电导的测定及其应用实验报告.doc

合集下载

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用实验报告实验报告:电导的测定及其应用实验目的:掌握电导的基本概念,掌握测定电导的方法及其计算公式,了解电导在实际应用中的作用。

实验仪器:电导率仪、盐酸溶液、去离子水、容量瓶、计时器、玻璃棒实验步骤:1.取一定体积的盐酸溶液(如10ml),加入同体积的去离子水,混合均匀。

2.用电导率仪测定混合液的电导率,并记录数据。

3.将测得的电导率和混合液的浓度数据代入计算公式计算电导率。

4.重复以上步骤,每次调整混合液的浓度(如1mol/L、0.5mol/L、0.25mol/L、0.125mol/L、0.0625mol/L),同时记录电导率和浓度数据,并计算电导率。

5.根据实验数据绘制电导率-浓度曲线图。

6.分析实验数据,探索电导在实际应用中的作用。

实验结果:通过实验,我们得出了盐酸溶液的电导率随其浓度降低而降低的规律,同时得出了电导率-浓度曲线图。

从实验结果中,我们可以得出电导在工业、生物、环境等领域中的重要应用,如用于污水处理、药品生产等。

实验结论:电导是溶液中离子传导电流的能力,用电导率仪可以测量电导。

实验结果表明,电导率随着溶液浓度的降低而降低。

电导在工业、生物、环境等领域中具有重要的应用,比如污水处理、药品生产等。

实验注意事项:1.曲线图中需要标出坐标轴和单位。

2.清洗容器时,使用去离子水。

用盐酸溶液清洗容器会影响实验数据。

3.操作时,要注意安全,尤其是向容器中加入浓盐酸时。

扩展实验:实验中所用的是盐酸溶液,可以尝试用其他电解质溶液进行实验,比如NaCl、KCl等,探究它们的电导率与浓度之间的关系。

另外,也可以尝试利用电导率仪测量水中离子的含量,了解水质情况。

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用一、实验目的1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。

2、用电导法测量醋酸在水溶液中的解离平衡常数。

3、掌握恒温水槽及电导率仪的使用方法。

二、实验原理1、电导G可表示为:(1)式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。

本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。

摩尔电导率与电导率的关系:(2)式中C为该溶液的浓度,单位为mol·m-3。

2、总是随着溶液的浓度降低而增大的。

对强电解质稀溶液,(3)式中是溶液在无限稀释时的极限摩尔电导率。

A为常数,故将对c作图得到的直线外推至C=0处,可求得。

3、对弱电解质溶液,(4)式中、分别表示正、负离子的无限稀释摩尔电导率。

在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5)对于HAc,(6)HAc的可通过下式求得:把(4)代入(1)得:或以C对作图,其直线的斜率为,如知道值,就可算出K o三、实验仪器、试剂仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水四、实验步骤1、打开电导率仪开关,预热5min。

2、KCl溶液电导率测定:⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。

⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑷重复⑶的步骤2次。

电导的测定及应用

电导的测定及应用
电导的测定及应用
一、实验目的 1.掌握电导测定的原理和电导仪 的使用方法。 2.通过实验验证电解质溶液电导 与浓度的关系。 3.掌握电导法测定HAc的电离常 数和CaCO3的溶度积的原理和方 法。
二、实验原理
导体导电能力的大小常以电阻的倒数去 表示,即有
式中G称为电导,单位是西门子S。 导体的电阻与其长度成正比与其截面积 成反比即:
平均值
数据处理
1.用外推的Λm∞值,并与文献值比较。 2.以cΛm对1/Λm作图,计算HAc的电离常数。 3.计算CaCO3的溶度积与文献值比较。
实验注意事项 实验用水必须是重蒸馏水,其电导率应 ≦1*10-4S.M-1。 实验过程中温度必须恒定,稀释的电导水也 需要在同一温度下恒温后使用。 测量CaCO3溶液时,一定要沸水洗涤多次, 以除去可溶性离子,减小实验误差。
根据摩尔电导Λm与电导率κ的关
系:
m


c
测定难溶盐的溶解度和溶度积。
电导率仪的使用1
一、仪器的校准
1. 开机 (1) 将电源线插入仪器电源插座,仪器必须有良好接地! (2) 按电源开关,接通电源,预热30min后,进行校准。
2. 校准 (1) 量程选择开关指向“检查”; (2) 常数补偿旋钮指向“1”刻度线; (3) 温度补偿旋钮指向“25℃”线; (4) 调节校准旋钮,使仪器显示100.0µS/cm,校准完毕。4.测Biblioteka 电导水的电导 。五、数据记录
1.KCl溶液电导测定
C(×10-2mol.L-1) κKCl-κH2O
Λm
C1/2
2.绘制HAc摩尔电导与浓度的关系图
C(×10-2mol.L-1) κHAc-κH2O cΛm
1/Λm

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用实验报告1.掌握电导的测定方法;2.探究不同溶液电导的异同,并了解电导相关的应用。

实验步骤:1.准备所需材料,包括待测溶液、电导计、电导池、计算机等设备;2.将电导计的电极放入待测溶液中,等待电导计稳定后读取电导值;3.重复步骤2,测量其他待测溶液的电导值,并将数据记录在实验记录表中;4.将数据进行分析,并比较不同溶液的电导异同;5.了解和探究电导在其他领域的应用,如水质检测、电解制氢等。

实验结果:实验中我们测量了不同浓度的HC2H3O2溶液的电导值,数据如下图所示:HC2H3O2浓度/% 电导率/mS/cm0% 0.045% 1.9710% 3.9115% 6.0220% 8.26由上表可见,随着HC2H3O2浓度的逐渐增加,测得的电导率逐渐增大。

这是因为电解质浓度的增加会增加电离频率和电离程度,从而使电导率增加。

实验分析:电导测量是液体中离子浓度的重要测量手段之一。

它是根据溶液中游离离子导电所致的现象来确定溶液电导率的一种检测方法。

电导测量可用于检测水质、土壤和食品中的离子浓度等。

在实际生产和生活中,电导测量也广泛应用于水处理、环境保护和化工等领域。

例如,电导测量可以用于检测水质污染及水处理质量,通过电导值的变化可判断水质的变化,并采取相应的措施进行水处理。

此外,电导测量还可以用于电解制氢等领域中。

实验结论:通过本次实验,我们掌握了电导的测定方法,进一步了解了电导的相关知识,并探究了电导在其他领域的应用。

我们需要注意,电导测量需要避免测量设备的干扰以及影响测量的因素,提高实验数据的准确性。

电导测定及其应用实验报告(1)

电导测定及其应用实验报告(1)

一、实验目的1.理解溶液的电导、电导率和摩尔电导率的概念。

2.掌握电导率仪的使用方法。

3.掌握交流电桥测量溶液电导的实验方法及其应用。

二、实验原理电解质溶液的导电能力可用电导G 表示,定义为电阻的倒数1/R ,单位为S 或Ω-1。

将电解质溶液放入电导池内,溶液电导G 的大小与两电极之间的距离l 成反比,与电极的面积A 成正比lA G κ=(1)式中:l /A 为电导池常数,以cell K 表示;κ为电导率,其物理意义是在两平行且相距1m 、面积均为1m 2的两电极间的电解质溶液的电导,即单位体积溶液的电导,S·m -1。

由于电极的l 和A 不易精确测量,因此在实验中用一种已知电导率值的溶液作为标准溶液标定电导池常数cell K ,常用KCI 溶液作为标准溶液,几种KCl 标准溶液的电导率从手册上可查。

溶液的摩尔电导率是指把含有1mol 电解质的溶液置于相距为1m 的两平行板电极之间的电导,以m Λ表示,其单位为S·m 2·mol -1。

摩尔电导率与电导率的关系为cm κ=Λ(2)式中:c 为该溶液的浓度,mol·m -3。

1.强电解质溶液无限稀释摩尔电导率的测定电解质溶液在无限稀释时的摩尔电导率称为无限稀释摩尔电导率∞Λm 。

在一定温度和同一溶剂中,∞Λm 仅与电解质本性有关,是表示电解质的一个特性物理量。

在稀溶液中,强电解质的摩尔电导率与其浓度的平方根呈线性关系,称为科尔劳施(Kohlrausch)稀释定律:c A m m -Λ=Λ∞(3)因此,在稀溶液范围内,测量一系列不同浓度强电解质溶液的摩尔电导率,根据式(3)以m Λ对c 作线性图,外推可得∞Λm 。

对于弱电解质溶液,式(3)并不成立,需按科尔劳施离子独立运动定律,利用离子无限稀释摩尔电导率数据间接计算。

对-+v v A M 型电解质∞--∞++∞Λ+Λ=Λ,,m m m υυ(4)式中:∞-∞+ΛΛ,,m m 、分别为正、负离子的无限稀释摩尔电导率。

物化实验报告5-电导的测定及其应用

物化实验报告5-电导的测定及其应用

一、实验目的1、测量KCl水溶液的电导率,求它的无限稀释摩尔电导率;2、用电导法测量醋酸在水溶液中的解离平衡常数;3、掌握恒温水槽及电导率仪的使用方法。

二、实验原理1、电解质溶液的导电能力通常用电导G来表示,单位为西门子用符号S表示,若将某电解质溶液放入两平行电极之间,设电极间距离为1,电极面积为A,则电导可表示为:G=к*A/l (1) 其中к为电导率,其物理意义:在两平行而相距1m,面积均为1m2的两电极间,电解质溶液的电导率,其单位以SI制表示为s*m-1,(l/A)为电导池常数,以K cell表示,单位为m-1。

通常由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数K cell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率。

在讨论电解质溶液的导电能力时常用摩尔电导率Λm表示。

溶液的摩尔电导率是指把含有1mol电解质的溶液置于相距为1m的两平行板电极之间的电导,单位为S*m2mol-1。

摩尔电导率与电导率的关系:Λm=к/c (2) 其中c为溶液浓度,单位为mol*m-3。

2、在很稀的溶液中,强电介质的摩尔电导率与其浓度的平方根成直线函数。

用公式表示为:Λm=Λm∞﹣A *c-1/2 (3)3、对于弱电解质溶液而言,其Λm无法利用上式通过实验来直接测定,但在其无限稀释的溶液中,弱电解质的a=1,,每种离子对电解质的摩尔电导率都有一定的贡献,是独立移动的不受其他离子的干扰,对电解质M v+A v-来说:Λm∞= v + Λmv+0 + Λmv-0 (4) 其中Λmv+0和Λmv-0分别代表正、负离子的无限稀释摩尔电导率,它与温度及离子的本性有关。

在弱电解质的稀溶液中,离子的浓度很低,离子间的相互作用可以忽略,可以认为她在浓度为c时的解离度a等于它的摩尔电导率Λm与其无限稀释摩尔电导率之比:a=Λm/Λm∞(5)对于HAc,在溶液电离达到平衡时,电离平衡常数Kc与原始浓度c 和电离度a的关系:HA c ==== H+ + Ac-t=0 c 0 0t=t平衡c(1-a) ca caK0=ca2/c0(1-a) (6) 在一定温度下K0为常数,因此可以通过测定HAc在不同的浓度时的a代入(6)式求出Kc。

电导测定及其应用实验报告

电导测定及其应用实验报告

电导测定及其应用实验报告一、实验目的1、掌握电导测定的基本原理和方法。

2、学会使用电导仪测量溶液的电导率。

3、探究溶液浓度、温度等因素对电导率的影响。

4、了解电导测定在化学分析和工业生产中的应用。

二、实验原理1、电导和电导率电导(G)是电阻(R)的倒数,即 G = 1/R。

电导率(κ)是指相距 1m、截面积为 1m²的两平行电极间溶液的电导,其单位为 S/m(西门子/米)。

2、电导的测定电导的测定通常使用电导仪。

电导仪通过测量两电极间溶液的电阻,再根据电导与电阻的关系计算出电导率。

3、影响电导率的因素(1)溶液浓度:一般来说,溶液浓度越大,离子数量越多,电导率越大。

(2)温度:温度升高,离子运动速度加快,电导率增大。

三、实验仪器与试剂1、仪器电导仪、恒温槽、移液管、容量瓶、烧杯等。

2、试剂KCl 标准溶液(已知浓度)、HCl 溶液(未知浓度)、NaOH 溶液(未知浓度)等。

四、实验步骤1、仪器校准使用 KCl 标准溶液对电导仪进行校准。

2、配制溶液(1)配制不同浓度的 HCl 溶液和 NaOH 溶液。

(2)分别准确移取一定体积的浓溶液,用蒸馏水稀释至一定体积,摇匀备用。

3、测量电导率(1)将恒温槽温度设定为一定值,如 25℃。

(2)将配制好的溶液放入恒温槽中恒温一段时间。

(3)用电导仪测量不同浓度溶液在恒温下的电导率,记录数据。

4、改变温度测量电导率(1)改变恒温槽温度,如分别设定为 30℃、35℃等。

(2)重复上述测量步骤,记录不同温度下溶液的电导率。

五、实验数据及处理1、不同浓度 HCl 溶液的电导率|浓度(mol/L)|电导率(S/m)|||||01|_____||02|_____||03|_____|2、不同浓度 NaOH 溶液的电导率|浓度(mol/L)|电导率(S/m)|||||01|_____||02|_____||03|_____|3、不同温度下 HCl 溶液的电导率|温度(℃)|电导率(S/m)|||||25|_____||30|_____||35|_____|4、不同温度下 NaOH 溶液的电导率|温度(℃)|电导率(S/m)|||||25|_____||30|_____||35|_____|以溶液浓度为横坐标,电导率为纵坐标,绘制浓度电导率曲线。

电导的测定及其应用

电导的测定及其应用

电导的测定及其应用一、实验目的及要求1.了解溶液的电导, 电导率和摩尔电导的概念。

2.测量电解质溶液的摩尔电导, 并计算弱电解质溶液的电离常数。

二、实验原理电解质溶液是靠正、负离子的迁移来传递电流。

而弱电解质溶液中, 只有已电离部分才能承担传递电量的任务。

在无限稀释的溶液中可认为弱电解质已全部电离。

此时溶液的摩尔电导率为 , 而且可用离子极限摩尔电导率相加而得。

一定浓度下的摩尔电导率Λm 与无限稀释的溶液中的摩尔电导率 是有差别的。

这由两个因素造成, 一是电解质溶液的不完全离解, 二是离子间存在着相互作用力。

所以Λm 通常称为表观摩尔电导率。

()()∞-∞+-+∞++=ΛΛU U U U αm m (1) 若 , 则∞ΛΛ=mm α (2) 式中α为电离度。

AB 型弱电解质在溶液中电离达到平衡时, 电离平衡常数K, 浓度C, 电离度α有以下关系:CC C C K αα-⋅=12 (3) ()m m m 2m Λ-ΛΛΛ⋅=∞∞C K C (4) 根据离子独立定律, 可以从离子的无限稀释的摩尔电导率计算出来。

Λm 则可以从电导率的测定求得, 然后求算出KC 。

三、仪器与试剂DDS-11A 型电导率仪1台, 恒温槽l 套, 0.1000mol/L 醋酸溶液。

四、实验步骤1.调整恒温槽温度为25℃±0.3℃。

2.用洗净、烘干的叉形管1支, 加入10mL 的0.1000mol/L 醋酸溶液, 恒温后, 测定其电导率。

3.用另一支移液管取l0mL 电导水注入电导池, 混合均匀, 等温度恒定后, 测其电导率, 如此操作, 共稀释4次。

4.倒去醋酸, 洗净电导池, 最后用电导水淋洗。

注入10mL 电导水, 测其电导率。

5.实验结束后, 切断电源, 倒去电导池中溶液, 洗净电导池, 注入蒸馏水, 并将铂黑电极浸没在蒸馏水中。

五、数据处理1.已知298.2K 时, 无限稀释离子摩尔电导率 (H+)=349.82×10-4S ·m2/mol , (Ac-)=40.9×10-4S ·m2/mol 。

电导的测定及应用实验报告

电导的测定及应用实验报告

实验名称电导的测定及其应用一、实验目的1.测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率;2.用电导法测量醋酸在水溶液中的解离平衡常数;3.掌握恒温水槽及电导率仪的使用方法。

二、实验原理1、电导G:对于电解质溶液,常用电导表示其导电能力的大小。

电导G是电阻R的倒数,即G=1/R。

电导的单位是西门子,常用S表示。

1S=1Ω-12、电导率或比电导:κ=Gl/A (2.5.1)其意义是电极面积为及1m2、电极间距为lm的立方体导体的电导,单位为S·m-1。

对电解质溶液而言,令l/A = K cell,K cell称为电导池常数。

所以κ=G l/A =G K cell3、摩尔电导率:Λm=κ/ C (2.5.2)强电解质稀溶液的摩尔电导率Λm与浓度有如下关系:Λm=Λ∞m- A C(2.5.3)Λ∞m为无限稀释摩尔电导率。

可见,以Λm对C作图得一直线,其截距即为Λ∞m。

弱电解质溶液中。

在无限稀释的溶液中可认为弱电解质已全部电离。

此时溶液的摩尔电导率为Λ∞m =V+ Λm ,++ V- Λm ,-(2.5.4)根据电离学说,可以认为,弱电解质的电离度α等于在浓度时的摩尔电导Λ与溶液在无限稀释时的电导Λ∞m之比,即:α=Λm/ Λ∞m(2.5.5)4、弱电解质电离平衡常数:弱电解质AB型的电离平衡常数:Kθ=(Cα2)/Cθ(1-α)(2.5.6)所以,通过实验测得α即可得Kθ值。

把(2.5.4)代入(2.5.6)式可得Kθ=(CΛ∞m2)/ Λ∞m Cθ(Λ∞m-Λm)(2.5.7)或CΛm=(Λ∞m2) KθCθ1/Λm -Λ∞m KθCθ以CΛm对1/Λm作图,其直线的斜率为(Λ∞m2) KθCθ,如知道Λ∞m值,就可算出Kθ。

三、实验仪器、试剂仪器:梅特勒326电导率仪1台;电导电极一只,量杯(50mL)2个;移液管(25mL)3只;洗瓶一只;洗耳球一只。

药品:10.00(mol/m3)KCl溶液;0.093mol/dm3)HAc溶液;电导水。

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用实验报告实验目的:1. 了解电导的概念和测定方法;2. 掌握电导测定仪器的使用方法;3. 进行电导测定实验,并分析实验结果;4. 探讨电导在环境监测、水质检测等方面的应用。

实验原理:电导是指液体中存在的离子对电流的导电能力。

电导率是电导的量度,通常用电导计来测定。

电导计的测定原理是利用电极将电流通过液体,根据电流通过液体的情况来测定电导率。

实验仪器和试剂:1. 电导计;2. 导电池;3. 盐酸、硫酸等电解质溶液。

实验步骤:1. 打开电导计,等待其稳定;2. 将电导计的电极插入待测液体中,等待数秒钟,记录电导计的读数;3. 更换不同浓度的电解质溶液,重复步骤2,记录电导计的读数;4. 根据实验数据,计算不同溶液的电导率。

实验结果与分析:通过实验数据的记录和分析,我们可以得出不同溶液的电导率。

一般来说,电解质溶液的电导率会随着浓度的增加而增加。

这是因为溶液中离子浓度增加,导致电流通过液体的能力增强。

而纯净水等非电解质溶液的电导率非常低,几乎可以忽略不计。

实验应用:电导在环境监测、水质检测等方面有着重要的应用。

通过电导测定,可以快速、准确地判断水质的优劣。

在环境监测中,可以通过电导测定来监测水体中的离子含量,从而判断水质是否受到污染。

此外,电导还可以应用于工业生产中,用来监测溶液的浓度和纯度。

结论:通过本次实验,我们深入了解了电导的测定方法和原理,并掌握了电导计的使用技巧。

同时,我们也了解了电导在环境监测、水质检测等方面的重要应用。

电导测定是一种简单、快速、准确的测定方法,具有广泛的应用前景。

通过本次实验,我们对电导的测定及其应用有了更深入的了解,相信这对我们今后的学习和工作都将有所帮助。

物化实验报告5电导的测定及其应用

物化实验报告5电导的测定及其应用

物化实验报告5-电导的测定及其应用一、实验目的本实验旨在通过电导测定法探究溶液的电导率及其应用,掌握电导仪的使用方法,理解电导与溶液性质的关系,进一步了解溶液的离子行为。

二、实验原理电导是衡量溶液导电能力的参数,单位为 S/m。

电导的测定采用电导仪,其原理是将溶液置于两极之间,测量一定时间内通过溶液的电流,进而计算溶液的电导。

电导与溶液中的离子浓度、离子迁移率、溶液温度等因素有关。

在一定浓度范围内,电导与离子浓度成正比,因此可以通过电导值推测溶液中的离子种类和浓度。

此外,电导还与溶液的离子迁移率有关,离子迁移率越大,电导越高。

三、实验步骤1.准备实验器材:电导仪、电导电极、恒温水浴、已知浓度的溶液等。

2.配制不同浓度的待测溶液,记录各溶液的配制方法及浓度。

3.用蒸馏水清洗电导电极,确保电极表面无杂质。

4.将电导电极浸入待测溶液中,确保电极与溶液充分接触。

5.开启电导仪,记录各溶液在不同时间点的电导值。

6.绘制各溶液的电导率与浓度关系图。

7.根据电导与离子浓度的关系,计算溶液中的离子浓度。

8.对比已知离子浓度的实际值与计算值,评估电导测定的准确性。

9.分析实验结果,总结规律,探讨电导测定法在溶液性质研究中的应用。

四、数据记录与处理以下为实验数据记录表:[请在此处插入图表]根据电导与离子浓度的关系,计算溶液中的离子浓度,对比已知离子浓度的实际值与计算值,评估电导测定的准确性。

结果表明,电导测定结果较为准确,能有效地反映溶液中的离子浓度。

五、结论通过本次实验,我们掌握了电导仪的使用方法,学会了如何通过电导测定法探究溶液的电导率及其应用。

实验结果表明,在一定浓度范围内,电导与离子浓度成正比,可以据此推测溶液中的离子种类和浓度。

本实验对于理解电导与溶液性质的关系以及溶液的离子行为具有一定的指导意义。

同时,通过应用电导测定法,可以对其他未知溶液的性质进行探索研究。

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用一、实验目的1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。

2、用电导法测量醋酸在水溶液中的解离平衡常数。

3、掌握恒温水槽及电导率仪的使用方法。

二、实验原理1、电导G可表示为:(1)式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。

本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。

摩尔电导率与电导率的关系:(2)式中C为该溶液的浓度,单位为mol·m-3。

2、总是随着溶液的浓度降低而增大的。

对强电解质稀溶液,(3)式中是溶液在无限稀释时的极限摩尔电导率。

A为常数,故将对c作图得到的直线外推至C=0处,可求得。

3、对弱电解质溶液,(4)式中、分别表示正、负离子的无限稀释摩尔电导率。

在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5)对于HAc,(6)HAc的可通过下式求得:把(4)代入(1)得:或以C对作图,其直线的斜率为,如知道值,就可算出K o三、实验仪器、试剂仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水四、实验步骤1、打开电导率仪开关,预热5min。

2、KCl溶液电导率测定:⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。

⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑷重复⑶的步骤2次。

电导的测定及其应用实验报告.doc

电导的测定及其应用实验报告.doc

电导的测定及其应用一、实验目的1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。

2、用电导法测量醋酸在水溶液中的解离平衡常数。

3、掌握恒温水槽及电导率仪的使用方法。

二、实验原理1、电导G可表示为:(1)式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。

本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。

摩尔电导率与电导率的关系:(2)式中C为该溶液的浓度,单位为mol·m-3。

2、总是随着溶液的浓度降低而增大的。

对强电解质稀溶液,(3)式中是溶液在无限稀释时的极限摩尔电导率。

A为常数,故将对c作图得到的直线外推至C=0处,可求得。

3、对弱电解质溶液,(4)式中、分别表示正、负离子的无限稀释摩尔电导率。

在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5)对于HAc,(6)HAc的可通过下式求得:把(4)代入(1)得:或以C对作图,其直线的斜率为,如知道值,就可算出K o三、实验仪器、试剂仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水四、实验步骤1、打开电导率仪开关,预热5min。

2、KCl溶液电导率测定:⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。

⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑷重复⑶的步骤2次。

五、电导的测定及其应用

五、电导的测定及其应用

物理化学实验报告实验名称:电导的测定及其应用学院:化学工程学院专业:化学工程与工艺班级:姓名:学号:指导教师:日期:一、实验目的1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率;2、用电导法测量醋酸在水溶液中的解离平衡常数;3、掌握恒水温水槽及电导率仪的使用方法。

二、实验原理1、电解质溶液的导电能力通常用电导G来表示,若将电解质溶液放入两平行电极之间,设电极的面积为A,两电极的间的距离为l,则溶液的电导G为:G = к(A / l)(1)式中к为改溶液的电导率,其单位是S.m-1;l/A为电导池常数,以Kcell来表示,它的单位为m-1。

由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率。

在讨论电解质溶液的电导能力时常用摩尔电导率(Λm)这个物理量。

摩尔电导率与电导率的关系:Λm=K/C (2)式中,C为该溶液的浓度,单位为mol.m-3;Λm的单位为S.m2.mol-1。

注意,当浓度C的单位是mol/L表示时,则要换算成mol/m3,后再计算。

2、Λm总是随着溶液的浓度的降低而增大的。

对强电解质稀溶液而言,其变化规律可以用科尔劳施经验公式表示:Λm=Λ∞m -A√C (3)式中,Λm是溶液在无限稀释时的极限摩尔电导率。

对特定的电解质和溶剂来说,在一定温度下,是一个常数。

所以,将Λm对√C作图得到的直线外推至C=0处,可求得。

3、对于弱电解质溶液来说,其Λm无法利用上式通过实验直接测定。

但是,在弱电解质的稀薄溶液中,离子的浓度很低,离子的浓度很低,离子间的相互作用可以忽略,也可以认为它在C浓度时的解离度等于它的摩尔电导率Λm与其无限稀释摩尔电导率之比,即:α=Λm/Λ∞m (4)对于HAc,在溶液中电离达到平衡时,电离平衡常数Kc与原始浓度C和电离度α有以下关系:HAc H++ Ac-t=0 C 0 0t=t平衡C(1-α)CαCαK0= Cα2/[C0(1-α)] (5)在一定温度下K0是常数,因此可以通过测定HAc在不同浓度时的代入(5)式中求出Kc。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电导的测定及其应用
一、实验目的
1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。

2、用电导法测量醋酸在水溶液中的解离平衡常数。

3、掌握恒温水槽及电导率仪的使用方法。

二、实验原理
1、电导G可表示为:(1)
式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。

本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。

摩尔电导率与电导率的关系:(2)
式中C为该溶液的浓度,单位为mol·m-3。

2、总是随着溶液的浓度降低而增大的。

对强电解质稀溶液,(3)
式中是溶液在无限稀释时的极限摩尔电导率。

A为常数,故将对c作图得到的直线外推至C=0处,可求得。

3、对弱电解质溶液,(4)
式中、分别表示正、负离子的无限稀释摩尔电导率。

在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5)
对于HAc,(6)
HAc的可通过下式求得:
把(4)代入(1)得:或
以C对作图,其直线的斜率为,如知道值,就可算出K o
三、实验仪器、试剂
仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只
试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水
四、实验步骤
1、打开电导率仪开关,预热5min。

2、KCl溶液电导率测定:
⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。

⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑷重复⑶的步骤2次。

⑸倾去电导池中的KCl溶液,用电导水洗净量杯和电极,量杯放回烘箱,电极用滤纸吸干
3、HAc溶液和电导水的电导率测定:
⑴用移液管准确移入100.0(mol·m-3)HAc溶液25.00 ml,置于洁净、干燥的量杯中,测定其电导率3次,取平均值。

⑵再用移液管移入25.00 ml已恒温的电导水,置于量杯中,搅拌均匀后,测定其电导率3次,取平均值。

⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再移入25.00 ml电导水,搅拌均匀,测定其电导率3次,取平均值。

⑷再用移液管准确移入25.00 ml电导水,置于量杯中,搅拌均匀,测定其电导率3次,取平均值。

⑸倾去电导池中的HAc溶液,用电导水洗净量杯和电极;然后注入电导水,测定电导水的电导率3次,取平均值。

⑹倾去电导池中的电导水,量杯放回烘箱,电极用滤纸吸干,关闭电源。

五、数据记录与处理
1、大气压:102.08kPa 室温:17.5℃实验温度:25℃
已知:25℃时10.00(mol·m-3)KCl溶液k=0.1413S·m-1;25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1)
⑴测定KCl溶液的电导率:
⑵测定HAc溶液的电导率:
电导水的电导率k(H2O)/ (S·m-1):7 *10-4S·m-1
c/( mol ·dm -3)
k ’/(S ·m -1)
第1次
第2次 第3次 平均值 0.100 609.1*10-4 609.1*10-4 609.1*10-4 609.1*10-4 0.050 460.1*10-4 460.1*10-4 460.1*10-4 460.1*10-4 0.025 338.1*10-4 338.1*10-4 337.1*10-4 337.77*10-4 0.0125 262.1*10-4
262.1*10-4
262.1*10-4
262.1*10-4
2、数据处理
⑴将KCl 溶液的各组数据填入下表内: C/( mol ·m -3) 10.0 5.00 2.50 1.25 0.625 /(S ·m 2·mol -1)
141.7*10-4 144.4*10-4 148*10-4 148*10-4 152*10-4 c /(mol 1/2·m -3/2)
3.16 2.24
1.58
1.12
0.79
以KCl 溶液的
对c 作图
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0.0140
0.0142
0.0144
0.0146
0.0148
0.0150
0.0152
Y A x i s T i t l e
X Axis Title
根据
,截距即为
,得
=154*10-4 S ·m 2·mol -1
⑵HAc 溶液的各组数据填入下表内: 原始浓度:0.1127 mol ·dm -3
mol ·dm -3
K o <K o >
0.1000 496.2*10-4 4.96*10-4 2.02*103 496.2*10-4 0.0127 1.63*10-5 1.753*10-5 1.753*10-5 0.0500 347.3*10-4 6.95*10-4 1.44*103 347.5*10-4 0.0178 1.61*10-5 0.0250 225.0*10-4 9.00*10-4 1.11*103 225.0*10-4 0.0230 1.35*10-5 0.0125
149.3*10-4
1.94*10-3
5.15*102
242.5*10-4 0.0497
1.69*10-5
k = k ’- k H2O
uS.cm -1=10-4S ·m -1
C HAc =0.1127 mol ·dm -3=112.7 mol ·m -3
k H2O =7*10-4S·m-1
k(HAc测量)=560*10-4 S·m-1 k(HAc)= k(HAc测量)- k H2O=553*10-4 S·m-1
Λm=553*10-4/112.7=4.91*10-4 S·m2·mol-1
Λm -1=2.04*103 S-1·m-2·mol C=k=553*10-4 S·m-1
α=4.91*10-4/3.907*10-2=0.0126
Kc=0.1127*0.01262/1*(1-0.0126)=1.81*10-5
以C对作图应得一直线,直线的斜率为,由此求得K o,于上述结果进行比较。

直线的斜率=2.87*10-5 所以:K o=2.87*10-5 /103*(3.907*10-2)2=1.88*10-5
计算出来的值与画图做出来的相差:(1.88-1.753)*10-5=1.27*10-6
六、实验结果与分析
查阅KCl溶液的标准值为0.01499 S•m2•mol-1
则可以计算其相对误差Er=|0.01499-0.015|/0.01499=0.667‰
七、讨论与心得
1、实验中不必扣除水的电导。

因为经测定,实验所使用的去离子水的电导与待测溶液的电导相差几个数量级,因此不会对实验结果产生很大的影响。

2、溶液配制时的问题:溶液时由大浓度向小浓度一瓶一瓶稀释过来的。

一旦某一瓶配制出现偏差,则将影响到后面的几瓶,因此在溶液配制的时候要及其小心,我认为这也是影响实验准确性的一个很重要的因素。

3、浓度较小时,信号不明显,即某个电阻改变一个大阻值,其示波器的变化不大,可能会导致大的偏差。

思考题:
1、如何定性地解释电解质的摩尔电导率随浓度增加而降低?
答:对强电解质而言,溶液浓度降低,摩尔电导率增大,这是因为随着溶液浓度的降低,离子间引力变小,粒子运动速度增加,故摩尔电导率增大。

对弱电解质而言,溶液浓度降低时,摩尔电导率也增加。

在溶液极稀时,随着溶液浓度的降低,摩尔电导率急剧增加。

2、为什么要用音频交流电源测定电解质溶液的电导?交流电桥平衡的条件是什么?
答:使用音频交流电源可以使得电流处于高频率的波动之中,防止了使用直流电源时可能导致的电极反应,提高测量的精确性。

3、电解质溶液电导与哪些因素有关?
答:电解质溶液导电主要与电解质的性质,溶剂的性质,测量环境的温度有关。

4、测电导时为什么要恒温?实验中测电导池常数和溶液电导,温度是否要一致?
答:因为电解质溶液的电导与温度有关,温度的变化会导致电导的变化。

实验中测电导池常数和溶液电导时的温度不需要一致,因为电导池常数是一个不随温度变化的物理量,因此可以直接在不同的温度下使用。

精品文档。

相关文档
最新文档