=CE=2AD=2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE ;(Ⅲ)求:几何体EG ﹣ABCD 的体积.考点: 棱柱、棱锥、棱台的体积;直线及平面平行的判定. 专题: 综合题;空间位置关系及距离.分析: (Ⅰ)利用面面垂直的性质,证明EC⊥平面ABCD ,利用线面垂直的性质证明EC⊥CD;(Ⅱ)在平面BCEG 中,过G 作GN⊥CE 交BE 于M ,连DM ,证明四边形ADMG 为平行四边形,可得AG∥DM,即可证明AG∥平面BDE ; (Ⅲ)利用分割法即可求出几何体EG ﹣ABCD 的体积.解答: (Ⅰ)证明:由平面ABCD⊥平面BCEG ,平面ABCD∩平面BCEG=BC,CE⊥BC,CE⊂平面BCEG,∴EC⊥平面ABCD,…(3分)又CD⊂平面BCDA,故EC⊥CD…(4分)(Ⅱ)证明:在平面BCEG中,过G作GN⊥CE交BE于M,连DM,则由已知知;MG=MN,MN∥BC∥DA,且,∴MG∥AD,MG=AD,故四边形ADMG为平行四边形,∴AG∥DM…(6分)∵DM⊂平面BDE,AG⊄平面BDE,∴AG∥平面BDE…(8分)(Ⅲ)解:…(10分)=…(12分)点评:本题考查面面垂直、线面平行,考查几何体体积的计算,考查学生分析解决问题的能力,正确运用面面垂直、线面平行的判定定理是关键.13.(2015•南昌模拟)如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB 的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)若BC=4,AB=20,求三棱锥D﹣BCM的体积.考点:棱柱、棱锥、棱台的体积;直线及平面平行的判定.专题:空间位置关系及距离.分析:(1)可由三角形的中位线定理得到线线平行,进而得到线面平行.(2)先证明MD⊥底面BCD,进而可计算出体积.解答:(1)证明:∵M为AB的中点,D为PB的中点,∴MD为△PAB的中位线,∴MD∥AP.而AP⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)解:∵△PMB为正三角形,PD=DB,∴MD⊥PB.∵MD∥AP,AP⊥PC,∴MD⊥PC.又PC∩PB=P,∴MD⊥平面PBC.即MD为三棱锥M﹣BCD的高.由AB=20,∴MB=10,BD=5,∴MD=5.在Rt△PCB中(因为AC⊥BC,所以PC⊥BC),由勾股定理得PC==2.于是S△BCD =S△BCP×==.∴V三棱锥D﹣BCM =V三棱锥M﹣BCD==10.点评:利用三角形的中位线定理证明线线平行是证明线面平行常用的方法之一.先证明线面垂直是求体积的关键.14.(2015•沈阳模拟)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC及BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.考点:棱柱、棱锥、棱台的体积;平面及平面垂直的判定.专题:空间位置关系及距离.分析:(Ⅰ)由已知得AC⊥PD,AC⊥BD,由此能证明平面EAC⊥平面PBD.(Ⅱ)由已知得PD∥OE,取AD中点H,连结BH,由此利用,能求出三棱锥P﹣EAD的体积.解答:(Ⅰ)证明:∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,又∵PD∩BD=D,AC⊥平面PBD.而AC⊂平面EAC,∴平面EAC⊥平面PBD.(Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,∴PD∥OE,∵O是BD中点,∴E是PB中点.取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BD⊥平面PAD,.∴(还可以用VP-ABD-VE-ABD)==.点评: 本题考查平面及平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.15.(2015•上海模拟)已知正四棱柱ABCD ﹣A 1B 1C 1D 1,底面边长为,点P 、Q 、R 分别在棱AA 1、BB 1、BC 上,Q 是BB 1中点,且PQ∥AB,C 1Q⊥QR (1)求证:C 1Q⊥平面PQR ; (2)若C 1Q=,求四面体C 1PQR 的体积.考点: 棱柱、棱锥、棱台的体积;直线及平面垂直的判定. 专题: 空间位置关系及距离;空间角.分析: (1)由已知得AB ⊥平面B 1BCC 1,从而PQ⊥平面B 1BCC 1,进而C 1Q⊥PQ,又C 1Q⊥QR,由此能证明C 1Q⊥平面PQR .(2)由已知得B 1Q=1,BQ=1,△B 1C 1Q∽△BQR,从而BR=,QR=,由C 1Q 、QR 、QP 两两垂直,能求出四面体C 1PQR 的体积.解答: (1)证明:∵四棱柱ABCD ﹣A 1B 1C 1D 1是正四棱柱,∴AB⊥平面B 1BCC 1,又PQ∥AB,∴PQ⊥平面B 1BCC 1,∴C 1Q⊥PQ,又已知C 1Q⊥QR,且QR∩QP=Q, ∴C 1Q⊥平面PQR . (2)解:∵B 1C 1=,,∴B 1Q=1,∴BQ=1,∵Q 是BB 1中点,C 1Q⊥QR,∴∠B 1C 1Q=∠BQR,∠C 1B 1Q=∠QBR, ∴△B 1C 1Q∽△BQR,∴BR=,∴QR=,∵C 1Q 、QR 、QP 两两垂直, ∴四面体C 1PQR 的体积V=.点评: 本小题主要考查空间线面关系、线面垂直的证明、几何体的体积等知识,考查数形结合、化归及转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.16.(2015•凯里市校级模拟)如图,直三棱柱ABC ﹣A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点. (1)证明BC 1∥平面A 1CD (2)设AA 1=AC=CB=2,AB=2,求三菱锥C ﹣A 1DE 的体积.考点: 棱柱、棱锥、棱台的体积;直线及平面平行的判定. 专题: 空间位置关系及距离.分析: (1)连结AC 1交A 1C 于点F ,连结DF ,则BC 1∥DF,由此能证明BC 1∥平面A 1CD .(2)由已知得AA 1⊥CD,CD⊥AB,从而CD⊥平面ABB 1A 1.由此能求出三菱锥C ﹣A 1DE 的体积.解答: (1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF.因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 所以BC 1∥平面A 1CD .(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD. 由已知AC=CB ,D 为AB 的中点,所以CD⊥AB. 又AA 1∩AB=A,于是CD⊥平面ABB 1A 1. 由AA 1=AC=CB=2,得∠ACB=90°, ,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE⊥A 1D . 所以三菱锥C ﹣A 1DE 的体积为:==1.点评:本题考查直线及平面平行的证明,考查三菱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.(2015•东城区一模)如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,且∠CBA=∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题:(Ⅰ)求证:CB⊥DE;(Ⅱ)求三棱锥C﹣BOD的体积;(Ⅲ)在劣弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.考点:棱柱、棱锥、棱台的体积;直线及平面平行的性质.专题:综合题;空间位置关系及距离.分析:(Ⅰ)利用等边三角形的性质可得DE⊥AO,再利用面面垂直的性质定理即可得到DE⊥平面ABC,进而得出结论.(Ⅱ)由(Ⅰ)知DE⊥平面ABC,利用转换底面的方法,即可求三棱锥的体积;(Ⅲ)存在,G为劣弧的中点.连接OG,OF,FG,通过证明平面OFG∥平面ACD,即可得到结论.解答:(Ⅰ)证明:在△AOD中,∵,OA=OD,∴△AOD为正三角形,又∵E为OA的中点,∴DE⊥AO…(1分)∵两个半圆所在平面ACB及平面ADB互相垂直且其交线为AB,∴DE⊥平面ABC.…(3分)又CB⊂平面ABC,∴CB⊥DE.…5分(Ⅱ)解:由(Ⅰ)知DE⊥平面ABC,∴DE为三棱锥D﹣BOC的高.∵D为圆周上一点,且AB为直径,∴,在△ABD中,由AD⊥BD,,AB=2,得AD=1,.…(6分)∵,∴==.…(8分)(Ⅲ)解:存在满足题意的点G,G为劣弧的中点.…(9分)证明如下:连接OG,OF,FG,易知OG⊥BD,又AD⊥BD∴OG∥AD,∵OG⊄平面ACD,∴OG∥平面ACD.…(10分)在△ABC中,O,F分别为AB,BC的中点,∴OF∥AC,OF⊄平面ACD,∴OF∥平面ACD,…(11分)∵OG∩OF=O,∴平面OFG∥平面ACD.又FG⊂平面OFG,∴FG∥平面ACD.…(12分)点评:本题考查线线、线面、面面关系,考查线线垂直的判定、面面垂直的性质、线面平行的判定及几何体高及体积的计算,考查空间想象能力、推理论证能力、运算求解能力及分析探究问题和解决问题的能力.18.(2015•威海模拟)如图:是直径为的半圆,O为圆心,C 是上一点,且.DF⊥CD,且DF=2,,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:面BCE⊥面CDF;(Ⅱ)求证:QR∥平面BCD;(Ⅲ)求三棱锥F﹣BCE的体积.考点:棱柱、棱锥、棱台的体积;直线及平面平行的判定;平面及平面垂直的判定.专题:空间位置关系及距离.分析:(Ⅰ)证明BD⊥DF,DF⊥BC,利用直线及平面垂直的判定定理证明BC⊥平面CFD,然后证明面BCE⊥面CDF.(Ⅱ)连接OQ,通过证明RQ∥OM,然后证明QR∥平面BCD.(Ⅲ)利用vF﹣BCE=vF﹣BCD﹣vE﹣BCD求解几何体的体积即可.解答:(本小题满分12分)证明:(Ⅰ)∵DF=2,,,∴BF2=BD2+DF2,∴BD⊥DF﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)又DF⊥CD,∴DF⊥平面BCD﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴DF⊥BC,又BC⊥CD,∴BC⊥平面CFD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∵BC⊂面BCE∴面BCE⊥面CDF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)连接OQ,在面CFD内过R点做RM⊥CD,∵O,Q为中点,∴OQ∥DF,且﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∵DF⊥CD∴RM∥FD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)又FR=3RC,∴,∴,∵E为FD的中点,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴OQ∥RM,且OQ=RM∴OQRM为平行四边形,∵RQ∥OM﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又RQ⊄平面BCD,OM⊂平面BCD,∴QR∥平面BCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)∵,∴∠DBC=30°,∴在直角三角形BCD中有,,∴﹣﹣﹣﹣﹣﹣﹣﹣(12分)(或求VB-FCE 1/3*1/2*FE*CD*BC)点评:本题考查直线及平面垂直的判定定理的应用直线及平面平行的判定定理以及几何体的体积的求法,考查空间想象能力以及逻辑推理计算能力.。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
人教B版必修2第一章立体几何初步同步训练
必修二同步训练目录第一章立体几何初步1.1 空间几何体 (1)1.1.1构成几何体的基本元素 (1)1.1.2棱柱、棱锥和棱台的机构特征 (4)第1课时多面体和棱柱 (4)第2课时棱锥和棱台 (6)1.1.3 圆柱、圆锥、圆台和球 (8)1.1.4 投影与直观图 (10)1.1.5 三视图 (13)1.1.6 棱柱、棱锥、棱台和球的表面积 (17)1.1.7 棱柱、棱锥、棱台和球的体积 (21)1.2 点、线、面之间的位置关系 (25)1.2.1平面的基本性质与推论 (25)1.2.2空间中的平行关系 (28)第一课时平行直线 (28)第二课时直线与平面平行 (30)第三课时平面与平面平行 (33)1.2.3空间中的垂直关系 (36)第一课时直线与平面垂直 (36)第二课时平面与平面垂直 (39)章末归纳总结 (42)章末检测(一) (45)章末检测(二) (50)参考答案 (55)第一章立体几何初步1.1 空间几何体1.1.1构成几何体的基本元素一、选择题1.构成空间几何体的基本元素为( )A.点B.线C.面D.点、线、面2.下列说法:①任何一个几何体都必须有顶点、棱和面;②一个几何体可以没有顶点;③一个几何体可以没有棱;④一个几何体可以没有面.其中正确的个数是( )A.1B.2C.3D.43.如图所示,下面空间图形画法错误的是( )4.下列是几何体的是( )A.方砖B.足球C.圆锥D.魔方5.在长方体ABCD-A1B1C1D1六个面中,与面ABCD垂直的有( )A.1个B.2个C.3个D.4个6.如图所示是平行四边形ABCD所在的平面,下列表示方法中不正确的是( )①平面ABCD;②平面BD;③平面AD;④AC;⑤平面 .A.④B.③⑤C.②③④D.③④二、填空题7.在立体几何中,可以把线看成运动的轨迹.如果点运动的方向始终不变,则其运动的轨迹为;如果点运动的方向时刻变化,则其运动的轨迹为.8.一个正方体去掉一个“角”后减少了一个顶点,这个几何图形是(填序号).三、解答题9.试分别画出满足下列条件的直线和平面:(1)直线a在平面β内;(2)直线a在平面β上方;(3)直线a穿过平面β.10.指出如图所示的瓷器,是由什么曲线绕轴旋转而成的.一、选择题1.下列四个长方体中,由图中的纸板折成的是()2.一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同的放置状态,如果与C面相对的面上的字母是E,则与D面相对的面上的字母是() A.AB.BC.ED.F二、填空题3.如图表示两个相交平面,其中正确的是.4.下列关于长方体的说法中,正确的是.①长方体中有3组对面互相平行;②长方体ABCD-A1B1C1D1中,与AB垂直的只有棱AD、BC和AA1;③长方体可看成是由一个矩形平移形成的;④长方体ABCD-A1B1C1D1中,棱AA1、BB1、CC1、DD1平行且相等.三、解答题5.请将下列各图补上适当的虚线,使它们能比较直观地看出是立体图形.6.根据图中给出的平面图形,折叠几何模型.7.下图为一个正方体表面的一种展开图,图中的线段AB、CD、EF和GH在原正方体中不在同一平面内的共有多少对?1.1.2棱柱、棱锥和棱台的机构特征第1课时多面体和棱柱一、选择题1.下列几何体中是棱柱的个数为()A.1B.2C.3D.42.下面没有体对角线的一种几何体是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱3.棱柱的侧面都是()A.三角形B.四边形C.五边形D.矩形4.设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是直平行六面体.以上命题中真命题的个数是()A.0B.1C.2D.3二、填空题5.一个棱柱至少有个面,有个顶点,有条棱.6.设有四个命题:(1)底面是矩形的平行六面体是长方体;(2)棱长相等的直四棱柱是正方体;(3)有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;(4)对角线相等的平行六面体是直平行六面体.以上命题中,真命题的是.(填序号)三、解答题7.如图所示,长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,说明理由.8.如图,正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线长;(2)求PC和NC的长.一、选择题1.斜四棱柱的侧面最多可有几个面是矩形()A.0个B.1个C.2个D.3个2.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到下面的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下二、填空题3.若长方体的长、宽、高分别为5 cm、4 cm、3 cm.把这样的两个长方体全等的面重合在一起组成大长方体,则大长方体的对角线最长为.4.一棱柱有10个顶点,侧棱长相等,且所有侧棱长的和为100,则其侧棱长为.三、解答题5.长方体的三条棱长之比为1:2:3,其表面积为88 cm2,求它的对角线长.6.底面是菱形的直平行六面体高为12 cm,两条体对角线的长分别是15 cm和20 cm,求底面边长.7.如图,已知正三棱柱ABC-A1B1C1的底面边长为1,高为8,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为多少?第2课时 棱锥和棱台一、选择题1.棱锥至少由多少个面围成( ) A .3B .4C .5D .6 2.四棱台的上、下底面均为正方形,它们的边长分别是1、2,侧棱长为2,则该四棱台的高为( )A .62B .32C .12D .223.过正棱台两底面中心的截面一定是( ) A .直角梯形 B .等腰梯形 C .一般梯形或等腰梯形 D .矩形 4.下列命题中,真命题是( )A .顶点在底面上的射影到底面各顶点的距离相等的三棱锥是正三棱锥B .底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C .底面三角形各边分别与相对的侧棱垂直的三棱锥是正三棱锥D .底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥5.一个正三棱锥的底面边长为3,高为6,则它的侧棱长为( ) A .2B .23C .3D .46.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥不可能是( ) A .正三棱锥B .正四棱锥C .正五棱锥D .正六棱锥二、填空题7.若正三棱台的上、下底面的边长分别为2和8,侧棱长为5,则这个棱台的高为.8.正四棱锥S -ABCD 的所有棱长都等于a ,过不相邻的两条侧棱作截面,则截面面积为.三、解答题9.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?10.如图,正三棱台ABC -A 1B 1C 1中,已知AB =10,棱台一个侧面梯形的面积为2033,O 1、O 分别为上、下底面正三角形中心,D 1D 为棱台的斜高,∠D 1DA =60°,求上底面的边长.一、选择题1.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面面积之比为1:4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm2.在侧棱长为23的正三棱锥S-ABC中,∠ASB=∠BSC=∠CSA=40°,过A作截面AEF,则截面的最小周长为()A.22B.4C.6D.10二、填空题3.正四棱台的上、下底面边长分别是5和7,对角线长为9,则棱台的斜高等于.4.一个棱长均为4的正三棱锥P-ABC,E、F分别为BC、P A的中点,则EF的长为.三、解答题5.如图,将边长为83的正三角形沿三条中位线折成一个正四面体,求该四面体的斜高和高.6.已知正三棱锥的一个侧面面积与底面面积之比为2:3,求此三棱锥的高与斜高的比.7.某城市中心广场主体建筑为一三棱锥,且所有边长均为10 m,如图所示,其中E、F分别为AD、BC的中点.(1)画出该几何体的表面展开图,并注明字母;(2)为迎接国庆,城管部门拟对该建筑实施亮化工程,现预备从底边BC中点F处分别过AC、AB上某点向AD中点E处架设LED灯管,所用灯管长度最短为多少?1.1.3 圆柱、圆锥、圆台和球一、选择题1.下列说法中正确的个数是()①半圆弧以其直径为轴旋转所成的曲面叫球;②空间中到定点的距离等于定长的所有点的集合叫球面;③球面和球是同一个概念;④经过球面上不同的两点只能作一个最大的圆.A.1B.2C.3D.42.上、下底面面积分别为36π和49π,母线长为5的圆台,两底面间的距离为()A.4B.32C.23D.2 63.用一个平面去截一个几何体,得到的截面是四边形,则这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都可能4.一个正方体内接于一个球,过球心作一截面,则截面的不可能图形是()5.在地球北纬60°圈上有A、B两点,它们的经度相差180°,A、B两地沿纬线圈的弧长与A、B两点的球面距离之比为()A.3:2B.2:3C.1:3D.3:16.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥二、填空题7.给出下列说法:①球面上四个不同的点一定不在同一平面内;②球的半径是球面上任意一点和球心的连线段;③球面上任意三点可能在一条直线上;④用一个平面去截球,得到的截面是一个圆面.其中正确说法的序号是.8.已知圆柱的底面半径是20 cm,高是15 cm,则平行于圆柱的轴且与此轴相距12 cm的截面面积是.三、解答题9.一个圆台的母线长为12 cm,两底面的面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.一、选择题1.下列命题中,错误的是()A.圆柱的轴截面是过母线的截面中面积最大的B.圆锥的轴截面是所有过顶点的截面中面积最大的C.圆台的轴截面一定是等腰梯形D.圆锥的轴截面是全等的等腰三角形2.半径为5的球被一平面所截,若截面圆的面积为16π,则球心到截面的距离为()A.4B.3C.2.5D.23.以钝角三角形的最小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥4.两平行平面截半径为5的球,若截面面积分别为9π和16π,则这两个平面间的距离是() A.1B.7C.3或4D.1或7二、填空题5.过球半径的中点,作一垂直于这个半径的截面,截面面积为48π cm2,则球的半径为.6.图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则所截得的图形可能是(填序号).三、解答题7.轴截面为正方形的圆柱叫做等边圆柱.已知某等边圆柱的截面面积为16 cm2,求其底面周长和高.8.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的两底面半径、高和母线长.1.1.4 投影与直观图一、选择题1.下列命题中正确的是( )A .矩形的平行投影一定是矩形B .梯形的平行投影一定是梯形C .两条相交直线的投影可能平行D .一条线段中点的平行投影仍是这条线段投影的中点 2.下列图形中采用中心投影画法的是( )3.夜晚,人在路灯下的影子是投影,人在月光下的影子是投影.( ) A .平行 中心B .中心 中心C .平行 平行D .中心 平行4.利用斜二测画法画水平放置的平面图形的直观图,得到下列结论,其中正确的是( ) A .正三角形的直观图仍然是正三角形B .平行四边形的直观图一定是平行四边形 C .正方形的直观图是正方形D .圆的直观图是圆5.水平放置的矩形ABCD 长AB =4,宽BC =2,以AB 、AD 为轴作出斜二测直观图A ’B ’C ’D ’, 则四边形A ’B ’C ’D ’的面积为( ) A .42B .22C .4D .26.给出以下关于斜二测直观图的结论,其中正确的个数是( ) ①角的水平放置的直观图一定是角. ②相等的角在直观图中仍相等. ③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行. A .0B .1C .2D .3 二、填空题7.下图是水平放置的ABC ∆在直角坐标系中的直观图'''C B A ∆,其中D ’是A ’C ’的中点,且1''=B A , 32''=C B ,则原图形中与线段BD 的长相等的线段有条(D 是AC 的中点).第7题图 第8题图8.如上图所示为一个水平放置的正方形ABCO ,在直角坐示系xOy 中,点B 的坐标为(2,2), 则在用斜二测画法画出的正方形的直观图中,顶点B ’到x ’轴的距离为.三、解答题9.如图所示,有一灯O ,在它前面有一物体AB ,灯所发出的光使物体AB 在离灯O 为10 m 的墙 上形成了一个放大了3倍的影子A ’B ’,试求灯与物体之间的距离.一、选择题1.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样, 已知长方体的长、宽、高分别为20m ,5m ,10m ,四棱锥的高为8m ,若按1:500的比例画出它 的直观图,那么直观图中,长方体的长、宽、高和四棱锥的高应分别为( ) A .4 cm ,1 cm ,2 cm ,1.6 cmB .4 cm ,0.5 cm ,2 cm ,0.8 cm C .4 cm ,0.5 cm ,2 cm ,1.6cmD .2 cm ,0.5 cm ,1 cm ,0.8 cm 2.如下图,太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长 是103,则皮球的直径是( ) A .53B .15C .10D .833.如上图,正方形O ’A ’B ’C ’的边长为acm (a >0),它是一个水平放置的平面图形的直观图, 则它的原图形OABC 的周长是( )A .8acmB .6acmC .(2a +22a ) cmD .4acm4.已知正△ABC 的边长为a ,以它的一边为x 轴,对应的高线为y 轴,画出它的水平放置的直观 图△A ’B ’C ’,则△A ’B ’C ’的面积是( )A .34a 2B .38a 2C .68a 2D .616a 2二、填空题5.如下图所示,梯形A ’B ’C ’D ’是平面图形ABCD 的直观图,若A ’D ’∥O ’y ’,A ’B ’∥C ’D ’,A ’B ’=23C ’D ’=2,A ’D ’=1,则四边形ABCD 的面积是.6.水平放置的△ABC的斜二测直观图如图所示,已知A’C’=3,B’C’=2,则AB边上的中线的实际长度为.三、解答题7.如图所示的平行四边形A’B’C’D’是一个平面图形ABCD的直观图,且∠D’A’B’=45°,''=BA,请画出它的实际图形ABCD并分别求它们的面积和它们的面积之比.DA,4'2'=8.小昆和小鹏两人站成一列,背着墙,面朝太阳,小昆靠近墙,在太阳光照射下,小昆的头部影子正好落在墙角处.如果小昆身高为1.6 m,离墙距离为3 m,小鹏的身高1.5 m,离墙的距离为5 m,则小鹏的身影是否在小昆的脚下,请通过计算说明.1.1.5 三视图一、选择题1.当图形中的直线或线段不平行于投射线时,关于平行投影的性质,下列说法不正确的是() A.直线或线段的平行投影仍是直线或线段B.平行直线的平行投影仍是平行的直线C.与投射面平行的平面图形,它的投影与这个图形全等D.在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比2.一个几何体的三视图如下图所示,这个几何体可能是一个()A.三棱锥B.底面不规则的四棱锥C.三棱柱D.底面为正方形的四棱锥3.如图所示的图形中,是正四棱锥的三视图的是()4.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④5.在一个几何体的三视图中,主视图和俯视图如右图所示,则相应的左视图可以为()6.如下图,正方体ABCD-A1B1C1D1中,E、F分别是AA1,D1C1的中点,G是正方形BCC1B1的中心,则空间四边形AEFG在该正方体各面上的正投影不可能是()二、填空题7.给出以下结论,其中正确的结论的序号是.①一个点光源把一个平面图形照射到一个平面上,它的投影与这个图形全等;②平行于投射面的平面图形,在平行投影下,它的投影与原图形全等;③垂直于投射面的平面图形,在平行投影下,它的投影与原图形相似;④在平行投影下,不平行、也不垂直于投射面的线段的投影仍是线段,但与原线段不等长.8.如图所示的是一个简单几何体的三视图,它的上部是一个,下部是一个.三、解答题9.画出如图所示几何体的三视图.一、选择题1.某几何体的三视图如图所示,则此几何体的直观图是()2.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为()二、填空题3.桌子上放着一个长方体和圆柱(如图所示),则下列三幅图分别是什么图(主视图、俯视图、左视图) ①________、②________、③________.4.如图,直三棱柱ABC-A1B1C1的侧棱长为2,底面是边长为2的正三角形,正视图是边长为2的正方形,则其左视图的面积为.三、解答题5.如图是某希望学校的一座水塔,试画出它的三视图(尺寸不作严格要求).6.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何体是否为棱柱;(2)画出它的三视图.1.1.6 棱柱、棱锥、棱台和球的表面积一、选择题1.一个几何体的三视图如图所示,其中正(主)视图是边长为2的正三角形,俯视图是边长为2的 正方形,那么该几何体的侧(左)视图的面积是( )A .23B .3C .4D .22.已知一个棱长为3的正方体的顶点都在球面上,则该球的表面积等于( ) A .4πB .6πC .8πD .9π3.球的表面积与它的内接正方体的表面积之比是( )A .π3B .π4C .π2D .π4.正方体ABCD -A 1B 1C 1D 1中,以顶点A 、C 、B 1、D 1为顶点的正三棱锥的全面积为43, 则正方体的棱长为( ) A .2B .2C .4D .2 25.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( ) A .6a 2B .12a 2C .18a 2D .24a 26.正方体的八个顶点中有四个恰为正四面体的顶点,则正方体的全面积与正四面体的全面积之 比为( )A .2B .3C .62D .233二、填空题7.正四棱柱的体对角线长为6,侧面对角线长为33,则它的侧面积是.8.若一个圆锥的主视图(如图所示)是边长为3、3、2的三角形,则该圆锥的侧面积为.三、解答题9.已知某几何体的俯视图是如图所示矩形.主视图是一个底边长为8、高为4的等腰三角形, 左视图是一个底边长为6、高为4的等腰三角形. (1)判断该几何体形状; (2)求该几何体的侧面积S .10.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,求这个圆锥的底面直径.一、选择题1.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+65B .30+65C .56+125D .60+12 52.过球面上三点A 、B 、C 的截面到球心的距离是球半径R 的一半,且AB =6,BC =8,AC =10, 则球的表面积是( )A .100πB .300πC .100π3D .4003π3.设球内切于圆柱,则此圆柱的全面积与球表面积之比是( ) A .1:1B .2:1C .3:2D .4:34.正方体的外接球与内切球的球面面积分别为S 1、S 2,则( ) A .S 1=S 2B .S 1=2S 2C .S 1=3S 2D .S 1=4S 2 二、填空题5.如果一个几何体的三视图如图所示(单位:cm ),则此几何体的表面积是cm 2.6.若球的表面积为16π,则与球心距离为3的平面截球所得的圆面面积为.三、解答题7.圆台的上、下底面半径分别是10 cm和20 cm,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?8.一个几何体的三视图如图所示,其中主视图是边长为2a的正三角形,俯视图是边长为a的正六边形,求该几何体的表面积.1.1.7 棱柱、棱锥、棱台和球的体积一、选择题 1.某三棱锥的三视图如图所示,该三棱锥的体积为( )A .1B .13C .16D .232.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比为( )A .1B .12C .32D .343.球的体积是32π3,则此球的表面积是( )A .12πB .16πC .16π3D .64π34.已知圆锥的母线长为8,底面周长为6π,则它的体积是( )A .955πB .955C .355πD .3555.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30 6.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为() A .6πB .43π C .46πD .63π二、填空题7.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是.8.将半径为R的半圆卷成一个圆锥,这个圆锥的体积为.三、解答题9.已知ABCD-A1B1C1D1是棱长为a的正方体,E、F分别为棱AA1与CC1的中点,求四棱锥A1-EBFD1的体积.10.如图所示,一个几何体的主视图与左视图是全等的长方形,长、宽分别是4 cm、2cm,俯视图是一个边长为4cm的正方形.(1)求该几何体的全面积;(2)求该几何体的外接球的体积.一、选择题1.等体积的球与正方体,它们的表面积分别为21S S 、则它们的大小关系是( )A .21S S >B .21S S =C .21S S <D .不能确定2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .8 cm 3B .12 cm 3C .323cm 3D .403cm 3 二、填空题3.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于.4.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为m 3.三、解答题5.如图,已知梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =a ,BC =2a ,∠DCB =60°, 在平面ABCD 内,过点C 作l ⊥CB ,以l 为轴将梯形ABCD 旋轴一周,求所得旋转体的表面积及体积.5 的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个6.如图所示,在边长为2圆,M、N、K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.1.2 点、线、面之间的位置关系1.2.1平面的基本性质与推论一、选择题1.下列命题中,正确命题的个数为( )①平面的基本性质1可用集合符号叙述为:若A ∈l ,B ∈l ,且A ∈α,B ∈α,则必有l ∈α; ②四边形的两条对角线必相交于一点;③用平行四边形表示的平面,以平行四边形的四条边作为平面的边界线.A .0个B .1个C .2个D .3个2.线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂α B .AB /⊂αC .由线段AB 的长度而定D .以上都不对3.下列说法正确的是( )A .梯形一定是平面图形B .四边形一定是平面图形C .三点确定一个平面D .平面α和平面β有不同在一条直线上的三个交点4.已知空间四点A 、B 、C 、D 确定惟一一个平面,那么这四个点中( )A .必定只有三点共线B .必有三点不共线C .至少有三点共线D .不可能有三点共线5.文字语言叙述“平面内有一条直线,则这条直线上的一点必在这个平面内”用符号表述是( )A . ⎭⎪⎬⎪⎫A ⊂αA ⊂a ⇒A ⊂αB . ⎭⎪⎬⎪⎫a ⊂αA ∈a ⇒A ∈α C . ⎭⎪⎬⎪⎫a ∈αA ⊂a ⇒A ∈α D .⎭⎪⎬⎪⎫a ∈αA ∈a ⇒A ⊂α 6.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A .1条或2条B .2条或3条C .1条或3条D .1条或2条或3条二、填空题7.四条线段顺次首尾相连,它们最多可以确定平面的个数为.8.如图所示,用集合符号表示下列图形中元素的位置关系.(1)图①可以用符号语言表示为.(2)图②可以用符号语言表示为.三、解答题9.如图所示正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为CC 1和AA 1的中点,画出平面BED 1F 和平 面ABCD 的交线.一、选择题1.在正方体ABCD-A1B1C1D1中,M、N、Q分别是AB、BB1、C1D1的中点,过M、N、Q的平面与正方体相交,截得的图形是()A.三角形B.四边形C.五边形D.六边形2.下列说法正确的是()A.a⊂α,b⊂β,则a与b是异面直线B.a与b异面,b与c异面,则a与c异面C.a,b不同在平面α内,则a与b异面D.a,b不同在任何一个平面内,则a与b异面二、填空题3.如下图,点P、Q、R、S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是异面直线的一个图是.4.如上图,在正方体ABCD-EFMN中,①BM与ED平行;②CN与BM是异面直线;③CN与BE 是异面直线;④DN与BM是异面直线.以上四个命题中,正确命题的序号是.三、解答题5.过直线l外一点P引两条直线P A、PB和直线l分别相交于A、B两点.求证:三条直线P A、PB、l共面.6.如图,在棱长为a的正方体ABCD-A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l.(1)画出直线l;(2)设l∩A1B1=P,求PB1的长.1.2.2空间中的平行关系第一课时 平行直线一、选择题1.分别和两条异面直线都相交的两条直线的位置关系是( )A .异面B .相交C .平行D .异面或相交2.如图所示,设E 、F 、G 、H 依次是空间四边形ABCD 边AB 、BC 、CD 、DA 上除端点外的点, AE AB =AH AD =λ,CF CB =CG CD =μ,则下列结论中不正确的为( )A .当λ=μ时,四边形EFGH 是平行四边形B .当λ≠μ时,四边形EFGH 是梯形C .当λ≠μ时,四边形EFGH 一定不是平行四边形D .当λ=μ时,四边形EFGH 是梯形3.a 、b 、c 是三条直线,若a 与b 异面,b 与c 异面,则a 与c 的位置关系( )A .异面B .平行C .相交D .都有可能4.过直线l 外两点可以作l 的平行线条数为( )A .1条B .2条C .3条D .0条或1条5.若a 、b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A .相交B .异面C .平行D .异面或相交6.若∠AOB =∠A 1O 1B 1,且OA ∥O 1A 1,OA 与O 1A 1的方向相同,则下列结论中正确的是( )A .OB ∥O 1B 1且方向相同B .OB ∥O 1B 1C .OB 与O 1B 1不平行D .OB 与O 1B 1不一定平行二、填空题7.已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,若AE AB =AH AD =12, CF CB =CG CD =13,则四边形EFGH 形状为. 8.已知棱长为a 的正方体ABCD -A ’B ’C ’D ’中,M 、N 分别为CD 、AD 的中点,则MN 与A ’C ’的 位置关系是.三、解答题9.在平行六面体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点. 求证:∠NMP =∠BA 1D .一、选择题1.若直线a、b与直线l相交且所成的角相等,则a、b的位置关系是()A.异面B.平行C.相交D.三种关系都有可能2.下列说法中正确的是()A.空间中没有交点的两条直线是平行直线B.一条直线和两条平行直线中的一条相交,则它和另一条也相交C.空间四条直线a、b、c、d,如果a∥b,c∥d,且a∥d,那么b∥cD.分别在两个平面内的直线是平行直线二、填空题3.如图,在长方体ABCD-A1B1C1D1中,A1C1∩D1B1=O,E、F分别是B1O和C1O的中点,则在长方体各棱中与EF平行的有条.4.一个正方体纸盒展开后如上图所示,在原正方体纸盒中有如下结论:①AB∥CM;②EF与MN是异面直线;③MN∥CD.以上结论中正确结论的序号为.三、解答题5.求证:过直线外一点有且只有一条直线和这条直线平行.6.已知空间四边形ABCD中,AB≠AC,BD=BC,AE是△ABC的边BC上的高,DF是△BCD的边BC上的中线,求证:AE与DF是异面直线.7.梯形ABCD中,AB∥CD,E、F分别为BC和AD的中点,将平面DCEF沿EF翻折起来,使CD 到C’D’的位置,G、H分别为AD’和BC’的中点,求证:四边形EFGH为平行四边形.。
必修2书本练习立体几何
P81如图,四棱柱的六个面都是平行四边形,这个四棱柱可以由哪个平面图形按怎样的方向平移得到?2. 画一个三棱锥和一个四棱台.3•多面体至少有几个面?这个多面体是怎样的几何体?P101. 指出课本练习1几何体分别由哪些简单几何体构成.2•如图,将平行四边行ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?3•充满气的车轮内胎可以通过什么图形旋转生成?P131画出下列各几何体的三视图.2. 画出下列各几何体的三视图.P221. _________________________________________________________ 用符号表示“点A在直线l上,l在平面〉夕卜” __________________________________________2. 下列叙述中,正确的是( )A 打 P Eot ,Q € w PQ € ac . 丁 AB uot ,C E AB,D E AB,「. CD £ aB 打 P ^a ,Q ^ P ,”•. a c 0 = PQ D 匸 AB u a , AB u B ,二口 c B = AB3. 为什么许多自行车后轮旁只安装一只撑脚?4•四条线段顺次首尾相接,所得的图形一定是平面图形吗? 5•请指出下列说法是否正确,并说明理由 (1)空间3点确定一个平面(2)如果2平面有公共点,那么公共点就不止一个(3)因为平面型斜屋面不与地面相交,所以屋面所在平面与地面不相交。
P271.下列说法正确的有 ___________________ .(填上正确的序号) ①.过直线外一点可作无数条直线与已知直线成异面直线. ② .过直线外一点只有一条直线与已知直线垂 直. ③ .若 a//b , c_a ,贝U c_b . ④ .若 a _ c , b _ c ,贝U a//b .2•如图哪些直线与 AA 是异面直线且相互垂直 3•如果两条直线没有公共点,那么他们具有怎样 的位置关系4. 如果a,b 分别是长方体的两个相邻面的对角线,那么 1.如果三条直线两两相交,那么这三条直线是否共面? 2四条线段首位顺次相连,所得图形一定是平面图形吗?3. 画“三个平面两两相交”的直观图4. 已知空间不共面的四点,过其中任意三点可确定一个平面,由这四个点能确定几个平面? 5如果a,b 是异面直线,直线 c 与a,b 都相交,那么由这三条直线中的任意两条所确定的平 面共有多少个?6. 在体ABCD - AB J C J D J 中,过AD 与BB 1能否作长方体的截面?为什么?7. 如果AB,CD 是两条异面直线,那么 AC,BD 一定是异面直线吗?为什么?8.已知ABC^ - A|B 1C 1D 1是棱长为a 的正方体, (1 )哪些棱所在直线与直线 DC 是异面直线? (2) 哪些棱所在直线与直线 EF 垂直? (3) 直线C 1D 1与EF 的夹角是多少?a,b 具有怎样的位置关系?5•在两个相交的平面内各画一条直线,使它们( 1)相交(2)平行(3)异面E ,F 分别是AA, AB 的中点.9已知ABCD-AB1GD1是棱长为a的正方体,E, F分别是AA, AB的中点,P34i .已知直线l , m , n 与平面爲,指出下列命题是否正确,并说明理由:EiF 分别是GD i ,GC 中点,求证EF//E 1F 110如图ABCD - AB i C i D i 中,求作面 AGM 与底面的交线P3ii .指出下列命题是否正确,并说明理由:(I )如果一条直线不在某个平面内,那么这条直线就与这个平面平行; (2) 过直线外一点有无数个平面与这条直线平行; (3) 过平面外一点有无数条直线与这个平面平行. 2 .已知直线a , b 与平面:•,下列命题正确的是( )A 若 a // :- , b 二:;,则 a // bB 、若 a // :- ,b // :•,贝U a // b3.如图,在长方体 AC i 的侧面和底面所在的平面中:(i )与直线 AB 平行的平面是(2) 与直线 AA i 平行的平面是 ___________________________ (3) 与直线AD 平行的平面是 ____________________________ 4.如图:一块矩形木板 ABCD 的一边AB 在平面〉内, 把这块矩形木板绕 AB 转动,在转动过程中, AB 的对边 CD 是否都和平面:平行?为什么?A i EFBD iBC(1) 若 l 丄•二,则l 与芒相交;4.如图,已知PA 丄:•,PB ± ■-,垂足分别为 A , B ,且〉n - =1 ,求证:丨丄平面APB .P35.BCA =90 , PC _平面ABC ,则在 ABCPAC 的边所在直线中: (1 )与PC 垂直的直线有: __________________________________ (2)与AP 垂直的直线有:___________________________________ 2.在正方体ABCD - AB .GU 中,直线AD ,与平面ABCD 所成的角是P 在平面 ABC 内的射影一定是△ ABC 的 () .外心 D .垂心 :-内与直线a 垂直的直线 ( ) C.是平面〉内的所有直线 D.不存在3.如果PA PB PC 两两垂直,那么A .重心B .内心 C5直线a 与平面〉不垂直,那么在平面A.只有一条B.有无数条1.如图,P36.1 如图,AB // .工,AC // BD , C 三:二,D 三:二,求证:AC = BD .2.: [二CD, "; =EF, E Q F = AB, 求证:(1)四点E F 、G H 共面;(2) BD / 平面 EFGH AC / 平面 EFGH4.在三棱柱 ABC-AQG 中,BC , F ■ BQ i , EF//CQ ,点 M •侧面 AA ,B 1B ,点M , E , F 确定平面 ,试作出平面 与三棱柱 ABC —A ]B 1C 1表面的交线.A C3. E 、F 、G H 分别是空间四边形ABC 啲边AB BC CD DA 的中点,AB//-,求证:CD// EF .5.如图,在正方体ABCD - A1B1C1D!中,求证BD!丄AC .6四棱锥P 一ABCD中,ABCD是矩形,PA _平面ABCD .(1 )指出图中有哪些三角形是直角三角形,并说明理由;(2)若PA = AD =AB,试求PC与平面ABCD所成角的正切值.7如图,AB是圆0的直径,PA垂直于圆0所在平面, 求证:BC丄平面PAC .8已知,直线a〃平面:•,直线b _ :•,求证:a丄b .9在三棱锥P-ABC中,顶点P在平面ABC内的射影是求证:PA = PB = PC .D i C iBC是圆上不同于A, B的任一点,B10•如图,在四棱锥 P — ABCDh M N 分别是AB PC 的中点,若 ABCD 是平行四边形,求证:MN 平面PADP401 •判断下列命题是否正确,并说明理由: (1)若平面a 内的两条直线分别平行于平面 3,则平面a //平面3 ; (2) 若平面a 内有无数条直线平行于平面 3,则平面a //平面3 ;(3 )平行于同一条直线的两个平面平行;(4)过已知平面外一点,有且只有一个平面与已知平面平行; (5 )过已知平面外一条直线,必能作出与已知平面平行的平面. 2•求证:夹在两平行平面间平行线段相等 P431. _______________________________ 设m 、n 是两条不同的直线,a 、3、丫是三个不同的平面,给出下列四个命题中正确 命题的序号是 . ①若 m 丄 a , n // a ,贝U m ± n ; ②若 a // 3 , 3 〃Y , m 丄 a,贝 U m 丄 丫; ③若m // a , a 丄3,贝V m // a ; ④若a 丄丫, 3丄丫,则a // 3 •2.rv =a,〉_求证:a_.4 •如图,a 丄 3 , a Q 3 = l , AB a , AB 丄 I , BC 3 , DE 3 , BC 丄 DE , 求证:AC 丄DE .P441 •已知a , b 是两条不重合的直线, a , 3 , 丫是三个两两不重合的平面,给出下列四PCM B个命题,其中正确命题的序号是 ①若a 丄a, a 丄B ,则圧// :③若〉ll £:,a 二 y.,b ~ I-',则allb ④若〉ll 二 a, 一: 二 b,则allb 2.平面外的一条直线上有两点到这个平面的距离相等,则直线与该平面的位置关系3. 如图,在多面体 ABC-ABC 中,如果在平面 AB 内, / 1+ / 2=180°,在平面 BG 内,/ 3+Z 4=180°,那么平面ABC 与平面ABC 的关系 _____________ .4. 已知两平面:•,一:,直线丨,且:-ll '■ ,^: !::;,l ll'.,切证丨」5•已知AB,AC 分别是平面:-的垂线和斜线,B,C 分别是垂 足和斜足,CD _AC ,求证面 6•在四棱锥 P-ABCD 中,若PA 丄ABCD 且底面是菱形,求证: PAC 丄面PBD 7•如图在正方体AC i 中,E 、F 、G 分别为CC i 、BC 、CD 的中点, P49i .已知正四棱柱的底面边长是 3cm ,侧面的对角线长是 3 5cm ,则这个正四棱柱的侧面积为 ________________________ . 2. 求底面边长为2m ,高为im 的正三棱锥的全面积.3.如果用半径为 r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是多少?求证:⑴面EFGll 面AB i D i ;中, 面角C i -BD-C 的正切值②若 a 丄b , all B,则 b// '■CC i E C8如图正方体 ABCD-A I B I C I D I4. 已知一个正三棱台的两个底面的边长分别是8cm 和18cm,侧棱长为13cm,求它的侧面积。
高二数学同步单元练习(必修2) 专题01 空间几何体的结构(AB卷) Word版含解析
(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,不是三棱柱的展开图的是()答案:C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:选D从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.5.下列命题中正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.6.观察如图的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.答案:B7.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一条棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下答案:B8.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:剩余部分是四棱锥A'-BCC'B'.答案:B9.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.答案:A10.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()解析:动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.答案:C11.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定形状.答案:A12.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体解析:根据棱椎的特点,侧棱不平行,所以肯定得不到棱柱答案:B第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 514.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是________ cm.答案:1315.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定16.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.解析:n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.答案:12三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.18.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底. 19.按下列条件分割三棱台ABC-A 1B 1C 1(不需要画图,各写出一种分割方法即可). (1)一个三棱柱和一个多面体; (2)三个三棱锥.20.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是多少? 解析:如图,MF=OF-O'E=. 在Rt △EMF 中,∵EM=2, ∴EF=.所以斜高是21.如图,在棱锥A-BCD中,截面EFG平行于底面,且AE∶AB=1∶3,已知△DBC的周长是18,求△EFG的周长.解:由已知得EF∥BD,FG∥CD,EG∥BC,∴△EFG∽△BDC.∴.又,∴.∴△EFG的周长=18×=6.22.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.观察如图所示的4个几何体,其中判断正确的是( )A.①是棱台 B.②是圆台C.③是棱锥 D.④不是棱柱2.下列关于母线的叙述正确的是( )①在圆柱上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.A.①② B.②③C.①③ D.②④D ①③中两点的连线可能不在侧面上,因此不一定是母线;②中两点的连线符合母线的条件;④中圆柱任意一条母线与圆柱的轴所在的直线平行,因此圆柱的任意两条母线所在的直线是互相平行的.3.下列判断正确的是( )A.棱柱中只能有两个面互相平行B.底面是正方形的直四棱柱是正四棱柱C.底面是正六边形的棱台是正六棱台D.底面是正方形的四棱锥是正四棱锥B A错误,比如四棱柱;B正确;C错误,还应满足正棱台上下底面中心的连线垂直于底面;D错误,还应满足顶点在底面的投影为底面的中心.4.若一正方体沿着表面几条棱裁开放平得到如图L112所示的展开图,则在原正方体中( )A.AB∥CD B.AB∥EFC.CD∥GH D. AB∥GHC 折回原正方体如图所示,则C与E重合,D与B重合,显然CD∥GH.5.如图所示的四个长方体中,由如图所示的纸板折成的是( )D 根据纸板的折叠情况及特殊面的阴影部分可以判断正确选项是D.6.给出下列三个命题:①底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1 C.2 D.37.如图所示,若Ω是长方体ABCDA1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱 D.Ω是棱台D 根据棱台的定义(侧棱的延长线必交于一点,即棱台可以还原成棱锥)可知,几何体Ω不是棱台.8.下列命题正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点9.如图所示的一个几何体,哪一个是该几何体的俯视图( )答案:C10.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④D11.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )答案:C12.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是( )答案:D第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.关于如图所示的几何体的正确说法为________.(填序号)图L116①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④这是一个被截去一个三棱柱的四棱柱①③④由图易知①③④正确.14.一个无盖的正方体盒子展开后的平面图如图L117所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.15.下列说法中错误的是__________.(填序号)①圆柱的轴截面是过母线的截面中面积最大的;②球的所有截面中过球心的截面的面积最大;③圆台的所有平行于底面的截面都是圆面;④圆锥的所有轴截面都是全等的等腰直角三角形.④根据旋转体的定义可知,圆锥的所有轴截面是全等的等腰三角形.16.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.答案:2 4解析三棱柱的高同侧视图的高,侧视图的宽度恰为底面正三角形的高,故底边长为4.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).18.如图是截去一角的长方体,画出它的三视图.解该图形的三视图如图所示.19.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.解该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.20.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?解由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.21.有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?备特征③.22.如图所示,四边形ABCD绕边AD所在的直线EF旋转,其中AD∥BC,AD⊥CD.当点A选在射线DE上的不同位置时,形成的几何体大小、形状不同,比较其不同点.(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的平行投影可能平行D.若一条线段的平行投影是一条线段,则中点的平行投影仍为这条线段投影的中点答案:D2.在一个几何体的三视图中,正视图和俯视图如图,则相应的侧视图可以为()解析:此空间几何体是由一个半圆锥和一个三棱锥拼接而成的一个简单组合体,由其正视图和俯视图可知其相应的侧视图可为D.答案:D3.(2016山西大同一中高二月考)如果用表示1个立方体,用表示2个立方体叠加,用表示3个立方体叠加,那么如图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是()解析:由题意和图可知,左边和右边各为1个正方体,用表示;当中为3个正方体,用表示;上面为2个正方体,用表示.故选B.答案:B4.(2016山西太原五中高二月考)一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是()A.①B.②C.③D.④解析:其俯视图若为圆,则正视图中的长度与侧视图中的宽度应一样,由图中可知其正视图与侧视图的宽度不一样,因此其俯视图不可能是圆.故选C.答案:C5.(2016安徽蚌埠一中高二期中)已知正六棱柱的底面边长和侧棱长均为2 cm,其三视图中的俯视图如图所示,则其侧视图的面积是()A.4 cm2B.2 cm2C.8 cm2D.4 cm2答案:A6.关于几何体的三视图,下列说法正确的是( )A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的高和宽D.正视图反映物体的高和宽答案:C 由三视图的特点可知选项C正确.7.在原来的图形中,两条线段平行且相等,则在直观图中对应的两条线段( )A.平行且相等 B.平行不相等C.相等不平行 D.既不平行也不相等答案:A 由斜二测画法规则知平行性是不变的,长度的变化在平行时相同,故仍平行且相等.8.一个几何体的三视图如图L121所示,这个几何体可能是一个( )A.三棱锥B.底面不规则的四棱锥C.三棱柱D.底面为正方形的四棱锥答案:C 根据三视图,几何体为一个倒放的三棱柱.9.如图是水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,A′B′,A′D′,A′C′三条线段对应原图形中的线段AB,AD,AC,那么( )A.最短的是ACB.最短的是ABC.最短的是ADD.无法确定谁最短10.如图L123所示,已知四边形ABCD的直观图是一个边长为1的正方形,则原图形的周长为( )A.2 2 B.6 C.8 D.4 2+2图L123图L12411.图L124为水平放置的正方形ABCO,在直角坐标系中点B的坐标为(2,2),则用斜二测画法画出的正方形的直观图中,点B′到O′x′轴的距离为( )A.12B.22C. 1D.2答案:B 因为BC垂直于x轴,所以在直观图中B′C′的长度是1,且与O′x′轴的夹角是45°,所以B′到O′x′轴的距离是22.12.用斜二测画法画出的某平面图形的直观图如图L125所示,AB平行于y′轴,BC,AD平行于x′轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )图L125A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2答案:C 依题意可知∠BAD=45°,则原平面图形为直角梯形,且上下底边的长分别与BC,AD相等,高为梯形ABCD的高的2 2倍,所以原平面图形的面积为8 cm2.第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投影长是10,则皮球的直径是.解析:直径d=10sin 60°=15.答案:1514.在棱长为1的正方体ABCD-A1B1C1D1中,对角线AC1在六个面上的正投影长度总和是.解析:正方体的对角线AC1在各个面上的正投影是正方体各个面上的对角线,因而其长度都为,所以所求总和为6.答案:615.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的.(填入所有可能的几何体前的编号)①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.答案:①②③⑤16.(2012·杭州检测)如图Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:∵O′B′=1,∴O′A′=2,∴在Rt△OAB中,∠AOB=90°,OB=1,OA=22,∴S △AOB =12×1×22= 2.答案: 2三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,原平面图形的面积为________.答案:2+2218.画出下列几何体的三视图.解:几何体的三视图如图所示:19.如图,该几何体是由一个长方体木块锯成的. (1)判断该几何体是否为棱柱;(2)画出它的三视图.解:(1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图.20.如图是某圆锥的三视图,求其底面积和母线长.21.已知正三棱锥VABC的正视图、侧视图和俯视图如图L1215所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.图L1215解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =2 3. 由俯视图可知三棱锥底面三角形的高为2 3×32=3. ∵三棱锥的高在底面上的投影是底面的中心,且其到点A 的距离为底面△ABC 高的23,∴底面中心到点A 的距离为23×3=2,∴侧视图中VA =42-22=2 3,∴S △VBC =12×2 3×2 3=6.22.如图所示,画出水平放置的四边形OBCD 的直观图.。
高一数学必修2立体几何初步单元测试题(修改)
高一数学必修2立体几何初步单元测试题(修改)高一数学必修2立体几何初步单元测试题班级:姓名:学号:一、选择题:1、线段AB 在平面α内,则直线AB 与平面α的位置关系是()A 、AB α? B 、AB α?C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定()A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A BC D -中,下列几种说法正确的是()A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与1BC成60角 5、若直线l ∥平面α,直线a α?,则l 与a 的位置关系是()A 、l ∥aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点6、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行。
其中正确的个数有()A 、1B 、2C 、3D 、47、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b íM ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有()A 、0个B 、1个C 、2个D 、3个8、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为()A 、2VB 、3VC 、4VD 、5V二、填空题:9、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).10、正方体1111ABCD A BC D -中,平面11AB D 和平面1BCD 的位置关系为QC'B'A'CBAB1C 1A 1D 1BAC D11、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,则平行四边形ABCD 一定是 .12、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)三、解答题:13、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.14、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥BD .15、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .H G FE D B A CSDBA16、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点.,求证:(1) C 1O ∥面11AB D ;(2)面1BDC //面11AB D .17、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且ADAFAC AE = 求证:平面BEF ⊥平面ABC .D 1ODB AC 1B 1A 1CFEDBAC高一数学必修2立体几何测试题参考答案一、选择题 ACDDD BBB 二、填空题11、小于 12、平行 13、菱形 14、对角线A 1C 1与B 1D 1互相垂直三、解答题15、解:设圆台的母线长为l ,则圆台的上底面面积为224S ππ=?=上圆台的上底面面积为2525S ππ=?=下,所以圆台的底面面积为29S S S π=+=下上又圆台的侧面积(25)7S l l ππ=+=侧于是725l ππ= 即297l =为所求. 16、证明:,EH FG EH ? 面BCD ,FG ?面BCD∴EH ∥面BCD又EH ? 面BCD ,面BCD 面ABD BD =,∴EH ∥BD17、证明:90ACB ∠=BC AC ∴⊥又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥=AD ∴⊥面SBC19、证明:(1)连结11AC ,设11111ACB D O = 连结1AO , 1111ABCD A BCD -是正方体11A ACC ∴是平行四边形∴A 1C 1∥AC 11AC AC = 又1,O O 分别是11,AC AC 的中点,∴O 1C 1∥AO 且11OC AO = 11AOC O ∴是平行四边形111,C O AO AO ∴? 面11ABD ,1C O ?面11AB D∴C 1O ∥面11AB D(2)1CC ⊥ 面1111A B C D 11!CC B D ∴⊥又1111AC B D ⊥ ,1111B D AC C ∴⊥面 111AC B D ⊥即同理可证11AC AB ⊥,又1111D B AB B =∴1AC ⊥面11AB D 20、证明:(Ⅰ)∵AB ⊥平面BCD ,∴AB ⊥CD ,∵CD ⊥BC 且AB ∩BC=B ,∴CD ⊥平面ABC.又ADAFAC AE = ∴EF ∥CD ,∴EF ⊥平面ABC ,EF ?平面BEF,∴平面BEF ⊥平面ABC.。
人教A版(2019)必修二第八章立体几何初步单元测试卷(1)(基础版解析版
人教A版(2019)必修二第八章立体几何初步单元测试卷(1)(基础版)1.将一个等边三角形绕它的一条边所在的直线旋转一周,所得的几何体包括A. 一个圆柱、一个圆锥B. 一个圆台、一个圆锥C. 两个圆锥D. 两个圆柱2.祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为A. ①②B. ①③C. ②④D. ①④3.如图正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积为A. B. 1 C. D.4.如图,圆柱内有一内切球圆柱侧面和底面都与球面相切,若内切球的体积为,则圆柱的侧面积为A. B. C. D.5.已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.下面三条直线一定共面的是A. a,b,c两两平行B. a,b,c两两相交C. ,c与a,b均相交D. a,b,c两两垂直7.如图所示,用符号语言可表示为A. B. C. D.8.下列四个命题中错误的是A. 若直线a,b互相平行,则直线a,b确定一个平面B. 若四点不共面,则这四点中任意三点都不共线C. 若两条直线没有公共点,则这两条直线是异面直线D. 两条异面直线不可能垂直于同一个平面9.分别在两个相交平面内的两条直线间的位置关系是A. 平行B. 相交C. 异面D. 以上皆不可能10.设,是两个不同的平面,l是一条直线,若,,,则下列四个结论正确的是A. l与m一定平行B. l与m可能相交C. l与m不会异面D. l与m可以垂直11.设a,b是互不垂直的两条异面直线,则下列命题不成立的是A. 存在唯一直线l,使得,且B. 存在唯一直线l,使得,且C. 存在唯一平面,使得,且D. 存在唯一平面,使得,且12.下列四个命题中正确的是A. 若两条直线互相平行,则这两条直线确定一个平面B. 若四点不共面,则这四点中任意三点都不共线C. 若两条直线没有公共点,则这两条直线是异面直线D. 两条异面直线不可能垂直于同一个平面13.在正方体各个表面的对角线中,与直线异面的有__________ 条.14.如果角的两边与角的两边分别平行,则的大小是__________.15.在正三棱锥中,D,E分别是AB,BC的中点,有下列三个论断:①;②平面PDE;③平面其中正确的个数是__________.16.已知异面直线a,b所成的角为,且直线,,则__________,直线OA,OB所成的角为__________.17.空间四边形ABCD中,的中点分别为,且,,,求证:18.如图,三棱锥中,,,E、F、G分别为PA、AB、PB的中点,求证:平面PBC;求证:平面19.如图,在四棱锥中,侧棱底面ABCD,且底面ABCD是边长为1的正方形,侧棱,AC与BD相交于点证明:;求三棱锥的体积.20.如图,将直角边长为的等腰直角三角形ABC,沿斜边上的高AD翻折,使二面角的大小为,翻折后BC的中点为证明:平面ADM;求点D到平面ABC的距离.21.如图,四棱锥的底面是正方形,底面ABCD,点E在棱PB上.求证:平面平面PDB;当,且E为PB的中点时,求AE与平面PDB所成的角的大小.22.如图所示,在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面底面求证:平面VAD;求平面VAD与平面VDB所成的二面角的正切值.答案和解析【答案】1. C2. D3. A4. C5. B6. C7. B8. C9. ABC10. AC11. ABD12. ABD13. 614. 或15. 216. 或17. 证明:如图,因为分别为的中点,所以,,所以或其补角为异面直线AC和BD所成的角.又,,,所以,所以,即AC和BD所成的角为,所以18. 证明:、F分别为PA、AB的中点,,又平面PBC,平面PBC,平面,,G为PB的中点,,,又,平面ACG,平面ACG,平面ACG,又,平面19. 证明:平面ABCD,平面ABCD,,四边形ABCD是正方形,,又平面SAC,平面SAC,,平面SAC,平面SAC,解:四边形ABCD是边长为1的正方形,20. 证明:折叠前,AD是斜边上的高,是BC的中点,,又因为折叠后M是BC的中点,,折叠后,,又,且AM,平面ADM,平面ADM;解:设点D到平面ABC的距离为d,由题意得,由已知得,则,,,,,21. 证明:四边形ABCD是正方形,,底面ABCD,底面ABCD,,又,PD,平面PDB,平面PDB,且平面AEC,平面平面PDB;解:设,连接OE,由知平面PDB于O,为AE与平面PDB所的角,,E分别为DB、PB的中点,,,又底面ABCD,底面ABCD,底面ABCD,,在中,,,即AE与平面PDB所成的角的大小为22. 证明:底面ABCD是正方形,又平面底面ABCD,平面底面,底面ABCD,平面取VD的中点E,连接AE,BE,是正三角形,,平面VAD,平面VAD,,又,AB,平面ABE,平面底面ABE,,就是平面VAD与平面VDB所成的二面角的平面角.在中,平面VAD与平面VDB所成的二面角的正切值为【解析】1. 【分析】本题考查的知识点是旋转体的结构特征,熟练掌握旋转体的结构特征是解答本题的关键,属于基础题.由等边三角形的结构特点,可得旋转体.【解答】解:将一个等边三角形绕它的一条边所在的直线旋转一周,所得的几何体是共用一个底面的两个圆锥.故选2. 【分析】本题考查满足祖暅原理的两个几何体的判断,是基础题.利用祖暅原理分析题设中的四个图形,能够得到在①和④中的两个几何体满足祖暅原理.【解答】解:设截面与底面的距离为h,则①中截面内圆半径为h,则截面圆环的面积为②中截面圆的半径为,则截面圆的面积为③中截面圆的半径为,则截面圆的面积为④中截面圆的半径为,则截面圆的面积为,所以①④中截面的面积相等,故选3. 【分析】本题考查斜二测画法的应用,属于基础题.将直观图还原成原来的图形,即平行四边形,由题意求出直观图中OB的长度,根据斜二测画法,求出原图形的高,即可求出原图形的面积.【解答】解:由题意正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,所以原图形为平行四边形,且OA为其中一边,OB是其一条对角线直观图中:计算得,所以由斜二测画法知,对应原图形,即平行四边形的高为,所以原图形的面积为:故选4. 【分析】本题考查的知识点是球的体积与圆柱的表面积公式,属于基础题.根据已知得到球的半径.【解答】解:由,可得球的半径,可得圆柱的高为,圆柱的底面周长为,则圆柱的侧面积为故选5. 【分析】本题借助空间的位置关系,考查了充分条件和必要条件,属于基础题.由m,n,l在同一平面,则m,n,l两两相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行,根据充分条件,必要条件的定义即可判断.【解答】解:空间中不过同一点的三条直线m,n,l,若m,n,l在同一平面,则m,n,l两两相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行.故充分性不成立;若m,n,l两两相交,则m,n,l在同一平面,故必要性成立.故m,n,l在同一平面”是“m,n,l两两相交”的必要不充分条件,故选:6. 【分析】本题主要考查平面的基本性质,属于基础题.根据空间公理1、公理2即可判断.【解答】解:因为两条平行直线确定一个平面,根据题意得,a与b确定一个平面,又因为c与a,b均相交,所以直线a,b,c一定共面.故选7. 【分析】本题考查直线与平面、平面与平面的位置关系的符号语言的表示,属于基础题. 根据图示的位置关系易得和平行,l在内,再用数学符号语言表达即可.【解答】解:由图可得:,,所以,故选8. 【分析】本题考查平面的基本性质,异面直线,属于基础题.根据相关的知识逐项进行判断即可.【解答】解:A、过两条平行直线,有且只有一个平面,故A正确;B、如果四点中存在三点共线,则四点共面,故B正确;C、若两条直线没有公共点,则这两条直线异面或平行,故C错误;D、垂直于同一个平面的两条直线平行,两直线共面,故D正确.故选9. 【分析】本题考查空间中两直线的位置关系,属于基础题.利用空间中两直线的位置关系,逐一判定即可.【解答】解:当两直线分别平行于交线时,这两条直线平行,A正确;两条直线可以交于交线上一点,故可以相交,B正确;一条直线和交线平行,另一条直线在另一个平面内过交线上一点和交线外一点时,两直线异面,C正确;故选:10. 【分析】本题考查空间中直线和直线、线面平行的性质的应用,属于基础题.根据过l作平面与、相交,交线分别为a,b利用线面平行的性质易得,从而可得答案.【解答】解:过l作平面与、相交,交线分别为a,b,可得,,,,,,,所以。
新人教版高一数学必修2试题立体几何
高一数学(必修2)立体几何试题参考公式一、选择题(本大题共10小题,每小题4分,共40分,将答案直接填在下表中)(1)下列命题为真命题的是()(A)平行于同一平面的两条直线平行(B)垂直于同一平面的两条直线平行(C)与某一平面成等角的两条直线平行(D)垂直于同一直线的两条直线平行(2)若一个角的两边分别和另一个角的两边平行,那么这两个角()(A)相等(B)互补(C)相等或互补(D)无法确定(3)正三棱锥的底面边长为2,侧面均为直角三角形,则此棱锥的体积为()(A(B(C(D(4)已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()(A)2对(B)3对(C)4对(D)5对(5)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()(A)2(B)12+(C)22+(D)1(C)(1,3,5)(D)(-1,-3,5)二、填空题(本大题共6小题,每小题4分,共24分)(11)底面直径和高都是4cm的圆柱的侧面积为cm2.(12)若两个球的表面积之比是4∶9,则它们的体积之比是.(13)图①中的三视图表示的实物为_____________;PA B CD图②为长方体积木块堆成的几何体的三视图,此几何体共由_______块木块堆成.三、解答题(本大题共4小题,共36分.解答应写出文字说明、演算步骤或推证过程) (17)(本小题满分9分)如图,O 是正方形ABCD 的中心, PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)P A ∥平面BDE ;(Ⅱ)平面P AC ⊥平面BDE .(18)(本小题满分9分)已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和. (Ⅰ)求该圆台的母线长; (Ⅱ)求该圆台的体积.高一数学(必修2)训练题参考答案一、选择题二、填空题(11)π16 (12)8∶27 (13)圆锥;4 (14)60° (15)(0,3) (16)8 三、解答题 (17) 证明:(Ⅰ)连结EO ,在△P AC 中,∵O 是AC 的中点,E 是PC ∴OE ∥AP . 又∵OE ⊂平面BDE , P A ⊄平面BDE , ∴P A ∥平面BDE .(Ⅱ)∵PO ⊥底面ABCD ,∴PO ⊥BD .图①正视图 左视图俯视图 正视图 左视图又∵AC ⊥BD ,且AC PO =O , ∴BD ⊥平面P AC . 而BD ⊂平面BDE , ∴平面P AC ⊥平面BDE .(18)解:(Ⅰ)设圆台的母线长为l ,则圆台的上底面面积为224S ππ=⋅=上, 圆台的下底面面积为2636S ππ=⋅=下, 所以圆台的底面面积为40S S S π=+=下上 又圆台的侧面积(26)8S l l ππ=+=侧,于是840l ππ=,即5l =为所求.(Ⅱ)由(Ⅰ)可求得,圆台的高为3h ==.∴ (13V S S h =++圆台下上=(143633ππ+⋅=52π.。
高中数学必修2立体几何部分试卷及答案
高中数学必修2立体几何部分试卷试卷满分100分。
时间70分钟考号 班级 姓名第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 2、过直线l 外两点作与直线l 平行的平面,可以作( )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个 3、正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为 ( )A .41 B .21 C .43 D .49 4、右图是一个实物图形,则它的左视图大致为 ( )5、已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是 ( )A .2B .25C .3D .27 6、已知α、β是平面,m 、n 是直线,则下列命题不正确...的是 ( ) A .若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβ C .若,//,m m n n αβ⊥⊂,则αβ⊥ D .若//,m n ααβ=I,则//m n7、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是 ( )A .4πa 2 B.5 πa 2 C. 8πa 2 D.10πa 28、如右下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=o,如图所示。
若将ABC ∆绕BC 旋转一周,则所形成的旋转体的体积是( ) (A )92π (B )72π (C )52π (D )32π(第8题图)9、如左上图是由单位立方体构成的积木垛的三视图,据此三视图可知,构成这堆积木垛的单 位正方体共有 ( ) A .6块 B .7块 C .8块 D .9块10、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个第Ⅱ卷(非选择题 共60分)二、填空题(每小题4分,共16分)11、已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集。
高中数学人教课标实验A版必修2第一章《空间几何体》同步练习(附答案)
r 2 2r 4 3
3
2(r 2 1) 2 1 48
∴ r 2 1 , r 1 时, V max
2
4
2
12
例 8 球、正方体、等边圆柱(轴截面为正方形,即 l 2r )等边圆锥(轴截
面为正 , l 2r )体积相等,则表面积的大小关系. 解:
设体积为 V,正方体棱长为 a ,圆柱底面半径为 r1 ,圆锥底面半径为 r2 ,球 半径为 r3
V3
3
4
∴ S3 S1 S2 S4
例 9 有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相 切,第三个球过这个正方体的各个顶点.
(1)求这个三个球的表面积之比 (2)求这个三个球的体积之比 解:
(1)
① 2r
a, r
a 2 , S1
a2
② 2r
2a, r
2 a , S2
2 a2
2
③ 2r
解: 主要研究长方体的表面展开图
(1)沿 B1C1, C1D1 , D1A1 展开, AC1
32 32 3 2
(2)沿 BB1,B1C1,C1C 展开, AC1 1 52
26
(3)沿 BC ,C1C , C1B1展开, AC1 22 42 2 5 ∴ AC1 最小为 2
例 11 正四棱台两底面面积分别为 25cm2 ,49cm 2 ,侧棱长为 3 2cm,求这个 棱台的体积,表面积以及截得这个棱台的原棱锥的高.
.
解: Va 1 b 2 a 3
Vb 1 a 2b 3
Vc
1 (
ab
)2
3
a2 b2
a2 b2
3
a 2b2 a2 b2
Vb Va
高中数学必修2立体几何模块测试卷(含参考答案)
高中数学立体几何测试题(理科)一、选择题:1.下列说法不正确的是A 圆柱的侧面展开图是一个矩形B 圆锥中过轴的截面是一个等腰三角形C 直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥D 圆台平行于底面的截面是圆面2、下面表述正确的是A、空间任意三点确定一个平面B、分别在不同的三条直线上的三点确定一个平面C、直线上的两点和直线外的一点确定一个平面D、不共线的四点确定一个平面3、“a、b是异面直线”是指①a∩b=∅,且a和b不平行;②a⊂平面α,b⊂平面β,且α∩β=∅;③a⊂平面α,b⊂平面β,且a∩b=∅;④a⊂平面α,b ⊄平面α;⑤不存在平面α,使得a⊂平面α,且b⊂平面α都成立。
上述说法正确的是A ①④⑤B ①③④C ②④D ①⑤4、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是A、垂直B、平行C、相交不垂直D、不确定5、下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。
A 、0B 、1C 、2D 、36、一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是A 、异面B 、相交C 、平行D 、不确定 7、直线a 与b 垂直,b 又垂直于平面α,则a 与α的位置关系是A 、a α⊥B 、//a αC 、a α⊆D 、a α⊆或//a α 8、如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A 、平行B 、相交C 、平行或相交D 、无法确定 9.已知二面角α-AB -β为︒30,P 是平面α内的一点,P 到β的距离为1.则P 在β内的射影到AB 的距离为( ). A .23B .3C .43 D .2110、若,m n 表示直线,α表示平面,则下列命题中,正确命题的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭;②//m m n n αα⊥⎫⇒⎬⊥⎭;③//m m n n αα⊥⎫⇒⊥⎬⎭;④//m n m n αα⎫⇒⊥⎬⊥⎭A 、1个B 、2个C 、3个D 、4个 二、填空题:11、三条两两相交的直线可确定12.水平放置的△ABC 的斜二测直观图如图所示,已知A′C′=3,B′C′=2。
(必考题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(3)
一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QABQAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π3.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB//α;D .直线OA 与平面α所成角的正弦值的最大值为17. 4.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .13 B .36C .33 D .1165.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π6.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C 27D .11117.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A.263+B.463+C.4263-D.2263-8.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A.8,14253V L==+B.8,1425V L==+C.8,16253V L==+D.8,1625V L==+9.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.23D.210.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .311.平行六面体1111ABCD A B C D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.15.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.16.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______18.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________.19.如图,在直角梯形ABCD 中,//,,2,3,60AB CD AB AD CD AB ABC ⊥==∠=°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_________________.20.将底面直径为8,高为23为______.三、解答题21.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.22.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值; (3)求三棱锥P BCE -的体积.23.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED =3,BE =5.(1)求证:平面EAD ⊥平面ABCD ; (2)求三棱锥F -BCD 的体积.24.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.25.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//AD BC ,6BC =,2PA AD CD ===,E 是BC 上一点且23BE BC =,PB AE ⊥.(1)求证:AB ⊥平面PAE ; (2)求点C 到平面PDE 的距离.26.如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,23BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)若BC BE =,证明:平面ABD ⊥平面ACE ;(2)当三棱锥A BCE -的体积最大时,求平面ADE 与平面ABC 所成的锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM=,再根据12 QAB QACQBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得到AB BC AC==,然后根据22222213QA QB QCAB BC CA++=++,93ABCS=,求得6,23AB AQ==,在AOQ△中,由222AO OQ AQ=+求解半径即可.【详解】如图所示:作QM AB⊥与M,连接PM,因为PQ⊥平面ABC,所以PQ AB⊥,又QM PQ Q⋂=,所以AB⊥平面PQM,所以AB PM⊥,所以112122QABPABAB QMSS AB PM⨯⨯==⨯⨯△△,2PM QM=,因为12QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得AB BC AC==,又因为22222213QA QB QCAB BC CA++=++,93ABCS=所以21sin60932ABCS AB=⨯⨯=解得6,3AB AQ==所以3,23,3QM PM PQ===,设外接球的半径为r,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..3.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB//α,得C 错误;设AB a ,结合题意知AB α⊥时,直线OA 与平面α所成角最大,计算此时正弦值,即得D 正确. 【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所22OA OB AB =+,又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB//α,故C 不正确; 设AB a ,则4OB a =,2217OA AB OB a =+,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α1717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.4.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 63EF FED DE ∠===. 所以异面直线AB 与DE 所成角的余弦值为36. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.6.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒=22211cos 11(7)2BC PCB PC ∠===+, 所以异面直线PC 与AD 所成角的余弦值为21111. 故选:D . 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.7.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 222522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=,DEF的外接圆的半径为552 2sin310DFrDEF===∠,则球心到DEF外心的距离为2223R r-=,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+的距离为263+.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.8.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项.【详解】在如图所示的正方体1111ABCD A B C D-中,P,E分别为11,B C BC的中点,该几何体为四棱锥P ABCD-,且PE⊥平面ABCD.由三视图可知2AB=,则5,3PC PB PD PA====,则21825681425,2233L V=++=+=⨯⨯=.故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.10.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 11.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1A O ⊥平面11AB D , 所以222222*********1,,AA AO AO A D AO OD A B AO OB =+=+=+ 所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11A O ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心, 故选:C. 【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.12.C解析:C 【分析】设AH a =,则3BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB , 又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AHa =-=-Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则2OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.14.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.15.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,1222PE AC a ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.16.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π 【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积.【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】 关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得172sin 22BC r BAC ==∠,解得334r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =. 所以1122sin 3442223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△. 因为112742333D ABC ABC V S AD AD -=⋅⋅=⨯⨯=△,所以144AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,111428EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又 解析:[32,25]【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得.【详解】如下图所示,连MN ,EF ,1A D ,EMM ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =,∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NM CM M =, ∴平面//NMC 平面1C EF .P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN ,∴点P 必在线段EF 上.在Rt △11C D E 中,222211114225C E C D D E =+=+=同理,在Rt △11C D F 中,可得125C F =, ∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长. ()222211(25)232C O C E OE =-=-=1125C E C F ==∴线段1C P长度的取值范围是.故答案为:【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置.19.【分析】此梯形以AD所在直线为轴旋转一周得到的是圆台然后根据圆台的侧面积和表面积公式进行计算【详解】将此梯形以AD所在直线为轴旋转一周得到的是圆台其中圆台的上底半径为r=CD=2下底半径为R=AB=解析:23π【分析】此梯形以AD所在直线为轴旋转一周,得到的是圆台,然后根据圆台的侧面积和表面积公式进行计算.【详解】将此梯形以AD所在直线为轴旋转一周,得到的是圆台,其中圆台的上底半径为r=CD=2,下底半径为R=AB=3,母线BC=2,∴圆台的上底面积为πr2=4π,下底面积为πR2=9π,圆台的侧面积为(πr+πR)•BC=π(2+3)×2=10π,∴圆台的表面积为4π+9π+10π=23π,故答案为23π.【点睛】本题考查圆台表面积的计算,利用旋转体的定义确定该几何体是圆台是解决本题的关键.20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h底面半径为r用r表示h从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h底面半径为r则解得;所以;当时取解析:【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h,底面半径为r,用r表示h,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423r =,解得33h r =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:3π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(1)4;(2)60︒;(3)33. 【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值.【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V S CC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1B C 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角 3tan 2,cos 2BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.22.(1)证明见解析;(2)155;(3)12. 【分析】(1)连接AC 交BD 于点O ,连接PO ,推导出BD ⊥平面PAC ,进而可得出PC BD ⊥;(2)过点O 在平面PAC 内作OF PC ⊥,垂足为点F ,连接BF ,推导出OFB ∠为二面角B PC E --的平面角,计算出OF 、BF ,可计算出cos OFB ∠,即可得解; (3)计算出PCE 的面积,利用锥体的体积公式可得出13P BCE B PCE PCE V V S OB --==⋅△,即可得解. 【详解】证明:(1)连接AC 交BD 于O 点,连接PO ,∵四边形ABCD 是菱形,AC BD ∴⊥,则O 是BD 的中点,PB PD =,PO BD ∴⊥,又AC PO O =,AC 、OP ⊂平面PAC ,BD ∴⊥平面PAC ,又PC ⊂平面PAC ,PC BD ∴⊥;(2)由(1)知BO ⊥平面PAC ,PC ⊂平面PAC ,则OB PC ⊥,过O 在平面PAC 内作OF PC ⊥于F ,连接BF ,由OB OF O ⋂=,则PC ⊥平面OBF ,BF ⊂平面OBF ,得BF PC ⊥,故OFB ∠为二面角B PC E --的平面角, 四边形ABCD 是菱形,60BAD ∠=,ABD ∴为等边三角形,2BD AB AD ∴===,112OB BD ∴==,223OC OA AB OB ==-= OB ⊥平面PAC ,OP ⊂平面PAC ,OP OB ∴⊥,223OP PB OB ∴-= 3OA =3OP =6PA =222OP PA OA +∴=,即OA OP ⊥,即PO AC ⊥,3366PO OC OF PC ⋅⨯∴===,222261012BF BO OF ⎛⎫=+=+= ⎪ ⎪⎝⎭, 故615cos 510OF OFB BF ∠===,即二面角B PC E --的余弦值是155; (3)E 为PA 的中点,11333222PCE PAC POA S S S ∴====△△△, 又OB ⊥平面PAC ,113113322P BCE B PCE PCE V V S OB --∴==⋅=⨯⨯=△. 【点睛】方法点睛:求二面角常用的方法:(1)几何法:二面角的大小常用它的平面角来度量,平面角的作法常见的有: ①定义法;②垂面法,注意利用等腰三角形的性质;(2)空间向量法:分别求出两个平面的法向量,然后通过两个平面法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求二面角是锐角还是钝角.。
高中数学必修2立体几何练习题附答案
高中数学必修2立体几何练习题一.单选题(共__小题)1.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是()A.2B.C.3D.2.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°3.如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A.2B.S0=C.2S0=S+S′D.S02=2S"S4.把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,则下列命题:①以A、B、C、D四点为顶点的棱锥体积最大值为;②当体积最大时直线B D和平面A B C所成的角的大小为45°;③B、D两点间的距离的取值范围是(0,];④当二面角D-A C-B的平面角为90°时,异面直线B C与A D所成角为45°.其中正确结论个数为()A.4个B.3个C.2个D.1个5、把一个皮球放入如图所示的由8根长均为20c m的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径()A.l0cm B.10cm C.10cm D.30cm6.如图,正方体A B C D-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则A M+M D1的最小值为()A.B.C.D.27.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.8.平行六面体A B C D-A1B1C1D1中A B=1,A D=2,A A1=3,∠B A D=90°,∠B A A1=∠D A A1=60°,则A C1的长为()A.B.C.D.9、如图,正方体A B C D-A1B1C1D1的棱长为2,动点P在对角线B D1上,过点P作垂直于B D1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设B P=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]10.一个棱柱为正四棱柱的充要条件是()A.底面是正方形,有两个侧面垂直与底面B.底面是正方形,有两个侧面是矩形C.底面是菱形,且过一个顶点的三条棱两两垂直D.各个面都是矩形的平行六面体二.填空题(共__小题)11.在一个棱长为6的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,则正方体的棱长的最大值为______•12.一个圆柱的底面面积是16,侧面展开图是正方形,则该圆柱的侧面积是______.13.若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是______.14.一平面与正方形的十二条棱所成的角都等于α,则s i n12α=______.15.一个正四棱锥的中截面(过各侧棱中点的截面)的面积为Q,则它的底面边长为______.16.若一个n面体中共有m个面是直角三角形,则称这个n面体的“直度”为.由此可知,四棱锥“直度”的最大值为______.17.在三棱锥P-A B C中,给出下列四个命题:①如果P A⊥B C,P B⊥A C,那么点P在平面A B C内的射影是△A B C的垂心;②如果点P到△A B C的三边所在直线的距离都相等,那么点P在平面A B C 内的射影是△A B C的内心;③如果棱P A和B C所成的角为60?,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1;④三棱锥P-A B C的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于;⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s.其中正确命题的序号是______.18.若长方体的三个面的面积分别为6c m2,3c m2,2c m2,则此长方体的对角线长为______.19.已知长方体A B C D-A1B1C1D1的体积为216,则四面体A B1C D1与四面体A1B C1D 的重叠部分的体积为______.20.一个长方体共一顶点的三条棱长为1,2,3,则这个长方体对角线的长是______三.简答题(共__小题)21.已知正四棱台两底面边长分别为a和b(a<b).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.22.试构造出一个三棱锥S-A B C,使其四个面中成直角三角形的个数最多,作出图形,指出所有的直角,并证明你的结论.23、已知三棱锥S-A B C的三条侧棱S A、S B、S C两两互相垂直且长度分别为a、b、c,设O为S在底面A B C上的射影.求证:(1)O为△A B C的垂心;(2)O在△A B C内;(3)设S O=h,则++=.参考答案一.单选题(共__小题)1.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是()A.2B.C.3D.答案:A解析:解:设正四棱台的高为h,斜高为x,由题意可得4••(3+6)x=32+62,∴x=.再由棱台的高、斜高、边心距构成直角梯形、可得h==2,故选A.2.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-A B C D中,过P作P O⊥平面A B C D于O,连接A O则A O是A P在底面A B C D上的射影.∴∠P A O即为所求线面角,∵A O=,P A=1,∴c o s∠P A O==.∴∠P A O=45°,即所求线面角为45°.故选C.3.如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A.2B.S0=C.2S0=S+S′D.S02=2S"S答案:A解析:解:不妨设棱台为三棱台,设棱台的高为2r,上部三棱锥的高为a,根据相似比的性质可得:消去r,然后代入一个方程,可得2故选A.4.把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,则下列命题:①以A、B、C、D四点为顶点的棱锥体积最大值为;②当体积最大时直线B D和平面A B C所成的角的大小为45°;③B、D两点间的距离的取值范围是(0,];④当二面角D-A C-B的平面角为90°时,异面直线B C与A D所成角为45°.其中正确结论个数为()A.4个B.3个C.2个D.1个答案:C解析:解:把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,如图所示,则下列命题:①以A、B、C、D四点为顶点的棱锥,当侧面A C D⊥底面A B C时,体积最大值==,正确;②由①可知:当体积最大时直线B D和平面A B C所成的角的大小为∠O B D=45°,正确;③B、D两点间的距离的取值范围是(0,),因此不正确;④当二面角D-A C-B的平面角为90°时,由①可知:异面直线B C与A D所成角为90°,因此不正确.综上可知:只有①②正确.故选:C.5、把一个皮球放入如图所示的由8根长均为20c m的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径()A.l0cm B.10cm C.10cm D.30cm答案:B解析:解:因为底面是一个正方形,一共有四条棱,皮球心距这四棱最小距离是10,∵四条棱距离正方形的中心距离为10,所以皮球的表面与8根铁丝都有接触点时,半径应该是边长的一半∴球的半径是10故选B.6.如图,正方体A B C D-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则A M+M D1的最小值为()A.B.C.D.2答案:A解析:解:将平面A B A1和平面B C D D1A1放在同一个平面上,如图,则A M+M D1的最小值即为线段A D1,在直角三角形A E D1中,A E=,E D1=,∴A D1==,故选A.7.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.答案:B解析:解:如图所示:A.如图(1)符合条件但却不是棱柱;B.图中P A⊥底面A B C,A B是圆O的直径,点C是圆上的一点,则四个面都是直角三角形,符合题意;C.其侧棱不相较于一点,故不是棱台;D.以直角三角形的斜边A B为轴旋转得到的是两个对底的圆锥.综上可知:只有B正确.故选B.8.平行六面体A B C D-A1B1C1D1中A B=1,A D=2,A A1=3,∠B A D=90°,∠B A A1=∠D A A1=60°,则A C1的长为()A.B.C.D.答案:B解析:解:平行六面体,如图所示:∵∠B A A1=∠D A A1=60°∴A1在平面A B C D上的射影必落在直线A C上,∴平面A C C1A1⊥平面A B C D,∵A B=1,A D=2,A A1=3,∵=∴||2=()2=||2+||2+||2+2+2+2=1+9+4+0+2×1×3×+2×2×3×=23,∴||=,∴A C1等于.故选:B.9、如图,正方体A B C D-A1B1C1D1的棱长为2,动点P在对角线B D1上,过点P作垂直于B D1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设B P=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]答案:D解析:解:∵正方体A B C D-A1B1C1D1的棱长为2,∴正方体的对角线长为6,∵x∈[1,5],∴x=1或5时,三角形的周长最小,设截面正三角形的边长为t,则由等体积可得,∴t=,∴y m i n=;x=2或4时,三角形的周长最大,截面正三角形的边长为2,∴y m a x=6.∴当x∈[1,5]时,函数y=f(x)的值域为[3,6].故选D.10.一个棱柱为正四棱柱的充要条件是()A.底面是正方形,有两个侧面垂直与底面B.底面是正方形,有两个侧面是矩形C.底面是菱形,且过一个顶点的三条棱两两垂直D.各个面都是矩形的平行六面体答案:C解析:解:若底面是正方形,有相对的两个侧面垂直于底面,另外两个侧面不垂直于底面,则棱柱为斜棱柱,故A不满足要求;若底面是正方形,有相对的两个侧面是矩形,另外两个侧面是不为矩形的平行四边形,则棱柱为斜棱柱,故B不满足要求;底面是菱形,且过一个顶点的三条棱两两垂直,则底面为正方形,侧棱与底面垂直,此时棱柱为正四棱柱,故C满足要求;各个面都是矩形的平行六面体,其底面可能不是正方形,故D不满足要求;故选C二.填空题(共__小题)11.在一个棱长为6的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,则正方体的棱长的最大值为______•答案:解析:解:设球的半径为r,由正四面体的体积得:,所以r=,设正方体的最大棱长为a,所以,,a=故答案为:12.一个圆柱的底面面积是16,侧面展开图是正方形,则该圆柱的侧面积是______.答案:64π解析:解:圆柱的侧面展开图是正方形,如图;设圆柱的底面半径为r,高为l,∵圆柱的底面面积是16,∴πr2=16,∴r=;∴l=2πr=2π×=8,∴圆柱的侧面积是l2==64π;故答案为:64π.13.若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是______.答案:(0,)解析:解:根据条件,四根长为1的直铁棒与两根长为x的直铁棒要组成三棱锥形的铁架,有以下两种情况:①底面是边长为1的正三角形,三条侧棱长为1,x,x,如图,此时x应满足:∵A D=,S D=,且S D<S A+A D,∴<1+,即x2<2+,∴<x<;②构成三棱锥的两条对角线长为x,其他各边长均为1,如图所示,此时应满足0<x<;综上,x的取值范围是(0,).故答案为:(0,).14.一平面与正方形的十二条棱所成的角都等于α,则s i n12α=______.答案:解析:解:∵一平面与正方形的十二条棱所成的角都等于α,∴正方体的面对角线与棱的夹角,∵设正方体的棱长为1,∴A到三角形A B1D1中心的距离为:×=,∴A1点到面A B1D1距离为:=,∴s i nα=∴s i n12α=()6=,故答案为:15.一个正四棱锥的中截面(过各侧棱中点的截面)的面积为Q,则它的底面边长为______.答案:解析:解:∵四棱锥的中截面与底面相似,且相似比为1:2,面积比为1:4,∴若正四棱锥的中截面的面积为Q,则底面面积为4Q,∵底面为正方形,面积为边长的平方,∴它的底面边长为2故答案为216.若一个n面体中共有m个面是直角三角形,则称这个n面体的“直度”为.由此可知,四棱锥“直度”的最大值为______.答案:解析:解:∵四棱锥有5个面组成,∴n=5,当四棱锥的底面是矩形,一条侧棱与底面垂直时,四棱锥的4个侧面都是直角三角形,∴m=4,∴四棱锥“直度”的最大值为,故答案为:.17.在三棱锥P-A B C中,给出下列四个命题:①如果P A⊥B C,P B⊥A C,那么点P在平面A B C内的射影是△A B C的垂心;②如果点P到△A B C的三边所在直线的距离都相等,那么点P在平面A B C 内的射影是△A B C的内心;③如果棱P A和B C所成的角为60?,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1;④三棱锥P-A B C的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于;⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s.其中正确命题的序号是______.答案:①④⑤解析:解:①若P A⊥B C,P B⊥A C,因为P H⊥底面A B C,所以A H⊥B C,同理B H⊥A C,可得H是△A B C的垂心,正确.②若P A=P B=P C,易得A H=B H=C H,则H是△A B C的外心,不正确.③如果棱P A和B C所成的角为60°,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1或;不正确.④如果三棱锥P-A B C的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于,正确.⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s,正确.故答案为:①④⑤.18.若长方体的三个面的面积分别为6c m2,3c m2,2c m2,则此长方体的对角线长为______.答案:解:设长方体的三度分别为:a,b,c,由题意可知:a b=6,b c=2,a c=3所以,a=3,b=2,c=1,所以长方体的对角线长为:故答案为:.19.已知长方体A B C D-A1B1C1D1的体积为216,则四面体A B1C D1与四面体A1B C1D 的重叠部分的体积为______.答案:36解析:解:如图所示,四面体A B1C D1与四面体A1B C1D的重叠部分是以长方体各面中心为定点的多面体,摘出如图,设长方体的过同一顶点的三条棱长分别为a,b,c,则a b c=216,重叠部分的体积为两个同底面的四棱锥体积和,等于.故答案为:36.20.一个长方体共一顶点的三条棱长为1,2,3,则这个长方体对角线的长是______答案:解:因为在长方体中,底面对角线的平方是底面长和宽的平方和,体对角线的平方等于面对角线的平方加上高的平方;长方体对角线的长:故答案为:三.简答题(共__小题)21.已知正四棱台两底面边长分别为a和b(a<b).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.答案:解:(1)如图所示,∵P O⊥平面A B C D,侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,∴∠P A O=45°,∴P O=O A=,P O1=O1A1=a.分别取A B,A1B1的中点E,E1,连接O E,O1E1.则P E==,P E1==.∴斜高E E1=P E-P E1=.∴棱台的侧面积S侧==;(2)∵棱台的侧面积等于两底面面积之和,∴=a2+b2,∴E E1=.∴O O1===.22.试构造出一个三棱锥S-A B C,使其四个面中成直角三角形的个数最多,作出图形,指出所有的直角,并证明你的结论.答案:解:如图,S A⊥平面A B C,∠A B C=90°,则∠S A C=∠S A B=90°,又A B⊥B C,所以B C⊥S B,所以∠S B C=90°,即四个面S A B,S A C,S B C,A B C为直角三角形.23、已知三棱锥S-A B C的三条侧棱S A、S B、S C两两互相垂直且长度分别为a、b、c,设O为S在底面A B C上的射影.求证:(1)O为△A B C的垂心;(2)O在△A B C内;(3)设S O=h,则++=.答案:证明:(1)∵S A⊥S B,S A⊥S C,∴S A⊥平面S B C,B C⊂平面S B C.∴S A⊥B C.而A D是S A在平面A B C上的射影,∴A D⊥B C.同理可证A B⊥C F,A C⊥B E,故O为△A B C的垂心.(2)证明△A B C为锐角三角形即可.不妨设a≥b≥c,则底面三角形A B C中,A B=为最大,从而∠A C B为最大角.用余弦定理求得c o s∠A C B=>0,∴∠A C B为锐角,△A B C为锐角三角形.故O在△A B C内.(3)S B•S C=B C•S D,故S D=,=+,又S A•S D=A D•S O,。
立体几何(必修2的第一、二章)过关测试题
立体几何(必修2的第一、二章)过关测试题时间:120分钟 满分:120分一、选择题(共10小题,每小题只有一个正确选项,每小题3分,共30分)1,已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题中正确的是( )A .//,//m n αα,则//m nB .,m m αβ⊥⊥,则//αβC .//,//m n m α,则//n αD .,αγβγ⊥⊥,则//αβ2.设n m ,是两条不同的直线,βα,是两个不同的平面,下列命题中正确的是 ( )A .若βαβα⊂⊂⊥n m ,,,则n m ⊥B .若βα//,α⊂m ,β⊂n ,则n m //C .若βα//,//,n n m m ⊥,则βα⊥D .若βα⊂⊂⊥n m n m ,,,则βα⊥ 3.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是 ( )① ② ③ ④A .①、②B .①、③C . ②、③D .②、④ 4.已知水平放置的△ABC 的直观图△C B A ''' (斜二测画法)是边长为2a 的正三角形,则原△ABC 的面积为 ( ) A .2a 2B .32a 2 C .62a 2 D .6a 2 5.已知三棱锥底面是边长为1的正三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为 ( ) A .23B .12CD 6,某几何体的三视图如图所示,其中正视图和左视图的上半部分均为边长为2的等边三角形,则该几何体的体积为 ( ) A .π+B .2πC .π+D .2π+7,如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1 的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是 ( )A .1030 B .1015 C .1530 D .218.如图,一个空间几何体的正视图、侧视图都是周长为4,一个内角为60°的菱形,俯视图是圆及一点,那么这个几何体的表面积为( )A. 2π B .π C.23πD .π2A M BNP A M BN PPA B NA M N P9.如图,正方体1111D C B A ABCD -的棱长为1,线段11D B 上有两个动点E.F,且22=EF ,则下列结论中错误的是( ) A .BE AC ⊥ B .EF ∥平面ABCD C .三棱锥BEF A -的体积为定值 D .△AEF 与△BEF 的面积相等10.已知正方形ABCD的边长为,将ABC ∆沿对角线AC 折起,使平面ABC ⊥平面A C D ,得到如图所示的三棱锥B ACD -.若O 为AC 边的中点,M ,N 分别为线段DC ,BO 上的动点(不包括端点),且BN CM =.设BN x =,则三棱锥N AMC -的体积()y f x =的函数图象大致是( )A B . C . D .A B C D二、填空题(本大题共6小题,每小题3分,共18分。
必修2立体几何参考试题
必修2立体几何参考习题一.选择题(共19小题)1.(2011•番禺区)设M是正四面体ABCD的高线AH上一点,连接MB、MC,若∠BMC=90°,则的值为().C D2.(2006•浙江)如图,正三棱柱ABC﹣A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是()C D.3.在正方体八个顶点中任取四个顺次连接得到三棱锥,则所得三棱锥中至少有三个面都是直角三角形的概率为.C D..C D..C D.7.如图,正方体ABCD﹣A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,其中正确判断的个数有()8.(理)水平桌面上放置着一个容积为V的密闭长方体玻璃容器ABCD﹣A1B1C1D1,其中装有的水,给出下列操作与结论:①把容器一端慢慢提起,使容器的一条棱AD保持在桌面上,这个过程中,水的形状始终是柱体;②在①中的运动过程中,水面始终是矩形;③把容器提离桌面,随意转动,水面始终过长方体内一个定点;9.如图,P是正方体ABCD﹣A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f (x)的图象大致是().C D.10.如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()11.如图所示,在单位正方体ABCD﹣A1B1D 1的面对角线A1B上存在一点P使得AP+D1P取得最小值,则此最小值为()C+.12.正三棱锥V﹣ABC的底面边长为2a,E、F、G、H分别是V A、VB、BC、AC的中点,则四边形EFGH面积的取值范围是()CD .14.如图所示,已知空间四边形的每条边和对角线长都等于a ,点E 、F 、G 分别为AB 、AD 、DC 的中点,则a 2等于( )••••15.(2011•江西)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为.CD .16.(2011•浙江)几何体的三视图如图所示,则这个几何体的直观图可以是( ).CD .17.一梯形的直观图是一个如图所示的等腰梯形,且梯形OA /B /C /的面积为,则原梯形的面积为( )C.C D.二.填空题(共3小题)20.如图,在正方体的一角上截取三棱锥P﹣ABC,PO为棱锥的高,记,,那么M,N的大小关系是_________.21.如图所示,在四面体ABCD中,E,F,G分别是棱AB,AC,CD的中点,则过E,F,G的截面把四面体分成两部分的体积之比V ADEFGH:V BCEFGH=_________.22.棱长为2的正四面体S﹣ABC中,M为SB上的动点,则AM+MC的最小值为_________.三.解答题(共3小题)23.如图是表示以AB=4,BC=3的矩形ABCD为底面的长方体被一平面斜截所得的几何体,其中四边形EFGH为截面.已知AE=5,BF=8,CG=12.(1)作出截面EFGH与底面ABCD的交线l;(2)截面四边形EFGH是否为菱形?并证明你的结论;(3)求DH的长.24.在三棱锥P﹣ABC中,△PAB、△PBC、△PCA都为直角三角形,试指出△ABC的形状,并证明你的结论.25.如图所示,空间四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA上的点,请回答下列问题:(1)满足什么条件时,四边形EFGH为平行四边形?(2)满足什么条件时,四边形EFGH为矩形?(3)满足什么条件时,四边形EFGH为正方形?参考答案与试题解析一.选择题(共19小题)1.(2011•番禺区)设M是正四面体ABCD的高线AH上一点,连接MB、MC,若∠BMC=90°,则的值为().C D+a,故有a+x===AH,即BH=2.(2006•浙江)如图,正三棱柱ABC﹣A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是()C D.EF=3.在正方体八个顶点中任取四个顺次连接得到三棱锥,则所得三棱锥中至少有三个面都是直角三角形的概率为.C D..C D.=.C D.=;7.如图,正方体ABCD﹣A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,其中正确判断的个数有()8.(理)水平桌面上放置着一个容积为V的密闭长方体玻璃容器ABCD﹣A1B1C1D1,其中装有的水,给出下列操作与结论:①把容器一端慢慢提起,使容器的一条棱AD保持在桌面上,这个过程中,水的形状始终是柱体;②在①中的运动过程中,水面始终是矩形;③把容器提离桌面,随意转动,水面始终过长方体内一个定点;的水,而平分正方体体积的平面必定经过正方体的中心,推出结论;的水,而平分正方体体积的平面必定经过正方体的中心,即水面始终过长方体内一个定9.如图,P是正方体ABCD﹣A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f (x)的图象大致是().C D.=BDPO==××10.如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()11.如图所示,在单位正方体ABCD﹣A1B1D1的面对角线A1B上存在一点P使得AP+D1P取得最小值,则此最小值为()C+.=12.正三棱锥V﹣ABC的底面边长为2a,E、F、G、H分别是V A、VB、BC、AC的中点,则四边形EFGH面积C D.A=VB=VC=A=×=14.如图所示,已知空间四边形的每条边和对角线长都等于a,点E、F、G分别为AB、AD、DC的中点,则a2等于()••••,>,化简2,>,•=a15.(2011•江西)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为.C D.16.(2011•浙江)几何体的三视图如图所示,则这个几何体的直观图可以是().C D.的正视图为答案中侧视图为17.一梯形的直观图是一个如图所示的等腰梯形,且梯形OA/B/C/的面积为,则原梯形的面积为()C倍,由此平面图中梯形的高×=2倍,梯形的面积为×正三棱锥,aa:.C D.,半径为:所以,正方体的内切球与外接球的半径之比为:二.填空题(共3小题)20.如图,在正方体的一角上截取三棱锥P﹣ABC,PO为棱锥的高,记,,那么M,N的大小关系是M=N.,21.如图所示,在四面体ABCD中,E,F,G分别是棱AB,AC,CD的中点,则过E,F,G的截面把四面体分成两部分的体积之比V ADEFGH:V BCEFGH=1:1.22.棱长为2的正四面体S﹣ABC中,M为SB上的动点,则AM+MC的最小值为.×=故答案为三.解答题(共3小题)23.如图是表示以AB=4,BC=3的矩形ABCD为底面的长方体被一平面斜截所得的几何体,其中四边形EFGH为截面.已知AE=5,BF=8,CG=12.(1)作出截面EFGH与底面ABCD的交线l;(2)截面四边形EFGH是否为菱形?并证明你的结论;(3)求DH的长.24.在三棱锥P﹣ABC中,△PAB、△PBC、△PCA都为直角三角形,试指出△ABC的形状,并证明你的结论.25.如图所示,空间四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA上的点,请回答下列问题:(1)满足什么条件时,四边形EFGH为平行四边形?(2)满足什么条件时,四边形EFGH为矩形?(3)满足什么条件时,四边形EFGH为正方形?BD BD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何同步练习
1.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是
①两条平行直线 ②两条互相垂直的直线 ③同一条直线 ④一条直线及其外一点 在上面结论中,正确结论的编号是 (写出所有正确结论的编号)
2.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是:
①3; ②4; ③5; ④6; ⑤7
以上结论正确的为___________。
(写出所有正确结论的编号..)
3.一个长方体的长、宽、高分别为9cm 、6cm 、5cm ,先从这个长方体上尽可能大地切下一个正方体,再从剩下部分上尽可能大地切下一个正方体,最后再从第二次剩下部分上尽可能大地切下一个正方体,那么,经过三次切割后剩余部分的体积为_____________3
cm
4.在正三棱柱111C B A ABC -中,1=AB .若二面角1C AB C --的大小为
60,则点C 到平面1ABC 的距离为_____________.
5.正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .
6有一个各棱长均为a 的正四棱锥,现用一张正方形包装纸将其完全包住,不能裁剪,可以折叠,那么包装纸的最小边长为_________________.
(2)
(1)
7.两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有
(A )1个 (B )2个 (C )3个 (D )无穷多个
8长为4a 的正方形纸片按照如图(1)中虚线所示的方法剪开后拼接成一正四棱柱,设其体积为1V ,若将同样的正方形纸片按照如图(2)中虚线所示的方法剪开后拼接成一正四棱锥,设其体积为2V ,则1V 和2V 的大小关系是( )
A .21V V >
B .21V V <
C .21V V =
D .21V V ≤
9.如图,在正三棱柱中,AB =3,,M 为的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱到M 的最短路线长为,设这条最短路线与的交点为N ,求: (I )该三棱柱的侧面展开图的对角线长; (II )PC 和NC 的长;
(III )平面MNP 与平面ABC 所成二面角(锐角)的正切值。
同步练习参考答案
N B
1.(1)(2)(4)
2.73)245(5693
33=++-⨯⨯ 3.①③④⑤
4.
3
4
5. 21]42
6. 将正四棱锥的偶面都展开到所在的平面,展开图如图所示,若包装按虚线设计,可使包装纸最小,则最小边长为a a 2
6
222)13(+=⋅+
7. D
8. 由于a a V ⋅=2
14,322223
289431a a a a V =-⋅⋅=
,所以21V V >。
故选A 。
9.(I )(II )如图,沿1AA 侧棱展开
易求对角线长等于97,2=PC ,5
4
=NC (III )延长MN 与AC 相交于O 点,连OP ,则OP 即为平面MNP 与平面ABC 的交线。
过M 作OP ME ⊥于E ,连AE ,则MEA ∠即为平面MNP 与平面ABC 所成二面角的平面角。
谢谢大家
E
O
M
N
A
B C
P A 1
B 1
C 1
N
A 1
P
M
C 1B 1A 1A
C
B
A。