蚁群算法程序,在最短路中的应用,稍加扩展即可应用于机器人路径规划

合集下载

基于蚁群算法的路径规划

基于蚁群算法的路径规划

基于蚁群算法的路径规划路径规划是指在给定起点和终点的情况下,找到一条最优路径使得在特定条件下完成其中一种任务或达到目标。

蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁寻找食物路径的启发式算法,已经广泛应用于路径规划领域。

本文将详细介绍基于蚁群算法的路径规划的原理、方法和应用,旨在帮助读者深入理解该领域。

1.蚁群算法原理蚁群算法的灵感源自蚂蚁在寻找食物过程中携带信息以及通过信息交流来引导其他蚂蚁找到食物的群体行为。

算法的基本原理如下:1)路径选择方式:蚂蚁根据信息素浓度和距离的启发信息进行路径选择,信息素浓度高的路径和距离短的路径更容易被选择。

2)信息素更新方式:蚂蚁在路径上释放信息素,并通过信息素挥发过程和信息素增强机制来更新路径上的信息素浓度。

3)路径优化机制:较短路径上释放的信息素浓度较高,经过多次迭代后,社会积累的信息素会指引蚂蚁群体更快地找到最优路径。

4)局部和全局:蚂蚁在选择路径时,既有局部的能力,也有全局的能力,这使得算法既能收敛到局部最优解,又能跳出局部最优解继续探索新的路径。

2.蚁群算法步骤1)定义问题:明确起点、终点以及路径上的条件、约束等。

2)初始化信息素与距离矩阵:设置初始信息素值和距离矩阵。

3)蚂蚁移动:每只蚂蚁根据信息素浓度和距离的启发选择下一个节点,直到到达终点。

4)信息素更新:蚂蚁根据路径上释放的信息素更新信息素矩阵。

5)迭代:不断重复蚂蚁移动和信息素更新过程,直到满足停止条件为止。

6)输出最优路径:根据迭代结果输出最优路径。

3.蚁群算法应用1)TSP问题:旅行商问题(Traveling Salesman Problem,TSP)是蚁群算法应用的典型问题之一、该问题是在给定一组城市以及它们之间的距离,求解一条经过每个城市一次且最短的路径。

蚁群算法通过模拟蚂蚁在城市之间的移动来求解该问题,并能够较快地找到接近最优解的路径。

2)无人机路径规划:无人机路径规划是指在给定起点和终点的情况下,找到无人机的最优飞行路径。

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用概述:在现实世界中,路径规划是一个非常重要的问题。

无论是导航系统、交通规划还是物流调度,都需要找到最优的路径来解决问题。

蚁群算法作为一种模拟蚂蚁寻找食物的行为的优化算法,被广泛应用于路径规划问题中。

本文将介绍蚁群算法的原理和几种常见的应用。

蚁群算法的原理:蚁群算法源于观察到蚂蚁在寻找食物时留下的信息素行为。

当蚁群中的一只蚂蚁找到食物之后,它会沿着返回的路径释放信息素。

这些信息素将吸引其他蚂蚁沿着该路径行动,随着时间的推移,更多的蚂蚁会选择这条路径,从而形成更强的信息素效应。

蚁群算法通过模拟这种信息素行为来找到最优解。

蚁群算法的应用:1. 路径规划:蚁群算法在路径规划中的应用是最常见的。

蚂蚁在搜索食物时,会选择性地释放信息素来引导其他蚂蚁寻路。

类似地,蚁群算法可以模拟蚂蚁行为来搜索最短路径或最优路径。

例如,在导航系统中,蚁群算法可以通过模拟蚂蚁在地图上搜索路径的行为,帮助用户找到最短路径。

2. 物流调度:物流调度是一个复杂的问题,涉及到多个因素,如货物的运输时间、成本、路径等。

蚁群算法可以应用于物流调度中,通过模拟蚂蚁在搜索食物的行为,帮助选择最优的路径和调度策略。

这可以有效减少成本,并提高物流的效率。

3. 机器人导航:在机器人导航中,蚁群算法可以帮助机器人找到最优的路径和规避障碍物。

类似于蚂蚁寻找食物的行为,机器人可以释放“信息素”来引导其他机器人选择合适的路径。

这种算法可以帮助机器人自主探索未知环境,并找到最短路径。

4. 电子游戏中的敌人行为:在电子游戏中,敌人的行为通常是通过编程来实现的。

蚁群算法可以用于模拟敌人的智能行为,使其更加具有逼真的表现。

通过使用蚁群算法,敌人可以模拟蚂蚁的寻找食物行为,从而更加灵活地寻找玩家并采取相应的行动。

总结:蚁群算法在路径规划中的应用能够有效解决复杂的问题,如寻找最短路径、物流调度、机器人导航和电子游戏的敌人行为。

通过模拟蚂蚁寻找食物的行为,蚁群算法可以帮助我们找到最优的解决方案。

(word完整版)蚁群算法内容简介

(word完整版)蚁群算法内容简介

蚁群算法内容简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻经的行为而提出的一种基于种群的启发式随机搜索算法,蚁群算法具有并行性、鲁棒性、正反馈性等特点.蚁群算法最早成功应用于解决著名的旅行商问题以及二次分配问题、车间任务调度问题、图的着色问题、网络路由等许多复杂的组合问题。

蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

随着人们对效益的要求越来越高,人们发现组合优化的各种方法,但在一些复杂度比较高的问题上,一些传统的方法显示了他的限制,列如计算量上升太快,时间复杂度很高,这就需要一些新的方法来解决这些问题,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。

蚁群系统(Ant Colony System),这种算法是目前国内外启发式算法中的研究热点和前沿课题,被成功地运用于旅行商问题的求解,蚁群算法在求解复杂优化问题方面具有很大的优越性和广阔的前景。

但是,根据观察实验发现,蚁群中的多个蚂蚁的运动是随机的,在扩散范围较大时,在较短时间内很难找出一条较好的路径,在算法实现的过程中容易出现停滞现象和收敛速度慢现象。

在这种弊端的情况下,学者们提出了一种自适应蚁群算法,通过自适应地调整运行过程中的挥发因子来改变路径中信息素浓度,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。

下面是一些最常用的变异蚁群算法精英蚂蚁系统全局最优解决方案在每个迭代以及其他所有的蚂蚁的沉积信息素.最大最小蚂蚁系统( MMAS)添加的最大和最小的信息素量[ τmax ,τmin ],只有全局最佳或迭代最好的巡逻沉积的信息素。

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用摘要蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。

通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。

蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。

针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。

关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法1.车辆路径问题车辆路径问题(VRP)来源于交通运输,1959年由Dantzig 提出,它是组合优化问题中一个典型的NP-hard问题。

最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。

车路优化问题如下:已知有一批客户,各客户点的位置坐标和货物需求已知,供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。

现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。

2、蚁群系统基本原理在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。

因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。

当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。

与此同时释放出与路径长度有关的信息素。

路径越长,释放的激素浓度越低。

当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。

这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。

最终整个蚁群会找出最优路径。

蚁群算法在路径规划策略中的应用

蚁群算法在路径规划策略中的应用

本论文通过推导阐明了地图上的路径搜索问题是个寻找最短路径的 最优化问题,并且提出了一种基于蚁群算法(ACO)的解决方法。蚁群 算法是最近提出的一种基于种群的启发式仿生进化算法,被用来解决许 多组合优化问题,例如旅行商问题,二次分配问题,图片着色问题, 抽水蓄 能电站排序优选问题。该算法与其他算法不同之处在于其实现比较简单、 灵活,更重要的是该算法不易陷入局部解。为了适应一些像交通运输管 理方面的应用,本论文采取路径最大负荷量来控制网络的流量。 论文的结构: 论文是包括以下章节:第二部分阐明了路径规划问题,第三部分介绍 了蚁群算法。第四部分介绍了如何应用蚁群算法解决路径规划问题。第 五部分介绍实验结果。
转移概率公式:
4.AOC算法的应用
5.仿真结果
图,节点数超过200后,蚁群算法明源自更加高效。表1为蚁群算法与其他算法的比较。从表中可以看出,给定一幅地
6.结论
本文讨论在给定地图或者网络中搜索最优路径的方法。路径规 划问题可以看成是在考虑负载约束下查找最短路径的问题,本文在蚁 群算法基础上提出了一种路径规划的新方法。该方法有以下优点:1) 这种算法实现简单,可以用来解决许多最优化问题;2)算法灵活, 鲁班性强;3)算法不易陷于局部最优解,能达到全局最优解。 最后, 算法在几个网络上做了测试并取得了不错的效果。
2.问题数学化
3.蚁群算法的基本原理
蚁群算法(ACO)是一种基于种群的启发式仿生进化算法。蚁群算法 中人工蚂蚁的行为是模拟生物界中的蚂蚁的觅食行为。在生物界中,单 只蚂蚁的行为也是非常简单的。当它们走过一个地方时,在路径上留下 一种叫信息素的化学物质。而其他蚂蚁的则根据路径上的信息素来选择 觅食线路。蚂蚁会选择其中一条信息素浓度最大的线路。当然,人工蚂 蚁有着生物界蚂蚁不具备的特性。其中很重要的一点就是人工蚂蚁工作 在离散环境中,它们需要实现从节点到节点的转移。他们的行为往往和 存储在内存特定数据结构有关。 信息素的更新值是发生在人工蚂蚁完成起点到终点的线路后,而不 是在这个过程当中。每只人工蚂蚁都存有常量的信息素,当从起点到达 终点后,信息素会被均匀地分配到线路上。如果该蚂蚁选择的是一条好 的线路,分配的信息素就会多些。相反,如果该线路不好,则分配的信 息素就会很少。线路质量的好坏就与信息素的多少联系起来。路线上的 信息素随着时间逐渐减少,避免陷入局部最优解。

蚁群算法应用场景

蚁群算法应用场景

蚁群算法应用场景
蚁群算法是一种模拟蚂蚁寻找食物的算法,它可以应用于许多实际问题中,例如:
1. 路径规划:蚁群算法可以用于寻找最短路径,例如在交通网络中找到最短路径。

2. 旅行商问题:蚁群算法可以用于解决旅行商问题,即找到一条最短路径,使得旅行商能够访问所有城市。

3. 任务分配:蚁群算法可以用于任务分配,例如在生产线上分配任务给不同的机器人或工人。

4. 网络优化:蚁群算法可以用于优化网络拓扑结构,例如在无线传感器网络中优化传感器节点的位置。

5. 组合优化:蚁群算法可以用于求解组合优化问题,例如在装载物品时找到最优的组合方式。

综上所述,蚁群算法具有广泛的应用场景,能够解决许多实际问题,特别是在路径规划、旅行商问题、任务分配、网络优化和组合优化方面表现出色。

- 1 -。

蚁群算法的基本原理和应用

蚁群算法的基本原理和应用

蚁群算法的基本原理和应用简介蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的启发式算法,它源于对蚂蚁在寻找食物时的行为规律的研究。

蚁群算法模拟了蚂蚁在寻找最佳路径时释放信息素、选择路径的策略,通过蚁群成员之间的相互合作和信息共享来求解各类优化问题。

蚁群算法具有较高的适应性和鲁棒性,被广泛应用于优化问题求解中。

基本原理蚁群算法基于一种基本的反馈机制:蚂蚁在行动过程中释放信息素,并根据所释放的信息素密度来选择路径。

信息素在路径上的积累程度会影响蚂蚁选择路径的概率,从而引导整个蚁群向目标位置集中。

具体的基本原理如下:1.蚂蚁的行动规则:蚂蚁按照一定的规则进行移动,每个蚂蚁根据当前位置的信息素密度以及启发式信息(例如距离、路径质量等)选择下一步的移动方向。

2.信息素的更新:蚂蚁在路径上释放信息素,并且信息素的蒸发和更新过程会导致信息素的动态变化。

经过多次迭代后,信息素会逐渐积累在最优路径上,从而引导后续的蚂蚁选择该路径。

3.路径选择概率:蚂蚁在选择下一步移动方向时,会根据当前位置的信息素和启发式信息计算路径选择概率。

较高的信息素密度和启发式信息将增加路径的选择概率。

应用领域蚁群算法在众多领域中取得了广泛的应用,以下列举几个示例:1.路径规划问题:蚁群算法可以用于解决路径规划问题,例如在城市中找到最短路径。

蚁群算法通过模拟蚂蚁的觅食行为,可以在复杂的网络中找到最优路径,无论是在城市道路网络还是在电信网络中。

–寻找最短路径:蚁群算法可以应用于解决最短路径问题,例如在城市导航、物流路径规划等领域。

–车辆路径优化:蚁群算法可以优化车辆的路线,减少行驶距离和时间,提高运输效率。

2.优化问题:蚁群算法在求解各种优化问题中具有较好的性能,例如旅行商问题、装箱问题等。

–旅行商问题:蚁群算法可以应用于解决旅行商问题,找到最短的旅行路线,减少旅行的距离和时间。

–装箱问题:蚁群算法可以优化装箱问题,将不同大小的物品装入不同大小的容器中,减少空间浪费。

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用蚁群算法是一种模拟蚂蚁在寻找食物时的行为方式的优化算法,通过模拟蚂蚁的行为和信息传递,可以有效解决路径规划问题。

蚁群算法在路径规划中的应用广泛,并且在实际应用中取得了良好的效果。

本文将介绍蚁群算法的基本原理、路径规划问题以及蚁群算法在路径规划中的具体应用。

首先,我们来了解一下蚁群算法的基本原理。

蚁群算法主要受到蚂蚁在寻找食物时的行为启发。

当蚂蚁在寻找食物时,会通过释放一种称为信息素的物质,来标记通往食物的路径。

其他蚂蚁通过检测到这些信息素的浓度,会选择跟随信息素浓度较高的路径,从而找到食物。

基于这个思想,蚁群算法就是通过模拟蚂蚁的行为和信息传递来寻找优化解的一种算法。

路径规划问题是指在给定起点和终点的情况下,确定一条满足特定约束条件的最佳路径。

在现实生活中,路径规划问题广泛存在于物流运输、智能交通等领域。

传统的路径规划算法,如Dijkstra算法、A*算法等,往往需要对整个搜索空间进行全局搜索,计算量较大且效率不高。

而蚁群算法通过模拟蚂蚁的行为,可以在搜索过程中逐步调整路径选择,从而有效地解决路径规划问题。

蚁群算法在路径规划中的具体应用有以下几个方面。

首先,蚁群算法可以用于解决最短路径问题。

最短路径问题是指在给定图中寻找一条从起点到终点的最短路径。

蚁群算法通过模拟蚂蚁的行为和信息素的释放,可以逐步调整路径选择,从而找到最短路径。

在该问题中,蚂蚁模拟了图中的节点,路径上的信息素模拟了节点之间的距离。

蚂蚁根据信息素的浓度选择下一步的移动方向,信息素更新的规则也与路径上的距离有关。

通过多次迭代优化,蚁群算法可以找到最短路径,并且能够适应路径中的变化条件。

其次,蚁群算法可以用于解决车辆路径规划问题。

车辆路径规划问题是指在给定一组出发点和一组目的地点的情况下,确定每辆车的路径,使得总的路径成本最小。

在该问题中,蚂蚁模拟了车辆,信息素模拟了路径上的成本(如距离、时间等)。

蚂蚁根据信息素浓度选择下一步的移动方向,信息素更新的规则与路径上的成本有关。

蚁群算法最短路径matlab程序 - 副本

蚁群算法最短路径matlab程序 - 副本

蚁群算法最短路径通用Matlab程序下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)D=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)MM=size(G,1);a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));Eta=zeros(1,N); for i=1:Nif ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));if i~=EEta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(1,i)=100;endendROUTES=cell(K,M);PL=zeros(K,M);%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:Kdisp(k);for m=1:MW=S;Path=S;PLkm=0;TABUkm=ones(1,N);TABUkm(S)=0;DD=D;DW=DD(W,:);DW1=find(DW)for j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);while W~=E&&Len_LJD>=1PP=zeros(1,Len_LJD);for i=1:Len_LJDPP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta); endPP=PP/(sum(PP));Pcum=cumsum(PP);Select=find(Pcum>=rand);Path=[Path,to_visit];PLkm=PLkm+DD(W,to_visit);W=to_visit;for kk=1:Nif TABUkm(kk)==0DD(W,kk)=inf;DD(kk,W)=inf;endendTABUkm(W)=0;for j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);%可选节点的个数endROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;elsePL(k,m)=inf;endendDelta_Tau=zeros(N,N);%更新量初始化for m=1:Mif PL(k,m) ROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);for s=1:TSx=ROUT(s);Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图-------------------------------- plotif=1;%是否绘图的控制参数if plotif==1%绘收敛曲线meanPL=zeros(1,K);minPL=zeros(1,K);for i=1:KPLK=PL(i,:);Nonzero=find(PLKPLKPLK=PLK(Nonzero);meanPL(i)=mean(PLKPLK);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold onplot(meanPL);grid ontitle('收敛曲线(平均路径长度和最小路径长度)');xlabel('迭代次数');ylabel('路径长度');%绘爬行图figure(2)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendhold onROUT=ROUTES{K,M};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)endplotif2=1;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendfor k=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM)); endplot(Rx,Ry)hold onendend将上述算法应用于机器人路径规划,优化效果如下图所示。

蚁群算法在无人机路径规划中的应用

蚁群算法在无人机路径规划中的应用

蚁群算法在无人机路径规划中的应用蚁群算法在无人机路径规划中的应用随着无人机技术的不断发展,无人机的应用领域也越来越广泛。

其中,无人机路径规划是无人机系统中的关键问题之一。

无人机路径规划的目标是找到一条最优路径,使得无人机在完成任务的同时,能够最大限度地节省能源,并保证安全性和稳定性。

而蚁群算法正是一种可以用来解决这一问题的有效方法。

蚁群算法是一种模拟蚁群寻找食物的行为而发展起来的一种群体智能算法。

它的基本思想是通过模拟蚂蚁在寻找食物过程中的信息交流和合作行为,来寻找问题的最优解。

在蚁群算法中,每只蚂蚁都有一个局部最优解,并通过信息素的释放和感知来进行信息交流,最终形成整个蚁群的全局最优解。

在无人机路径规划中,蚁群算法可以被应用于多种不同的场景。

首先,蚁群算法可以用于无人机的路径选择。

在无人机任务区域复杂的情况下,蚁群算法可以帮助无人机选择一条经过中心区域的路径,以便无人机能够更好地感知周围环境,提高任务完成的准确性。

其次,蚁群算法可以用于无人机的资源分配。

无人机在执行任务时,需要综合考虑多个因素,如飞行时间、能耗和通信质量等。

蚁群算法可以帮助无人机在资源分配中找到一个平衡点,以达到最优的综合效果。

此外,蚁群算法还可以用于无人机的路径优化。

通常情况下,无人机在执行任务时需要经过多个路径点,而每个路径点之间的距离和时间都是不同的。

蚁群算法可以帮助无人机找到一条最优路径,使得无人机的总体飞行距离和时间最小,从而提高整体效率。

综上所述,蚁群算法在无人机路径规划中具有广泛的应用潜力。

通过模拟蚂蚁的寻食行为和信息交流,蚁群算法能够帮助无人机找到最优路径,提高任务的效率和准确性。

随着无人机技术的不断发展和蚁群算法的进一步优化,相信蚁群算法在无人机路径规划中的应用会越来越广泛,并为无人机系统的发展带来更多的创新和突破。

改进的蚁群算法在路线规划中的应用

改进的蚁群算法在路线规划中的应用

改进的蚁群算法在路线规划中的应用一、引言随着社会的发展和人们的生活水平的提高,人口迁移和城市交通的增长成为城市规划和交通管理的一大难题。

为了解决这个问题,科学家们通过研究各种算法,发现了一种非常有用的算法——蚁群算法,它可以应用于路线规划和交通问题中,并取得了很好的效果。

二、蚁群算法概述蚁群算法是一种基于自组织和群体智能的优化算法,被广泛应用于路线规划和交通问题中。

它的基本原理是模拟蚂蚁寻找食物的行为,通过观察和学习,用启发式信息来指导寻找最优解。

一般来说,蚁群算法包括以下三个步骤。

1.初始化:建立模型,维护蚂蚁群,用随机数初始化各种参数。

2.随机构造解决方案:蚂蚁在解决问题时,每个蚂蚁在时间 t都会选择一条路径进行探索。

蚂蚁通过信息素的激发和前人的足迹来选择路径。

信息素是一种在树形网络上随时间变化的虚拟物质,蚂蚁通过它来获取信息。

3.更新信息素:一系列的解决策略被选择,并且信息素中的强度值将被更新。

强信息素路径将被选择再次强化,而弱信息素路径将逐渐消失。

三、改进的蚁群算法改进的蚁群算法是一种优化版本的蚁群算法,它针对传统蚁群算法中的问题进行改进。

1.引入更多的因素:传统的蚁群算法中,只考虑了信息素和蚂蚁的距离,而改进的蚁群算法还考虑了其他因素,例如交通状况、天气、是否有红绿灯等,以提高算法的精度。

2.引入深度学习:改进的蚁群算法还可以通过引入深度学习的方法,对蚁群算法进行加强。

四、改进的蚁群算法在路线规划中的应用改进的蚁群算法可以应用于路线规划和交通问题中。

在路线规划中,改进的蚁群算法可以帮助人们选择最佳的路线,避免堵车和拥堵的情况,保证人们能够在最短的时间内到达目的地。

下面我们以一位旅行者的路线规划为例,来解释改进的蚁群算法对路线规划的帮助。

假设旅行者想要从 A 地出发,经过B 地和C 地到达目的地 D。

不同的路径会有不同的路况,而改进的蚁群算法可以根据距离、交通状况和其他因素来选择最佳路径,从而达到最短的行程时间。

机器人路径规划蚂蚁算法

机器人路径规划蚂蚁算法

机器人路径规划蚂蚁算法1 概述蚂蚁算法[1]近年在许多领域得到应用并获成果,在移动机器人全局路径规划研究上也有应用[2]。

作为通用型随机优化方法,蚂蚁算法较遗传算法﹑模拟退火算法有较好的适应,较可视图法有较高的效率,在克服局部极小解方面要好于人工势场法。

但是,传统的蚂蚁算法也存在缺陷。

如,路径点转移方向未能快速确保为收敛方向;所有路径点同时转移容易导致各点配合不好而使总距离长度产生振荡。

本文根据蚂蚁嗅觉引导行为原理,使路径点位置转移方向确保为收敛方向,减少迭代计算中概率选择公式的运算量;在每次迭代过程中不遍历修改全体蚂蚁的位置,仅调整最迫切需要转移的蚂蚁个体,从而避免总距离长度出现振荡;对改进后的算法进行了计算机仿真,结果表明,新算法达到预期目标。

2 蚂蚁的嗅觉引导行为蚂蚁具有嗅觉功能,可以感知其它蚂蚁在路径上留下的信息素和食物弥散在空气中的气味。

蚁群能够根据食物气味逐步修改已有的路径,最终找出从窝巢至食物的最短路径。

虽然机理很复杂,但可以将蚂蚁的嗅觉引导行为表示为图1的模型。

设食物气味呈辐射状向四周散发,其浓度沿径向等梯度减弱,蚁群沿着曲折的路径向食物前进,Pi-1→Pi→Pi+1是其中的两段。

当蚂蚁沿这两段路径行走同样距离时,如果所嗅到的食物气味浓度的增幅更大,则认定路径点Pi后的新路线能够更快地趋近于食物,蚁群会逐步调整此转弯点的位置,反之则蚁群不会对已有路线进行修改。

图1说明蚂蚁的嗅觉引导行为的原理,其中,当α>β时,△r1<△r2,显然,蚂蚁将察觉在行走同样距离△d的情况下,沿线段Pi-1Pi 比沿线段PiPi+1,食物气味浓度的增幅更大,即路径点后的路线要优于先前的路线,蚂蚁将调整路径点的位置,修改行走路线。

当α<β时,△r1>△r2,虽然路径点后的路线要劣于先前的路线,但蚂蚁的智商决定蚁群将暂时继续沿着留有信息素的旧路线行走,而不会立即对已有路径做出修改。

同理可推知当α=β,即△r1=△r2时,蚁群也不会立即对路径做出修改。

蚁群算法及其在移动机器人路径规划中的应用

蚁群算法及其在移动机器人路径规划中的应用
由于信息素更新策略有所不同,学者Dorigo M 研究发现了三种不同的基本蚁群算法模型,分别记为“蚁周系统”(Ant-Cycle)模型、“蚁量系统”(Ant-Quantity)模型及“蚁密系统”(Ant-Density)模型,三种模型求解 方式存在不同。
“蚁周系统”(Ant-Cycle)模型
第k只蚂蚁走过 (2-4)
图3.2栅格图
虽然优化蚁群算法的研究才刚刚起步,但这些初步研究已显示出了蚁群优化算法在求解复杂优化问题(特别是离散优化问题)方面的优越性,证明它是一种很有发展前景的方法。但是必须指出的,蚁群优化算法是一种概率算法,从数学上对它们的正确性和可靠性的证明还是比较困难的。其在移动机器人路径规划中的应用还有很多富有挑战性的课题亟待解决。主要体现在以下几方面:
“蚁量系统”(Ant-Quantity)模型
第k只蚂蚁在t和t+1之间走过 (2-5)
“蚁密系统”(Ant-Density)模型
第k只蚂蚁在t和t+1之间走过 (2-6)
从上边各公式可以看出三种模型的主要区别是:“蚁量系统”和“蚁密系统”中,信息素是在蚂蚁完成一步后更新的,即采用的是局部信息;而在“蚁周系统”中路径中信息素是在蚂蚁完成一个循环后更新的,即应用的是整体信息。在一系列标准测试问题上运行的实验表明,“蚁周系统”算法的性能优于其他两种算法。因此,对蚂蚁系统的研究正朝着更好地了解“蚁周系统”特征的方向发展。
移动机器人导航的任务主要由定位、避障和路径规划组成,其中路径规划是机器人控制最为关键的技术。移动机器人路径规划是指在有障碍物的工作环境中按照一定的评价标准(如工作代价最小、行走路线最短、行走时间最短等),寻找一条从起始状态(包括位置和姿态)到达目标状态(包括位置和姿态)的无碰路径。蚁群算法是一种受到生物界中真实蚁群集觅食行为的启发式算法,该算法在求解旅行商(TSP)和作业调度等多目标优化问题取得了不错的成果,且大量研究结果表明相对于其它人工智能算法,蚁群算法所取得的结果是最优的。

蚁群算法及其在移动机器人路径规划中的应用剖析

蚁群算法及其在移动机器人路径规划中的应用剖析

蚁群算法及其在移动机器人路径规划中的应用剖析蚁群算法(Ant Colony algorithm)是一种模拟蚂蚁行为的启发式优化算法,其主要应用于解决组合优化问题,特别是在路径规划问题中的应用较为突出。

蚁群算法的基本原理是基于蚂蚁在寻找食物时的行为规律,当一只蚂蚁找到食物后,会释放一种称为信息素的物质,同时返回巢穴。

其他蚂蚁会根据信息素的浓度来选择路径,浓度高的路径被选择的概率较大。

当蚂蚁返回巢穴时,会根据所选择路径上的信息素浓度来增加信息素的浓度,从而在路径上留下更多的信息素。

随着时间的推移,信息素浓度逐渐增加,最终蚂蚁群体会逐渐聚集在较优的路径上。

移动机器人路径规划是指根据机器人的起点和终点,找到一条最优的路径。

在移动机器人路径规划中,蚁群算法可以解决多目标、多约束的路径规划问题。

下面将从问题建模、蚁群算法实现、实际应用等方面对蚁群算法在移动机器人路径规划中的应用进行剖析。

首先,对问题进行建模。

在移动机器人路径规划中,路径可以表示为有向图,图的节点表示机器人可以到达的位置,边表示连接两个位置的路径。

节点之间的距离可以是直线距离、时间、能耗等。

起始节点表示机器人的起点,终止节点表示机器人的目标。

路径规划的目标是找到一条从起始节点到终止节点的最短路径,同时尽可能满足约束条件。

其次,实现蚁群算法。

蚁群算法包括初始化信息素、蚂蚁的移动、信息素更新等步骤。

初始化信息素是指在路径上的每条边上设置初始信息素的浓度。

蚂蚁的移动过程中,每只蚂蚁根据信息素浓度和启发式函数来选择下一步移动的节点。

启发式函数可以根据节点和目标节点的距离、路径上信息素的浓度等因素来计算。

当蚂蚁到达终点后,根据蚂蚁的路径长度来更新路径上的信息素浓度,即路径长度越短的蚂蚁路径上的信息素浓度越高。

同时,为了防止信息素过快蒸发,可以引入信息素的挥发系数。

蚂蚁算法一般通过多次迭代来寻找最优的路径。

最后,应用蚁群算法进行路径规划。

蚁群算法在移动机器人路径规划中可以实现多目标、多约束的优化。

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题matlab蚁群算法机器人路径优化问题在当今科技迅速发展的时代,机器人的应用越来越广泛,从工业生产中的自动化装配到医疗领域的微创手术,从物流仓储的货物搬运到危险环境的探测救援,机器人都发挥着重要的作用。

而机器人在执行任务时,如何规划出一条最优的路径是一个关键问题,这不仅关系到机器人的工作效率,还影响着其能源消耗和任务完成的质量。

蚁群算法作为一种启发式算法,为解决机器人路径优化问题提供了一种有效的途径。

蚁群算法的灵感来源于自然界中蚂蚁的觅食行为。

蚂蚁在寻找食物的过程中,会在经过的路径上释放一种叫做信息素的化学物质。

其他蚂蚁能够感知到这种信息素,并倾向于选择信息素浓度高的路径。

随着时间的推移,较短的路径上信息素积累得更快,更多的蚂蚁会选择这条路径,从而形成一种正反馈机制,最终所有蚂蚁都能够找到一条从蚁巢到食物源的最短路径。

将蚁群算法应用于机器人路径优化问题时,首先需要将机器人的工作环境进行建模。

可以将工作空间划分为一个个的网格或者节点,机器人在这些节点之间移动。

然后,为每个节点之间的连接设置一个初始的信息素浓度。

在算法的每一次迭代中,机器人从起始点出发,根据节点之间的信息素浓度和一些启发式信息(例如节点之间的距离)来选择下一个要访问的节点。

当机器人到达目标点后,就完成了一次路径的探索。

在这次探索中,机器人所经过的路径上的信息素会得到更新,通常是路径越短,信息素的增加量越大。

为了使算法更加有效,还需要对信息素的更新规则进行合理的设计。

一种常见的方法是,在每次迭代结束后,对所有路径上的信息素进行挥发,即减少一定的比例,以避免早期形成的较好路径对后续的搜索产生过度的影响。

同时,对于本次迭代中产生的最优路径,给予较大的信息素增量,以强化这条路径的吸引力。

在实际应用中,使用 Matlab 来实现蚁群算法进行机器人路径优化具有很多优势。

Matlab 提供了丰富的数学计算和图形绘制功能,能够方便地处理矩阵运算和数据可视化。

基于蚁群算法的移动机器人路径规划

基于蚁群算法的移动机器人路径规划
基于蚁群算法的移动机器人 路径规划
汇报人:文小库 2023-12-21
目录
• 引言 • 基于蚁群算法的路径规划模型 • 移动机器人路径规划算法实现 • 实验结果与分析 • 结论与展望
01
引言
研究背景与意义
01
移动机器人路径规划问题
随着机器人技术的不断发展,移动机器人在许多领域得到广泛应用。路
径规划是移动机器人自主导航的核心问题,需要寻找从起点到目标点的
05
结论与展望
研究成果总结
蚁群算法的优化
通过实验验证,蚁群算法可以有 效优化移动机器人的路径规划问 题,在复杂的地图环境中寻找最
短路径。
算法鲁棒性
蚁群算法具有较好的鲁棒性,对于 不同复杂度的地图和任务需求,都 能提供较为满意的解决方案。
实时性
蚁群算法能够在短时间内给出路径 规划结果,满足移动机器人实时决 策的需求。
04
实验结果与分析
实验环境搭建与数据采集
实验环境
在实验室环境中,搭建了一个10m x 10m的地图,其中包含障碍物和目标 点。
数据采集
通过移动机器人搭载的传感器采集地 图数据、障碍物位置、距离等信息。
算法性能对比实验
01
02
03
对比算法
将蚁群算法与常见的路径 规划算法(如Dijkstra算 法、A*算法等)进行对比 。
实验过程
在相同的实验环境下,分 别使用不同的算法进行路 径规划,并记录规划时间 和路径长度等指标。
结果分析
通过对比实验结果,分析 蚁群算法在路径规划中的 性能表现。
不同场景下的路径规划结果展示
场景一
地图中存在多个障碍物,需要规划出一条从 起点到终点的最短路径。

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用作者:张元良杨巍巍刘青程鹏来源:《数字技术与应用》2013年第05期摘要:蚁群优化算法是由Marco Dorigo于1992年在他的博士论文中引入的一种优化技术。

蚁群算法的灵感来自于真实蚁群的觅食行为。

蚁群算法以其强大的搜索能力、很好的鲁棒性和易于与其它算法结合使用等优点在各种优化的问题中得到了广泛的关注和应用。

移动机器人路径规划任务是在静态的已知障碍物的环境中找到一条从起点到终点路径最短且能够避开障碍物的最优路径。

本文首先介绍了适用于移动机器人路径规划任务的基本蚁群算法,然后基于基本蚁群算法存在的问题讨论了对蚁群算法在移动机器人路径规划中的改进措施,最后针对蚁群算法的应用现状提出了未来的发展和改进方向。

关键词:机器人路径规划蚁群算法中图分类号:TP24 文献标识码:A 文章编号:1007-9416(2013)05-0159-021 前言自主移动机器人能够正常安全工作的保障是要求机器人能够自主的在存在障碍物的环境中找到能够从起点到达终点的最优路径。

目前,常用于进行移动机器人路径规划的算法有人工势场法、A*算法、模糊逻辑方法、神经网络法、遗传算法等[1]。

人工势场法容易使移动机器人陷入局部最小解而无法达到目标点。

A*算法虽然能够得到最优的路径,但是其全局性较差而且算法中的启发式函数如果选的不正确,则在搜索中容易进入死循环。

模糊逻辑算法的适应能力比较差。

神经网络具有很强的学习能力,但是训练过程比较困难。

遗传算法具有随机优化的特点,但是其局部搜索能力不强,容易出现早熟现象。

蚁群算法是由意大利学者M.Dorigo在1992年提出的一种通用的新型优化算法,具有极强的鲁棒性和发现较好解的能力。

蚁群算法在众多的优化问题中得到了广泛的应用。

由于其具有正反馈、分布式计算、自组织等特点,在移动机器人路径规划中也得到了广泛的应用。

但是传统的蚁群算法也存在易于陷入局部最优解、停滞现象和收敛速度慢等问题[2]。

蚁群算法在移动机器人路径规划中的应用综述

蚁群算法在移动机器人路径规划中的应用综述

蚁群算法在移动机器人路径规划中的应用综述一、本文概述随着和机器人技术的快速发展,移动机器人的路径规划问题已成为研究热点。

路径规划是指在有障碍物的环境中寻找一条从起点到终点的安全、有效路径。

蚁群算法作为一种模拟自然界蚁群觅食行为的智能优化算法,因其出色的全局搜索能力和鲁棒性,在移动机器人路径规划领域得到了广泛应用。

本文旨在综述蚁群算法在移动机器人路径规划中的研究现状、应用实例以及未来发展趋势,以期为相关领域的研究者提供参考和借鉴。

本文首先介绍蚁群算法的基本原理和特点,然后分析其在移动机器人路径规划中的适用性。

接着,详细梳理蚁群算法在移动机器人路径规划中的应用案例,包括室内环境、室外环境以及复杂动态环境等不同场景下的应用。

本文还将讨论蚁群算法在路径规划中的优化策略,如参数调整、算法融合等。

总结蚁群算法在移动机器人路径规划中的优势与不足,并展望其未来的研究方向和发展趋势。

二、蚁群算法基本原理蚁群算法(Ant Colony Optimization, ACO)是一种模拟自然界蚂蚁觅食行为的优化算法,由意大利学者Marco Dorigo等人在1991年首次提出。

蚁群算法的基本原理是模拟蚂蚁在寻找食物过程中,通过信息素(pheromone)的释放和跟随来进行路径选择,最终找到从蚁穴到食物源的最短路径。

在算法中,每个蚂蚁都被视为一个智能体,能够在搜索空间中独立探索和选择路径。

蚁群算法的核心在于信息素的更新和挥发机制。

蚂蚁在选择路径时,会倾向于选择信息素浓度较高的路径,因为这意味着这条路径更可能是通向食物源的有效路径。

同时,蚂蚁在行走过程中会释放信息素,使得走过的路径上信息素浓度增加。

然而,随着时间的推移,信息素会逐渐挥发,这是为了避免算法陷入局部最优解。

在移动机器人路径规划问题中,蚁群算法可以被用来寻找从起点到终点的最优或近似最优路径。

将搜索空间映射为二维或三维的网格,每个网格节点代表一个可能的移动位置,而路径则由一系列节点组成。

蚁群算法在机器人路径规划中的应用研究

蚁群算法在机器人路径规划中的应用研究

r b tb sd o n oo yag r h i r p e n ti a e.On t i b ss ah pa nn d li b i rt er一 o o a e n a tc ln lo i m sp o s d i hsp p r t hs a i,a p t ln ig mo e s ul f h o do 1 t a dt eag rtm e t iae yViu l 0 , n h lo ih i c ric tdb s a o s f C+ + 6 0 . .Th eut dct h ttep o o e lo i m a id te ers l i ia eta h rp s dag rt c nfn h sn h
(n oSce ea gne rn If inc ndEn i e ig,Sh ny n g n iest ,S n a g 1 01 8,Chn ) e a g Lio g Unv r iy he y n 1 6 ia
Ab ta t Ac o d n o t e o t z t n p o lm f ta i o a a h p a n n o o o ,a p t ln i g ag rt m r src c r i g t h p i a i r b e o r d t n l t ln ig f r r b t a h p a n n l o i mi o i p h f o
3 1 问题的描述及定义 . 如果把城 市道路网中的道路 起始点 、 目标点 和交叉 路 口 等表示为节点 , 把道路表 示为连接 节点 的弧, 把道 路的长 度、 通行 时间和拥 塞程度等属性 表示为弧ห้องสมุดไป่ตู้的权 , 那么道路 网就可
以被 抽 象 成 为 一 个 带 权 的有 向 图 。给 定 一 个 带 权 的 有 向 图 G
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)%% ---------------------------------------------------------------% ACASP.m% 蚁群算法动态寻路算法% ChengAihua,PLA Information Engineering University,ZhengZhou,China% Email:aihuacheng@% All rights reserved%% ---------------------------------------------------------------% 输入参数列表% G 地形图为01矩阵,如果为1表示障碍物% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)% K 迭代次数(指蚂蚁出动多少波)% M 蚂蚁个数(每一波蚂蚁有多少个)% S 起始点(最短路径的起始点)% E 终止点(最短路径的目的点)% Alpha 表征信息素重要程度的参数% Beta 表征启发式因子重要程度的参数% Rho 信息素蒸发系数% Q 信息素增加强度系数%% 输出参数列表% ROUTES 每一代的每一只蚂蚁的爬行路线% PL 每一代的每一只蚂蚁的爬行路线长度% Tau 输出动态修正过的信息素%% --------------------变量初始化----------------------------------%loadD=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)MM=size(G,1);a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));%终止点纵坐标Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数%下面构造启发式信息矩阵for i=1:Nif ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));if i~=EEta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(1,i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:Kdisp(k);for m=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm=ones(1,N);%禁忌表初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%% 第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DWfor j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%% 第三步:转轮赌法选择下一步怎么走PP=zeros(1,Len_LJD);for i=1:Len_LJDPP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);endPP=PP/(sum(PP));%建立概率分布Pcum=cumsum(PP);Select=find(Pcum>=rand);%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点if TABUkm(kk)==0DD(W,kk)=inf;DD(kk,W)=inf;endendTABUkm(W)=0;%已访问过的节点从禁忌表中删除for j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);%可选节点的个数end%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度ROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;elsePL(k,m)=inf;endend%% 第六步:更新信息素Delta_Tau=zeros(N,N);%更新量初始化for m=1:Mif PL(k,m) ROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);for s=1:TSx=ROUT(s);Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图--------------------------------plotif=1;%是否绘图的控制参数if plotif==1%绘收敛曲线meanPL=zeros(1,K);minPL=zeros(1,K);for i=1:KNonzero=find(PLKPLKPLK=PLK(Nonzero);meanPL(i)=mean(PLKPLK);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold onplot(meanPL);grid ontitle('收敛曲线(平均路径长度和最小路径长度)'); xlabel('迭代次数');ylabel('路径长度');%绘爬行图figure(2)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendhold onLENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)endplotif2=1;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); hold onendendendfor k=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)hold onendend将上述算法应用于机器人路径规划,优化效果如下图所示。

相关文档
最新文档