《数据结构》(C语言版)第十章内部排序

合集下载

数据结构-内排序

数据结构-内排序

Shell排序的性能分析
Shell排序的时间复杂度在O(nlog2n)和O(n2)间, Knuth的 统计结论是,平均比较次数和记录平均移动次数在n1.25与 1.6n1.25之间
Shell排序是一种不稳定的排序方法
最后谈一下delta的取法。 Shell最初的方案是delta=n/2, delta=delta/2,直到delta=1。Knuth的方案是delta=delta/3 +1。其它方案有:都取奇数为好;或delta互质为好等等。 而使用象1, 2, 4, 8, …或1, 3, 6, 9, …这样的增量序列就不太 合适,因为这样会使几个元素多次被分到一组中,从而造 成重复排序,产生大量无用的比较操作
另外,在无序子表中向前移动的过程中,如果没 有交换元素,则说明无序子表已有序,无须再做 排序
24
冒泡排序算法实现
1 void bubble_sort(RecType R[ ], int n) { 2 //待排序元素用一个数组R表示,数组有n个记录
3 int i, j; 4 bool swap=TRUE; //判断无序子表是否已有序的变量
内排序和外排序 按照排序过程中使用内、外存的不 同将排序方法分为内排序和外排序。若待排序记录全 部在内存中,称为内排序;若待排序记录的数量很大, 以致内存一次不能容纳全部记录,在排序过程中需要 进行内、外存交换,称为外排序。本章仅讨论内排序
内排序可分为五大类:插入排序、交换排序、选择排 序、归并排序和基数排序
直接插入排序(straight insert sort) 折半插入排序(binary insert sort) Shell排序(Shell sort)
10
10.2.1 直接插入排序举例

数据结构-第十章-内部排序

数据结构-第十章-内部排序

0
1
2
3
4
5
6
7
8
i=5
MAXINT 49 2 3
MAXINT 49 6 3 MAXINT 49 6 3 MAXINT 49 6 8
38 1
38 1 38 1 38 1
65 97 5 0
65 5 65 5 65 5 97 0 97 0 97 0
76 4
76 4 76 4 76 4
13
27
49
i=6



最坏情况下,待排记录按关键字非递增有序 排列(逆序)时,第 i 趟时第 i+1 个对象 必须与前面 i 个对象都做排序码比较, 并且 每做1次比较就要做1次数据移动。总比较 次 数 为 (n+2)(n-1)/2 次 , 总 移 动 次 数 为 (n+4)(n-1)/2。 在平均情况下的排序码比较次数和对象移 动次数约为 n2/4。因此,直接插入排序的 时间复杂度为 O(n2)。 直接插入排序是一种稳定的排序方法。
折半插入排序 (Binary Insertsort)
基本思想 既然每个要插入记录之前的纪录 已经按关键字有序排列,在查找插入位 臵时就没有必要逐个关键字比较,可以 使用折半查找来实现。由此进行的插入 排序称之为折半插入排序。
折半插入排序的算法
void BInsertSort (SqList &L){ for (i=2;i<=L.length;++i){ L.r[0]=L.r[i]; low=1;high=i-1; //查找范围由1到i-1 while(low<=high){ m=(low+high)/2; if LT(L.r[0].key,L.r[m].key) high=m-1; else low=m+1; }//while 折半查找 for (j=i-1;j>=high+1;--j) L.r[j+1]=L.r[j]; //折半查找结束后high+1位臵即为插入位臵 L.r[high+1]=L.r[0]; }//for }//BInsertSort

数据结构答案 第10章 排序学习与指导

数据结构答案 第10章 排序学习与指导

第10章排序10.1 知识点分析1.排序基本概念:(1)排序将数据元素的任意序列,重新排列成一个按关键字有序(递增或递减)的序列的过程称为排序。

(2)排序方法的稳定和不稳定若对任意的数据元素序列,使用某个排序方法,对它按关键字进行排序,若对原先具有相同键值元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;反之,则称为不稳定的。

(3)内排序整个排序过程都在内存进行的排序称为内排序,本书仅讨论内排序。

(4)外排序待排序的数据元素量大,以致内存一次不能容纳全部记录,在排序过程中需要对外存进行访问的排序称为外排序。

2.直接插入排序直接插入排序法是将一个记录插到已排序好的有序表中,从而得到一个新的,记录数增1的有序表。

3.二分插入排序二分插入排序法是用二分查找法在有序表中找到正确的插入位置,然后移动记录,空出插入位置,再进行插入的排序方法。

4.希尔排序希尔排序的基本思想是:先选取一个小于n的整数d1作为第一个增量,把待排序的数据分成d1个组,所有距离为d1的倍数的记录放在同一个组内,在各组内进行直接插入排序,每一趟排序会使数据更接近于有序。

然后,取第二个增量d2,d2< d1,重复进行上述分组和排序,直至所取的增量d i=1(其中d i< d i-1 < ……< d2< d1),即所有记录在同一组进行直接插入排序后为止。

5.冒泡排序冒泡法是指每相邻两个记录关键字比大小,大的记录往下沉(也可以小的往上浮)。

每一遍把最后一个下沉的位置记下,下一遍只需检查比较到此为止;到所有记录都不发生下沉时,整个过程结束。

6.快速排序快速排序法是通过一趟排序,将待排序的记录组分割成独立的两部分,其中前一部分记录的关键字均比枢轴记录的关键字小;后一部分记录的关键字均比枢轴记录的关键字大,枢轴记录得到了它在整个序列中的最终位置并被存放好。

第二趟再分别对分割成两部分子序列,再进行快速排序,这两部分子序列中的枢轴记录也得到了最终在序列中的位置而被存放好,并且它们又分别分割出独立的两个子序列……。

第十章_排序方法(数据结构ppt-严蔚敏)

第十章_排序方法(数据结构ppt-严蔚敏)

第二个问题解决方法——筛选
方法:输出堆顶元素之后,以堆中最后一个元素替代之;然 后将根结点值与左、右子树的根结点值进行比较,并与其中 小者进行交换;重复上述操作,直至叶子结点,将得到新的 堆,称这个从堆顶至叶子的调整过程为“筛选”
例 38 50 97 76
13 27 65 49 13 38
97 27 38 50 76
2 (n 4)(n 1) 记录移动次数: (i 1) 2 i 2
i 2 n
若待排序记录是随机的,取平均值 n2 关键字比较次数: T(n)=O(n² ) 4 记录移动次数:
空间复杂度:S(n)=O(1)
n2 4
折半插入排序
排序过程:用折半查找方法确定插入位置的排序叫~
初始时令i=s,j=t 首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp 交换 再从i所指位置起向后搜索,找到第一个关键字大于x的记录, 和rp交换 重复上述两步,直至i==j为止 再分别对两个子序列进行快速排序,直到每个子序列只含有 一个记录为止
x 例 初始关键字: 27 49 i 完成一趟排序: ( 27 38 13 49 65 i 13) 49 97 76 j 97 49 13 j 97 65 49 27 50 j 50)
13 38
76 65 27 49
堆排序:将无序序列建成一个堆,得到关键字最小 (或最大)的记录;输出堆顶的最小(大)值后,使 剩余的n-1个元素重又建成一个堆,则可得到n个元素 的次小值;重复执行,得到一个有序序列,这个过程 叫~ 堆排序需解决的两个问题:
如何由一个无序序列建成一个堆? 如何在输出堆顶元素之后,调整剩余元素,使之成为一个新 的堆?
按排序所需工作量

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

数据结构(C语言版)9-12章练习 答案 清华大学出版社

数据结构(C语言版)9-12章练习 答案 清华大学出版社

数据结构(C语言版)9-12章练习答案清华大学出版社9-12章数据结构作业答案第九章查找选择题1、对n个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为( A )A.(n+1)/2 B. n/2 C. n D. [(1+n)*n ]/2 2. 下面关于二分查找的叙述正确的是 ( D )A. 表必须有序,表可以顺序方式存储,也可以链表方式存储B. 表必须有序且表中数据必须是整型,实型或字符型 C. 表必须有序,而且只能从小到大排列 D. 表必须有序,且表只能以顺序方式存储3. 二叉查找树的查找效率与二叉树的( (1)C)有关, 在 ((2)C )时其查找效率最低 (1): A. 高度 B. 结点的多少 C. 树型 D. 结点的位置(2): A. 结点太多 B. 完全二叉树 C. 呈单枝树 D. 结点太复杂。

4. 若采用链地址法构造散列表,散列函数为H(key)=key MOD 17,则需 ((1)A)个链表。

这些链的链首指针构成一个指针数组,数组的下标范围为 ((2)C) (1) A.17 B. 13 C. 16 D. 任意(2) A.0至17 B. 1至17 C. 0至16 D. 1至16判断题1.Hash表的平均查找长度与处理冲突的方法无关。

(错) 2. 若散列表的负载因子α<1,则可避免碰撞的产生。

(错)3. 就平均查找长度而言,分块查找最小,折半查找次之,顺序查找最大。

(错)填空题1. 在顺序表(8,11,15,19,25,26,30,33,42,48,50)中,用二分(折半)法查找关键码值20,需做的关键码比较次数为 4 .算法应用题1. 设有一组关键字{9,01,23,14,55,20,84,27},采用哈希函数:H(key)=key mod7 ,表长为10,用开放地址法的二次探测再散列方法Hi=(H(key)+di) mod 10解决冲突。

要求:对该关键字序列构造哈希表,并计算查找成功的平均查找长度。

第十章排序(可编辑修改word版)

第十章排序(可编辑修改word版)
主要辅助手段:多媒体
作业布置
10-4(2),(4),(5),10-6,
主 要 参考资料
1.《数据结构》,严蔚敏 吴伟民,清华大学出版社;2.数据结构题集(C语言版),
严蔚敏 吴伟民,清华大学出版社;
备注
重点难点
希尔的思想,实现,算法分析
要求掌握知识点和
分析方法
1.概念:排序,主(次)关键字,内部(外部)排序,比较排序算法的技术指标2。插入排序的基本思想;3。直接直接插入排序和希尔的思想,实现,算法分析。
教授思路,采 用 的 教学方法和辅助手段,板书设计,重 点 如 何突出,难点如何解决,师 生 互 动等
难点:堆的调整辅助手段:多媒体
作业布置
10-7,10-8
主 要 参考资料
1.《数据结构》,严蔚敏 吴伟民,清华大学出版社;2.数据结构题集(C语言版),
严蔚敏 吴伟民,清华大学出版社;
备注
章节
10.5归并排序10.6基数排序
讲授主要内容
归并排序 ,基数排序
重点难点
归并排序 ,基数排序的基本思想与算法实现
本章思考题和习题
主 要 参考资料
1.《数据结构》,严蔚敏 吴伟民,清华大学出版社;2.数据结构题集(C语言版),
严蔚敏 吴伟民,清华大学出版社;
备注
章节
10.1概念10.2插入排序
讲授主要内容
1.概念:排序,主(次)关键字,内部(外部)排序,比较排序算法的技术指标2.
插入排序的基本思想;3。直接直接插入排序和希尔的思想,实现,算法分析。
教授思路,采 用 的 教学方法和辅助手段, 板书设计,重 点 如 何突出,难点如何解决,师 生 互 动等
教学思路:

数据结构 排序

数据结构 排序
选择排序种类: 简单选择排序 树形选择排序 堆排序
2019/9/7
30
10.4.1 简单选择排序
待排记录序列的状态为:
有序序列R[1..i-1] 无序序列 R[i..n]
有序序列中所有记录的关键字均小于无序序列中记 录的关键字,第i趟简单选择排序是从无序序列 R[i..n]的n-i+1记录中选出关键字最小的记录加入 有序序列
2019/9/7
5
排序的类型定义
#define MAXSIZE 20 // 待排序记录的个数
typedef int KeyType;
typedef struct
{ KeyType key;
InfoType otherinfo; ∥记录其它数据域
} RecType;
typedef struct {
RecType r[MAXSIZE+1];
分别进行快速排序:[17] 28 [33] 结束 结束
[51 62] 87 [96] 51 [62] 结束
结束
快速排序后的序列: 17 28 33 51 51 62 87 96
2019/9/7
26
自测题 4 快速排序示例
对下列一组关键字 (46,58,15,45,90,18,10,62) 试写出快速排序的每一趟的排序结果

final↑ ↑first
i=8
[51 51 62 87 96 17 28 33]

final↑ ↑first
2019/9/7
14
希尔(shell )排序
基本思想:从“减小n”和“基本有序”两 方面改进。
将待排序的记录划分成几组,从而减少参 与直接插入排序的数据量,当经过几次分 组排序后,记录的排列已经基本有序,这 个时候再对所有的记录实施直接插入排序。

数据结构(C语言版)实验报告 (内部排序算法比较)

数据结构(C语言版)实验报告 (内部排序算法比较)

《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。

试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。

基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。

(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。

(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。

数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。

数据结构(内部排序)习题与答案

数据结构(内部排序)习题与答案

一、单选题1、对关键字序列(21,19,37,5,2),经直接插入排序法由小到大排序,第一趟后所得结果为()。

A.(19,21,5,2,37)B.(19,21,37,5,2)C.(19,21,2,5,37)D.(19,21,5,37,2)正确答案:B2、对关键字序列(21,19,37,5,2),经冒泡排序法由小到大排序,第一趟后所得结果为()。

A.(19,21,37,5,2)B.(19,21,2,5,37)C.(19,21,5,37,2)D.(19,21,5,2,37)正确答案:D3、对关键字序列(149,138,165,197,176,113,127),采用基数排序的第一趟之后所得结果为()。

A.(113,165,176,197,127,138,149)B.(113,165,176,127,197,138,149)C.(113,127,138,149,165,176,197)D.(149,138,165,197,176,113,127)正确答案:A4、下列各项键值()序列不是堆的。

A.(5,23,68,16,94)B.(5,23,16,94,68)C.(5,16,23,68,94)D.(5,23,16,68,94)正确答案:A5、假设一组待排序的关键字序列为(24,62,36,19),要求从小到大进行排序,()是归并排序的过程。

A.(24,62,36,19)(24,36,62,19)(19,24,36,62)B.(24,62,19,36)(19,24,36,62)C.(62,24,36,19)(19,24,36,62)D.(24,19,36,62)(24,19,36,62)(19,24,36,62)正确答案:B6、在第一趟排序之后,不能确保将数据表中某一个元素放在其最终位置上的排序算法是()。

A.归并排序B.快速排序C.冒泡排序D.选择排序正确答案:A7、对于下列排序,()的时间效率与关键字初始序列有直接关系。

数据结构(C语言版CHAP10

数据结构(C语言版CHAP10
结束
分组方法:选定一增量d,将间隔为d的记录作为一组 例 待排记录 49 38 65 97 76 13 27 49 55 04 d=5 d=3 49 13 13 13 04 38 27 27 04 13 65 49 49 49 27 97 55 55 38 38 76 04 04 27 49 13 27 49 49 38 65 49 38 65 49 55 65 49 55 65 55 97 97 97 76 04 76 76 76 97
10.1
概 述
排序也是数据处理中经常使用的一种操作.例 高考考生信息管理 系统提供了将考生按总分排序,按单科排序的功能; 1 排序定义 设R1 R2 R3 … Rn 是n个记录,k1,k2, k3 … kn为它们的关键字,排序 就是将记录按关键字递增(或递减)的次序排列起来. 2 分类 按记录的存放位置分类有 内排序:待排记录放在内存 外排序:待排记录放在外存 按排序原则分类(内排序) 插入排序 交换排7,76,13,27,49 是待排序列
稳性排序的应用: 例 股票交易系统 考虑一种股票交易(清华紫光)) 1)顾客输入:股东帐号,股票代码,申购价格,数量,股票交易系统 将用户申购请求插入申购队列队尾; 2)股票交易系统按如下原则交易: A)申购价高者先成交 B)申购价相同者按申购时间先后顺序成交 结束 第 5 页
76 38 49 65 97 76 13 27 49
L.r[5]复制为哨兵 0 1 2 3 4 5 6 7 8 9
76 38 49 65 97 97 13 27 49
L.r[0].key < L.r[4].key, L.r[4]记录后移 L.r[0].key≥ L.r[3].key 找到插入位置 插入! 0 1 2 3 4 5 6 7 8 9

c语言排序方法

c语言排序方法

c语言排序方法C语言是一种高效的编程语言,其基础算法和数据结构内容是必备的知识。

排序算法是其中一种重要的基础算法,是C语言程序开发中常用的一种技能,可以帮助我们对数据进行有序处理,更好地解决问题。

在C语言中,排序算法分为内部排序和外部排序。

内部排序是指将需要排序的数据都放在内存中进行排序,主要适用于数据量较小的情况。

而外部排序则是指需要对大数据集进行排序,需要借助外部存储器进行排序。

在此我们主要讨论内部排序算法。

内部排序可以分为以下几类:1. 插入排序插入排序包括直接插入排序、希尔排序等。

直接插入排序是将一个记录插入到有序表中形成一个新的有序表;而希尔排序是通过缩小元素间的间隔,并对每个子序列分别进行插入排序来完成整个排序过程。

插入排序方法简单,适用于小数组或部分有序的数组,是稳定排序方法。

2. 选择排序选择排序包括简单选择排序、堆排序等。

简单选择排序是通过不断的在剩余元素中找到最小元素,并将其放在已排好序的数组末尾进行排序,是不稳定排序方法;而堆排序则是通过将待排序数组看作一个完全二叉树,不断将根节点放到其正确位置上进行排序,是不稳定排序方法。

3. 交换排序交换排序包括冒泡排序、快速排序等。

冒泡排序是通过不断比较相邻的两个数,将较小(或较大)数向前(或向后)交换,在每一次外循环中确定一个元素的位置的排序方法,是稳定排序方法;而快速排序则是通过不断地将待排序数组分成两部分,分别进行递归排序,再将两部分合并成一个有序的数组,是不稳定排序方法。

4. 合并排序合并排序是将待排序数组分成若干个子数组,将每个子数组排好序,再将排好序的子数组合并成最终有序的数组。

合并排序是稳定排序方法,主要优化点在于合并有序数组的过程中需要有额外的空间存放有序的数据。

在实际开发中,我们需要选择适合当前情况的排序方法,优化算法的实现,提高算法的效率。

另外,在使用排序算法的过程中,我们还需要注意以下几点:1. 数据量的大小决定了排序算法的选择。

数据结构使用C语言版朱战立丛书版本排序

数据结构使用C语言版朱战立丛书版本排序

{ span = d[m];
//取本次的增量值
for<k = 0; k < span; k++> //共span个小组
{
//组内是直接插入排序,区别是每次不是增1而是增
span
for<i = k; i < n-span; i = i+span>
{ temp = a[i+span];
j = i;
while<j > -1 && temp.key < a[j].key>
优点:实现简单
缺点:每趟只能确定一个元素,表长为n时需要n-1趟
算法如下:
void SelectSort<DataType a[], int n>
{
int i, j, small;
DataType temp;
for<i = 0; i < n-1; i++>
{ small = i;
//设第i个数据元素关键字
(a)初始最大堆 40
32
9
5
10
40 32 9 5 10 50 76 88 (d)交换顶点50后 9
5
76
50
40
5
10
9
32
76 50 40 5 10 9 32 88 (b)交换顶点88后 32
10
9
5
32 10 9 5 40 50 76 88 (e)交换顶点40后
5
9 5 10 32 40 50 76 88
{ a[j+span] = a[j];
j = j-span;
65

数据结构chapter_10

数据结构chapter_10

typedef struct { //定义每个记录 数据元素) 定义每个记录( //定义每个记录(数据元素)的结构 KeyType key ; //关键字 //关键字 InfoType otherinfo; //其它数据项 //其它数据项 }RedType; //记录类型 //记录类型 typedef struct { //定义顺序表 定义顺序表L //定义顺序表L的结构 RecordType r [ MAXSIZE +1 ]; //存储顺序表的向量 //存储顺序表的向量 //r[0] r[0]一般作哨兵或缓冲区 //r[0]一般作哨兵或缓冲区 int length ; //顺序表的长度 //顺序表的长度 }SqList; //顺序表类型 //顺序表类型
void BInsertSort (SqList &L) {
// 对顺序表 作折半插入排序 对顺序表L作折半插入排序 for ( i=2; i<=L.length; ++i ) { L.r[0] = L.r[i]; // 将L.r[i]暂存到 暂存到L.r[0] 暂存到 low = 1; high = i-1; while (low<=high) { // 在r[low..high]中折半查找有序插入的位置 中折半查找有序插入的位置 m = (low+high)/2; // 折半 if (L.r[0].key < L.r[m].key) high = m-1; // 插入点在低半区 else low = m+1; // 插入点在高半区 } // while for ( j=i-1; j>=low; --j ) L.r[j+1] = L.r[j]; // 记录后移 // 插入 L.r[high+1] = L.r[0]; } } // BInsertSort

数据结构Ch10习题答案

数据结构Ch10习题答案

第十章内部排序一、择题1.用直接插入排序法对下面四个表进行(由小到大)排序,比较次数最少的是(B)。

A.(94,32,40,90,80,46,21,69)插32,比2次插40,比2次插90,比2次插80,比3次插46,比4次插21,比7次插69,比4次B.(21,32,46,40,80,69,90,94)插32,比1次插46,比1次插40,比2次插80,比1次插69,比2次插90,比1次插94,比1次C.(32,40,21,46,69,94,90,80)插40,比1次插21,比3次插46,比1次插69,比1次插94,比1次插90,比2次插80,比3次D.(90,69,80,46,21,32,94,40)插69,比2次插80,比2次插46,比4次插21,比5次插32,比5次插94,比1次插40,比6次2.下列排序方法中,哪一个是稳定的排序方法(BD)。

A.希尔排序B.直接选择排序C.堆排序D.冒泡排序下列3题基于如下代码:for(i=2;i<=n;i++){ x=A[i];j=i-1;while(j>0&&A[j]>x){ A[j+1]=A[j];j--;}A[j+1]=x}3.这一段代码所描述的排序方法称作(A)。

A.插入排序B.冒泡排序C.选择排序D.快速排序4.这一段代码所描述的排序方法的平均执行时间为(D)A.O(log2n) B.O(n) C.O(nlog2n) D.O(n2)5.假设这段代码开始执行时,数组A中的元素已经按值的递增次序排好了序,则这段代码的执行时间为(B)。

A.O(log2n) B.O(n) C.O(nlog2n) D.O(n2)6.在快速排序过程中,每次被划分的表(或了表)分成左、右两个子表,考虑这两个子表,下列结论一定正确是(B)。

A.左、右两个子表都已各自排好序B.左边子表中的元素都不大于右边子表中的元素C.左边子表的长度小于右边子表的长度D.左、右两个子表中元素的平均值相等7.对n个记录进行堆排序,最坏情况下的执行时间为(C)。

《数据结构与算法》第十章-排序习题

《数据结构与算法》第十章-排序习题

《数据结构与算法》第二部分习题精选一、填空题1. 大多数排序算法都有两个基本的操作:和。

2. 在对一组记录(54,38,96,23,15,72,60,45,83)进行直接插入排序时,当把第7个记录60插入到有序表时,为寻找插入位置至少需比较次。

(可约定为从后向前比较)3. 在插入和选择排序中,若初始数据基本正序,则选用;若初始数据基本反序,则选用。

4. 在堆排序和快速排序中,若初始记录接近正序或反序,则选用;若初始记录基本无序,则最好选用。

5. 对于n个记录的集合进行冒泡排序,在最坏的情况下所需要的时间是。

若对其进行快速排序,在最坏的情况下所需要的时间是。

6. 对于n个记录的集合进行归并排序,所需要的平均时间是,所需要的附加空间是。

7.对于n个记录的表进行2路归并排序,整个归并排序需进行趟(遍),共计移动次记录。

二、单项选择题()1.将5个不同的数据进行排序,至多需要比较次。

A. 8 B. 9 C. 10 D. 25()2.排序方法中,从未排序序列中依次取出元素与已排序序列(初始时为空)中的元素进行比较,将其放入已排序序列的正确位置上的方法,称为A. 希尔排序B. 冒泡排序C. 插入排序D. 选择排序()3.排序方法中,从未排序序列中挑选元素,并将其依次插入已排序序列(初始时为空)的一端的方法,称为A. 希尔排序B. 归并排序C. 插入排序D. 选择排序()4.对n个不同的排序码进行冒泡排序,在下列哪种情况下比较的次数最多。

A. 从小到大排列好的B. 从大到小排列好的C. 元素无序D. 元素基本有序()5.对n个不同的排序码进行冒泡排序,在元素无序的情况下比较的次数为A. n+1 B. n C. n-1 D. n(n-1)/2 ()6.快速排序在下列哪种情况下最易发挥其长处。

A. 被排序的数据中含有多个相同排序码B. 被排序的数据已基本有序C. 被排序的数据完全无序D. 被排序的数据中的最大值和最小值相差悬殊()7.对有n个记录的表作快速排序,在最坏情况下,算法的时间复杂度是A.O(n) B.O(n2) C.O(nlog2n) D.O(n3)()8.若一组记录的排序码为(46, 79, 56, 38, 40, 84),则利用快速排序的方法,以第一个记录为基准得到的一次划分结果为A. 38, 40, 46, 56, 79, 84 B. 40,38, 46 , 79, 56, 84C. 40, 38,46, 56, 79, 84 D. 40, 38,46, 84, 56, 79()9.在最好情况下,下列排序算法中排序算法所需比较关键字次数最少。

数据结构中内部排序算法的分析

数据结构中内部排序算法的分析

3 ・ 8
Co u e a No 6 201 mp t r Er . 0
数据结构 中 内部排序算 法的分析
吴红芝 ,郭麦 成 ,吴 浩 ( 长江 大学计算 机科 学 学院研 究生院 ,湖北 荆 州 442) 303
摘 要 :排序是计算机程序设计 中经常遇到的一个重要 内容 , 它的功能是将一个数据集合 , 关键 字重新排 列成一个有 按
序 的序 列。然而, 由于排 序算法程 序须考虑设计路 线、 时间复杂度及稳定性 等因素 , 学者在理解上存在较大的 困难 , 初 文
章针对这些具体 问题 , 提供一些行之有 效的解决方法。
关键词 :排序 ;算法;稳定性 ;时间复杂度
Anayss f I t r l So tng Al ort l i o n e na r i g ihm i Da a t uc ur n t S r t e
从排序 的稳 定性 来看 , 稳定 的排序有 : 直接插入排序 、 折半
与其他算法 相比 , 序也是数 据结构 中的一种算法 , 排 只不 插入排序 、 冒泡排 序和归并排序 , 稳定的排序有 : 尔排 序 、 不 希 快 速排序 、 简单选 择排 序和堆排 序 ; 从排序算法 的时间复杂度 它也涉及到一种算 法的设计思想 、 参数 的引用及 时间复杂度等 来看 , 直接插入排序 、 半插入排序 、 折 冒泡排 序 、 简单选择排序
d t i ms no n re e sq e c b k y r . Ho v r b cus o h fco s whih aa t e it a o d rd e u n e y e wo d we e, e a e f te a tr c mu t e o sd r d n otn po rm , s b c n iee i s rig rg a

数据结构第十章 排序

数据结构第十章 排序
7
10.2 插入排序 插入排序
直接插入排序 折半插入排序 2-路插入排序 表插入排序 希尔排序
10.2.1 直接插入排序
基本操作:将一个记录插入到已排好序的有序表中, 从而得到一个新的、记录数增1的有序表。
例:有一组待排序的记录的关键字初始序列如下:
(49,38,65,97,76,13,27,49`)
(4)归并排序 (5)基数排序
按内排过程中所需的工作量分类:
(1)简单的排序方法,其时间复杂度为O(n×n)
(2)先进的排序方法,其时间复杂度为O(nlogn);
(3)基数排序,其时间复杂度为O(d(n+rd))
排序算法的两种基本操作:
(1)比较两个关键字的大小; (2)将记录从一个位置移至另一个位置;
算法实现的关键设计:
将d看成是一个循环数组,并设两个指针first和final分别指示排序过 程中得到的有序序列中的第一个记录和最后一个记录在d中的位置.
例:有一组待排序的记录的关键字初始排列如下:
(49,38,65,97,76,13,27,49`) 16
[初始关键字] 49 38 65 97 76 13 27 49`
18
10.2.3 希尔排序 从直接插入排序
待排序序列基本有序可提高效率 回顾 待排序序列的记录数n很小时可提高效率
希尔排序的基本思想:
先将整个待排记录序列分割成为若干子序列分别进行
直接插入排序,待整个序列中的记录“基本有序”时,再对 全
体记例录:有进一行组一待次排直序接的插记入录排的序关. 键字初始排列如下: (49,38,65,97,76,13,27,49`)
} 12
直接插入排序的性能分析: 10. 3
(1)空间:只需一个记录的辅助空间r[0].
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“在R[1..i-1]中查找R[i]的插入位置”
算法的实现要点:
从R[i-1]起向前进行顺序查找,
监视哨设置在R[0];
R[0]
R[i]
j 插入j位=i-置1
R[0] = R[i];
// 设置“哨兵”
for (j=i-1; R[0].key<R[j].key; --j);
// 从后往前找 循环结束表明R[i]的插入位置为 j +1
从记录的无序子序列中“选择” 关键字最小或最大的记录,并将它 加入到有序子序列中,以此方法增 加记录的有序子序列的长度。
4. 归并类
通过“归并”两个或两个以上的 记录有序子序列,逐步增加记录有 序序列的长度。
5. 其它方法
待排记录的数据类型定义如下:
#define MAXSIZE 1000 // 待排顺序表最大长度
第十章 内部排序
10.1 概述 10.2 插入排序 10.3 快速排序 10.4 选择排序
10.5 归并排序
10.6 基数排序
10.7 各种排序方法的综合比较
学习提要:
1. 了解排序的定义和各种排序方法的特点。 2.熟悉各种方法的排序过程及其依据的原则。
3. 掌握各种排序方法的时间复杂度的分析方法。 能从“关键字间的比较次数”分析排序算法的 平均情况和最坏情况的时间性能。 4. 理解排序方法“稳定”或“不稳定”的含义, 弄清楚在什么情况下要求应用的排序方法必须 是稳定的。
typedef int KeyType; // 关键字类型为整数类型
typedef struct {
KeyType key;
// 关键字项
InfoType otherinfo; // 其它数据项
} RcdType;
// 记录类型
typedef struct {
RcdType r[MAXSIZE+1]; // r[0]闲置
例如:将下列关键字序列 52, 49, 80, 36, 14, 58, 61, 23, 97, 75
调整为
14, 23, 36, 49, 52, 58, 61 ,75, 80, 97
一般情况下, 假设含n个记录的序列为{ R1, R2, …, Rn } 其相应的关键字序列为 { K1, K2, …,Kn }
这些关键字相互之间可以进行比较,即 在它们之间存在着这样一个关系 :
Kp1≤Kp2≤…≤Kpn 按此固有关系将上式记录序列重新排列为
{ Rp1, Rp2, …,Rpn } 的操作称作排序。
假设Ki=Kj (1≤i,j≤n,i≠ j),且在排序 前的序列中Ri领先于Rj(即i<j)。
若排序后的序列中Ri仍领先于Rj, 则称所用的排序方法是稳定的;
反之,若可能排序后的序列中Rj领 先于Ri,则称使用的排序方法是不稳 定的。
例如:
排序前(52, 49, 80, 36, 14, 49) 排序后
(14, 36, 49, 49, 52, 80) 稳定 (14, 36, 49, 49, 52, 80) 不稳定
二、内部排序和外部排序
若整个排序过程不需要访问外存便能 完成,则称此类排序问题为内部排序;
重难点内容:
直接插入排序、折半插入排序、 起泡排序、简单选择排序等排序方 法的算法思想、实现和效率分析。
希尔排序、快速排序、堆排序、 归并排序等高效方法。
§10.1 概述
一、什么是排序 二、内部排序和外部排序 三、内部排序的方法
一、什么是排序?
排序是计算机内经常进行的一种操作, 其目的是将一组“无序”的记录序列调 整为“有序”的记录序列。
反之,若参加排序的记录数量很大, 整个序列的排序过程不可能在内存中 完成,则称此类排序问题为外部排序。
三、内部排序的方法
内部排序的过程是一个逐步扩大 记录的有序序列长度的过程。
有序序列区 无 序 序 列 区 经过一趟排序
有序序列区 无 序 序 列 区
基于不同的“扩大” 有序序列长 度的方法,内部排序方法大致可分 下列几种类型:
int
length;
// 顺序表长度
} SqList;
// 顺序表类型
§10.2 插入排序
一、直接插入排序 二、折半插入排序 三、表插入排序 四、希尔(Shell)排序
一趟插入排序的基本思想:
有序序列R[1..i-1]
无序序列 R[i..n]
R[i]
有序序列R[1..i]
无序序列 R[i+1..n]
{ 在 R[1..i-1]中查找R[i]的插入位置; 插入R[i] ;
}
void InsertionSort ( SqList &L ) { // 对顺序表 L 作直接插入排序。
for ( i=2; i<=L.length; ++i )
if (L.r[i].key < L.r[i-1].key) {
第三趟排序后: (38,49,56)40,95
R 012 3 4 5
key 40 38 4409 4596 5460 95
j
j
j
i
第四趟排序后: (38,40,49,56)95
令 i = 2,3,…, n, 实现整个序列的排序。 for ( i=2; i<=n; ++i ) if (R[i].key<R[i-1].key)
实现“一趟插入排序”可分三步进行:
1.在R[1..i-1]中查找R[i]的插入位置,
R[1..j].key R[i].key < R[j+1..i-1].key;
2.将R[j+1..i-1]中的所有记录均后移
一个位置;
3.将R[i] 插入(复制)到R[j+1]的位置上。
一、直接插入排序
利用 “顺序查找”实现
插入类 交换类 选择类
归并类 其它方法
1. 插入类
将无序子序列中的一个或几 个记录“插入”到有序序列中, 从而增加记录的有序子序列的长 度。
2. 交换类
通过“交换”无序序列中的记 录从而得到其中关键字最小或最大 的记录,并将它加入到有序子序列 中,以此方法增加记录的有序子序 列的长度。
3. 选择类
对于在查找过程中找到的那些关键 字不小于R[i].key的记录,并在查找的 同时实现记录向后移动;
for (j=i-1; R[0].key<R[j].key; --j); R[j+1] = R[j]
R[0]
R[i]ห้องสมุดไป่ตู้
j 插入j=位i置-1 上述循环结束后可以直接进行“插入”
例:待排序序列 (56,38,49,40,95)
相关文档
最新文档