函数证明问题专题训练
三角函数大题专项(含问题详解)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a ﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a ﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y =2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。
(完整版)高一函数大题训练含答案解析

(完整版)高一函数大题训练含答案解析一、解答题1.已知有穷数列{}n a 、{}n b (1,2,,n k =⋅⋅⋅),函数1122()||||||k k f x a x b a x b a x b =-+-+⋅⋅⋅+-.(1)如果{}n a 是常数列,1n a =,n b n =,3k =,在直角坐标系中在画出函数()f x 的图象,据此写出该函数的单调区间和最小值,无需证明;(2)当n n a n b ==,7k m =(m ∈*N )时,判断函数()f x 在区间[5,51]m m +上的单调性,并说明理由; (3)当n a n =,1n b n=,100=k 时,求该函数的最小值. 2.若函数()f x 对任意的x ∈R ,均有()()()112f x f x f x -++≥,则称函数()f x 具有性质P .(1)判断下面两个函数是否具有性质P ,并说明理由.①()1xy a a =>;②3y x =. (2)若函数()f x 具有性质P ,且()()()*002,N f f n n n >∈==,求证:对任意{}1,2,3,,1i n ∈-有()0f i ≤;(3)在(2)的条件下,是否对任意[]0,x n ∈均有()0f i ≤.若成立给出证明,若不成立给出反例.3.已知函数()y f x =,若存在实数(),0m k m ≠,使得对于定义域内的任意实数x ,均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(),m k 称为函数()f x 的“平衡”数对.(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化时,求证:()2f x x =与()2xg x a =+的“平衡”数对相同;(3)若12,m m R ∈,且1,2m π⎛⎫ ⎪⎝⎭、2,4m π⎛⎫ ⎪⎝⎭均为函数()2cos f x x =的“平衡”数对.当04x π<≤时,求2212m m +的取值范围.4.已知定义在R 上的函数()x ϕ的图像是一条连续不断的曲线,且在任意区间上()x ϕ都不是常值函数.设011i i n a t t t t t b -=<<<<<<=,其中分点121n t t t -、、、将区间[],a b 任意划分成()*n n N ∈个小区间[]1,i i t t -,记{}()()()()()()01121,,n n M a b n t t t t t t ϕϕϕϕϕϕ-=-+-++-,称为()x ϕ关于区间[],a b 的n 阶划分“落差总和”.当{},,M a b n 取得最大值且n 取得最小值0n 时,称()x ϕ存在“最佳划分”{}0,,M a b n . (1)已知()x x ϕ=,求{}1,2,2M -的最大值0M ;(2)已知()()a b ϕϕ<,求证:()x ϕ在[],a b 上存在“最佳划分”{},,1M a b 的充要条件是()x ϕ在[],a b 上单调递增.(3)若()x ϕ是偶函数且存在“最佳划分”{}0,,M a a n -,求证:0n 是偶数,且00110i i n t t t t t -+++++=.5.已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1,记()(||)f x g x =,x ∈R ;(1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x ∈R 恒成立,求实数k 的范围;(3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅-将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x 为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;6.已知集合M 是满足下列性质的函数()f x 的全体;在定义域内存在实数t ,使得(2)()(2)f t f t f +=+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围; (3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.7.已知函数()242 1.x xf x a =⋅--(1)当1a =时,求函数()f x 在[]3,0x ∈-的值域; (2)若()f x 存在零点,求a 的取值范围.8.已知函数()22f x x x a =+--.(1)当0a =时,求函数()f x 的零点;(2)若不等式()0f x <至少有一个负解,求实数a 的取值范围. 9.已知函数11()(,0)f x b a b R a x a x a=++∈≠-+且. (1)判断()y f x =的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设()(1)g x b x =+,试讨论()()y f x g x =-的零点个数情况.10.已知函数()f x ,对任意a ,b R ∈恒有()()()f a b f a f b 1+=+-,且当x 0>时,有()f x 1>.(Ⅰ)求()f 0;(Ⅱ)求证:()f x 在R 上为增函数;(Ⅲ)若关于x 的不等式(()222f[2log x)4f 4t 2log x 2⎤-+-<⎦对于任意11x ,82⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.11.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x 使得()()()0011f x f x f +=+成立.(1)函数()21f x x=+是否属于集合M ?请说明理由; (2)函数()2ln1af x x =∈+M ,求a 的取值范围; (3)设函数()23x f x x =+,证明:函数()f x ∈M .12.已知函数()20182018,0log ,0x x f x x x ⎧≤=⎨>⎩,(1)分别求()()()()1,2018f f f f -的值: (2)讨论()()()f f x m m R =∈的解的个数:(3)若对任意给定的[)1,t ∈+∞,都存在唯一的x R ∈,满足()()222f f x a t at =-,求实数a的取值范围.13.对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数()sin()3f x x π=+,试判断()f x 是否为“M 类函数”?并说明理由;(2)设()2x f x m =+是定义在[1,1]-上的“M 类函数”,求是实数m 的最小值;(3)若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”,求实数m 的取值范围.14.一般地,我们把函数1110()()N --=∈n n n n h x a x a x a x a n ++++称为多项式函数,其中系数0a ,1a ,…, n a ∈R .设()f x ,()g x 为两个多项式函数,且对所有的实数x 等式[()][()]f g x g f x =恒成立.(1)若2()3f x x =+,()(0)g x kx b k =+≠. ①求()g x 的表达式; ②解不等式()()5f x g x ->.(2)若方程()()f x g x =无实数根,证明方程[()][()]f f x g g x =也无实数解. 15.若函数()f x 满足:对于任意正数,s t ,都有()()0,0f s f t >>,且()()()f s f t f s t +<+,则称函数()f x 为“L 函数”.(1)试判断函数()21f x x =与()122f x x =是否是“L 函数”; (2)若函数()()3131x xg x a -=-+-为“L 函数”,求实数a 的取值范围;(3)若函数()f x 为“L 函数”,且()11f =,求证:对任意()()12,2N*k kx k -∈∈,都有()122x f x f x x⎛⎫->- ⎪⎝⎭.【参考答案】一、解答题1.(1)图象见解析;递减区间(],2-∞,递增区间[)2,+∞,最小值()22f =;(2)单调递增;理由见解析;(3)292071. 【解析】(1)根据条件采用零点分段的方法作出函数()f x 的图象,根据图象确定出()f x 的单调区间和最小值;(2)写出()f x 的解析式,根据[]5,51x m m ∈+分析函数()f x 的结构,从而判断出()f x 的单调性;(3)先根据条件证明出()f x 的单调性然后即可求解出()f x 的最小值. 【详解】 (1)如图所示,由图象可知:单调递减区间(],2-∞,单调递增区间[)2,+∞,最小值()22f =; (2)因为()112233...77f x x x x m x m =⋅-+-+-++-且[]5,51x m m ∈+, 所以()()()()()()()()()()12233...555151...77f x x x x m x m m m x m m x =-+-+-++-+++-++-, 所以()()()()()()()()()222222155517212...55152 (72)2m m m m m f x x m x m m m +⋅++⋅=-+++-++++++ , 所以()()()()()()()222222222552425152...712 (52)m m m m f x x m m m m +--=++++++-+++,所以()()()()()()()2222222+35152...712 (52)m m f x x m m m m =++++++-+++且2302m m+>, 所以()f x 在[]5,51m m +上单调递增;(3)因为()12131...1001f x x x x x =-+-+-++-,显然当[)1,x ∈+∞时,()f x 单调递增,当(],0x ∈-∞时,()f x 单调递减, 设存在一个值()1*t N t ∈,使得10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,此时最小值即为1f t ⎛⎫⎪⎝⎭,下面证明1t存在:因为若要10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,则有12112100......t t t t t t t t t-+++++>+++,解得:71t ≥,且()1221100 (1111111)t t t t t t t t t t -++++<+++≠------,解得:171t -<, 所以7172t ≤<,所以71t =,所以存在1171t =满足条件,故假设成立,综上可知:()f x 在1,71⎛⎫-∞ ⎪⎝⎭上单调递减,在1+71⎛⎫∞ ⎪⎝⎭,上单调递增, ()()()()()()()min 1112170721731100171f x f x x x x x x ⎛⎫==-+-+⋅⋅⋅+-+-+-+⋅⋅⋅+- ⎪⎝⎭292041971x =+=【点睛】本题考查数列与函数的综合应用,其中着重考查了函数单调性方面的内容,对学生的理解与分析能力要求较高,难度较难.2.(1)①()1xy a a =>具有性质P ;②3y x =不具有性质P ,见解析;(2)见解析(3)不成立,见解析 【解析】 【分析】(1)①根据已知中函数的解析式,结合指数的运算性质,计算出()()()112f x f x f x -++-的表达式,进而根据基本不等式,判断其符号即可得到结论;②由3y x =,举出当1x =-时,不满足()()()112f x f x f x -++≥,即可得到结论; (2)由于本题是任意性的证明,从下面证明比较困难,故可以采用反证法进行证明,即假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,由此推理得到矛盾,进而假设不成立,原命题为真;(3)由(2)中的结论,我们可以举出反例,如()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数,证明对任意[]0,x n ∈均有()0f x ≤不成立.【详解】证明:(1)①函数()()1xf x a a =>具有性质P ,()()()11111222x x x x f x f x f x a a a a a a -+⎛⎫-++-=+-=+- ⎪⎝⎭,因为1a >,120x a a a ⎛⎫+-> ⎪⎝⎭,即()()()112f x f x f x -++≥, 此函数为具有性质P ;②函数()3f x x =不具有性质P ,例如,当1x =-时,()()()()11208f x f x f f -++=-+=-,()22f x =-,所以,()()()201f f f -+<-, 此函数不具有性质P . (2)假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,则()()10f i f i -->, 因为函数()f x 具有性质P , 所以,对于任意*n ∈N ,均有()()()()11f n f n f n f n +-≥--, 所以()()()()()()11210f n f n f n f n f i f i --≥---≥≥-->,所以()()()()()()110f n f n f n f i f i f i =--+++-+>⎡⎤⎡⎤⎣⎦⎣⎦,与()0f n =矛盾, 所以,对任意的{}1,2,3,,1i n ∈-有()0f i ≤.(3)不成立.例如,()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数证明:当x 为有理数时,1x -,1x +均为有理数,()()()112f x f x f x -++-()()()2221121122x x x n x x x =-++---++-=,当x 为无理数时,1x -,1x +均为无理数,()()()()()2221121122f x f x f x x x x -++-=-++-=所以,函数()f x 对任意的x ∈R , 均有()()()112f x f x f x -++≥, 即函数()f x 具有性质P .而当[]()0,2x n n ∈>且当x 为无理数时,()0f x >. 所以,在(2)的条件下,“对任意[]0,x n ∈均有()0f x ≤”不成立. 如()()()01x f x x ⎧⎪=⎨⎪⎩为有理数为无理数,()()()01x f x x ⎧⎪=⎨⎪⎩为整数为非整数, ()()()2x f x xx ⎧⎪=⎨⎪⎩为整数为非整数等.【点睛】本题考查了函数的新定义及其应用,涉及指数函数和幂函数的性质,反证法,其中在证明全称命题为假命题时,举出反例是最有效,快捷,准确的方法.3.(1)()sin f x x =是“可平衡”函数,详见解析(2)证明见解析(3)221218m m <+≤【解析】 【分析】(1)利用两角和差的正弦公式求解即可.(2)根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,再列式利用恒成立问题求解即可.(3)根据“平衡数对”的定义将12,m m 用关于x 的三角函数表达,再利用三角函数的取值范围求解即可. 【详解】(1)若1m =,则()sin m f x x ⋅=,()()()()sin sin f x k f x k x k x k ++-=++-2sin cos x k =,要使得()f x 为“可平衡”函数,需使故()12cos sin 0k x -⋅=对于任意实数x 均成立,只有1cos 2k =,此时23k n ππ=±,n Z ∈,故k 存在,所以()sin f x x =是“可平衡”函数.(2)()2f x x =及()2xg x a =+的定义域均为R ,根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,即22222mx x k =+,即()22220m x k --=对于任意实数x 恒成立,只有2m =,0k =,故函数()2f x x =的“平衡”数对为()2,0,对于函数()2xg x a =+而言,()222x x k x k m a a a +-⋅+=+++()2222x k k a -=+⋅+, 所以()()22222x x k km a a -⋅+=+⋅+,()()22220xkkm a m -⎡⎤⋅-++⋅-=⎣⎦,()2220k k m a m -⎧=+⎪⎨⋅-=⎪⎩, 即22m m ≥⎧⎨=⎩,故2m =,只有0k =,所以函数()2xg x a =+的“平衡”数对为()2,0, 综上可得函数()2f x x =与()2xg x a =+的“平衡”数对相同.(3)2221cos cos cos 22m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以221cos 2sin m x x =, 2222cos cos cos 44m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以22cos 1m x =,由于04x π<≤,所以21cos 12x ≤<,故(]212tan 0,2m x =∈,(]22sec 1,2m x =∈, ()22224121tan 4tan m m x x +=++()22222145tan 2tan 15tan 55x x x ⎛⎫=++=++ ⎪⎝⎭, 由于04x π<≤,所以20tan 1x <≤时,2116tan 555x <+≤,()2212tan 238x <+-≤,所以221218m m <+≤.【点睛】本题主要考查了新定义的函数问题,需要根据题意列出参数满足的关系式,利用恒成立问题或表达出参数满足的解析式再分析求范围等.属于难题. 4.(1)3;(2)见解析;(3)见解析 【解析】 【分析】(1)直接利用题中给的定义求解即可;(2)利用函数的单调性和数列的信息应用求出充要条件;(3)利用函数的奇偶性和存在的最佳划分,进一步建立函数的单调区间,最后求出函数的关系式. 【详解】(1)()()()()010023M ϕϕϕϕ=--+-=; (2)若()x ϕ在[],a b 上单调递增,则{}()()()(){}11,,,,1ni i i M a b n t t b a M a b ϕϕϕϕ-==-=-=⎡⎤⎣⎦∑,故()x ϕ在[],a b 上存在“最佳划分”{},,1M a b若()x ϕ在[],a b 上存在“最佳划分”{},,1M a b ,倘若()x ϕ在[],a b 上不单调递增, 则存在[]()()121212,,,,x x a b x x x x ϕϕ∈<>.由()()()()()()()()1122a b a x x x x b ϕϕϕϕϕϕϕϕ-≤-+-+-(*)等号当且仅当()()()()()()11220,0,0a x x x x b ϕϕϕϕϕϕ-≥->-≥时取得,此时()()()()()()()()()()11220a b a x x x x b a b ϕϕϕϕϕϕϕϕϕϕ-=-+-+-=-<,与题设矛盾,舍去,故(*)式中等号不成立,即:增加分点12,x x 后,“落差总和”会增加,故{},,M a b n 取最大值时n 的最小值大于1,与条件矛盾. 所以()x ϕ在[],a b 上单调递增;(3)由(2)的证明过程可知,在任间区间[],a b 上,若()x ϕ存在最佳划分{},,1a b ,则当()()a b ϕϕ=时,()x ϕ为常值函数(舍);当()()a b ϕϕ<时,()x ϕ单调递增;当()()a b ϕϕ>时,()x ϕ单调递减,若()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ,则此时在每个小区间[]()10,1,2,,i i t t i n -=上均为最佳划分{}1,,1i i M t t -.否则,添加分点后可使()x ϕ在[],a b 上的“落差总和”增大,从而{}0,,M a b n 不是“落差总和”的最大值,与“()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ”矛盾,故()x ϕ在每个小区间[]()10,1,2,,i i t t i n -=上都是单调,若()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ,则()x ϕ在相邻的两个区间[][]11,,i i i i t t t t -+、上具有不同的单调性,否则,()()()()()()11111i i i i i t t t t t t ϕϕϕϕϕϕ-+-+-=-+-,减少分点i t ,“落差总和”的值不变,而n 的值减少1,故n 的最小值不是0n ,与“()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ”矛盾,()x ϕ存在“最佳划分”{}0,,M a a n -,故()x ϕ在每个小区间[]()10,1,2,,i i t t i n -=上都单调,而()x ϕ是偶函数,故()x ϕ在y 轴两侧的单调区间对称,共有偶数个单调区间,且当000,1,,2n i j n i ⎛⎫+== ⎪⎝⎭时,0i j t t +=,从而有00120n t t t t ++++=.【点睛】本题是信息给予题,考查了数学阅读能力,考查了函数和数列的综合应用能力,考查了数学运算能力.5.(1)0b =,1a =;(2)1[,8]2;(3)证明见解析,min 4M =;【解析】 【分析】(1)由已知()g x 在区间[2,3]上的最大值为4,最小值为1,结合函数的单调性及最值,易构造关于,a b 的方程组,解得,a b 的值。
2020届高考文科数学复习练习题(二):函数 专题训练

专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则.所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a≤0时,由a-1=-1得a=0;当a>0时,由-a2+2a+2=-1,即a2-2a-3=0得a=3或a=-1(舍).综上,a=0或a=3.例3 下列四组函数中,表示同一函数的是( )(A) (B)(C) (D)【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y=|x|及y=|t|,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1) (2)(3) (4)解:(1)由|x-1|-1≥0,得|x-1|≥1,所以x-1≥1或x-1≤-1,所以x≥2或x≤0.所以,所求函数的定义域为{x|x≥2或x≤0}.(2)由x2+2x-3>0得,x>1或x<-3.所以,所求函数的定义域为{x|x>1或x<-3}.(3)由得x<3,且x≠0,x≠1,所以,所求函数的定义域为{x|x<3,且x≠0,x≠1}(4)由所以-1≤x≤1,且x≠0.所以,所求函数定义域为{x|-1≤x≤1,且x≠0}.例5 已知函数f(x)的定义域为(0,1),求函数f(x+1)及f(x2)的定义域.【分析】此题的题设条件中未给出函数f(x)的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x的取值范围;②受对应法则f制约的量的取值范围在“已知”和“求”当中是一致的.那么由f(x)的定义域是(0,1)可知法则f制约的量的取值范围是(0,1),而在函数f(x+1)中,受f直接制约的是x+1,而定义域是指x的范围,因此通过解不等式0<x+1<1得-1<x<0,即f(x+1)的定义域是(-1,0).同理可得f(x2)的定义域为{x|-1<x<1,且x≠0}.例6 如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x,求此框架围成的面积y与x的函数关系式,并指出定义域.解:根据题意,AB=2x.所以,根据问题的实际意义.AD>0,x>0.解所以,所求函数定义域为【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y=tan x,则,k∈Z.(2)不给出f(x)的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知,求f(x)的解析式;(2)已知,求f(3)的值;(3)如果f(x)为二次函数,f(0)=2,并且当x=1时,f(x)取得最小值-1,求f(x)的解析式;(4)*已知函数y=f(x)与函数y=g(x)=2x的图象关于直线x=1对称,求f(x)的解析式.【分析】(1)求函数f(x)的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,方法二.设,则.则,所以这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,(3)因为f(x)为二次函数,并且当x=1时,f(x)取得最小值-1,所以,可设f(x)=a(x-1)2-1,又f(0)=2,所以a(0-1)2-1=2,所以a=3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.40元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.30元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x元/kW·h时,用电量将增加至故电力部门的收益为.(2)易知,上年度的收益为(0.8-0.3)a,依题意,且0.55≤x≤0.75,解得0.60≤x≤0.75.所以,当电价最低定为0.60元/kW·h时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题1.已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( )(A){x|x>1} (B){x|x<1} (C){x|-1<x<1} (D)2.图中的图象所表示的函数的解析式为( )(A)(B)(C)(D)y=1-|x-1|(0≤x≤2)3.已知f(x-1)=x2+2x,则( )(A) (B) (C) (D)4.已知若f(x)=3,则x的值是( )(A)0 (B)0或 (C) (D)二、填空题5.给定映射f:(x,y)→(x+2y,x-2y),在映射f下(0,1)的象是______;(3,1)的原象是______.6.函数的定义域是______.7.已知函数f(x),g(x)分别由下表给出x 1 2 3 x 1 2 3f(x) 1 3 1 g(x) 3 2 1则f[g(1)]的值为______;满足f[g(x)]>g[f(x)]的x的值是______.8.已知函数y=f(x)与函数y=g(x)=2x的图象关于点(0,1)对称,则f(x)的解析式为______.三、解答题9.已知f(x)=2x+x-1,求g(-1),g[f(1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.为使物体落在区间D内,求a的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点(-x,-f(x))都在其图象上.又点P与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间MA.如果取区间M中的任意两个值x1,x2,改变量x=x2-x1>0,则当y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性.(1) (2)(3)f(x)=x3-3x; (4)(5)解:(1)解,得到函数的定义域为{x|x>1或x≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x|x≠0},但是,由于f(1)=2,f(-1)=0,即f(1)≠f(-1),且f(1)≠-f(-1),所以此函数为非奇非偶函数.(3)函数的定义域为R,又f(-x)=(-x)3-3(-x)=-x3+3x=-f(x),所以此函数为奇函数.(4)解,得-1<x<1,又所以此函数为奇函数.(5)函数的定义域为R,又,所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②f(x)是奇函数,并且f(x)在x=0时有定义,则必有f(0)=0;③既是奇函数又是偶函数的函数,其解析式一定为f(x)=0.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察f(-x)与f(x)的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f(x)在R上有定义,给出下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x).其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F(x)=-|f(x)|,则F(-x)=-|f(-x)|,由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.②令F(x)=xf(x2),则F(-x)=-xf[(-x)2]=-xf(x2)=-F(x),所以F(x)为奇函数.③令F(x)=-f(-x),则F(-x)=-f[-(-x)]=-f(x),由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.④令F(x)=f(x)-f(-x),则F(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-F(x),所以F(x)为奇函数.所以,②④为奇函数.例3 设函数f(x)在R上有定义,f(x)的值不恒为零,对于任意的x,y∈R,恒有f(x+y)=f(x)+f(y),则函数f(x)的奇偶性为______.解:令x=y=0,则f(0)=f(0)+f(0),所以f(0)=0,再令y=-x,则f(0)=f(x)+f(-x),所以f(-x)=-f(x),又f(x)的值不恒为零,故f(x)是奇函数而非偶函数.【评析】关于函数方程“f(x+y)=f(x)+f(y)”的使用一般有以下两个思路:令x,y为某些特殊的值,如本题解法中,令x=y=0得到了f(0)=0.当然,如果令x=y=1则可以得到f(2)=2f(1),等等.令x,y具有某种特殊的关系,如本题解法中,令y=-x.得到f(2x)=2f(x),在某些情况下也可令y=,y=x,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f(x)=x2+bx+c满足f(1+x)=f(1-x),求b的值,并比较f(-1)与f(4)的大小.解:因为f(1+x)=f(1-x),所以x=1为二次函数图象的对称轴,所以,b=-2.根据对称性,f(-1)=f(3),又函数在[1,+∞)上单调递增,所以f(3)<f(4),即f(-1)<f(4).例5已知f(x)为奇函数,当x≥0时,f(x)=x2-2x,(1)求f(-1)的值;(2)当x<0时,求f(x)的解析式.解:(1)因为f(x)为奇函数,所以f(-1)=-f(1)=-(12-2×1)=1.(2)方法一:当x<0时,-x>0.所以,f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.方法二:设(x,y)是f(x)在x<0时图象上一点,则(-x,-y)一定在f(x)在x>0时的图象上.所以,-y=(-x)2-2(-x),所以y=-x2-2x.例6 用函数单调性定义证明,函数y=ax2+bx+c(a>0)在区间上为增函数.证明:设,且x1<x2f(x2)-f(x1)=(ax22+bx2+c)-(ax12+bx1+c)=a(x22-x12)+b(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(x2-x1)[a(x1+x2)+b]因为x1<x2,所以x2-x1>0,又因为,所以,所以f(x2)-f(x1)>0,函数y=ax2+bx+c(a>0)在区间上为增函数.例7 已知函数f(x)是定义域为R的单调增函数.(1)比较f(a2+2)与f(2a)的大小;(2)若f(a2)>f(a+6),求实数a的取值范围.解:(1)因为a2+2-2a=(a-1)2+1>0,所以a2+2>2a,由已知,f(x)是单调增函数,所以f(a2+2)>f(2a).(2)因为f(x)是单调增函数,且f(a2)>f(a+6),所以a2>a+6,解得a>3或a<-2.【评析】回顾单调增函数的定义,在x1,x2为区间任意两个值的前提下,有三个重要的问题:x=x2-x1的符号;y=f(x2)-f(x1)的符号;函数y=f(x)在区间上是增还是减.由定义可知:对于任取的x1,x2,若x2>x1,且f(x2)>f(x1),则函数y=f(x)在区间上是增函数;不仅如此,若x2>x1,且函数y=f(x)在区间上是增函数,则f(x2)>f(x1);若f(x2)>f(x1),且函数y=f(x)在区间上是增函数,则x2>x1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f(x)是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数.(1)试比较f(-2)与-f(3)的大小;(2)若mn<0,且m+n<0,求证:f(m)+f(n)>0.解:(1)因为f(x)是奇函数,所以-f(3)=f(-3),又f(x)在区间(-∞,0)上是减函数,所以f(-3)>f(-2),即-f(3)>f(-2).(2)因为mn<0,所以m,n异号,不妨设m>0,n<0,因为m+n<0,所以n<-m,因为n,-m∈(-∞,0),n<-m,f(x)在区间(-∞,0)上是减函数,所以f(n)>f(-m),因为f(x)是奇函数,所以f(-m)=-f(m),所以f(n)>-f(m),即f(m)+f(n)>0.例9函数f(x)是周期为2的周期函数,且f(x)=x2,x∈[-1,1].(1)求f(7.5)的值;(2)求f(x)在区间[2n-1,2n+1]上的解析式.解:(1)因为函数f(x)是周期为2的周期函数,所以f(x+2k)=f(x),k∈Z.所以f(7.5)=f(-0.5+8)=f(-0.5)=.(2)设x∈[2n-1,2n+1],则x-2n∈[-1,1].所以f(x)=f(x-2n)=(x-2n)2,x∈[2n-1,2n+1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( )(A)y=x2-4x (B)y=|x| (C) (D)y=x2+2x2.下列判断正确的是( )(A)定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数(B)定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数(C)定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f(x)是R上的奇函数,并且是周期为3的周期函数,又知f(1)=2.则f(2)=( )(A)-2 (B)2 (C)1 (D)-14.设f(x)是R上的任意函数,则下列叙述正确的是( )(A)f(x)f(-x)是奇函数 (B)f(x)|f(-x)|是奇函数(C)f(x)-f(-x)是偶函数 (D)f(x)+f(-x)是偶函数二、填空题5.若函数f(x)=4x2-mx+5在区间[-2,+∞)是增函数,则m的取值范围是______;f(1)的取值范围是______.6.已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=______.7.设函数为奇函数,则实数a=______.8.已知函数f(x)=x2-cos x,对于上的任意x1,x2,有如下条件:①x1>x2;②③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是______三、解答题9.已知函数f(x)是单调减函数.(1)若a>0,比较与f(3)的大小;(2)若f(|a-1|)>f(3),求实数a的取值范围.10.已知函数(1)判断函数f(x)的奇偶性;(2)当a=1时,证明函数f(x)在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y 为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质.【知识要点】1.一次函数:y=kx+b(k≠0)(1)定义域为R,值域为R;(2)图象如图所示,为一条直线;(3)k>0时,函数为增函数,k<0时,函数为减函数;(4)当且仅当b=0时一次函数是奇函数.一次函数不可能是偶函数.(5)函数y=kx+b的零点为2.二次函数:y=ax2+bx+c(a≠0)通过配方,函数的解析式可以变形为(1)定义域为R:当a>0时,值域为;当a<0时,值域为;(2)图象为抛物线,抛物线的对称轴为,顶点坐标为.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.(3)当a>0时,是减区间,是增区间;当a<0时,是增区间,是减区间.(4)当且仅当b=0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式=b2-4ac>0时,函数有两个变号零点;当判别式=b2-4ac=0时,函数有一个不变号零点;当判别式=b2-4ac<0时,函数没有零点.3.指数函数y=a x(a>0且a≠1)(1)定义域为R;值域为(0,+∞).(2)a>1时,指数函数为增函数;0<a<1时,指数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y=log a x(a>0且a≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x,使得x n=a (a∈R,n>1,n∈N+),则x叫做a的n次方根.负数没有偶次方根.;(2)分数指数幂,;n,m∈N*,且为既约分数).,且为既约分数).(3)幂的运算性质a m a n=a m+n,(a m)n=a mn,(ab)n=a nb n,a0=1(a≠0).(4)一般地,对于指数式a b=N,我们把“b叫做以a为底N的对数”记为log a N,即b=log a N(a>0,且a≠1).(5)对数恒等式:=N.(6)对数的性质:零和负数没有对数(对数的真数必须大于零!);底的对数是1,1的对数是0.(7)对数的运算法则及换底公式:;;.(其中a>0且a≠1,b>0且b≠1,M>0,N>0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y=x,y=x2,y=x3,这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.【例题分析】例1化简下列各式:(1); (2);(3); (4)log2[log3(log464)];(5).解:(1)(2)(3)(4)log2[log3(log464)]=log2[log3(log443)]=log2[log33]=log21=0.(5)【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定f(x)的解析式.解:解法一设f(x)=ax2+bx+c(a≠0),依题意解之得所以所求二次函数为f(x)=-4x2+4x+7.解法二f(x)=a(x-h)2+k(a≠0),为f(2)=-1,f(-1)=-1,所以抛物线的对称轴为,又f(x)的最大值为8,所以.因为(-1,-1)点在抛物线上,所以,解得a=-4.所以所求二次函数为.例3 (1)如果二次函数f(x)=x2+(a+2)x+5在区间(2,+∞)上是增函数,则a的取值范围是______.(2)二次函数y=ax2-4x+a-3的最大值恒为负,则a的取值范围是______.(3)函数f(x)=x2+bx+c对于任意t∈R均有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数,画简图可知此抛物线对称轴或与直线x=2重合,或位于直线x=2的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a<0,且判别式<0”,即,解得a∈(-∞,-1).(3)因为对于任意t∈R均有f(2+t)=f(2-t),所以抛物线对称轴为x=2,又抛物线开口向上,做出函数图象简图可得f(2)<f(1)<f(4).例4已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的范围.解:当m=0时,f(x)=-3x+1,其图象与x轴的交点为,符合题意;当m<0时,注意到f(0)=1,又抛物线开口向下,所以抛物线与x轴的两个交点必在原点两侧.所以m<0符合题意;当m>0时,注意到f(0)=1,又抛物线开口向上,所以抛物线与x轴的两个交点必在原点同侧(如果存在),所以若满足题意,则解得0<m≤1.综上,m∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a≠0时,函数y=ax+b与y=b ax的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f(0)=1”,例5中“作直线y=1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y=1”.例6已知幂函数.(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.解:(1)因为f(x)在(0,+∞)上是增函数,所以,解得-1<k<3,因为k∈Z,所以k=0,1,2,又因为f(x)为偶函数,所以k=1,f(x)=x2.(2)因为f(x)在(0,+∞)上是减函数,所以,解得k<-1,或k>3(k∈Z).例7比较下列各小题中各数的大小(1);(2)lg2与lg(x2-x+3);(3)0.50.2与0.20.5;(4);(5);(6)a m+a-m与a n+a-n(a>0,a≠1,m>n>0)【分析】(1)函数y=log2x在区间(0,+∞)上是增函数,所以log20.6<log21=0,函数y=log0.6x在区间(0,+∞)上是减函数,所以所以.(2)由于,所以lg2<lg(x2-x+3).(3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为.根据不等式的性质有(5)因为比较与log32,只需比较与log32,因为y=log3x是增函数,所以只需比较与2的大小,因为,所以,所以,综上,(6),当a>1时,因为m>n>0,a m>a n,a m+n>1,所以a m+a-m>a n+a-n;当0<a<1时,因为m>n>0,a m<a n,a m+n<1,所以a m+a-m>a n+a-n.综上,a m+a-m>a n+a-n.例8已知a>2,b>2,比较a+b,ab的大小.【分析】方法一(作商比较法),又a>2,b>2,所以,所以,所以a+b<ab.方法二(作差比较法),因为a>2,b>2,所以2-a<0,2-b<0,所以a+b-ab<0,即a+b<ab.方法三(构造函数)令y=f(a)=a+b-ab=(1-b)a+b,将y看作是关于a的一次函数,因为1-b<0,所以此函数为减函数,又a∈(2,+∞),y最大<f(2)=(1-b)×2+b=2-b<0,所以a+b-ab<0,即a+b<ab.【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9若log2(x-1)<2,则x的取值范围是______.解:log2(x-1)<2,即log2(x-1)<log24,根据函数y=log2x的单调性,可得x-1<4,所以x<5,结合x-1>0,所以x的取值范围是1<x<5.例10 已知A,B为函数y=log8x的图象上两点,分别过A,B作y轴的平行线与函数y=log2x的图象交于C,D两点.(1)如果A,B两点的连线经过原点O,请问C,D,O三点也共线么?证明你的结论.(2)当A,B,O三点共线并且BC与x轴平行时,求A点的坐标.略解:(1)设A(x1,log8x1),B(x2,log8x2),由于A,B,O在同一条直线上,所以又设C(x1,log2x1),D(x2,log2x2),于是有同样可得结合①式,有k OC=k OD,即C,D,O三点共线.(2)当BC∥x轴时,即。
高中数学专题—函数中的证明题

高中数学专题——函数中的证明题一、偶函数证明1、我们把定义在R 上,且满足)()(x af T x f (其中常数T a,满足0,0,1T a a )的函数叫做似周期函数.若某个似周期函数)(x f y满足1T且图像关于直线1x对称.求证:函数)(x f 是偶函数;证明:因为R x 关于原点对称,又函数)(x f y的图像关于直线1x对称,所以)1()1(x f x f ……①,又1T ,,)()1(x af x f ……②用x 代替x 得,)()1(x af x f ……③由①②③可知,)()(x af x af 01a a 且,)()(x f x f .即函数)(x f 是偶函数;二、唯一零点证明2、设函数()(,,)nn f x xbxc n N b c R . 设2,1,1n b c ≥,证明:()n f x 在区间1(,1)2内存在唯一的零点;证明:因为n 1()<02f ,n (1)>0f 。
所以n 1()2f n (1)<0f 。
所以n (x)f 在1(1)2,内存在零点。
12121212121x (,1),x <(x )-f (x )=(x -)+(x -x )<02n nn n x x f x 任取、且,则,所以n (x)f 在1(1)2,内单调递增,所以n (x)f 在1(1)2,内存在唯一零点。
三、函数中的不等式证明3、已知函数2()(,)f x xax b a bR ,记(,)M a b 是|()|f x 在区间[1,1]上的最大值.证明:当||2a 时,(,)2M a b ;证明:由已知可得11f a b ,11fa b ,对称轴为2a x,因为2a,所以12a 或12a ,所以函数f x 在1,1上单调,则,max 1,1max 1,1Ma bf f a b a b ,所以111,1+11(1)22222M a b abababab aa,从而得证. 四、单调性证明4、设121()log 1ax f x x x 为奇函数,a 为常数.求出a 的值并证明函数()f x 在(1,)x 上的单调递增. 解:121()log 1ax f x x x 为奇函数,()()0f x f x 对定义域内的任意x 都成立,112211log log 011ax ax xxx x ,11111ax ax x x ,解得1a 或1a (舍去). 证明:121()log 1xf x x x ,任取12,(1,)x x ,设12x x ,则1221121211011(1)(1)x x x x x x x x ,121211011x x x x 1211122211log log 11x x x x 121112122211log log 11x x x x x x 12()()f x f x ()f x 在(1,)x 上是增函数.五、反函数的存在性证明5、已知函数9()||f x x a a x,[1,6]x,a R .当3,1a 时,求证函数()f x 存在反函数.证明:因为13a ,所以92(),1,()9,6,a xx a xf x xaxx当13a 时,()f x 在[1,]a 上是增函数——证明略,同理,()f x 在[,6]a 上也是增函数——证明略;当13a时,x f y6,1x 上是增函数所以任意一个6,1x ,均能找到唯一的y 和它对应,所以xf y 6,1x时,()f x 存在反函数。
二次函数的推理计算与证明综合问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

二次函数的推理计算与证明综合问题(真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢据北京历年中考题型来推测,二次函数的压轴题目多数会以参数的形式出现的,难度之大,可想而知。
在解决含参数二次函数的题目时,通常先观察解析式,看能否求出对称轴,图像与坐标轴交点能否用参数来表示?根据设出点的坐标可求出相应的线段,然后观察题意,再考虑我们所学过的知识点(勾股,相似等 )能否用上.常用的二次函数的基础知识有:1.几种特殊的二次函数的图象特征如下:2.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)交点式:已知图象与x 轴的交点坐标x 1、x 2,通常选用交点式:(a≠0).(由此得根与系数的关系:,).3. 二次函数图象和一元二次方程的关系:【典例剖析】典例精讲,方法提炼,精准提分2y ax bx c =++()2y a x h k =-+2y ax =()()12y a x x x x =--12b x x a +=-12cx x a ⋅=【例1】(2021·北京·中考真题)在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(−1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.【例2】(2022·北京·中考真题)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a>0)上,设抛物线的对称轴为x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上,若m<n<c,求t的取值范围及x0的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0))与轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.2.(2014·北京·中考真题)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,−2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图像,求点D纵坐标t的取值范围.3.(2015·北京·中考真题)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若拋物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围. 4.(2016·北京·中考真题)在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;①若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.5.(2017·北京·中考真题)在平面直角坐标系xOy中,抛物线y=x2-4x+3与x轴交于点A 、B(点A在点B 的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.6.(2018·北京·中考真题)在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx−3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.7.(2019·北京·中考真题)在平面直角坐标系xOy中,抛物线y=ax2+bx−1a与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(12,−1a),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.8.(2020·北京·中考真题)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t.若对于x1+x2>3,都有y1<y2,求t的取值范围.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题(共30题)1.(2022·北京市广渠门中学模拟预测)已知抛物线y=ax2+2ax+3a2−4(a≠0)(1)该抛物线的对称轴为_____________;(2)若该抛物线的顶点在x轴上,求a的值;(3)设点M(m,y1),N(2,y2)该抛物线上,若y1>y2,求m的取值范围.2.(2022·北京·二模)在平面直角坐标系xOy中,抛物线y=x2−2mx.(1)当抛物线过点(2,0)时,求抛物线的表达式;(2)求这个二次函数的顶点坐标(用含m的式子表示);(3)若抛物线上存在两点A(m−1,y1)和B(m+2,y2),其中m>0.当y1⋅y2>0时,求m的取值范围.3.(2022·北京昌平·二模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx−1(a>0).(1)若抛物线过点(4,−1).①求抛物线的对称轴;①当−1<x<0时,图像在x轴的下方,当5<x<6时,图像在x轴的上方,在平面直角坐标系中画出符合条件的图像,求出这个抛物线的表达式;(2)若(−4,y1),(−2,y2),(1,y3)为抛物线上的三点且y3>y1>y2,设抛物线的对称轴为直线x=t,直接写出t的取值范围.4.(2022·北京房山·二模)在平面直角坐标系xOy中,点A(2,−1)在二次函数y=x2−(2m+1)x+m的图象上.(1)直接写出这个二次函数的解析式;(2)当n≤x≤1时,函数值的取值范围是−1≤y≤4−n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x−ℎ)2+k,当x<2时,y随x的增大而减小,求k的取值范围.5.(2022·北京朝阳·二模)在平面直角坐标系xOy中,已知抛物线y=x2+(a+2)x+2a.(1)求抛物线的对称轴(用含a的式子表示);(2)若点(-1,y1),(a,y2),(1,y3)在抛物线上,且y1<y2<y3,求a的取值范围.6.(2022·北京东城·二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+1(a≠0)的对称轴是直线x=3.(1)直接写出抛物线与y轴的交点坐标;(2)求抛物线的顶点坐标(用含a的式子表示);(3)若抛物线与x轴相交于A,B两点,且AB≤4,求a的取值范围.7.(2022·北京平谷·二模)在平面直角坐标系xOy中,点(−1,y1)、(1,y2)、(3,y3)是抛物线y=x2+bx+1上三个点.(1)直接写出抛物线与y轴的交点坐标;(2)当y1=y3时,求b的值;(3)当y3>y1>1>y2时,求b的取值范围.8.(2022·北京四中模拟预测)在平面直角坐标系xOy中,已知抛物线y=x2−2tx+t2−t.(1)求抛物线的顶点坐标(用含t的代数式表示);(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t−1≤x1≤t+2,x2=1−t.①若y1的最小值是−2,求y1的最大值;①若对于x1,x2,都有y1<y2,直接写出t的取值范围.9.(2022·北京丰台·二模)在平面直角坐标系xOy中,已知抛物线y=x2−2ax−3.(1)求该抛物线的对称轴(用含a的式子表示)(2)A(x1,y1),B(x2,y2)为该抛物线上的两点,若x1=1−2a,x2=a+1,且y1>y2,求a的取值范围.10.(2022·北京密云·二模)已知二次函数y=ax2+bx+2的图象经过点(1,2).(1)用含a的代数式表示b;(2)若该函数的图象与x轴的一个交点为(−1,0),求二次函数的解析式;(3)当a<0时,该函数图象上的任意两点P(x1,y1)、Q(x2,y2),若满足x1=−2,y1>y2,求x2的取值范围.11.(2022·北京大兴·二模)关于x的二次函数y1=x2+mx的图象过点(−2,0).(1)求二次函数y1=x2+mx的表达式;(2)已知关于x的二次函数y2=−x2+2x,一次函数y3=kx+b(k≠0),在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立.①求b的值;①直接写出k的值.12.(2022·北京顺义·二模)在平面直角坐标系xOy中,已知抛物线y=x2+mx+n.(1)当m=−3时,①求抛物线的对称轴;①若点A(1,y1),B(x2,y2)都在抛物线上,且y2<y1,求x2的取值范围;(2)已知点P(−1,1),将点P向右平移3个单位长度,得到点Q.当n=2时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.13.(2022·北京市十一学校模拟预测)已知二次函数y=ax2−4ax−3的图象与x轴交于A、B两点(点A 在点B的左侧),顶点为D.(1)直接写出函数图象的对称轴:_____;(2)若△ABD是等腰直角三角形,求a的值;(3)当−1≤x≤k(2≤k≤6)时,y的最大值m减去y的最小值n的结果不大于3,求a的取值范围.14.(2022·北京房山·二模)已知二次函数y=ax2−4ax.(1)二次函数图象的对称轴是直线x=__________;(2)当0≤x≤5时,y的最大值与最小值的差为9,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t−1≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.15.(2022·北京海淀·二模)在平面直角坐标系xOy中,点(m – 2, y1),(m, y2),(2-m, y3)在抛物线y = x2-2ax + 1上,其中m≠1且m≠2.(1)直接写出该抛物线的对称轴的表达式(用含a的式子表示);(2)当m = 0时,若y1= y3,比较y1与y2的大小关系,并说明理由;(3)若存在大于1的实数m,使y1>y2>y3,求a的取值范围.16.(2022·北京西城·二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(0,−2),(2,−2).(1)直接写出c的值和此抛物线的对称轴;(2)若此抛物线与直线y=−6没有公共点,求a的取值范围;(3)点(t,y1),(t+1,y2)在此抛物线上,且当−2≤t≤4时,都有|y2−y1|<7.直接写出a的取值范围.217.(2022·北京东城·一模)在平面直角坐标系xOy中,抛物线y=x2−2mx+m2+1与y轴交于点A.点B(x1,y1)是抛物线上的任意一点,且不与点A重合,直线y=kx+b(k≠0)经过A,B两点.(1)求抛物线的顶点坐标(用含m的式子表示);(2)若点C(m−2,a),D(m+2,b)在抛物线上,则a_______b(用“<”,“=”或“>”填空);(3)若对于x1<−3时,总有k<0,求m的取值范围.18.(2022·北京市十一学校二模)在平面直角坐标系xOy中,点A(t,2)(t≠0)在二次函数y=ax2+bx+2(a≠0)的图象上.(1)当t=4时,求抛物线对称轴的表达式;(2)若点B(5−t,0)也在这个二次函数的图象上.①当这个函数的最小值为0时,求t的值;①若在0≤x≤1时,y随x的增大而增大,求t的取值范围.19.(2022·北京石景山·一模)在平面直角坐标xOy中,点(4,2)在抛物线y=ax2+bx+2(a>0)上.(1)求抛物线的对称轴;(2)抛物线上两点P(x1,y1),Q(x2,y2),且t<x1<t+1,4−t<x2<5−t.①当t=3时,比较y1,y2的大小关系,并说明理由;2①若对于x1,x2,都有y1≠y2,直接写出t的取值范围.20.(2022·北京大兴·一模)在平面直角坐标系xOy中,已知关于x的二次函数y=x2−2ax+6.(1)若此二次函数图象的对称轴为x=1.①求此二次函数的解析式;①当x≠1时,函数值y______5(填“>”,“<”,或“≥”或“≤”);(2)若a<−2,当−2≤x≤2时,函数值都大于a,求a的取值范围.21.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,抛物线y=ax2−(a+4)x+3经过点(2,m).(1)若m=−3,①求此抛物线的对称轴;①当1<x<5时,直接写出y的取值范围;(2)已知点(x1,y1),(x2,y2)在此抛物线上,其中x1<x2.若m>0,且5x1+5x2≥14,比较y1,y2的大小,并说明理由.22.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3a(a≠0)与x轴的交点为点A(1,0)和点B.(1)用含a的式子表示b;(2)求抛物线的对称轴和点B的坐标;(3)分别过点P(t,0)和点Q(t+2,0)作x轴的垂线,交抛物线于点M和点N,记抛物线在M,N之间的部分为图象G(包括M,N两点).记图形G上任意一点的纵坐标的最大值是m,最小值为n.①当a=1时,求m−n的最小值;①若存在实数t,使得m−n=1,直接写出a的取值范围.23.(2022·北京平谷·一模)在平面直角坐标系xOy中,抛物线y=x2﹣2bx.(1)当抛物线过点(2,0)时,求抛物线的表达式;(2)求这个二次函数的对称轴(用含b的式子表示);(3)若抛物线上存在两点A(b﹣1,y1)和B(b+2,y2),当y1•y2<0时,求b的取值范围.24.(2022·北京门头沟·一模)在平面直角坐标系xOy中,已知抛物线y=−x2+2mx−m2+m−2(m是常数).(1)求该抛物线的顶点坐标(用含m代数式表示);(2)如果该抛物线上有且只有两个点到直线y=1的距离为1,直接写出m的取值范围;(3)如果点A(a,y1),B(a+2,y2)都在该抛物线上,当它的顶点在第四象限运动时,总有y1>y2,求a的取值范围.25.(2022·北京房山·一模)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(1,0)与点C(0,-3),其顶点为P.(1)求二次函数的解析式及P点坐标;(2)当m≤x≤m+1时,y的取值范围是-4≤y≤2m,求m的值.26.(2022·北京朝阳·一模)在平面直角坐标系xOy中,点(−2,0),(−1,y1),(1,y2),(2,y3)在抛物线y=x2+ bx+c上.(1)若y1=y2,求y3的值;(2)若y2<y1<y3,求y3值的取值范围.27.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;①设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.28.(2022·北京顺义·一模)在平面直角坐标系xOy中,点(2,−2)在抛物线y=ax2+bx−2(a<0)上.(1)求该抛物线的对称轴;(2)已知点(n−2,y1),(n−1,y2),(n+1,y3)在抛物线y=ax2+bx−2(a<0)上.若0<n<1,比较y1,y2,y3的大小,并说明理由.29.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.30.(2022·北京市第七中学一模)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+(2a−2)x−a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;①若y1=y2=0,求x1的值(用含a的式子表示);(3)若对于x1+x2<−5,都有y1<y2,求a的取值范围.11/ 11。
数学基础训练15 三角函数化简、求值及证明

数学基础训练15 三角函数化简、求值及证明●训练指要灵活运用公式进行三角恒等变形,掌握三角函数的“给角求值”“给值求值”及“给值求角”的基本方法.一、选择题1.sin15°sin30°sin 75°的值等于 A.43 B.83 C.81 D.41 2.若cot θ=3,则cos 2θ+21sin2θ的值是 A.-56 B.-54 C.54 D. 56 3.若角α的终边落在直线y =3x 上,那么sin α,cos α,tan α的值分别为 A.3,1010,10103 B.1010,10103±-,±3 C.±10103,±1010,±3 D.±10103,±1010,3 二、填空题4.求值:︒︒-︒︒︒+︒7sin 75sin 68cos 7sin 75cos 68sin =_________. 5.(2002年北京春季高考题)如果cos θ=-1312,θ∈(π,23π),那么cos(θ+4π)的值等于_________.三、解答题6.(2002年全国高考题)已知sin 22α+sin2αcos α-cos2α=1,α∈(0,2π).求sin α,tan α的值.7.已知cos(α-2,32)2sin(,91)2πβαβ且=--=<α<π,0<β<2π,求cos(α+β)的值. 8.若α、β均为锐角,且tan α=101sin ,71=β,求α+2β的值.数学基础训练15答案一、1.C提示:原式=sin15°sin30°cos15°=21sin 230°=81. 2.D 提示:原式=56cot 1cot cot cos sin cos sin cos 22222=++=++θθθθθθθθ. 3.D二、4.2+3提示:变角:68°=75°-7°.5.-2627 三、6.sin α=21 tan α=33 提示:已知等式化为2cos 2α(2sin α-1)(sin α+1)=0∵α∈(0,2π),∴仅2sin α-1=0,sin α=21,tan α=33 7.-729239 提示:变角:(α-2)2()2βαβαβ+=--. 8.4π 提示:求得tan β=31,tan2β=43,tan(α+2β)=1. 又0<α<2π,求得0<β<4π. ∴0<α+2β<π,故α+2β=4π.。
初中数学函数试题

初中数学函数专题训练一. 填空题1. 在函数32--=x x y 中,自变量x 的取值范围是________ 2. 抛物线362+-=x x y 的顶点坐标是___________3. 正比例函数的图像经过点(3-,6),则函数的关系式是4.函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 ;5.若点(3,a )在一次函数13+=x y 的图像上,则=a ;6.二次函数1)3(42-+-=x y 中,图象是 ,开口 ,对称轴是直线 ,顶点坐标是( ),当X 时,函数Y 随着X 的增大而增大,当X 时,函数Y 随着X 的增大而减小。
当X= 时,函数Y 有最 值是 。
7.写一个图象过一、二、四象限的一次函数表达_________.8.写一个图象开口向下,且过原点的二次函数表达式______.9.已知两圆的半径分别是一元二次方程01272=+-x x 的两个根,若两圆的圆心距为5,则这两个圆的位置关系是__________.二.选择题10.若点P (m ,1-2m )的横坐标与纵坐标互为相反数,则点P 一定在( )(A )第一象限(B )第二象限(C )第三象限(D )第四象限11.已知直线y=mx -1上有一点B (1,n ),围成的三角形的面积为( )(A )12(B )14或12(C )14或18 (D) 18或 1212.AE 、CF 是锐角△ABC 的两条高,如果AE :CF =3:2,则sin A :sin C 等于( )(A )3:2 (B )2:3 (C )9:4 (D )4:913.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=x +3上,设点M 的坐标为(a ,b ),则二次函数y=-abx 2+(a+b )x ( )(A )有最小值,且最小值是92 (B )有最大值,且最大值是﹣92(C )有最大值,且最大值是92 (D )有最小值,且最小值是﹣92 14.两圆的半径分别是方程x 2-3x+2=0的两根.且圆心距d=1,则两圆的位置关系是( )A .外切B .内切C .外离D .相交15.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( )A (-a ,-b )B (a ,-b )C (-a ,b )D (0,0)16.已知二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,则下列结论中正确的是( ).A.0ac >B.0b < C.240b ac -< D.20a b +=17.已知22y x =的图象是抛物线,若抛物线不动,把x 轴,y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ).A.22(2)2y x =-+B.22(2)2y x =+-C.22(2)2y x =-- D.22(2)2y x =++ 18.正比例函数y =kx 的图象经过二、四象限,则抛物线y =kx 2-2x +k 2的大致图象是( A )19.函数211--+=x x y 中,自变量x 的取值范围是( ) A .x ≥-1 B .x >-1且x ≠2C .x ≠2D .x ≥-1且x ≠220.把二次函数122--=x x y 配方成顶点式为( )A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y21.若︒<<︒900α,则下列说法不正确的是 ( )(A) αsin 随α的增大而增大; (B )cos α随α的减小而减小;(C )tan α随α的增大而增大; (D )0<sin α<1.22.抛物线22x y =是由抛物线2)1(22++=x y 经过平移而得到的,则正确的平移是( )A 、先向右平移1个单位,再向下平移2个单位B 、先向左平移1个单位,再向上平移2个单位三.计算题23.已知一次函数y=(m-1)x+2m+1(1) 若函数经过原点,求m 值(2) 若图像平行与直线y=2x,求m 的值(3) 若图像交y 轴于正半轴,求m 的取值范围(4) 若图像经过一、二、四象限,求m 取值范围24.已知一次函数y =(3m-8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数.(1)求m 的值;(2)当x 取何值时,0<y <4?函数y=2-x ,则y 随x 的增大而_______25.已知实数a 不等于零,抛物线y=ax^2-(a+c)x+c 不经过第二象限(1) 判断此抛物线顶点A (x0,y0)所在象限,并说明理由(2) 若经过这条抛物线顶点A(x0,y0)的直线y=-x+k 与抛物线的另一个交点为B ((a+c )/a,-c ),求抛物线的解析式26.为鼓励居民节约用水,某市规定收费标准如下:若每户每月不超过用水标准量,按每吨1.30元收费;若超过用水标准,则超过部分按每吨2.90元收费。
一次函数大题难题提高题

1.已知点A(3,4),点B为直线x=—1上的动点,设B(-1,y).(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.2.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。
设运动时间为t秒.(1)求线段BC的长;(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。
设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PF、QG,当t为何值时,2BQ PF 3-=?3.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为 km/h,快车的速度为 km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求快车出发多少时间时,两车之间的距离为300km?4.一次函数y=k1x+b的图像经过点(0,—4)且与正比例函数y=k2x的图象交于点(2,-1).(1)分别求出这两个函数的表达式;(2)求这两个函数的图象与x轴围成的三角形的面积;(3)直接写出不等式k1x-4≥k2x的解集。
5.已知:如图1,△OAB是边长为2的等边三角形,OA在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ面积S与运动时间t之间的函数关系,并写出自变量t的取值范围;(2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出....所有符合条件的点D的坐标;(3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.6.如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB 交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y 轴于点G .设点E 离开坐标原点O 的时间为t (t≥0)s . (1)求直线AC 的解析式;(2)直线l 在平移过程中,请直接写出△BOF 为等腰三角形时点F 的坐标; (3)直线l 在平移过程中,设点E 到直线l 的距离为d,求d 与t 的函数关系.7.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为)(h x ,两车之...间的距离....为)(km y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究:(1)请解释图中点B 的实际意义; (2)求慢车和快车的速度;(3)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;8.(7分)如图,一次函数y=-43x+3的图象与x 轴和y 轴分别交于点A 和B ,再将△AOB 沿直线CD 对折,使点A 与点B 重合。
高三数学函数专题训练题

高三数学函数专题训练题(附详解)第1卷(选择题)一、单选题1. 已知定义在R 上的可导函数f(x)的导函数为f(x),满足f '(x) < f(x),且f(-x) = f(2+x),f(2)=1,则不等式f(x)< e x 的解集为( ) A.(-∞,2) B.(2,+∞) C.(1,+∞) D.(0,+∞)2. 函数y=sinx+2|sinx|,x ∈[0,2x]的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围为( )A. k ∈ [0,3]B. k ∈ [1,3]C. k ∈(1,3)D. k ∈(0,3) 3. 已知sina 1+cosa= 2,则 tana =( )A. - 43B. - 34C. 43D. 24. 定义在R 上的奇函数f(x)满足f(x+4) = f(x),当x ∈(0,2)时,f(x)=3x -1,则f(2022)+f(2023)=( )A. -2023B. -1C. 1D. 32022 5. 设a=log 20.3,b=0.2,c=(12)0.2,则a,b,c 三者的大小关系为( ) A. a<b<c B. c<a<b C. b<c<a D. a<c<b6. 设函数f(x)(x ∈R)的导函数为f '(x),满足f '(x)>f(x),则当a>0时,f(a)与e a f(0)的大小关系为( )A. f(a)>e a f(0)B. f(a)<e a f(0)C. f(a)=e a f(0)D. 不能确定7. 已知f(x)=2x2x +1+ax+cos2x ,若f (π3)=2,则f(-π3)等于( )A. -2B. -1C. 0D. 18. 已知函数f(x)=√3sin(ωx+φ)(ω>0,-π2<φ<π2),A (13,0)为f(x)图像的对称中心,B 、C 是该图像上相邻的最高点和最低点,且|BC|=4,则下列结论正确的是( ) A. 函数f(x)的对称轴方程为x=43+4k(k ∈Z)B. 若函数f(x )在区间(0,m)内有5个零点,则在此区间内f(x )有且只有2个极小值点C. 函数f(x )在区间(0,2)上单调递增D. f(x -π3)的图象关于y 轴对称9. 已知函数f(x)={|x|x+4√x 36−x,−4<x<2,2≤x<6,若方程f(x)+αx 2=0有5个不等实根,则实数α的取值范围是( )A. (-∞,- √24) ∪ {- 13}B. [- 13,- 14] C. [13,√24] D. ( √24,+∞)∪ { 13} 10. 已知F 1,F 2分别为双曲线x 2-y 23=1的左、右焦点,直线l 过点F 2,且与双曲线右支交于A ,B 两点,O 为坐标原点,△AF 1F 2、△BF 1F 2的内切圆的圆心分别为O 1,O 2,则△OO 1O 2面积的取值范围是( ) A. (1,2√33) B. [1,2√33)C. [1,2√33] D. (1,2√33] 11. 设定义在R 上的函数f(x)与g(x)的导函数分别为f '(x)和g'(x),若g(x)-f(3-x)=2,f '(x)=g'(x-1),且g(x+2)为奇函数,g(1)=1。
函数极限定义证明习题解析

在。则所有这些极限都相等。 证:对{xn} (x0),{yn} (x0),xn x0,yn x0, 令 zn:x1, y1, x2, y2,…, xn, yn 则{zn} (x0),zn x0, 由假设, lim f ( z n ) 存在,设为 A, 从而{ f(xn)},{ f(yn)} 作
x1
n(n 1) 2 n 1 x 1 1 1 x lim (4). lim x 0 x 0 x n x (1 x) n 1 n (1 x) n 2 n (1 x) n 1 n [ x] (5). lim x x 1 [ x] 当 x >0,x-1< [ x] x, 从而 1 1 x x 0 x x x 1 [ x] 1 而 lim 1 1, lim 1 1, lim 1 x x x x [ x] x [ x] 1 x [ x] 1 当 x <0,x-1< [ x] x, 从而 1 1 x x 1 [ ] x 而 lim 1 1, lim 1 1, lim 1 x x x x x [ x] 综上, lim 1 x x 9.(1). 证明:若 lim f ( x 3 ) 存在,则 lim f ( y ) lim f ( x 3 ) 1 2 3 n
n
为{ f(zn)}的两个子列,必有 lim f ( x n ) lim f ( x n ) A ,由{yn},{xn}的任意性,即见
n n
所有极限 lim f ( x n ) 都相等。
n
5.设 f 为(x0)上的递增函数,证明:f (x0-0)和 f (x0+0)都存在,且 f ( x0 0) sup f ( x), f ( x0 0) inf f ( x)
高考数学复习专题训练—利用导数证明问题(含解析)

高考数学最新真题演练—利用导数证明问题1.(2021·海南海口月考)已知函数f (x )=x 2+2ax (a>0)与g (x )=4a 2ln x+b 的图象有公共点P ,且在点P 处的切线相同. (1)若a=1,求b 的值; (2)求证:f (x )≥g (x ).2.(2021·辽宁朝阳一模)已知函数f (x )=e x -a sin x-x ,曲线y=f (x )在点(0,f (0))处的切线方程为x+y-1=0. (1)求实数a 的值;(2)证明:对∀x ∈R ,f (x )>0恒成立.3.(2021·河北石家庄三模)已知函数f (x )=a ln x-x 2+x+3a. (1)讨论函数f (x )的单调性; (2)若0<a<14,求证:f (x )<e xx -x 2+x.4.(2021·江苏百校联盟3月联考)已知函数f (x )=a e x +sin x+x ,x ∈[0,π]. (1)证明:当a=-1时,函数f (x )有唯一的极大值点; (2)当-2<a<0时,证明:f (x )<π.5.(2021·广东湛江一模)已知函数f (x )=e x ,g (x )=2ax+1. (1)若f (x )≥g (x )恒成立,求a 的取值集合;(2)若a>0,且方程f (x )-g (x )=0有两个不同的根x 1,x 2,证明:x 1+x 22<ln 2a.6.(2021·广州一模)已知函数f (x )=x ln x-ax 2+x (a ∈R ). (1)证明:曲线y=f (x )在点(1,f (1))处的切线l 恒过定点;(2)若f (x )有两个零点x 1,x 2,且x 2>2x 1,证明:√x 12+x 22>4e .答案及解析1.(1)解 设P (x 0,y 0)(x 0>0),则x 02+2ax 0=4a 2ln x 0+b.又f'(x )=2x+2a ,g'(x )=4a 2x ,∴2x 0+2a=4a 2x 0.∵a=1,∴x 02+x 0-2=0,∴x 0=1,则4×1×0+b=1+2=3,解得b=3. (2)证明 由(1)得2x 0+2a=4a 2x 0,即x 02+ax 0-2a 2=0,得x 0=a.∴a 2+2a 2-4a 2ln a-b=0.令h (x )=f (x )-g (x )=x 2+2ax-4a 2ln x-b (a>0),则h'(x )=2x+2a-4a 2x=2(x 2+ax -2a 2)x=2(x+2a )(x -a )x. 当0<x<a 时,h'(x )<0;当x>a 时,h'(x )>0,故h (x )在区间(0,a )上单调递减,在区间(a ,+∞)上单调递增.∴x=a 时,函数h (x )取得极小值即最小值,且h (a )=a 2+2a 2-4a 2ln a-b=0,因此h (x )≥0,故f (x )≥g (x ).2.(1)解 f'(x )=e x -a cos x-1.∵曲线y=f (x )在点(0,f (0))处的切线方程为x+y-1=0, ∴f'(0)=-1,∴1-a-1=-1,得a=1.(2)证明 由于f (x )=e x -sin x-x ,要证明对∀x ∈R ,f (x )>0恒成立,需证明对∀x ∈R ,e x -x>sin x.令g (x )=e x -x ,∴g'(x )=e x -1. 令g'(x )=0,得x=0.∴当x ∈(-∞,0)时,g'(x )<0,当x ∈(0,+∞)时,g'(x )>0.∴函数g (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增. 故g (x )min =g (0)=1,即对∀x ∈R ,e x -x ≥1都成立, ∴e x -x-sin x ≥1-sin x ≥0,两个等号不同时成立, ∴e x -x>sin x ,∴对∀x ∈R ,f (x )>0恒成立. 3.(1)解 f'(x )=ax -2x+1=-2x 2+x+ax,x>0,令f'(x )=0,即-2x 2+x+a=0,Δ=1+8a.当Δ≤0,即a ≤-18时,f'(x )≤0,∴f (x )在区间(0,+∞)上单调递减. 当Δ>0,即a>-18时,由f'(x )=0,得x 1=1+√1+8a 4,x 2=1-√1+8a4,则x 1>x 2. ①当a ≥0时,x 1>0,x 2≤0,x ∈(0,x 1)时,f'(x )>0,x ∈(x 1,+∞)时,f'(x )<0,∴f (x )在区间(0,x 1)上单调递增,在区间(x 1,+∞)上单调递减.②当-18<a<0时,x 1>0,x 2>0,x ∈(0,x 2)∪(x 1,+∞)时,f'(x )<0,x ∈(x 2,x 1)时,f'(x )>0,∴f (x )在区间(0,x 2)和(x 1,+∞)上单调递减,在区间(x 2,x 1)上单调递增. 综上所述,当a ≤-18时,f (x )在区间(0,+∞)上单调递减; 当a ≥0时,f (x )在区间0,1+√1+8a4上单调递增,在区间1+√1+8a4,+∞上单调递减;当-18<a<0时,f (x )在区间0,1-√1+8a4和1+√1+8a4,+∞上单调递减,在区间1-√1+8a 4,1+√1+8a4上单调递增.(2)证明 由已知得需证a (ln x+3)<e xx .∵a>0,x>0,∴e xx>0,当ln x+3<0时,不等式显然成立.当ln x+3>0时,由于0<a<14,∴a (ln x+3)<14(ln x+3),因此只需证14(ln x+3)<e xx ,即证lnx+34x<e x x 2. 令g (x )=lnx+34x (x>0),∴g'(x )=-lnx -24x 2.令g'(x )=0,得x=e -2.当x ∈(0,e -2)时,g'(x )>0,当x ∈(e -2,+∞)时,g'(x )<0,即g (x )在区间(0,e -2)上单调递增,在区间(e -2,+∞)上单调递减.∴g (x )max =g (e-2)=e 24.令h (x )=e xx 2(x>0),则h'(x )=e x (x -2)x 3.当x ∈(0,2)时,h'(x )<0,当x ∈(2,+∞)时,h'(x )>0,∴h (x )在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,∴h (x )min =h (2)=e 24.∴g (x )max ≤h (x )min ,但两边取最值的条件不一样, ∴lnx+34x<e x x 2.故f (x )<e x x -x 2+x.4.证明 (1)当a=-1时,f (x )=x+sin x-e x ,f'(x )=1+cos x-e x .因为x ∈[0,π],所以1+cos x ≥0.令g (x )=1+cos x-e x ,x ∈[0,π],则g'(x )=-e x -sin x<0, 所以g (x )在区间[0,π]上单调递减. 又因为g (0)=2-1=1>0,g (π)=-e π<0, 所以存在x 0∈(0,π),使得f'(x 0)=0, 且当0<x<x 0时,f'(x )>0;当x 0<x<π时,f'(x )<0.所以函数f (x )的单调递增区间是[0,x 0],单调递减区间是[x 0,π]. 所以函数f (x )存在唯一的极大值点x 0.(2)当-2<a<0,0≤x ≤π时,令h (x )=f (x )-π=a e x +sin x+x-π,则h'(x )=a e x +cos x+1,令p (x )=a e x +cos x+1,则p'(x )=a e x -sin x<0,所以函数h'(x )在区间[0,π]上单调递减.因为h'(0)=a+2>0,h'(π)=a e π<0,所以存在t ∈(0,π),使得h'(t )=0,即a e t +cos t+1=0, 且当0<x<t 时,h'(x )>0; 当t<x<π时,h'(x )<0.所以函数h (x )在区间[0,t ]上单调递增,在区间[t ,π]上单调递减. 所以h (x )max =h (t )=a e t +sin t+t-π,t ∈(0,π). 因为a e t +cos t+1=0,所以只需证φ(t )=sin t-cos t+t-1-π<0即可,而φ'(t )=cos t+sin t+1=sin t+(1+cos t )>0,所以函数φ(t )在区间(0,π)上单调递增,所以φ(t )<φ(π)=0,故f (x )<π. 5.(1)解 令u (x )=f (x )-g (x )=e x -2ax-1,则u'(x )=e x -2a.若a ≤0,则u'(x )>0,所以u (x )在R 上单调递增,而u (0)=0,所以当x<0时,u (x )<0,不符合题意;若a>0,由u'(x )=0,得x=ln(2a ),当x<ln(2a )时,u'(x )<0,u (x )单调递减; 当x>ln(2a )时,u'(x )>0,u (x )单调递增, 故u (x )min =u (ln(2a ))=2a-2a ln(2a )-1≥0. 令h (x )=x-x ln x-1,则h'(x )=-ln x.令h'(x )=0,得x=1,当0<x<1时,h'(x )>0,当x>1时,h'(x )<0,故h (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,故h (x )≤h (1)=0,即x-x ln x-1≤0,所以2a-2a ln(2a )-1≤0,故2a-2a ln(2a )-1=0,所以2a=1,即a=12,故a 的取值集合为{12}. (2)证明 方程f (x )-g (x )=0有两个不同的根x 1,x 2,不妨令x 1<x 2,则{e x 1=2ax 1+1,e x 2=2ax 2+1,∴2a=e x 2-e x 1x 2-x 1.要证x 1+x 22<ln 2a ,即证e x 1+x 22<e x 2-e x 1x 2-x 1⇔(x 2-x 1)e x 1+x 22<ex 2−ex 1⇔(x 2-x 1)e x 2-x 12<e x 2-x 1-1,令t=x 2-x12,则t>0,即证e 2t -1>2t e t ,令G (t )=e 2t -1-2t e t ,则G'(t )=2e t (e t -t-1), 易证e t >t+1,故G'(t )>0,故G (t )在区间(0,+∞)上单调递增,所以G (t )>G (0)=0. 故原不等式成立.6.证明 (1)f'(x )=ln x-2ax+2,则f'(1)=2-2a ,所以切线l 的斜率为2-2a.又f (1)=1-a ,所以切线l 的方程为y-(1-a )=(2-2a )(x-1),即y=(2-2a )x-12,可得当x=12时,y=0,故切线l 恒过定点12,0.(2)∵x 1,x 2是f (x )的零点,x 2>2x 1,且x 1>0,x 2>0,∴{x 1ln x 1-ax 12+x 1=0,x 2ln x 2-ax 22+x 2=0,即{ln x 1+1=ax 1,ln x 2+1=ax 2, ∴a=ln x 1+ln x 2+2x 1+x 2=ln x 2-ln x 1x 2-x 1, 即ln(x 1x 2)+2=(x 1+x 2)ln x2x 1x 2-x 1.令t=x 2x 1,则t>2,于是ln(x 1x 2)+2=(t+1)lntt -1,令g (t )=(t+1)lnt t -1,则g'(t )=t -1t -2lnt(t -1)2.令h (t )=t-1t -2ln t ,则h'(t )=(t -1)2t2>0,∴h (t )在区间(2,+∞)上单调递增,∴h (t )>h (2)=32-2ln 2>0,∴g'(t )>0,∴g (t )在区间(2,+∞)上单调递增,∴g (t )>g (2)=3ln 2,∴ln(x 1x 2)+2>3ln 2,即ln(x 1x 2)>3ln 2-2=ln 8e 2, ∴x 1x 2>8e 2,∴√x 12+x 22>√2x 1x 2>4e (由于x 1≠x 2,故不取等号).。
高中数学专题—函数中的证明题

高中数学专题——函数中的证明题一、偶函数证明1、我们把定义在R 上,且满足)()(x af T x f =+(其中常数T a ,满足0,0,1≠≠≠T a a )的函数叫做似周期函数.若某个似周期函数)(x f y =满足1=T 且图像关于直线1=x 对称.求证:函数)(x f 是偶函数;证明:因为R x ∈关于原点对称,又函数)(x f y =的图像关于直线1=x 对称, 所以)1()1(x f x f +=-……①, 又1=T ,,)()1(x af x f =+∴ ……② 用x -代替x 得,)()1(x af x f -=+-……③ 由①②③可知,)()(x af x af -=01≠≠a a 且 ,)()(x f x f -=∴.即函数)(x f 是偶函数;二、唯一零点证明2、设函数()(,,)n n f x x bx c n N b c R *=++∈∈. 设2,1,1n b c ==-≥,证明:()n f x 在区间1(,1)2内存在唯一的零点; 证明:因为 n 1()<02f ,n (1)>0f 。
所以n 1()2f ⋅n (1)<0f 。
所以n (x)f 在1(1)2,内存在零点。
12121212121x (,1),x <(x )-f (x )=(x -)+(x -x )<02n n n n x x f x ∈任取、且,则,所以n (x)f 在1(1)2,内单调递增,所以n (x)f 在1(1)2,内存在唯一零点。
三、函数中的不等式证明3、已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值. 证明:当||2a ≥时,(,)2M a b ≥;证明:由已知可得()11f a b =++,()11f a b -=-+,对称轴为2ax =-, 因为2a ≥,所以12a -≤-或12a-≥,所以函数()f x 在[]1,1-上单调, 则()()(){}{},max 1,1max 1,1M a b f f a b a b =-=++-+,所以()()()()111,1+11(1)22222M a b a b a b a b a b a a ≥++-+≥++--+≥=≥, 从而得证.四、单调性证明4、设121()log 1axf x x x -=+-为奇函数,a 为常数.求出a 的值并证明函数()f x 在(1,)x ∈+∞ 上的单调递增. 解:121()log 1axf x x x -=+- 为奇函数,()()0f x f x ∴-+=对定义域内的任意x 都成立,112211log log 011ax ax x x x x +-∴-++=---,11111ax axx x +-∴⋅=--- , 解得1a =-或1a =(舍去). 证明:121()log 1xf x x x +=+-, 任取12,(1,)x x ∈+∞ ,设12x x < ,则1221121211011(1)(1)x x x x x x x x ++--=>----, 121211011x x x x ++∴>>-- 1211122211log log 11x x x x ++∴<-- 121112122211log log 11x x x x x x ++∴+<+-- 12()()f x f x ∴< ()f x ∴ 在(1,)x ∈+∞ 上是增函数.五、反函数的存在性证明 5、已知函数9()||f x x a a x=--+,[1,6]x ∈,a R ∈.当()3,1∈a 时,求证函数()f x 存在反函数.证明:因为13a <≤,所以92(),1,()9,6,a x x a xf x x a x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩当13a <≤时,()f x 在[1,]a 上是增函数——证明略, 同理,()f x 在[,6]a 上也是增函数——证明略; 当13a <≤时,()x f y =[]6,1∈x 上是增函数 所以任意一个[]6,1∈x ,均能找到唯一的y 和它对应, 所以()x f y =[]6,1∈x 时,()f x 存在反函数。
分类讨论证明或求函数的单调区间(含参)(教师版)--2024新高考数学导数微专题训练

专题14分类讨论证明或求函数的单调区间(含参)1.设函数21()sin cos 2f x x x x ax =+-.(1)当12a =时,讨论()f x 在(,)ππ-内的单调性;(2)当13a >时,证明:()f x 有且仅有两个零点.【答案】(1)在,03π⎛-⎫ ⎪⎝⎭或,3ππ⎛⎫ ⎪⎝⎭上单调递减,在,3ππ⎛⎫-- ⎪⎝⎭或0,3π⎛⎫ ⎪⎝⎭上单调递增;(2)证明见解析.【分析】(1)先求导,根据导数和函数的单调性,结合三角函数的性质即可求出单调区间;(2)先判断出函数为偶函数,则问题转化为()f x 在(0,)+∞有且只有一个零点,再利用导数和函数单调性的关系,以及函数零点存在定理即可求出.【详解】(1)当12a =时,21()sin cos 4f x x x x x =+-,11()sin cos sin (cos 22f x x x x x x x x ∴'=+--=-,令()0f x '=,解得0x =或3x π=,3x π=-,当()0f x '<时,解得03x π-<<或3x ππ<<,当()0f x '>时,解得3x ππ-<<-或03x π<<,()f x ∴在(3π-,0)或(3π,)π上单调递减,在(,)3ππ--或(0,)3π上单调递增;(2)()f x 的定义域为(,)-∞+∞,2211()()sin()cos()()sin cos ()22f x x x x a x x x x ax f x -=--+-+-=+-= ,()f x ∴为偶函数,(0)10f => ,()f x ∴有且仅有两个零点等价于()f x 在(0,)+∞有且只有一个零点,()(cos )f x x x a '=- ,当1a 时,cos 0x a -,()0f x '恒成立,()f x ∴在(0,)+∞上单调递减,2211()sin cos 1022f a a ππππππ=+-=--< ,(0)·()0f f π∴<,()f x ∴在(0,)+∞上有且只有一个零点,当113a <<时,令()(cos )0f x x x a '=-=,即cos x a =,可知存在唯一(0,)2πθ∈,使得cos a θ=,当(0,)x θ∈或(22,22)x k k ππθππθ∈+-++时,k ∈N ,()0f x '>,函数()f x 单调递增,当(2,22)x k k πθππθ∈++-时,k ∈N ,()0f x '<,函数()f x 单调递减,由tan θ=113a <<,可得0tan θ<<,当k ∈N ,22tan 2(k ππθθπ++->,2221113(22tan )10(22)[(22tan )1][(22tan )1]022626k f k a k k a ππθθππθππθθππθθ++--∴++=-++--+<-++--+=-<,()f x ∴在(0,)+∞上有且只有一个零点,综上所述,当13a >时,()f x 有且仅有两个零点.【点睛】方法点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.2、用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.2.已知函数2()2ln 2(1)f x mx x m x =-+-.(1)讨论函数()f x 的单调区间;(2)当1x ≠时,求证:2286ln 3521x x x x x x---<-.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)先求导,分为0m ≥,1m =-,1m <-和10m -<<四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;(2)等价于3226(1ln )23501x x x x x-+--<-,令()()3261ln 235h x x x x x =-+--,利用当2m =时的结论,根据导数判断()h x 与0的关系,即可证明.【详解】解:()f x 的定义域为(0,)+∞,则22(1)1(1)(1)()22(1)22mx m x mx x f x mx m x x x+--+-'=-+-=⋅=⋅,当0m 时,10mx +>,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,∴函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当0m <时,令()0f x '=,解得1x =或1x m=-,当1m =-时,2(1)()2·0x f x x-'=-恒成立,∴函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,101m<-<,当1(0,x m ∈-或(1,)+∞时,()0f x '<,当1(x m∈-,1)时,()0f x '>,∴函数()f x 的单调递减区间为1(0,)m -或(1,)+∞,单调递增区间为1(m-,1),当10m -<<,11m ->,当(0,1)x ∈或1(m -,)+∞时,()0f x '<,当1(1,x m∈-时,()0f x '>,∴函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,m.综上所述:当0m 时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当1m =-时,函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,函数()f x 的单调递减区间为1(0,)m -,(1,)+∞,单调递增区间为1(m-,1),当10m -<<时,函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m.(2)证明:要证2286ln 3521x x x x x x---<-,即证3226(1ln )23501x x x x x -+--<-,令32()6(1ln )235h x x x x x =-+--,则22()66ln 6663(22ln 2)h x x x x x x x '=--+-=--,由(1),当2m =时,2()22ln 2f x x x x =--,可得()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,即()h x '的单调递减区间为(0,1),单调递增区间为(1,)+∞,()h x h ∴''(1)0=,()h x ∴在(0,)+∞上单调递增,h (1)6(1ln1)2350=-+--=,∴当01x <<时,()0h x <,210x ->,当1x >时,()0h x >,210x -<,∴3226(1)23501x lnx x x x -+--<-,即22863521x xlnx x x x---<-.【点睛】含有参数的函数单调性讨论常见的形式:(1)对二次项系数的符号进行讨论;(2)导函数是否有零点进行讨论;(3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等.3.已知函数()()1ln f x ax x a R =--∈.(1)若1a =,求()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为0,无极大值;(2)答案见解析.【分析】(1)当1a =时,求得()1x f x x-=,利用导数分析函数()f x 的单调性,由此可求得函数()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值;(2)求得()()10ax f x x x-'=>,分0a ≤和0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间.【详解】(1)当1a =时,()1ln f x x x =--,所以,()()1110x f x x x x-¢=-=>,列表;x1,1e ⎡⎫⎪⎢⎣⎭1(]1,e ()f x '-+()f x 单调递减极小单调递增所以,()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的有极小值()10f =,无极大值;(2) 函数()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=.当0a ≤时,10ax -<,从而()0f x '<,故函数()f x 在()0,∞+上单调递减;当0a >时,若10x a<<,则10ax -<,从而()0f x '<;若1x a>,则10ax ->,从而()0f x '>.故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,函数()f x 的单调递减区间为()0,∞+,无单调递增区间;当0a >时,函数()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞ ⎪⎝⎭.【点睛】方法点睛:讨论含参数函数的单调性,通常以下几个方面:(1)求导后看函数的最高次项系数是否为0,需分类讨论;(2)若最高次项系数不为0,且最高次项为一次,一般为一次函数,求出导数方程的根;(3)对导数方程的根是否在定义域内进行分类讨论,结合导数的符号变化可得出函数的单调性.4.已知函数()21()xm x xf x e++=.(1)试讨论()f x 的单调性;(2)若0m ≤,证明:()ln ef x x x +≤.【答案】(1)答案不唯一见解析;(2)证明见解析.【分析】(1)对函数进行求导得(1)(1)()xx mx m f x e--'+=-,再对m 分三种情况讨论,即0m =,0m >,0m <三种情况;(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,再利用函数的单调性,即可得证;【详解】解析:(1)因为(1)(1)()xx mx m f x e --'+=-,①当0m =时,1()x x f x e-=-',当1x >时,()0f x '<,当1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减;②当0m >时,1(1)11(),11x m x x m f x e m'⎛⎫--+ ⎪⎝⎭=--<,当11,1x m ⎛⎫∈-⎪⎝⎭时,()0f x '>,当1,1(1,)x m ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭时,()0f x '<,所以()f x 在11,1m ⎛⎫- ⎪⎝⎭单调递增,在1,1,(1,)m ⎛⎫-∞-+∞ ⎪⎝⎭单调递减;③当0m <时,111m ->,当11,1x m ⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1(,1)1,x m ⎛⎫∈-∞⋃-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在11,1m ⎛⎫-⎪⎝⎭单调递减,在1(,1),1,m ⎛⎫-∞-+∞ ⎪⎝⎭单调递增.(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,当0m =时,()x xf x e =,由(1)知()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,所以max 1()(1)f x f e==;当0m <时,()211()xx m x xx f x e e e++=<≤,故()ln ef x x x +≤.【点睛】利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式.5.已知函数()e x f x ax =,a 为非零常数.(1)求()f x 单调递减区间;(2)讨论方程()()21f x x =+的根的个数.【答案】(1)当0a >时,()f x 的单调递减区间为(,1)-∞-,当0a <时,()f x 的单调递减区间为(1,)-+∞;(2)当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解.【分析】(1)求导,对a 分类讨论,利用()0f x '<可解得结果;(2)转化为函数2(1)()exx g x x +=与y a =的图象的交点的个数,利用导数可求得结果.【详解】(1)()(1)e x x x f x ae axe a x '=+=+,由()0f x '=得1x =-,①若0a >时,由()0f x '<得1x <-,所以()f x 的单调递减区间为(,1)-∞-;②若0a <时,由()0f x '<得1x >-,所以()f x 的单调递减区间为(1,)-+∞.综上所述,当0a >时,()f x 的单调递减区间为(,1)-∞-;当0a <时,()f x 的单调递减区间为(1,)-+∞.(2)因为方程2()(1)f x x =+等价于2(1)e x x a x +=,令2(1)()exx g x x +=,所以方程()()21f x x =+的根的个数等于函数2(1)()exx g x x +=与y a =的图象的交点的个数,因为()2222(1)12(1)(1)()()()ex x x x x x x x xe x e xe g x xe x +++-++=-'=,由()0g x '=,得1x =-,当(,1)x ∈-∞-,时,()0g x '>,()g x 在(,1)-∞-上单调递增;当()()1,00,x ∈-+∞ 时,()0g x '<,所以()g x 在()1,0-,()0,∞+上单调递减,又()10g -=,所以当(,1)x ∈-∞-时,()(),0g x ∈-∞;当()1,0x ∈-时,()(),0g x ∈-∞;当()0,x ∈+∞时,()()0,g x ∈+∞.所以,当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解.【点睛】方法点睛:讨论函数零点(或方程根)的个数的常用的方法:(1)直接法:直接求解方程得到方程的根,可得方程根的个数;(2)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解6.已知函数()21ln 2f x ax x x b =-⋅+,()()g x f x '=.(1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;(3)证明:1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭ .【答案】(1)答案见解析;(2)存在,2a e =;(3)证明见解析.【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性;(2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果;(3)先构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,证明其小于零,即得1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,再将1nx n =+代入求和即证结论.【详解】解:(1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故()11ax g x a x x-'=-=,0x >.当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数,当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数.(2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3.当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去当1a e >时10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--=⎪⎝⎭,所以ln 2a =.解得2a e =故2a e =时,使函数()g x 的最小值为2.(3)构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,则119()3033x h x x x -'=-=>,故1()ln 313h x x x =-+在1,12x ⎡⎫∈⎪⎢⎣⎭上递减,111111()ln 3120232232h x h ⎛⎫≤=-⨯+=--< ⎪⎝⎭,故1ln 3103x x -+<,即1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,而11,1112n n N x n n *⎡⎫∈==-⎪⎢++⎣⎭,故13ln 1311n n n n >++⋅+,即[]ln(13ln 131)1n n n n ->++⋅+,将n *∈N 依次代入并相加得[]()1ln1ln 12313ln 2ln 3...ln(1)ln 1231ln 4323n n n n n n n ⎛⎫++++>-+-++-+-+ ⎭+⎪+⎝= ,即1233ln 2341n n n ⎛⎫++++>- ⎪+⎝⎭ .【点睛】本题解题关键在于观察证明式1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭ ,构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,以证明13ln 13x x >+,将1n x n =+代入求和即突破难点.用导数解决与正整数n 有关的不等式证明问题,属于难点,突破点就在于观察构造合适的函数,通过导数证明不等式,再将关于n 的式子代入即可.7.已知函数()()21ln ,2f x ax x x b a b R =-⋅+∈,()()g x f x '=.(1)判断函数()y g x =的单调性;(2)若(]()0, 2.718x e e ∈≈,判断是否存在实数a ,使函数()g x 的最小值为2?若存在求出a 的值;若不存在,请说明理由;【答案】(1)答案见解析;(2)存在,2a e =.【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性;(2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果;【详解】(1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故()11ax g x a x x-'=-=.当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数,当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫ ⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数.(2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3.当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去.当1a e >时,10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--= ⎪⎝⎭,所以ln 2a =.解得2a e =,故2a e =时,使函数()g x 的最小值为2.【点睛】利用导数研究函数()f x 的单调性和最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,讨论不等式何时()0f x '>和()0f x '<③对应得到增区间和减区间及极值点,进而比较端点和极值点的值确定指定区间的最值即可.8.已知函数()()()ln 1f x x ax a =+-∈R .(1)讨论函数()f x 的单调性.(2)若()()2112g x x x a f x =--+-,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,求证:()()12152ln 28x g x g -≥-.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)先求得()f x 的定义域和导函数()'fx ,对a 分成0a ≤和0a >两种情况进行分类讨论,由此求得()f x 的单调区间.(2)求得()g x 的表达式,求得()'g x ,利用根与系数关系得到12,x x 的关系式以及1x 的取值范围,将()()12g x g x -表示为只含1x 的形式,利用构造函数法求得()()12g x g x -的最小值,从而证得不等式成立.【详解】(1)由题意得,函数()f x 的定义域为(1,)-+∞,()11f x a x '=-+.当0a ≤时,()101f x a x '=->+,∴函数()f x 在(1,)-+∞上单调递增.当0a >时,令()0f x '=,得11x a=-+.若11,1x a ⎛⎫∈--+ ⎪⎝⎭,则()0f x '>,此时函数()f x 单调递增;若11,x a ⎛⎫∈-++∞ ⎪⎝⎭,则()0f x '<,此时函数()f x 单调递减.综上,当0a ≤时,函数()f x 在(1,)-+∞上单调递增;当0a >时,函数()f x 在11,1a ⎛⎫--+ ⎪⎝⎭上单调递增,在11,a ⎛⎫-++∞ ⎪⎝⎭上单调递减.(2)()()21ln 12g x x x a x =+-+Q ,0x >,()()11g x x a x '∴=+-+()211x a x x-++=.由()0g x '=得()2110x a x -++=,()240321a a ∆=+⇒-≥>121x x a ∴+=+,121=x x ,211x x ∴=.32a ≥Q ,512a +≥,12x x <111115210x x x x ⎧+≥⎪⎪∴⎨⎪<<⎪⎩,解得1102x <≤.()()12x g x g ∴-()()()221121221ln12x x x a x x x =+--+-21121112ln 2x x x⎛⎫=-- ⎪⎝⎭.设()221112ln 022x h x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()()22331210x h x x x x x-'=--=-<,∴函数()h x 在10,2⎛⎤⎥⎝⎦上单调递减.∴当112x =时,()min 1152ln 228h x h ⎛⎫==- ⎪⎝⎭.32a ∴≥时,()()12152ln 28x g x g -≥-成立.【点睛】求解含有参数的函数的单调性题,求导后要根据导函数的形式进行分类讨论.9.已知函数()2xf x e ae x =-.(1)讨论()f x 的单调区间;(2)当0a <时,证明:()2ln f x e x >.【答案】(1)当0a ≤时,()f x 的增区间为(),-∞+∞,无减区间;当0a >时,()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞,(2)证明见解析【分析】(1)先求出函数的定义域,再求导数,分0a ≤和0a >,分别由导数大于零和小于零,可求得函数的单调区间;(2)要证明22ln x ae x e x e ->,只要证2ln 0x e e x ->,构造函数()2ln xg x e e x =-,然后利用导数求出此函数的最小值即可,或要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->,构造函数()()20x g x ae x x e =->,然后用导数求其最小值,构造函数()()2ln 0x h x e x x=>,然后利用导数求其最大值,或要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->,构造函数()()()222222ln ln x x g x e e x e x e x e e e e x =-=-++--,令()()220x h x e e x e x =-+>,()222ln m x e x e e x =--,再利用导数求其最小值即可【详解】(1)解:()f x 的定义域为(),-∞+∞,()2x f x e ae '=-.当0a ≤时,()0f x ¢>,则()f x 的增区间为(),-∞+∞,无减区间.当0a >时,由()0f x ¢=,得2ln x a =+.当(),2ln x a ∈-∞+时,()0f x ¢<;当()2ln ,x a ∈++∞时,()0f x ¢>,所以()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞.(2)证明:法一:要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->.设()2ln xg x e e x =-,则()2xg x e e x '=-,()220xg x e xe ''=+>,所以()g x '在()0,+¥上是增函数.又()210g e e '=-<,()2222022e g ee '=-=>,所以存在()01,2x ∈,使得()02000x g e x e x '=-=,即020x e e x =,00ln 2x x =-.所以当()00,x x ∈时,()0g x ¢<;当()0,x x ∈+∞时,()0g x ¢>,因此()g x 在()00,x 上是减函数,在()0,x +∞上是增函数,所以()g x 有极小值,且极小值为()()022222222000000ln 22220x g x e e x e x e x e e e x e x e =-=--=+->-=.因此()0gx >,即2ln 0x e x -->.综上,当0a <时,()2ln f x e x >.法二:要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->.设()()20x g x ae x x e =->,则()()21x x e g x x-'=.当01x <<时,()0g x ¢<;当1x >时,()0g x ¢>,所以()g x 在()0,1上是减函数,在()1,+¥上是增函数,所以1x =是()g x 的极小值点,也是最小值点,且()()2min 1g x g e ae ==-.令()()2ln 0xh x e x x =>,则()()221ln x h x xe -'=.当0x e <<时,()0h x '>;当e x >时,()0h x '<,所以()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以x e =是()h x 的极大值点,也是最大值点,且()()max h x h e e ==,所以当0a <时,()()2g x e ae e h x ≥->≥,即22ln x e x xe x ae ->.综上,当0a <时,()2ln f x e x >.法三:要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->.设()()()222222ln ln xxg x e e x e x ex ee e e x =-=-++--,令()()220xh x e e x ex =-+>,则()2x h x e e '=-,当02x <<时,()0h x '<;当2x >时,()0h x '>,所以()h x 在()0,2上是减函数,在()2,+¥上是增函数,所以2x =是()h x 的极小值点,也是()h x 的最小值点,即()()min 20h x h ==.设()222ln m x e x e e x =--,则()()2221x e m x e x xe-'=-=.当01x <<时,()0m x '<;当2x >时,()0m x '>,所以()m x 在()0,1上是减函数,在()1,+¥上是增函数,所以1x =是()m x 的极小值点,也是()m x 的最小值点,即()()min 10m x m ==.综上,()0h x ≥(当且仅当2x =时取等号),()0m x ≥(当且仅当1x =时取等号),所以()()()0g x h x m x =+>,故当0a <时,()2ln f x e x >.【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,解题的关键是将不等式等价转化,然后构造函数,利用导数求函数的最值,考查数学转化思想,属于较难题10.已知函数2()ln f x x ax x =-+.(1)试讨论函数()f x 的单调性;(2)对任意0a <,满足2()ln f x x ax x =-+的图象与直线y kx =恒有且仅有一个公共点,求k 的取值范围.【答案】(1)当0a ≤时,在(0,)+∞单调递增;当0a >时,在10,4a ⎛-+ ⎝⎭单调递增,在14a ⎛⎫-+∞ ⎪ ⎪⎝⎭单调递减;(2)1k ≤或3221k e -+≥.【分析】(1)首先求函数的导数2121'()21(0)ax x f x ax x x x-++=-+=>,分0a ≤和0a >两千情况讨论导数的正负,确定函数的单调性;(2)由方程()f x kx =,转化为2ln x ax xk x -+=,构造函数()2ln x ax x h x x-+=,利用二阶导数判断函数的单调性,并分情况讨论()h x '最小值的正负,并结合零点存在性定理,确定函数的性质,根据2ln x ax xk x-+=有唯一解,确定k 的取值范围.【详解】(1)2121'()21(0)ax x f x ax x x x-++=-+=>当0a ≤时,恒有'()0f x >,所以()f x 在(0,)+∞单调递增;当0a >时,令2210ax x -++=,则180a ∆=+>,则10x =,211804x a-=<(舍去),当1(0,)4x a -+∈时,'()0f x >,()f x 在1(0,)4a-+单调递增;当)x ∈+∞时,'()0f x <,()f x在)+∞单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞单调递增;当0a >时,()f x 在118(0,)4a -单调递增,()f x 在118()4a-+∞单调递减.(2)原命题等价于对任意0a <,2ln x ax x kx -+=有且仅有一解,即2ln x ax xk x-+=;令ln ()1x h x ax x =-+则21ln '()x h x a x -=-,332(ln )2''()x h x x -=,令''()0h x =得32x e =所以)'(h x 在32(0,)e 上递减,在32(,)e +∞上递增,3232min 331ln 1'()'()2e h x h e a ae e -==-=--当312a e ≤-时,'()0h x ≥,所以()h x 在R 上单调递增,又当0x →时,ln ,0xax x→-∞-→,所以()h x →-∞;当x →+∞时,ln ,xax x→+∞-→+∞,所以()h x →+∞.所以()h x 在R 上必存在唯一零点,此时k ∈R ;当3102a e-<<时,32min '()'()0h x h e =<,同时又当0x →时,21ln ,x a x-→+∞-→+∞,所以'()h x →+∞;当x →+∞时,21ln 0,x a x-→-→+∞,所以'()h x →+∞.所以方程'()0h x =存在两根12,x x ,即2211221ln 1ln 0x ax x ax --=--=且332212(0,),(,)x e x e ∈∈+∞,所以()h x 在1(0,)x 上单调递增,12(,)x x 上单调递减,在2(,)x +∞上单调递增,所以()h x 的极大值为1()h x ,极小值为2()h x 要使有方程2ln x ax xk x-+=唯一解,必有1()k h x >或2()k h x <,又2222222222ln ln 1ln 2ln 1()111x x x x h x ax x x x x --=-+=-+=+,又322(,)x e ∈+∞,则2ln 1()1x x x ϕ-=+,232ln '()0x x xϕ-=<,所以()ϕx 在32(,)e +∞递减,且x →+∞时,2ln 1()11x x xϕ-=+→,所以1k ≤;同理1112ln 1()1x h x x -=+,321(0,)x e ∈,2ln 1()1x x x ϕ-=+在32(0,)e 递增,3322322()()121x e eeϕϕ-<=+=+,所以3221k e -+≥.综上可得,1k ≤或3221k e -+≥.【点睛】思路点睛:本题是一道利用导数研究函数性质,零点的综合应用题型,属于难题,一般利用导数研究函数零点或方程的实数根时,需根据题意构造函数()f x ,利用导数研究函数在该区间上的单调性,极值,端点值等性质,以及零点存在性定理等研究函数的零点.11.设函数223223()3,()33,22a a f x x x ax g x ax x a ⎛⎫=-+=-++-∈ ⎪⎝⎭R .(1)求函数()f x 的单调区间;(2)若函数[]()23()()()0,222a x f x g x x x ϕ=--∈在0x =处取得最大值,求a 的取值范围.【答案】(1)当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x 的单调递增区间为93,13⎛-∞- ⎝⎭和9313⎛⎫++∞ ⎪ ⎪⎝⎭,单调递减区间为1⎛-+ ⎝⎭;(2)6,5⎛⎤-∞ ⎥⎝⎦.【分析】(1)先对()f x 求导,对导函数分3a ≥和3a <两种情况讨论即可.(2)因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,利用分离参数法转化为不等式恒成立问题,求函数的最值即可.【详解】解:(1)()22()36313f x x x a x a '=-+=-+-,当3a ≥时,()0f x '≥,所以()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,令()0f x '>,得13x <-或13x >+,所以()f x 的单调递增区间为93,13⎛-∞- ⎝⎭和9313⎛⎫++∞ ⎪ ⎪⎝⎭令()0f x '<,得1133x -<<+,所以()f x 的单调递减区间为9393133⎛-+ ⎝⎭.综上,当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x 的单调递增区间为,1⎛-∞- ⎝⎭和1⎛⎫+∞ ⎪ ⎪⎝⎭,单调递减区间为9393133⎛⎫-+ ⎪ ⎪⎝⎭.(2)由题意得[]322133()(1)3,0,2222x ax a x x a x ϕ=+--+∈.因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,即[]3213(1)30,0,222ax a x x x +--∈,当0x =时,显然成立.当(]0,2x ∈时,得()21313022ax a x +--≤,即()()()()()22323232322221+2x x ax xx x x x ++==++-+-+--.令(]22,4t x =+∈,则2()1,(2,4]th t t t =--∈,()2210h t t '=+>恒成立,所以2()1,(2,4]t h t t t =--∈是增函数,5()0,2h t ⎛⎤∈ ⎥⎝⎦,所以3625(2)12x x +--+,即65a ,所以a 的取值范围为6,5⎛⎤-∞ ⎥⎝⎦.【点睛】思路点睛:对含参数的函数求单调区间,根据导函数分类讨论是解决这类题的一般方法;已知函数的最大值求参数的取值范围,往往转化为不等式恒成立问题,如果能分离参数的话,分离参数是解决这类题的常用方法,然后再求函数的最值即可.12.已知函数()()()21ln 1f x x a x x =-+-+(0a >).(1)讨论函数()f x 的单调性;(2)若关于x 的不等式()1ln x xf x x x-'≥在()1+∞,上恒成立,求实数a 的取值范围.【答案】(1)答案不唯一,见解析;(2)02a <≤.【分析】(1)求出函数的导数,通过讨论a 的范围,判断函数的单调性即可;(2原不等式化为:ln 2x a x x ≤-在()1+∞,上恒成立,设()ln 2xh x x x=-,()1,x ∈+∞,求出函数的导数,再令()221ln g x x x =-+,根据函数的单调性求出a 的范围即可.【详解】(1)()()()1121121x f x x a x a x x -⎛⎫⎛⎫'=-+-=-+⎪ ⎪⎝⎭⎝⎭()()()()12121a x x a x x xx---=--=,()0,x ∈+∞,令()0f x '=,则2ax =或1x =,当02a <<时,函数()f x 在区间0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在区间,12a ⎛⎫⎪⎝⎭上单调递减,当2a =时,函数()f x 在()0+∞,上单调递增,当2a >时,函数()f x 在区间()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间1,2a ⎛⎫⎪⎝⎭上单调递减;(2)原不等式化为:ln 2xa x x≤-在()1+∞,上恒成立,设()ln 2xh x x x=-,()1,x ∈+∞,()2221ln 21ln 2x x x h x x x--+'=-=,令()221ln g x x x =-+,则()140g x x x '=+>,所以()g x 在()1+∞,上单调递增,()()110g x g >=>,所以()0h x '>,则函数()h x 在()1+∞,上单调递增,且()12h =,02a ∴<≤.【点睛】方法点睛:本题考查利用导数研究单调性(含参),考查利用导数研究恒成立问题,解决第(2)问的关键是将原不等式转化为ln 2xa x x≤-在()1+∞,上恒成立,进而利用导数研究函数的单调性,从而得解,考查逻辑思维能力和运算求解能力,考查转化和划归思想,属于常考题.13.已知函数()ln 2ag x x x x=++.(1)讨论()g x 的单调性;(2)当10a e <<时,函数()()222a f x xg x x x ⎛⎫=-+- ⎪⎝⎭在其定义域内有两个不同的极值点,记作1x 、2x ,且11x x <,若m 1≥,证明:112m mx x e +⋅>.【答案】(1)答案见解析;(2)证明见解析.【分析】(1)求出函数()g x 的定义域,求得()222x x a g x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()g x 的单调递增区间和递减区间;(2)利用分析法得出所证不等式等价于()()()121212121ln0m x x x x x x x mx +-<>>+,令()120,1x t x =∈,构造函数()()()11ln m t h t t t m+-=-+,其中()0,1t ∈,利用导数证明出()0h t <对任意的()0,1t ∈恒成立,由此可证得原不等式成立.【详解】(1)函数()ln 2ag x x x x=++的定义域为()0,∞+,()()222122a x x ag x a R x x x+-'=+-=∈,方程220x x a +-=的判别式18a ∆=+.①当18a ≤-时,0∆≤,()0g x '≥,()g x 在()0,∞+为增函数;②当18a >-时,0∆>,方程220x x a +-=的两根为114x -'=,214x -'=,(i )当108a -<≤时,120x x ''<≤,对任意的0x >,()0g x '>,()g x 在()0,∞+为增函数;(ii )当0a >时,120x x ''<<,令()0g x '<,可得20x x '<<,令()0g x '>,可得2x x '>.所以,()g x在1,4⎛⎫+∞⎝⎪⎪⎭为增函数,在10,4⎛⎤- ⎥ ⎝⎦为减函数.综上所述:当0a ≤时,()g x 的增区间为()0,∞+,无减区间;当0a >时,()g x的增区间为1,4⎛⎫+∞- ⎝⎪⎪⎭,减区间10,4⎛⎤- ⎥ ⎝⎦;(2)证明:()()2ln 2a f x x x x x a a R =--+∈ ,所以()ln f x x ax '=-,因为()f x 有两极值点1x 、2x ,所以11ln x ax =,22ln x ax =,欲证112mm x x e +⋅>等价于要证:()112ln ln m m x x e +⋅>,即121ln ln m x m x +<+,所以()1212121ln ln m x m x ax max a x mx +<+=+=+,因为m 1≥,120x x <<,所以原不等式等价于要证明121ma x mx +>+.又11ln x ax =,22ln x ax =,作差得()1122lnx a x x x =-,1212ln x x a x x ∴=-,所以原不等式等价于要证明()()112211212212ln11ln x m x x x x m x x x mx x x mx +-+>⇔<-++,令12x t x =,()0,1t ∈,上式等价于要证()()11ln m t t t m+-<+,()0,1t ∈,令()()()11ln m t h t t t m+-=-+,所以()()()()221t t m h t t t m --'=+,当m 1≥时,20t m -<,则()0h t '>,所以()h t 在()0,1上单调递增,因此()()10h t h <=,()()11ln m t t t m+-∴<+在()0,1t ∈上恒成立,所以原不等式成立.【点睛】利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.14.已知实数0a >,函数()22ln f x a x x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x 、()()22,Q x f x (12x x <)处的切线分别为1l 、2l ,且1l 、2l 在y 轴上的截距分别为1b 、2b .若12//l l ,求12b b -的取值范围.【答案】(1)答案见解析;(2)6ln 4,05⎛⎫- ⎪⎝⎭.【分析】(1)对函数求导,按照110a ≥、1010a<<分类,求得()0f x '<、()0f x '>的解集即可得解;(2)由极值点的性质可得1a =,由导数的几何意义可得1b 、2b 及()12122x x x x =+,转化条件为1211212221ln 1x x x b b x x x ⎛⎫- ⎪⎝⎭-=++,构造新函数结合导数即可得解.【详解】(1)由题意,()()()()222212010ax ax a f x a x x x x+-'=-++=<<,0a > ,010x <<,∴20ax +>,①当110a ≥,即10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x ∴在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增.综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减;当1,10a ⎛⎫∈+∞⎪⎝⎭时,()f x 在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增;(2)∵1x =是()f x 的极值点,∴()10f '=,即()()210a a +-=,解得1a =或2a =-(舍),此时()2ln f x x x x =++,()2211f x x x'=-++,1l ∴方程为()1112111221ln 1y x x x x x x x ⎛⎫⎛⎫-++=-++-⎪ ⎪⎝⎭⎝⎭,令0x =,得1114ln 1b x x =+-,同理可得2224ln 1b x x =+-,12//l l ,221122212111x x x x ∴-++=-++,整理得:()12122x x x x =+,12122x x x ∴=-,又12010x x <<<,则1112102x x x <<-,解得1542x <<,()1212211111211221222221244ln ln ln 1x x x x x x x x xb b x x x x x x x x x ⎛⎫- ⎪--⎝⎭∴-=+=+=+++,令12x t x =,则1111211,1224x x t x x -⎛⎫=⋅=-∈ ⎪⎝⎭,设()()211ln ,,114t g t t t t -⎛⎫=+∈ ⎪+⎝⎭,则()()()()222141011t g t t t t t -'=-+=>++,()g t ∴在1,14⎛⎫⎪⎝⎭上单调递增,又()10g =,16ln 445g ⎛⎫=-⎪⎝⎭,()6ln 4,05g t ⎛⎫∴∈- ⎪⎝⎭,即12b b -的取值范围为6ln 4,05⎛⎫- ⎪⎝⎭.【点睛】关键点点点睛:解决本题的关键是利用导数的几何意义转化条件,再构造新函数,结合导数即可得解.15.已知函数32()23(1)6()f x x m x mx x R =+++∈.(1)讨论函数()f x 的单调性;(2)若(1)5f =,函数2()()(ln 1)0f x g x a x x=+-≤在(1,)+∞上恒成立,求证:2a e <.【答案】(1)答案不唯一,见解析(2)证明见解析【分析】(1)求导后分解因式,分类讨论即可得到函数的单调性;(2)由题意求出0m =,转化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,利用导数求出23()(1)ln 1x h x x x +=>+的最小值,即可求解.【详解】(1)()()()'22661661fx x m x m x m x m ⎡⎤=+++=+++⎣⎦6(1)()x x m =++若1m =时,()0f x '≥,()f x 在R 上单调递增;若1m >时,1m -<-,当x m <-或1x >-时,()0f x '>,()f x 为增函数,当1m x -<<-时,()0f x '<,()f x 为减函数,若1m <时,1m ->-,当1x <-或x m >-时,()0f x '>,()f x 为增函数,当1x m -<<-时,()0f x '<,()f x 为减函数.综上,1m =时,()f x 在R 上单调递增;当1m >时,()f x 在(,)-∞-m 和(1,)-+∞上单调递增,在(,1)m --上单调递减;当1m <时,()f x 在(,1)-∞-和(,)m -+∞上单调递增,在(1,)m --上单调递减.(2)由(1)23(1)65f m m =+++=,解得0m =,所以32()23f x x x =+,由(1,)x ∈+∞时,ln 10x +>,可知()(ln 1)230g x a x x =+--≤在(1,)+∞上恒成立可化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,设23()(1)ln 1x h x x x +=>+,则22132(ln 1)(23)2ln ()(ln 1)(ln 1)x x x x x h x x x +-+⨯-'==++,设3()2ln (1)x x x x ϕ=->,则223()0x x xϕ'=+>,所以()ϕx 在(1,)+∞上单调递增,又3ln163(2)2ln 2022ϕ-=-=<,3()20e eϕ=->所以方程()0h x '=有且只有一个实根0x ,且00032,2ln .x e x x <<=所以在0(1,)x 上,()0h x '<,()h x 单调递减,在0(,)x +∞上,()0,()h x h x '>单调递增,所以函数()h x 的最小值为0000002323()223ln 112x x h x x e x x ++===<++,从而022.a x e ≤<【点睛】关键点点睛:解答本题的难点在于得到232ln ()(ln 1)x x h x x -'=+后,不能求出()h x '的零点,需要根据()h x '的单调性及零点存在定理得到0x 的大致范围,再利用0x 的范围及0032ln x x =证明不等式.16.设()1,,54m h x x x x ⎡⎤=+∈⎢⎥⎣⎦,其中m 是不等于零的常数,(1)写出()4h x 的定义域;(2)求()h x 的单调递增区间;【答案】(1)15,164⎡⎤⎢⎥⎣⎦;(2)答案见解析.【分析】(1)由已知得出1454x ⎡⎤∈⎢⎥⎣⎦,,解出x 可得()4h x 的定义域;(2)对函数()h x 求导,按0m <,1016m <≤,12516m <<和25m ≥四种情况,分别求出函数的单调递增区间即可.【详解】(1)∵1454x ⎡⎤∈⎢⎥⎣⎦,,∴15164x ⎡⎤∈⎢⎥⎣⎦,∴()4h x 的定义域为15164⎡⎤⎢⎥⎣⎦,(2)()21m h x x '=-0m <时,()0h x '>恒成立,()h x 在154⎡⎤⎢⎥⎣⎦,递增;0m >时,令()0h x '>,解得x >或x <,即函数的单调增区间为(,-∞,)+∞14≤即1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦,递增当154<<即12516m <<时,()h x 在⎤⎦递增5≥即25m ≥时,()h x 在154⎡⎤⎢⎥⎣⎦,无递增区间综上可得:0m <时,()h x 在154⎡⎤⎢⎥⎣⎦,递增;1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦递增;12516m <<时,()h x 在⎤⎦递增【点睛】关键点点睛:本题考查函数的定义域,考查导数研究函数的单调性,解决本题的关键是令()0h x '>求出函数的单调增区间,讨论定义域的区间端点和单调区间的关系,考查了学生分类讨论思想和计算能力,属于中档题.17.已知1,12k ⎛⎤∈⎥⎝⎦,函数2()(1)x f x x e kx =--.( 2.71828e = 为自然对数的底数).(1)求函数()f x 的单调区间;(2)求函数()f x 在[0,]k 上的最大值.【答案】(1)单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k ;(2)3(1)k k e k --.【分析】(1)由题得()(2)x f x x e k '=-,再利用导数求函数的单调区间得解;(2)证明0(2)ln k k <<,列出表格得出单调区间,比较区间端点与极值即可得到最大值.【详解】(1)由题得()(1)2(2)x x x f x e x e kx x e k '=+--=-,令0()0,20x x f x e k >⎧'>∴⎨->⎩或020x x e k <⎧⎨-<⎩,因为1,12k ⎛⎤∈⎥⎝⎦,所以122k <≤,所以不等式组的解为ln 2x k >或0x <,所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,;令0()0,20x x f x e k >⎧'<∴⎨-<⎩或020x x e k <⎧⎨->⎩,解之得0ln 2x k <<,所以函数()f x 的单调减区间为(0,ln 2)k ;所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k .(2)令()(2)k k ln k ϕ=-,1(2k ∈,1],11()10k k k k ϕ-'=-=所以()k ϕ在1(2,1]上是减函数,ϕ∴(1)1()()2k ϕϕ<,112()2ln k k ϕ∴-<<.即0(2)ln k k<<所以()'f x ,()f x 随x 的变化情况如下表:x(0,(2))ln k (2)ln k ((2)ln k ,)k ()'f x -0+()f x极小值(0)1f =-,()(0)f k f -3(1)(0)k k e k f =---3(1)1k k e k =--+3(1)(1)k k e k =---2(1)(1)(1)k k e k k k =---++2(1)[(1)]k k e k k =--++。
观察、猜想和证明专题专题练习-提高

观察、猜想和证明专题一、解答题1.阅读下面的材料:如果函数()y f x =满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若12x x <,都有12()()f x f x <,则称()f x 是增函数; (2)若12x x <,都有12()()f x f x >,则称()f x 是减函数. 例题:证明函数6()(0)f x x x=>是减函数.证明:设120x x <<,()()()21211212121266666x x x x f x f x x x x x x x ---=-==. ∵120x x <<,∵210x x ->,120x x >.∵()211260x x x x ->.即12())0(f x f x ->. ∵12()()f x f x >.∵函数6()(0)f x x x=>是减函数.根据以上材料,解答下面的问题: 已知函数21()(0)f x x x x =+<, 21(1)(1)0(1)f -=+-=-,217(2)(2)(2)4f -=+-=-- (1)计算:()3f -= ,()4f -= ; (2)猜想:函数21()(0)f x x x x =+<是 函数(填“增”或“减”); (3)请仿照例题证明你的猜想.如果函数()y f x =满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若12x x <,都有()()12f x f x <,则称()f x 是增函数; (2)若12x x <,都有()()12f x f x >,则称()f x 是减函数. 例题:证明函数()6=f x x是减函数. 证明:设120x x <<,()()()21211212121266666x x x x f x f x x x x x x x ---=-==. ∵120x x <<,∵210x x ->,120x x >.∵()211260x x x x ->.即()()120f x f x ->. ∵()()12f x f x >.∵函数()6f x x-(0x >)是减函数. 根据以上材料,解答下面的问题: 已知函数()1f x x x=-(0x <), (1)计算:()5f -=_______,()6f -=_______; (2)猜想:函数()1f x x x=-(0x <)是_______函数(填“增”或“减”); (3)请仿照例题证明你的猜想.小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程2x 1=-时,突发奇想:2x 1=-在实数范围内无解,如果存在一个数i ,使2i 1=-,那么当2x 1=-时,有x i =±,从而x i =±是方程2x 1=-的两个根. 据此可知:()1i 可以运算,例如:32i i i 1i i =⋅=-⨯=-,则4i =____,2011i =____,2012i =____;() 2方程2x 2x 20-+=的两根为________(根用i 表示).4.阅读材料:求23410122222++++++的值.解:设23410122222S =++++++∵,将等式两边同时乘2得:23410112222222S =++++++∵,∵-∵得11221S S -=-,即1111212121S -==--,请你仿照此法计算: (1)求2342019133333++++++的值;(2)观察、归纳上述过程并直接写出下列式子的结果2345n a aq aq aq aq aq aq +++++++=________,并证明.5.阅读材料:已知方程p 2﹣p ﹣1=0,1﹣q ﹣q 2=0且pq ≠1,求1pq q+的值. 解:由p 2﹣p ﹣1=0,及1﹣q ﹣q 2=0可知p ≠0, 又∵pq ≠1, ∵p ≠1q.∵1﹣q ﹣q 2=0可变形为211()-q q ﹣1=0,根据p 2﹣p ﹣1=0和211()-q q ﹣1=0的特征,∵p 、1q 是方程x 2﹣x ﹣1=0的两个不相等的实数根,则p +1q,即11pq q +=. 根据阅读材料所提供的方法,完成下面的解答. 已知:2m 2﹣5m ﹣1=0,21520n n+-=,且m ≠n ,求: (1)mn 的值; (2)2211m n+.6.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log aN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log aM+log aN(a>0,a≠1,M>0,N>0);理由如下:log aM=m,log aN=n,则M=am,N=an ∴M•N=am•an=am+n,由对数的定义得m+n=log a(M•N)又∵m+n=log aM+log aN∴log a(M•N)=log aM+log aN解决以下问题:(1)将指数式53=125转化为对数式;(2)log24=,log381=,log464=.(直接写出结果)(3)证明:证明log a MN=log aM﹣log aN(a>0,a≠1,M>0,N>0).(写出证明过程)(4)拓展运用:计算计算log34+log312﹣log316=.(直接写出结果)7.已知平面直角坐标系中,点P (00,x y )和直线Ax +By +C =0(其中A ,B 不全为0),则点P 到直线Ax +By +C=0的距离d 可用公式d =来计算.例如:求点P (1,2)到直线y =2x +1的距离,因为直线y =2x +1可化为2x -y +1=0,其中A =2,B =-1,C=1,所以点P (1,2)到直线y =2x +1的距离为:d ===根据以上材料,解答下列问题:(1)求点M (0,3)到直线9y =+的距离;(2)在(1)的条件下,∵M 的半径r = 4,判断∵M 与直线9y =+的位置关系,若相交,设其弦长为n ,求n 的值;若不相交,说明理由.参考答案:1.(1)269-,6316-;(2)增;(3)函数21()(0)f x x x x =+<是增函数,证明猜想见解析. 【分析】()1根据题目中函数解析式代入自变量值可以解答本题;()2由()1结论可得;()3根据题目中例子的证明方法可以证明()1中的猜想成立.【详解】解:(1)∵21()(0)f x x x x =+<, ∵2126(3)3(3)9f -=-=--,2163(4)4(4)16f -=-=-- 故答案为269-,6316- (2)∵43-<-,()()43f f ->- ∵函数21()(0)f x x x x =+<是增函数 故答案为增 (3)设120x x <<, ∵()()1212221211f x f x x x x x -=+--()121222121x x x x x x ⎛⎫+=-- ⎪⎝⎭∵120x x <<,∵120x x -<,120x x +<, ∵12())0(f x f x -< ∵12()()f x f x < ∵函数21()(0)f x x x x=+<是增函数. 【点睛】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答. 2.(1)245-,356-;(2)增;(3)证明见解析【分析】(1)根据题目中的函数解析式可以解答本题; (2)由(1)答案可得结论;(3)根据题目中例子的证明方法可以证明(2)中的猜想成立.【详解】(1)()()11245-5-=-5+=-555f -=- ()()11356-6-=-6+=-666f -=- (2)增函数(3)()()()12121212121211x x f x f x x x x x x x x x --=--+=-+=()121211x x x x ⎛⎫-+ ⎪⎝⎭ ∵120x x <<,∵120x x -<,120x x >.∵()121211x x x x ⎛⎫-+ ⎪⎝⎭<0.即()()120f x f x -<.∵()()12f x f x < ∵函数()1f x x x=-(0x <)是增函数. 【点睛】本题考查函数的概念,解答本题的关键是明确题意,找出所求问题的条件,利用函数的性质解答. 3.(1)1;-i ; 1(2)1+i 和1-i【分析】(1)原式各项根据阅读材料中的方法计算即可得到结果; (2)一元二次方程解法--配方法,结合阅读材料中的方法求出解即可. 【详解】解:(1)由题意可得i 4=1,i 2012=1,i 2013=i ; 故答案为1;1;i ;(2)方程整理得:x 2-2x=-2, 配方得:x 2-2x+1=-1,即(x -1)2=-1, 开方得:x -1=±i , 解得:x 1=1+i ,x 2=1-i . 故答案为x 1=1+i ,x 2=1-i4.(1)2020312-;(2)()111n a q q +--,理由见解析;【分析】(1)仿造题中的例子方法进行求解即可;(2)与(1)所用方法大同小异,设234n S a aq aq aq aq aq =++++++,然后将等式两边同时乘q 得:23451n n qS aq aq aq aq aq aq aq +=+++++++,之后两式相减进一步求解即可.【详解】(1)设2342019133333S =++++++∵,将等式两边同时乘3得:234520203333333S =++++++∵,∵-∵得2020331S S -=-,即2020231S =-. 即2020312S -=;∵20202342019311333332-++++++=; (2)()111n a q q +--.证明:设234n S a aq aq aq aq aq =++++++∵,将等式两边同时乘q 得:23451n n qS aq aq aq aq aq aq aq +=+++++++∵,∵-∵得1n qS S aq a +-=-,即()()111n q S a q +-=-.∵()111n a q S q +-=-.即()1234511n na q a aq aq aq aq aq aq q +-+++++++=-.【点睛】本题主要考查了探讨规律方法的化简求值,熟练掌握相关方法是解题关键.错因分析:第1问,对材料中的方法理解不透,不会灵活运用;第2问,计算过程中,运算错误. 5.(1)12-;29.【分析】(1)由题意可知:可以将方程22510m m --=化简为21520m m+-=的形式,根据根与系数的关系直接得:11m n的值; (2)将2211m n +变形为2112m n mn ⎛⎫=+- ⎪⎝⎭求解.【详解】解:由22m 5m 10--=知m≠0, ∵21520m m+-=, ∵21520n n+-=,m ≠n , ∵11m n≠, ∵1m 和1n是方程2520x x +-=的两个根,(1)由1m和1n是方程2520x x+-=的两个根得112m n⋅=-,∵12 mn=-;经检验:12mn=-是原方程的根,且符合题意.(2)由1m和1n是方程2520x x+-=的两个根得115m n+=-,112m n⋅=-,∵2221111225429 m n m n mn⎛⎫+=+-=+=⎪⎝⎭.【点睛】本题考查一元二次方程根与系数关系,代数式的值,乘法公式,掌握一元二次方程根与系数关系与乘法公式恒等变形是解题关键.6.(1)3=log5125;(2)2,4,3;(3)见解析;(4)1.【分析】(1)根据题意可以把指数式53=125写成对数式;(2)运用对数的定义进行解答便可;(3)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(4)根据公式:log a(M•N)=log aM+log aN以及log a MN=log aM﹣log aN的逆运用求解即可得到答案;【详解】解:(1)∵一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log aN.∵3=log5125,故答案为:3=log5125;(2)∵22=4,34=81,43=64,∵log24=2,log381=4,log464=3,故答案为:2;4;3;(3)设log aM=m,log aN=n,则M=am,N=an,∵MN=mnaa=am﹣n,∵由对数的定义得m﹣n=log a MN,又∵m﹣n=log aM﹣log aN,∵log a MN=log aM﹣log aN;(4)根据公式:log a(M•N)=log aM+log aN以及log a MN=log aM﹣log aN得到:答案第5页,共5页 log 34+log 312﹣log 316=log 3(4×12÷16)=log 33=1.故答案为:1.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系7.(1)3;(2)直线与圆相交,n =【分析】(1)直接利用公式计算即可;(2)根据半径和点到直线的距离判断直线与圆的位置关系,再根据垂径定理求弦长.【详解】解:(1)∵y+9-y +9=0,则其中AB =-1,C =9,由公式可得3d ==∵点M 到直线y +9的距离为3,(2)由(1)可知:圆心到直线的距离d =3,圆的半径r =4,∵d <r∵直线与圆相交,则弦长2n ==,【点睛】本题考查了阅读理解和圆与直线的位置关系,垂径定理,解题关键是熟练运用公式求解和熟练运用圆的相关性质进行推理和计算.。
常考二次函数证明题

二次函数题库及答案二次函数证明题(难度一般)1.如图,已知抛物线y=﹣x 2+bx+c 与x 轴交于点A (﹣1,0)和点B(3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.2.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,羽毛球飞行的高度y (m )与水平距离x (m )之间满足函数表达式y=a (x﹣4)2+h ,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当a=﹣124时,①求h 的值;②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值.3.如图,在平面直角坐标系中,二次函数的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点.(1)求这个二次函数以及直线BC 的解析式;(2)直接写出点A 的坐标;(3)当x 为何值时,一次函数的值大于二次函数的值.4.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++的对称轴是直线3x =,且抛物线与直线AB 交于A 、B 两点,其中A(1,3),B (6,n ). (1)求抛物线的表达式和点B 的坐标;(2)设抛物线与y 轴交于点C ,在抛物线上是否存在一点M ,满足2BCM AC S S ∆∆=, 若存在,请求出点M 的坐标;若不存在,请说明理由.5.如图,已知二次函数y1=-x2+bx+c的图象过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连结BA,BC,求△ABC的面积;(3)求点B和点C所在直线的解析式y2,并根据图像求出当x为何值时,y1≥y2.6.(本题满分10分)如图,抛物线与x轴相交于A、B 两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.7.如图,已知二次函数的图象与x轴交于点 A、点B,交 y 轴于点 C.(1)求直线 BC的函数表达式;(2)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)在(2)的条件下,在轴上是否存在一点M使△CPM的周长最小,若存直接写出周长的最小值;若不存在,请说明理由.8.抛物线y=x2+bx+c经过点A、B,已知A(-1,0),B(3,0).(1)求抛物线的解析式;(2)若抛物线的顶点为C,直线AC交y轴于点D,求ΔBCD的面积。
高三函数难题22道20140921

高一函数难题22道20140921高一函数难题22道20140921一.解答题(共22小题,满分264分,每小题12分)1.(12分)(2006•福建)已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[﹣1,4]上的最大值是12.(1)求f(x)的解析式;(2)是否存在实数m,使得方程在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.2.(12分)(2006•重庆)已知定义域为R的函数f(x)满足f(f(x)﹣x2+x)=f(x)﹣x2+x.(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.3.(12分)(2005•江西)已知函数(a,b为常数)且方程f(x)﹣x+12=0有两个实根为x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式;.4.(12分)(2014•闸北区二模)已知函数y=f(x)在定义域R上是增函数,值域为(0,+∞),且满足:f(﹣x)=.设F(x)=.(1)求函数y=F(x)值域和零点;(2)判断函数y=F(x)奇偶性和单调性,并给予证明.5.(12分)(2014•广东)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).6.(12分)(2005•浙江)函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x(Ⅰ)求函数g(x)的解析式;(Ⅱ)解不等式g(x)≥f(x)﹣|x﹣1|.(Ⅲ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函数,求实数λ的取值范围.7.(12分)(2001•北京)设函数,求f(x)的单调区间,并证明f(x)在其单调区间上的单调性.8.(12分)(2014•徐汇区一模)已知函数f(x)=|x﹣1|,g(x)=﹣x2+6x﹣5.(1)若g(x)≥f(x),求实数x的取值范围;(2)求g(x)﹣f(x)的最大值.9.(12分)(2014•唐山三模)函数f(x)=﹣++的最大值为_________.10.(12分)(2014•广州模拟)设a∈R,函数f(x)=x|x﹣a|+2x.(1)若a=2,求函数f(x)在区间[0,3]上的最大值;(2)若a>2,写出函数f(x)的单调区间(不必证明);(3)若存在a∈[﹣2,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数解,求实数t的取值范围.11.(12分)(2013•合肥二模)已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=x2•[f(x)﹣a],且g(x)在区间[1,2]上为增函数,求实数a的取值范围.12.(12分)(2012•卢湾区二模)对于定义域为D的函数y=f(x),若有常数M,使得对任意的x1∈D,存在唯一的x2∈D满足等式,则称M为函数y=f (x)的“均值”.(1)判断1是否为函数f(x)=2x+1(﹣1≤x≤1)的“均值”,请说明理由;(2)若函数f(x)=ax2﹣2x(1<x<2,a为常数)存在“均值”,求实数a的取值范围;(3)若函数f(x)是单调函数,且其值域为区间I.试探究函数f(x)的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).13.(12分)(2011•南昌模拟)设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函数.(Ⅰ)求b,c的值.(Ⅱ)求g(x)的单调区间与极值.14.(12分)(2005•广东)设函数f(x)在(﹣∞,+∞)上满足f(2﹣x)=f(2+x),f(7﹣x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(Ⅰ)试判断函数y=f(x)的奇偶性;(Ⅱ)试求方程f(x)=0在闭区间[﹣2005,2005]上的根的个数,并证明你的结论.15.(12分)(2014•黄浦区一模)已知函数f(x)=(其中a,b,c,d是实数常数,x≠﹣d)(1)若a=0,函数f(x)的图象关于点(﹣1,3)成中心对称,求b,d的值;(2)若函数f(x)满足条件(1),且对任意x0∈[3,10],总有f(x0)∈[3,10],求c的取值范围;(3)若b=0,函数f(x)是奇函数,f(1)=0,f(﹣2)=﹣,且对任意x∈[1,+∞)时,不等式f(mx)+mf(x)恒成立,求负实数m的取值范围.16.(12分)(2014•崇明县一模)已知函数f(x)=2x+b,g(x)=x2+bx+c(b,c∈R),对任意的x∈R恒有f(x)≤g (x)成立.(文1)记,如果h(x)为奇函数,求b,c满足的条件;(1)当b=0时,记,若h(x)在[2,+∞)上为增函数,求c的取值范围;(2)证明:当x≥0时,g(x)≤(x+c)2成立;(3)(理3)若对满足条件的任意实数b,c,不等式g(c)﹣g(b)≤M(c2﹣b2)恒成立,求M的最小值.17.(12分)(2012•山西模拟)定义域[﹣1,1]的奇函数f(x)满足f(x)=f(x﹣2),且当x∈(0,1)时,.(1)求f(x)在[﹣1,1]上的解析式;(2)求函数f(x)的值域.18.(12分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).19.(12分)(2009•宁夏)如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C 与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.(1)将y表示成x的函数;(2)要使y的值不超过70,x应该在什么范围内取值?20.(12分)(2006•浙江)设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证:(Ⅰ)a>0且;(Ⅱ)方程f(x)=0在(0,1)内有两个实根.21.(12分)(2014•遂宁一模)已知f(x)=ax2﹣3x﹣4(1)f(x)≥0在a∈[1,2]上恒成立,求x的范围.(2)f(x)≥0在x∈[1,2]上恒成立,求a的范围.(3)解关于x的不等式:f(x)≥0.22.(12分)(2011•武进区模拟)设函数f(x)=ax2+bx+1,a>0,b∈R 的最小值为﹣a,f(x)=0两个实根为x1、x2.(1)求x1﹣x2的值;(2)若关于x的不等式f(x)<0解集为A,函数f(x)+2x在A上不存在最小值,求a的取值范围;(3)若﹣2<x1<0,求b的取值范围.高一函数难题22道20140921参考答案与试题解析一.解答题(共22小题,满分264分,每小题12分)1.(12分)(2006•福建)已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[﹣1,4]上的最大值是12.(1)求f(x)的解析式;(2)是否存在实数m,使得方程在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.考点:函数解析式的求解及常用方法;函数与方程的综合运用.专题:计算题;压轴题.分析:(1)根据二次函数小于0的解集,设出解析式,利用单调性求得最大值,解出待定系数.(2)将方程等价转化h(x)=0,利用h(x)的导数判断其单调性,利用单调性判断h(x)=0的根的情况.解答:解:(1)∵f(x)是二次函数,且f(x)<0的解集是(0,5),∴可设f(x)=ax(x﹣5)(a>0).∴f(x)在区间[﹣1,4]上的最大值是f(﹣1)=6a.由已知得6a=12,∴a=2,∴f(x)=2x(x(x∈R).(2)方程等价于方程2x3﹣10x2+37=0.设h(x)=2x3﹣10x2+37,则h'(x)=6x2﹣20x=2x(3x﹣10).在区间时,h'(x)<0,h(x)是减函数;在区间(﹣∞,0),或上,h'(x)>0,h(x)是增函数,故h(0)是极大值,h()是极小值.∵,∴方程h(x)=0在区间内分别有惟一实数根,故函数h(x)在(3,4)内有2个零点.而在区间(0,3),(4,+∞)内没有零点,在(﹣∞,0)上有唯一的零点.画出函数h(x)的单调性和零点情况的简图,所以存在惟一的自然数m=3,使得方程在区间(m,m+1)内有且只有两个不同的实数根.点评:本小题主要考查函数的单调性、极值等基本知识,考查运用导数研究函数的性质的方法,考查函数与方程、数形结合等数学思想方法和分析问题、解决问题的能力.2.(12分)(2006•重庆)已知定义域为R的函数f(x)满足f(f(x)﹣x2+x)=f(x)﹣x2+x.(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.考点:函数解析式的求解及常用方法.专题:压轴题.分析:(I)由题意知f(f(2)﹣22+2)=f(2)﹣22+2,f(1)=1,由上(II)因为对任意x∈R,有f(f(x)﹣x2+x)=f(x)﹣x2+x.又因为有且只有一个实数x0,使得f(x0)=x0所以对任意x∈R,有f(x)﹣x2+x=x0,因为f(x0)=x0,所以x0﹣x02=0,故x0=0或x0=1.由此可推导出f(x)=x2﹣x+1(x∈R).解答:解:(I)因为对任意x∈R,有f(f(x)﹣x2+x)=f(x)﹣x2+x所以f(f(2)﹣22+2)=f(2)﹣22+2又由f(2)=3,得f(3﹣22+2)=3﹣22+2,即f(1)=1若f(0)=a,则f(a﹣02+0)=a﹣02+0,即f(a)=a.(II)因为对任意x∈R,有f(f(x)﹣x2+x)=f(x)﹣x2+x.又因为有且只有一个实数x0,使得f(x0)=x0所以对任意x∈R,有f(x)﹣x2+x=x0在上式中令x=x0,有f(x0)﹣x02+x0=x0又因为f(x0)=x0,所以x0﹣若x0=0,则f(x)﹣x2+x=0,即f(x)=x2﹣x但方程x2﹣x=x有两个不相同实根,与题设条件矛盾.故x0≠0若x0=1,则有f(x)﹣x2+x=1,即f(x)=x2﹣x+1,此时f(x)=x有且仅有一个实数1.综上,所求函数为f(x)=x2﹣x+1(x∈R)点评:本题考查函数的性质和应用,解题时要认真审题,仔细解答.3.(12分)(2005•江西)已知函数(a,b为常数)且方程f(x)﹣x+12=0有两个实根为x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式;.考点:函数解析式的求解及常用方法.专题:计算题;综合题.分析:(1)将x1=3,x2=4分别代入方程得出关于a,b的方程组,解之即得a,b,从而得出函数f(x)的解析式.(2)不等式即为:即(x﹣2)(x﹣1)(x﹣k)进行分类讨论:①当1<k<2,②当k=2时,③当k>2时,分别求出此不等式的解集即可.解答:解:(1)将x1=3,x2=4分别代入方程,得,解得,所以f(x)=.(2)不等式即为,可化为即(x﹣2)(x﹣1)(x﹣k)>0.①当1<k<2,解集为x∈(1,k)∪(2,+∞).②当k=2时,不等式为(x﹣2)2(x﹣1)>0解集为x∈(1,2)∪(2,+∞);③当k>2时,解集为x∈(1,2)∪(k,+∞).用分类讨论思想解决不等式问题,关键是正确地进行分类,而分类一般有以下几个原则:1.要有明确的分类标准;2.对讨论对象分类时要不重复、不遗漏,即分成若干类,其并集为全集,两两的交集为空集;3.当讨论的对象不止一种时,应分层次进行,以避免混乱.根据绝对值的意义判断出f(x)的奇偶性,再利用偶函数的图象关于y轴对称,求出函数在(0,+∞)上的单调区间,并且只要求出当x>0时,函数f(x)=x2﹣2ax(a>0)最小值进而利用f(x)min≤﹣1解答此题.4.(12分)(2014•闸北区二模)已知函数y=f(x)在定义域R上是增函数,值域为(0,+∞),且满足:f(﹣x)=.设F(x)=.(1)求函数y=F(x)值域和零点;(2)判断函数y=F(x)奇偶性和单调性,并给予证明.考点:函数单调性的判断与证明;函数的值域;函数奇偶性的判断.专题:综合题;函数的性质及应用.分析:(1)确定函数y=F(x)的解析式,利用值域为(0,+∞),即可求函数y=F(x)值域和零点;(2)利用奇偶性和单调性的定义,即可判断函数y=F(x)奇偶性和单调性.解答:解:(1)∵f(﹣x)=,∴F(x)==﹣1+,∵f(x)>0,∴0<<1∴﹣1<F(x)<1,故y=F(x)的值域为(﹣1,1);﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∵f(﹣x)=,∴令x=0,f(0)=±1,∵f(x)>0,∴f(0)=1.故y=F(x)的零点为x=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)对任意的x∈R,F(﹣x)==﹣=﹣F(x),﹣﹣﹣﹣﹣﹣﹣﹣(3分)∴y=F(x)是奇函数.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由已知,y=f(x)在定义域R上是增函数,∴对任意的x1,x2∈R,x1<x2,都有f(x1)﹣f (x2)<0.又F(x1)﹣F (x2)=﹣=>0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∴y=F(x)在定义域R上是减函数.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)点评:本题考查函数单调性的判断与证明,考查函数的值域,考查学生分析解决问题的能力,属于中档题.5.(12分)(2014•广东)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).考点:复合函数的单调性;函数的定义域及其求法;函数单调性的性质.专题:函数的性质及应用;不等式的解法及应用.分析:(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.解答:解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<﹣1,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)=,由f'(x)>0,即(x2+2x+k+1)(2x+2)<0,则(x+1+)(x+1﹣)(x+1)<0解得x<﹣1﹣或﹣1<x <﹣1+,结合定义域知,x<﹣1﹣或﹣1<x<﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0 即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f (﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f(1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).点评:本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.6.(12分)(2005•浙江)函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x (Ⅰ)求函数g(x)的解析式;(Ⅱ)解不等式g(x)≥f(x)﹣|x﹣1|.(Ⅲ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函数,求实数λ的取值范围.考点:函数单调性的性质;函数解析式的求解及常用方法;绝对值不等式的解法.专题:综合题;压轴题.分析:(Ⅰ)在函数y=f(x)的图象上任意一点Q(x0,y0),设关于原点的对称点为P(x,y),再由中点坐标公式,求得Q的坐标代入f(x)=x2+2x即可.(Ⅱ)将f(x)与g(x)的解析式代入转化为2x2﹣|x﹣1|≤0,再通过分类讨论去掉绝对值,转化为一元二次不等式求解.(Ⅲ)将f(x)与g(x)的解析式代入可得h(x)=﹣(1+λ)x2+2(1﹣λ)x+1,再用二次函数法研究其单调性.解答:解:(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则即∵点Q(x0,y0)在函数y=f(x)的图象上∴﹣y=x2﹣2x,即y=﹣x2+2x,故g(x)=﹣x2+2x(Ⅱ)由g(x)≥f(x)﹣|x﹣1|,可得2x2﹣|x﹣1|≤0当x≥1时,2x2﹣x+1≤0,此时不等式无解.当x<1时,2x2+x﹣1≤0,解得.因此,原不等式的解集为.(Ⅲ)h(x)=﹣(1+λ)x2+2(1﹣λ)x+1①当λ=﹣1时,h(x)=4x+1在[﹣1,1]上是增函数,∴λ=﹣1②当λ≠﹣1时,对称轴的方程为x=.ⅰ)当λ<﹣1时,,解得λ<﹣1.ⅱ)当λ>﹣1时,,解得﹣1<λ≤0.综上,λ≤0.点评:本题主要考查求对称区间上的解析式,解不等式及研究函数的单调性,属中档题.7.(12分)(2001•北京)设函数,求f(x)的单调区间,并证明f(x)在其单调区间上的单调性.考点:函数单调性的判断与证明.分析:判断函数的单调性可以通过定义做,也可利用导函数做.解答:解:函数的定义域为(﹣∞,﹣b)∪(﹣b,+∞).f(x)在(﹣∞,﹣b)内是减函数,f(x)在(﹣b,+∞)内也是减函数.证明f(x)在(﹣b,+∞)内是减函数.取x1,x2∈(﹣b,+∞),且x1<x2,那么=,∵a﹣b>0,x2﹣x1>0,(x1+b)(x2+b)>0,∴f(x1)﹣f(x2)>0,即f(x)在(﹣b,+∞)内是减同理可证f(x)在(﹣∞,﹣b)内是减函数.点评:本小题主要考查函数的单调性及不等式的基础知识,考查数学推理判断能力.8.(12分)(2014•徐汇区一模)已知函数f(x)=|x﹣1|,g(x)=﹣x2+6x﹣5.(1)若g(x)≥f(x),求实数x的取值范围;(2)求g(x)﹣f(x)的最大值.考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:(1)去掉f(x)的绝对值,由g(x)≥f(x),求出x的取值范围;(2)由(1)知g(x)﹣f(x)的最大值在[1,4]上取得,求出即可.解答:解:(1)当x≥1时,f(x)=x﹣1;∵g(x)≥f(x),∴﹣x2+6x﹣5≥x﹣1;整理,得(x﹣1)(x﹣4)≤0,解得x∈[1,4];当x<1时,f(x)=1﹣x;∵g(x)≥f(x),∴﹣x2+6x﹣5≥1﹣x,整理,得(x﹣1)(x﹣6)≤0,解得x∈[1,6],又,综上,x的取值范围是[1,4].(2)由(1)知,g(x)﹣f(x)的最大值在[1,4]上取得,∴g(x)﹣f(x)=(﹣x2+6x+5)﹣(x﹣1)=﹣+≤,∴当x=时,g(x)﹣f(x)取到最大值是.点评:本题考查了含有绝对值的函数的应用问题,解题时应先去掉绝对值,再进行讨论解答.9.(12分)(2014•唐山三模)函数f(x)=﹣++的最大值为.考点:函数的最值及其几何意义;二次函数在闭区间上的最值.专题:转化思想.分析:设,将函数转化为关于t的二次函数,利用二次函数最值的求法进行求解.解答:解:设,那么,,当且仅当t=2即x=1时等号成立,故答案为.点评:本题考查了换元法的应用,利用换元法将函数转化为二次函数是求函数最值的一种重要的方法.10.(12分)(2014•广州模拟)设a∈R,函数f(x)=x|x﹣a|+2x.(1)若a=2,求函数f(x)在区间[0,3]上的最大值;(2)若a>2,写出函数f(x)的单调区间(不必证明);(3)若存在a∈[﹣2,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数解,求实数t的取值范围.考点:函数的最值及其几何意义;函数单调性的判断与证明;函数的图象.专题:函数的性质及应用.分析:(1)通过图象直接得出,(2)将x分区间进行讨论,去绝对值写出解析式,求出单调区间,(3)将a分区间讨论,求出单调区间解出即可.解答:解:(1)当a=2,x∈[0,3]时,作函数图象,可知函数f(x)在区间[0,3]上是增函数.所以f(x)在区间[0,3]上的最大值为f(3)=9.(2)①当x≥a时,.因为a>2,所以.所以f(x)在[a,+∞)上单调递增.②当x<a时,.因为a>2,所以.所以f(x)在上单调递增,在上单调递减.综上所述,函数f(x)的递增区间是和[a,+∞),递减区间是[,a].(3)①当﹣2≤a≤2时,,,∴f(x)在(﹣∞,+∞)上是增函数,关于x的方程f(x)=t﹣f(a)不可能有三个不相等的实数解.②当2<a≤4时,由(1)知f (x)在和[a,+∞)上分别是增函数,在上是减函数,当且仅当时,方程f(x)=t•f(a)有三个不相等的实数解.即.令,g(a)在a∈(2,4]时是增函数,故g(a)max=5.∴实数t的取值范围是.点评:本题考查了函数的最值,函数单调性的证明,渗透了分类讨论思想,综合性较强,是较难的一道题.11.(12分)(2013•合肥二模)已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若g(x)=x2•[f(x)﹣a],且g(x)在区间[1,2]上为增函数,求实数a的取值范围.考点:函数单调性的性质;函数解析式的求解及常用方法;奇偶函数图象的对称性.专题:函数的性质及应用.分析:(I)先设f(x)的图象上任一点P(x,y),再由点点对称求出对称的坐标,由题意把对称点的坐标代入h(x)的解析式,进行整理即可;(II)由(I)求出g(x)的解析式,再求出导数,将条件转化为:3x2﹣2ax+1≥0在区间[1,2]上恒成立,再分离出常数a,利用函数y=在区间[1,2]上的单调性求出函数的最小值,再求出a的范围.解答:解:(I)设f(x)的图象上任一点P(x,y),则点P关于点A(0,1)对称P′(﹣x,2﹣y)在h(x)的图象上,∴2﹣y=﹣x﹣+2,得y=,即f(x)=,(II)由(I)得,g(x)=x2•[f(x)﹣a]=x2•[﹣a]=x3﹣ax2+x,则g′(x)=3x2﹣2ax+1,∵g(x)在区间[1,2]上为增函数,∴3x2﹣2ax+1≥0在区间[1,2]上恒成立,即a≤()在区间[1,2]上恒成立,∵y=在区间[1,2]上递增,故此函数的最小值为y=4,则a≤4=2.点评:本题考查了利用轨迹法求函数解析式,导数与函数单调性、最值问题,以及恒成立问题,考查了转化思想.12.(12分)(2012•卢湾区二模)对于定义域为D的函数y=f(x),若有常数M,使得对任意的x1∈D,存在唯一的x2∈D满足等式,则称M为函数y=f (x)的“均值”.(1)判断1是否为函数f(x)=2x+1(﹣1≤x≤1)的“均值”,请说明理由;(2)若函数f(x)=ax2﹣2x(1<x<2,a为常数)存在“均值”,求实数a的取值范围;(3)若函数f(x)是单调函数,且其值域为区间I.试探究函数f(x)的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).考点:函数单调性的性质.专题:计算题;综合题;新定义;开放型;分类讨论.分析:(1)根据均值的定义,要判断1是函数f(x)=2x+1(﹣1≤x≤1)的“均值”,即要验证;(2)函数f(x)=ax2﹣2x(1<x<2,a为常数)存在“均值”,当a=0时,f(x)=﹣2x(1<x<2)存在“均值”,且“均值”为﹣3;当a≠0时,由f(x)=ax2﹣2x(1<x<2)存在均值,可知对任意的x1,都有唯一的x2与之对应,从而有f(x)=ax2﹣2x(1<x<2)单调,从而求得实数a的取值范围;(3)根据(1),(2)的结论对于当I=(a,b)或[a,b]时,函数f(x)存在唯一的“均值”;当I为(﹣∞,+∞)时,函数f(x)存在无数多个“均值”,当为半开半闭区间时,函数f(x)不存在均值.解答:解:(1)对任意的x1∈[﹣1,1],有﹣x1∈[﹣1,1],当且仅当x2=﹣x1时,有,故存在唯一x2∈[﹣1,1],满足,所以1是函数f(x)=2x+1(﹣1≤x≤1)的“均值”.(2)当a=0时,f(x)=﹣2x(1<x<2)存在“均值”,且“均值”为﹣3;当a≠0时,由f(x)=ax2﹣2x(1<x<2)存在均值,可知对任意的x1,都有唯一的x2与之对应,从而有f(x)=ax2﹣2x(1<x<2)单调,故有或,解得a≥1或a<0或,综上,a的取值范围是或a≥1.(3)①当I=(a,b)或[a,b]时,函数f(x)存在唯一的“均值”.这时函数f(x)的“均值”为;②当I为(﹣∞,+∞)时,函数f (x)存在无数多个“均值”.这时任意实数均为函数f(x)的“均值”;③当I=(a,+∞)或(﹣∞,a)或[a,+∞)或(﹣∞,a]或[a,b)或(a,b]时,函数f(x)不存在“均值”.①当且仅当I形如(a,b)、[a,b]其中之一时,函数f(x)存在唯一的“均值”.这时函数f(x)的“均值”为;②当且仅当I为(﹣∞,+∞)时,函数f(x)存在无数多个“均值”.这时任意实数均为函数f(x)的“均值”;③当且仅当I形如(a,+∞)、(﹣∞,a)、[a,+∞)、(﹣∞,a]、[a,b)、(a,b]其中之一时,函数f(x)不存在“均值”.点评:此题是个中档题,考查函数单调性的理解,和学生的阅读能力,以及分析解决问题的能力,其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.13.(12分)(2011•南昌模拟)设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函数.(Ⅰ)求b,c的值.(Ⅱ)求g(x)的单调区间与极值.考点:函数奇偶性的性质.分析:(1)根据g(x)=f(x)﹣f'(x)是奇函数,且f'(x)=3x2+2bx+c能够求出b与c的值.(2)对g(x)进行求导,g'(x)>0时的x的取值区间为单调递增区间,g'(x)<0时的x的取值区间为单调递减区间.g'(x)=0时的x函数g(x)取到极值.解答:解:(Ⅰ)∵f(x)=x3+bx2+cx,∴f'(x)=3x2+2bx+c.从而g(x)=f(x)﹣f'(x)=x3+bx2+cx﹣(3x2+2bx+c)=x3+(b﹣3)x2+(c﹣2b)x﹣c是一个奇函数,所以g(0)=0得c=0,由奇函数定义得b=3;(Ⅱ)由(Ⅰ)知g(x)=x3﹣6x,从而g'(x)=3x2﹣6,当g'(x)>0时,x<﹣或x>,当g'(x)<0时,﹣<x<,由此可知,的单调递增区间;的单调递减区间;g(x)在x=时取得极大值,极大值为,g(x)在x=时取得极小值,极小值为.点评:本题主要考查对导数的理解.导数大于0时可求原函数的单调递增区间,导数小于0时可求原函数的单调递减区间,取到极值时导数为0.14.(12分)(2005•广东)设函数f(x)在(﹣∞,+∞)上满足f(2﹣x)=f(2+x),f(7﹣x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(Ⅰ)试判断函数y=f(x)的奇偶性;(Ⅱ)试求方程f(x)=0在闭区间[﹣2005,2005]上的根的个数,并证明你的结论.考点:函数奇偶性的判断;函数的周期性;根的存在性及根的个数判断.专题:计算题;压轴题.分析:(I)利用条件先求出函数的周期,再求出f(﹣3)=f(7)≠0,而f(3)=0,f(﹣3)≠﹣f(3)根据奇偶性的定义可知该函数为非奇非偶函数;(2II)根据周期函数性质可知,只需求出一个周期里的根的个数,可求得f(x)在[0,10]和[﹣10,0]上均有有两个解,从而可知函数y=f(x)在[0,2005]上有402个解,在[﹣2005.0]上有400个解.解答:解:由⇒⇒f(4﹣x)=f (14﹣x)⇒f(x)=f(x+10),又f(3)=0,而f(7)≠0,⇒f (﹣3)=f(7)≠0⇒f(﹣3)≠f (3),f(﹣3)≠﹣f(3)故函数y=f(x)是非奇非偶函数;(II)由⇒⇒f(4﹣x)=f (14﹣x)⇒f(x)=f(x+10)又f(3)=f(1)=0⇒f(11)=f (13)=f(﹣7)=f(﹣9)=0因为在闭区间[0,7]上,只有f(1)=f(3)=0,故在[4,7]上无零点,又f(7﹣x)=f (7+x),故在[4,10]上无零点,故在[0,10]上仅有两个解故f(x)在[0,10]和[﹣10,0]上均有有两个解,从而可知函数y=f(x)在[0,2005]上有402个解,在[﹣2005.0]上有400个解,所以函数y=f(x)在[﹣2005,2005]上有802个解.点评:本题主要考查了函数奇偶性的判断,以及函数的周期性和根的存在性及根的个数判断,属于基础题.15.(12分)(2014•黄浦区一模)已知函数f(x)=(其中a,b,c,d是实数常数,x≠﹣d)(1)若a=0,函数f(x)的图象关于点(﹣1,3)成中心对称,求b,d的值;(2)若函数f(x)满足条件(1),且对任意x0∈[3,10],总有f(x0)∈[3,10],求c的取值范围;(3)若b=0,函数f(x)是奇函数,f(1)=0,f(﹣2)=﹣,且对任意x∈[1,+∞)时,不等式f(mx)+mf(x)恒成立,求负实数m的取值范围.考点:奇偶函数图象的对称性.专题:综合题.分析:(1)利用反比例函数的对称性类比即可;(2)分情况讨论f(x)的范围;(3)先根据条件确定f(x)的解析式,再利用不等式和函数单调性求出m的取值范围.解答:解(1)∵a=0,∴.类比函数的图象,可知函f(x)的图象的对称中心是(﹣d,b).又∵函f(x)的图象的对称中心(﹣1,3),∴.(2)由(1)知,.依据题意,对任x0∈[3,10],恒f(x0)∈[3,10].①c=3,f(x)=3,符合题意.②c≠3,c<3时,对任x∈[3,10],恒,不符合题意.所c>3,函[3,10]上是单调递减函数,且满f(x)>3.因此,当且仅f (3)≤10,即3<c≤31时符合题意.综上,所求实c 的范围3≤c≤31.(3)依据题设,解于是.由,得,∴(2x2﹣1)m2>1∵m<0∴m<﹣.因此,.∵函数y=﹣在[1,+∞)是增函数,∴y min=y(1)=﹣1.∴所求负实数m的取值范围m<﹣1.故答案为m<﹣1.点评:本题主要考察利用函数奇偶性,对称性求解析式,恒成立问题的基本解法及分类讨论思想,属于难题,解决恒成立问题通常可以利用分离变量转化为最值的方法求解16.(12分)(2014•崇明县一模)已知函数f(x)=2x+b,g(x)=x2+bx+c(b,c∈R),对任意的x∈R恒有f(x)≤g (x)成立.(文1)记,如果h(x)为奇函数,求b,c满足的条件;(1)当b=0时,记,若h(x)在[2,+∞)上为增函数,求c的取值范围;(2)证明:当x≥0时,g(x)≤(x+c)2成立;(3)(理3)若对满足条件的任意实数b,c,不等式g(c)﹣g(b)≤M(c2﹣b2)恒成立,求M的最小值.考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:(文1)因为对任意的x∈R恒有f(x)≤g(x)成立,从而得到c≥,即c≥1.设h(x)=,因为h(x)是奇函数,h(﹣x)=﹣h(x)成立,解得b=0,从而得出结论.(1)因为任意的x∈R恒有f(x)≤g(x)成立,可得c≥1.当b=0时,由于h(x)==,因为h(x)在[2,+∞)上为增函数,可得(1﹣)>0 成立,故有c≤4,从而得到c的取值范围.(2)由(1)得2c﹣b=c+(c﹣b)>0,当x≥0时,有(x+c)2﹣g(x)=(2c﹣b)x+c(c﹣1)≥0,证得不等式成立(3)由(2)知,c≥|b|,当c>|b|时,有M≥=,求得M的取值范围是[,+∞);当c=|b|,M的最小值仍是,从而得出结论.解答:解:(文1)因为对任意的x∈R恒有f(x)≤g(x)成立,所以对任意的x∈R,2x+b≤x2+bx+c,即x2+(b﹣2)x+c﹣b≥0恒成立,所以(b﹣2)2﹣4(c﹣b)≤0,从而c≥,即c≥1.设h(x)=的定义域为D,因为h(x)是奇函数,所以对于任意x∈D,h(﹣x)=﹣h(x)成立,解得b=0,所以b=0,c≥1.(1)因为任意的x∈R恒有f(x)≤g(x)成立,所以对任意的x∈R,2x+b≤x2+bx+c,即x2+(b﹣2)x+c﹣b≥0恒成立.所以(b﹣2)2﹣4(c﹣b)≤0,从而c≥+1,即c≥1.当b=0时,记h (x)===,因为h(x)在[2,+∞)上为增函数,所以任取x2>x1≥2,f(x2)﹣f(x1)=(x2﹣x1)(1﹣)>0 恒成立.即(1﹣)>0 成立,也就是c<x1•x2成立,所以c≤4,即c的取值范围是[1,4].(2)由(1)得,c≥1且c≥+1,所以c≥2=|b|,因此2c﹣b=c+(c﹣b)>0.故当x≥0时,有(x+c)2﹣g(x)=(2c﹣b)x+c (c﹣1)≥0.即当x≥0时,g (x)≤(x+c)2.知,c≥|b|,当c>|b|时,有M≥==,设t=,则﹣1<t<1,所以M≥2﹣,由于y=2﹣的值域为(﹣∞,);当c>|b|时,M的取值范围是[,+∞);当c=|b|,由(1)知,b=±2,c=2,此时g(c)﹣g(b)=﹣8或0,c2﹣b2=0,从而g(c)﹣g(b)≤(c2﹣b2)恒成立,综上所述,M的最小值为.点评:本题主要考查函数的单调性和奇偶性的应用,求函数的最值,体现了转化的数学思想,属于中档题.(1)求f(x)在[﹣1,1]上的解析式;(2)求函数f(x)的值域.考点:奇偶性与单调性的综合;函数的值域;函数解析式的求解及常用方法;函数的周期性.专题:计算题.分析:(1)先利用奇函数的定义,求f(x)在(﹣1,0)上的解析式,再利用抽象表达式f(x)=f(x﹣2),求f(1)和f(﹣1)的值,即可得f(x)在定义域上的解析式;(2)先利用导数证明函数f(x)在(0,1)上的单调性,再利用对称性证明函数在(﹣1,1)上的单调性,最后利用单调性和对称性求函数的值域即可解答:解:(1)当x∈(﹣1,0)时,﹣x∈(0,1),则f(﹣x)=﹣2x+∵f(x)为[﹣1,1]的奇函数,∴f(﹣x)=﹣f(x)'∴f(x)=2x﹣又∵f(0)=﹣f(0),∴f(0)∵f(﹣1)=﹣f(1),f(﹣1)=f(1﹣2)=f(1)∴f(﹣1)=0,f(1)=0∴f(x)=(2)∵x∈(0,1)时,.∴f′(x)=2+>0∴f(x)在(0,1)上为增函数,f(x)∈(0,3)∵f(x)为[﹣1,1]的奇函数,∴f(x)在(﹣1,1)上为增函数∴当x∈(﹣1,1)时,f(x)∈(﹣3,3),f(±1)=0∴函数f(x)的值域为(﹣3,3)点评:本题主要考查了函数奇偶性的定义及其运用,利用函数的奇偶性求函数解析式的方法,利用函数的奇偶性判断函数的单调性,利用单调性求函数值域的方法18.(12分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:计算题;压轴题.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若⇔k为偶数不成立若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义19.(12分)(2009•宁夏)如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C 与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.(1)将y表示成x的函数;(2)要使y的值不超过70,x应该在什么范围内取值?考点:函数解析式的求解及常用方法;函数的定义域及其求法.专题:计算题;压轴题.分析:(1)由题设描述CO=x,CA=|10﹣x|,y 表示C到A距离4倍与C道B距离的6倍的和,直接建立函数关系即可,由于解析式含有绝对值号,故可以将解析式转换成分段函数.(2)对(1)中的函数进行研究利用其单调性与值域探讨x的取值范围即可.解答:解:(1)由题设,CO=x,CA=|10﹣x|,CB=|20﹣x|,故y=4×|10﹣x|+6×|20﹣x|,x∈[0,30]即y=(2)令y≤70,当x∈[0,10]时,由160﹣10x≤70得x≥9,故x∈[9,10]当x∈(10,20]时,由80﹣2x≤70得x≥5,故x∈(10,20]当x∈(20,30]时,由10x﹣160≤70得x≤23,故x∈(20,23]综上知,x∈[9,23]点评:本题考点是函数解析式的求解及常用方法,本题考查根据的关系建立函数解析式,然后再根据解析式解不等式,由于本题的解析式是一个分段型的,所以在解不等式时要分段求解,解出每一段上的不等式的解集,最后再将它们并起来.20.(12分)(2006•浙江)设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证:(Ⅰ)a>0且;(Ⅱ)方程f(x)=0在(0,1)内有两个实根.考点:二次函数的性质;不等式的基本性质.专题:计算题;证明题.分析:(I)先将f(0)>0,f(1)>0,利用函数式中的a,b,c进行表示,再结合等式关系利用不等式的基本性质即可得到a和的范围即可.(II)欲证明方程f(x)=0在(0,1)内有两个实根,根据根的存在性定理,只须证明某一个函数值小于0即可,最后只须证明在二次函数顶点处的函数值小于0即可.解答:解:证明:(I)因为f(0)>0,所以c>0,3a+2b+c>0.由条件a+b+c=0,消去b,得a>c>0;由条件a+b+c=0,消去c,得a+b<0,2a+b>0.故.(II)抛物线f (x)=3ax2+2bx+c的顶点坐标为,在的两边乘以,得.又因为f(0)>0,f(1)>0,而,所以方程f(x)=0在区间与内分别有一实根.故方程f(x)=0两个实根.点评:本题主要考查二次函数的基本性质与不等式的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.21.(12分)(2014•遂宁一模)已知f(x)=ax2﹣3x﹣4 (1)f(x)≥0在a∈[1,2]上恒成立,求x的范围.(2)f(x)≥0在x∈[1,2]上恒成立,求a的范围.(3)解关于x的不等式:f(x)≥0.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)解不等式即可,(2)中将a转化为求函数y=的最值问题,(3)里的解不等式问题需将a分情况进行讨论.解答:解:(1)f(x)≥0在a∈[1,2]上恒成立令g(a)=ax2﹣3x﹣4,∴,即,解得:x≥4,或x≤。
初中数学命题与证明专题训练50题-含参考答案

初中数学命题与证明专题训练50题含参考答案一、单选题1.下列说法正确的是()A.真命题的逆命题是真命题B.假命题的逆命题是假命题C.一个定理一定有逆定理D.一个命题一定有逆命题2.命题“平行于同一条直线的两条直线平行”的条件是()A.平行B.两条直线C.同一条直线D.两条直线平行于同一条直线3.下列命题是假命题的是()A.对顶角相等B.两条直线被第三条直线所截,同位角相等C.在同一平面内,垂直于同一条直线的两条直线互相平行D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行4.下列命题是真命题的是()A.对角线互相垂直且相等的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相平分且垂直的四边形是菱形D.对角线互相垂直的四边形是菱形5.下列命题是假命题的是()A.所有等边三角形一定相似B.所有等腰直角三角形一定相似C.有一个角为120︒的两个等腰三角形相似D.有一条边对应成比例的两个等腰三角形相似6.下列命题中正确的是【】A.函数y=x的取值范围是x>3B.菱形是中心对称图形,但不是轴对称图形C.一组对边平行,另一组对边相等四边形是平行四边形D.三角形的外心到三角形的三个顶点的距离相等7.有下列是真命题的有()个.①同一平面内,两条直线的位置关系分为相交、平行、垂直;①同一平面内,过一点有且只有一条直线与已知直线垂直;①过一点有且只有一条直线与已知直线平行;①对顶角相等;①内错角相等.A .1B .2C .3D .48.下列各数中,可以用来说明命题“任何偶数都是8的倍数”是假命题的反例是( )A .9B .16C .8D .49.下列命题是假命题的是( )A .两直线平行,内错角相等B .三角形内角和等于180︒C .对顶角相等D .若a b =,则a b =10.为了证明命题“任何偶数都是8的整数倍”是假命题,下列各数中可以作为反例的是( )A .31B .16C .8D .411.下列命题是真命题的是( )AB .三个连续的整数不能构成直角三角形的三边长C .一次函数3y kx =+的图象不可能同时经过三、四象限D .二元一次方程的解一定是整数解12.下列命题中:①有公共顶点且相等的角是对顶角;①直线外一点到这条直线的垂线段,叫做点到直线的距离;①互为邻补角的两个角的平分线互相垂直;①经过一点有且只有一条直线与已知直线平行.其中真命题的个数有( )A .1个B .2个C .3个D .4个13.下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成的线段平行(或共线)且相等14.现有下列命题:①若525x =,则2550x =;①若a b >,则2211a b c c >++;①若22x y =,则x y =,其中真命题有( )个. A .3 B .2 C .1 D .015.下列命题中,是真命题的是( )A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等C .等腰直角三角形都全等D .如果a b >,那么22a b >16.下列叙述:①最小的正整数是0;①单项式33x y 的次数是3;①用一个平面去截正方体,截面不可能是六边形:①若AC BC =,则点C 是线段AB 的中点;①若x 表示有理数,且x x =,则0x >.其中正确的个数有( )A .0个B .1个C .2个D .3个17.下列命题中,是假命题的是( )A .三个角都是60︒的三角形是等边三角形B .两个锐角的和是钝角C .若||3a =,则3a =±D .在同一平面内,若直线a l ⊥,b l ⊥,则a b ∥18.下列命题是真命题的是( )A .抛物线22y x x =-与坐标轴有3个不同交点B .若分式方程41(1)(1)1m x x x -=+--有增根,则它的增根是1 C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D .若一个角的两边分别与另一个角的两边平行,则这两个角相等19.下列命题中,真命题是( )A .如果把分式xy x y+中的x 和y 都扩大3倍,那么分式的值也扩大3倍 B .若b >a >0,则11a a b b +>+ C .对角线相等的四边形是矩形D .顺次连接菱形四边中点得到的四边形是正方形20.已知下列命题:①对角线互相垂直的四边形是菱形;①若x a =,则()20x a b x ab -++=;①两个位似图形一定是相似图形;①若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个二、填空题21.如图,直线AB 、CD 被直线EF 所截,①1、①2是同位角,如果①1≠①2,那么AB 与CD 不平行.用反证法证明这个命题时,应先假设:________.22.命题“等边三角形是锐角三角形”的逆命题是____________(填“真”或“假”)命题. 23.判断题:(1)所有的三角形都相似_____________(2)所有的梯形都相似_____________(3)所有的等腰三角形都相似_____________(4)所有的直角三角形都相似_____________(5)所有的矩形都相似_____________(6)所有的平行四边形都相似_____________(7)大小的中国地图相似_____________(8)所有的正多边形都相似_____________24.用一个a 的值说明命题“a -一定表示一个负数”是错误的,a 的值可以是__________.25.“如果0a =,0b =,那么0ab =”的逆命题是______.26.把命题“等角的余角相等”改写成“如果……,那么…….”的形式:如果___________,那么___________.27.用反证法证明“若a b =,则a b ”时,应假设__________.28.对于命题“若22a b >,则a b >”,为了说明这个命题是假命题,若取3a =-,则b 可取___________(写出符合题意的一个值).29.用一组a ,b 的值说明命题“若a 2>b 2,则a >b”是错误的,这组值可以是a=____,b=____.30.命题“若22a b >,则a b >”,能说明它是假命题的反例是=a ________,b =________.31.用反证法证明“a b <”时,应假设 .32.命题:“两个角的和等于平角时,这两个角互为邻补角”是_____命题(填“真”或“假”)33.把“在同一平面内,两条直线相交,只有一个交点”改写成“如果⋯那么⋯”的形式是______ .34.用反证法证明“两直线平行,内错角相等”时应先假设____________;35.今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人的得票数内.全村设有四个投票点,目前第一、第二、第三投票点已公布投票结果,剩下第四投票点尚未公布投票结果,如表所示:(单位:票)三名候选人_____有机会当选村长(填甲、乙、丙),并写出你的推断理由_____. 36.写出命题“如果0a >,0b <,那么0a b <”的逆命题是______. 37.要说明命题“若a <1,则a 2<1”是假命题,可以举的反例是a =________(一个即可)38.两条直线相交成直角,就叫做两条直线互相垂直.这个句子是_____(填“定义”或“命题”).39.我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A :“完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :______________________;并写出一个例子(该例子能判断命题B 是错误的)40.求证:在直角三角形中至少有一个角不大于45°.已知:如图所示,①ABC 中,①C=90°,求证:①A ,①B 中至少有一个不大于45°. 证明:假设__________,则①A__________45°,①B______45°. ①①A+①B+①C>45°+ _______+__________,这与________________________相矛盾. 所以___________不能成立,所以①A ,①B 中至少有一个角不大于45°.三、解答题41.求证:在同一平面内,如果一条直线与两条平行直线中的一条相交,那么和另一条也相交.42.用反证法证明:如果一个三角形的两条较短边的平方和不等于较长边的平方,那么这个三角形不是直角三角形.43.指出下列命题的题设和结论:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)相交的两条直线一定不平行.44.下列定理中,哪些有逆定理?如果有逆定理,说出它的逆定理.(1)等腰三角形的两个底角相等.(2)内错角相等,两直线平行.(3)对顶角相等.45.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分、一支足球队在某一赛季共需比赛14场,现已经比赛了8场,输了一场,得了17分.请问:(1)前8场比赛中,这支球队共胜了几场?(2)请你分析一下,这支球队在后面的6场比赛中,至少要胜几场比赛,才能使总得分不低于29分?46.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了.甲说:“是乙不小心闯的祸.”乙说“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸”.如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是谁?谁闯了祸?47.能否在图中的四个圆圈内填入4个互不相同的数,使得任意两个圆圈中所填的数的平方和等于另外两个圆圈中所填数的平方和?如果能填,请填出一个例;如果不能填,请说明理由.48.在证明定理“三角形的中位线平行于第三边,且等于第三边的一半“时,小明给出如下部分证明过程.已知:在①ABC中,D、E分别是边AB、AC的中点.求证:.证明:如图,延长DE到点F,使EF=DE,连接CF,(1)补全求证;(2)请根据添加的辅助线,写出完整的证明过程;(3)若CE=3,DE=4,请你直接写出边AB的取值范围.49.阅读下列问题后做出相应的解答.“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题.请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论.50.先把下列两个命题分别改写成“如果……那么……”的形式,再判断该命题是真命题还是假命题,如果是假命题,举出一个反例.(1)同旁内角互补,两直线平行;(2)一个角的补角一定是钝角.参考答案:1.D【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A.真命题的逆命题可能是真命题,也可能是假命题,故本选项不符合题意;B.假命题的逆命题不一定是假命题,故本选项不符合题意;C.一个定理不一定有逆定理,故本选项不符合题意;D.一个命题一定有逆命题,正确,故本选项符合题意.故选D.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】解:“平行于同一条直线的两条直线平行”的条件是“两条直线平行于同一条直线”,故选D.【点睛】本题考查了对命题的题设和结论的理解,许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.4.C【分析】根据菱形的判定方法一一判断即可.【详解】解:A、对角线互相垂直且相等的四边形是菱形,是假命题,本选项不符合题意;B、对角线互相平分且相等的四边形是菱形,是假命题,本选项不符合题意;C、对角线互相平分且垂直的四边形是菱形,是真命题,本选项符合题意;D、对角线互相垂直的四边形是菱形,是假命题,本选项不符合题意.故选:C.【点睛】本题考查菱形的判定、真假命题,熟练掌握相关知识是解题的关键.5.D【分析】根据相似三角形的判定定理进行判定即可.【详解】解:A、所有等边三角形一定相似,故A选项为真命题;B、所有等腰直角三角形一定相似,故B选项为真命题;C、有一个角为120︒的两个等腰三角形相似,故C选项为真命题;D、有一条边对应成比例的两个等腰三角形不一定相似,故D选项为假命题,故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.D【详解】根据二次根式的性质,菱形的性质,等腰梯形的判定,外心的性质分别判断得出即可:A、函数y=x的取值范围是x≥3,故此选项错误;B、菱形是中心对称图形,也是轴对称图形,故此选项错误;C、一组对边平行,另一组对边相等四边形是也可能是等腰梯形,故此选项错误;D、根据外心的性质,三角形的外心到三角形的三个顶点的距离相等,故此选项正确.故选D.考点:命题与定理,函数自变量的取值范围,二次根式的性质,菱形的性质,等腰梯形的判定,外心的性质.7.B【分析】根据两直线的位置关系、垂直的定义、平行公理、对顶角相等、平行线的性质判断即可.【详解】解:①同一平面内,两条直线的位置关系分为相交、平行,故本小题说法是假命题;①同一平面内,过一点有且只有一条直线与已知直线垂直,本小题说法是真命题; ①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题; ①对顶角相等,本小题说法是真命题;①两直线平行,内错角相等,故本小题说法是假命题;综上,①①是真命题,共2个,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.D【分析】根据偶数与倍数的定义对各选项进行验证即可.【详解】解:A 、9不是偶数,故本选项不符合题意;B 、16是8的倍数,故本选项不符合题意.C 、8是8的倍数,故本选项不符合题意;D 、4是偶数但不是8的倍数,故本选项符合题意;故选:D .【点睛】本题考查了命题的真假和举反例,熟练掌握偶数与倍数的定义是解题的关键. 9.D【分析】利用平行线的性质、三角形的内角和、对顶角的定义及绝对值的性质分别判断后即可确定正确的选项.【详解】解:A 、两直线平行,内错角相等,正确,是真命题;B 、三角形内角和等于180︒,正确,是真命题;C 、对顶角相等,正确,是真命题;D 、若a b =,则a b =或a=-b ,故错误,是假命题,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和及平行线的性质,对顶角的定义、绝对值的性质,难度不大.10.D【详解】A.31是奇数,不合题意;B.16是8的2倍,不合题意;C.8是8的1倍,不合题意;D.4不是8的倍数,符合题意;故选D.11.C【分析】根据真命题的定义,无理数的定义,勾股定理的逆定理,一次函数的图象,二元一次方程的解的特征对各选项进行判断即可.【详解】解:A 9=是有理数,原命题错误,故不符合题意;B 中三个连续的整数如3,4,5能构成直角三角形的三边,原命题错误,故不符合题意;C 中根据k 的不同取值,一次函数3y kx =+的图象可能经过一、二、三象限或一、二、四象限,原命题正确,故符合题意;D 中二元一次方程的解不一定是整数解,原命题错误,故不符合题意;故选:C .【点睛】本题考查了真命题,无理数,勾股定理的逆定理,一次函数经过的象限,二元一次方程的解等知识.解题的关键在于对知识的灵活运用.12.A【分析】根据真假命题的概念结合相关知识对各个命题逐一分析判断即可.【详解】有公共顶点且相等的角不一定是对顶角,故①是假命题;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故①是假命题; 互为邻补角的两个角的平分线互相垂直,故①是真命题;经过直线外一点有且只有一条直线与已知直线平行,故①是假命题;综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了真假命题的判断,熟练掌握相关概念是解题关键.13.C【分析】根据相关的概念和性质对各选项分析判断后利用排除法求解.【详解】A 、连接两点的线段的长度叫做两点间的距离,是定义,正确;B 、两条直线平行,同旁内角互补,是平行线的性质,正确;C 、如图,①AOB 、①AOC 有公共顶点且有一条公共边,和等于平角,而这两个角不是邻补角,故本选项错误;D 、平移变换中,各组对应点连成的线段平行(或共线)且相等,正确.故选C .14.C【分析】根据幂的乘方、不等式的性质和开平方运算判断即可.【详解】①若525x =,则2225(5)25625x x ===,原命题是假命题;①若a b >,则2211a b c c >++,是真命题; ①若22x y =,则x y =或x y =-,原命题是假命题;综上,真命题有①故选:C .【点睛】本题考查命题与定理,涉及幂的乘方、不等式的性质和开平方运算,熟练掌握知识点是解题的关键.15.A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a >b ,那么a 2<b 2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.16.A【分析】对各语句逐一判断即可得.【详解】解:①最小的正整数是1,原叙述错误;①单项式33x y 的次数是4,原叙述错误;①用一个平面去截正方体,截面与六个面均相交即可得六边形,原叙述错误;如图:①若AC BC =,且点C 在线段AB 上,则点C 是线段AB 的中点,原叙述错误; ①若x 表示有理数,且x x =,则x 0≥,原叙述错误.故选A.【点睛】本题主要考查数、式、几何图形的综合问题,解题的关键是熟练掌握有理数的概念、单项式的定义、中点的定义等知识点.17.B【分析】根据锐角与钝角的定义,等边三角形的定义,绝对值的定义以及平行线的判定定理逐项分析即可.【详解】解:A. 三个角都是60︒的三角形是等边三角形,是真命题;B. 两个锐角的和是钝角,是假命题,两个锐角的和有可能是钝角或者直角;C. 若||3a =,则3a =±,是真命题;D. 在同一平面内,若直线a l ⊥,b l ⊥,则a b ∥,是真命题.故选B.【点睛】本题主要考查了判断命题的真假,涉及了锐角与钝角的定义,等边三角形的定义,绝对值的定义以及平行线的判定定理等知识点,熟练掌握各知识点的相关概念是解题的关键.18.B【详解】解:A 、在22y x x =-中,令0x =得0y =,①与y 轴交点坐标为(0,0),令0y =得120,2x x ==,①与x 轴交点坐标为(0,0)、(2,0),①抛物线22y x x =-与坐标轴有2个不同交点,故A 是假命题,不符合题意;B 、若分式方程41(1)(1)1m x x x -=+--有增根,则增根可能是1或-1,去分母得,4111()()()m x x x -+=+-,当增根为1时,420m -=,解得2m =;当增根为-1时,4=0,不存在,故增根为1,故B 是真命题,符合题意;C 、对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是矩形,故C 是假命题,不符合题意;D 、若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故D 是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解二次函数与坐标轴交点坐标的求法、分式方程的增根、中点四边形和平行线的性质等知识.19.A【分析】根据分式的性质、不等式的性质、正方形和矩形的判定分别判断后即可确定正确的选项.【详解】解:A 、如果把分式xy x y+中的x 和y 都扩大3倍,则3?3333x y xy x y x y =++,那么分式的值也扩大3倍,真命题,符合题意;B 、()()()()111111a b b a a a a b b b b b b b +-++--==+++, ①b >a >0,①a -b <0,b >0,b +1>0,则()01a b b b -<+, ①11a ab b +<+,故原命题是假命题,不符合题意; C 、对角线相等的平行四边形是矩形,故原命题是假命题,不符合题意;D 、顺次连接菱形四边中点得到的四边形是矩形,故原命题是假命题,不符合题意; 故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解分式的基本性质、不等式的性质、正方形和矩形的判定等知识.20.B【分析】根据菱形的判定及性质、一元二次方程的解法、位似图形的性质逐一判断即可.【详解】解:①的原命题:对角线互相垂直的四边形是菱形.对角线互相垂直的平行四边形才是菱形,如果只有垂直,不能判定为菱形,故①的原命题为假命题,①的逆命题:菱形是对角线互相垂直的四边形,这是菱形的性质,故①的逆命题是真命题,故①不符合题意; ①的原命题:若x a =,则20x a b x ab -++=();若x a =,则220x a b x ab a a b a ab -++=-++=()(),故①的原命题是真命题:①的逆命题:若 20x a b x ab -++=().则x a =.解方程20x a b x ab -++=(),得:()()0x a x b --=,解得:1x a =,2x b =,故①的逆命题为假命题;故符合题意;①的原命题:两个位似图形一定是相似图形,根据位似图形的性质知:(1)两个图形必须是相似形;(2)对应点的连线都经过同一点:(3)对应边平行.故两个位似图形一定是相似图形,故①的原命题是真命题:①的逆命题:两个相似图形一定是位似图形.很显然,根据位似图形的性质知其不符合位似图形的性质(2)和(3),故①的逆命题是假命题,符合题意;①的原命题:若22x x =,则2x =;解方程22x x =,10x =,22x =.故①的原命题是假命题;①的逆命题:若2x =,则22x x =,等式左边224==,等式右边224=⨯=:故当2x =时,22x x =,故①的逆命题是真命题,故①不符合题意,满足题意的命题是①①,共2个.故答案为:B .【点睛】本题考查了命题的判断,涉及原命题与逆命题、菱形的判定及性质、一元二次方程的解法、位似图形的性质,解题的关键是掌握上述知识点并灵活运用.21.AB ①CD【分析】【详解】利用假设法来进行证明时,首先假设结论成立,即应先假设AB①CD . 故答案为:AB①CD .22.假【分析】把原命题改写为逆命题再进行判断即可.【详解】解:“等边三角形是锐角三角形”的逆命题是“锐角三角形是等边三角形”,内角分别为40°,60°,80°的三角形为锐角三角形,但不是等边三角形,故原命题的逆命题是假命题,故答案为:假.【点睛】本题考查了判断逆命题的真假性,掌握把原命题改写为逆命题并会用事实真理或定义定理来判断其真假是解题的关键.23. 错误 错误 错误 错误 错误 错误 正确 错误【分析】相似图形是指形状相同的图形.对多边形进行判断时,主要是看对应角是否相等,对应边的比是否相等.【详解】(1)所有的三角形,不能判断它们的对应角相等,对应边的比相等,不是相似形.所以(1)错误.(2)所有的梯形,不能判断对应的角相等,对应边的比相等,不是相似形.所以(2)错误.(3)所有的等腰三角形,不能判断对应的角相等,对应边的比相等.所以(3)错误. (4)所有的直角三角形,不能判断对应的角相等,对应边的比相等.所以(4)错误. (5)所有的矩形,不能判断对应的角相等,对应边的比相等.所以(5)错误.(6)所有的平行四边形,不能判断对应的角相等,对应边的比相等.所以(6)错误. (7)大小的中国地图,只是大小不等,性质相同,是相似形.所以(7)正确. (8)所有的边数相等的正多边形才相似.所以(8)错误.故答案是:(1)错误,(2)错误,(3)错误,(4)错误,(5)错误,(6)错误,(7)正确,(8)错误.【点评】本题考查的是相似图形,根据相似图形的定义对多边形是否相似进行判断. 24.答案不唯一,如1a =-【分析】根据题意找到一个使得命题不成立的a 值即可.【详解】当1a =-时,1a -=不是一个负数,故命题错误.故答案为:1a =-【点睛】本题主要考查了举例说明真(假)命题,根据题意找到反例是解题的关键. 25.如果0ab =,那么0a =,0b =【分析】将原命题的结论改为条件,条件改为结论即可得出逆命题.【详解】“如果0a =,0b =,那么0ab =”的逆命题是:如果0ab =,那么0a =,0b =.故答案为:如果0ab =,那么0a =,0b =.【点睛】本题考查根据原命题写逆命题,熟练掌握逆命题与原命题的关系是解题的关键. 26. 两个角相等 这两个角的余角也相等【分析】根据命题的概念解答即可.【详解】解:把命题“等角的余角相等”改写成“如果……那么……”的形式是如果两个角相等,那么这两个角的余角也相等,故答案为:两个角相等,这两个角的余角也相等.【点睛】本题考查的是命题的概念,命题写成“如果……那么……”的形式,这时,“如果”后面接题设,“那么”后面接结论.27.a b =【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:a ,b 的等价关系有,a b a b =≠两种情况,因而a b 的反面是a b =.因此用反证法证明“a b ”时,应先假设a b =. 故答案为:a b =.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.28.2(不唯一)【分析】对于命题“若a 2>b 2,则a>b”,为了说明这个命题是假命题,只需举反例若a 2>b 2, a<b 即可.【详解】“若a 2>b 2,则a>b” 是假命题,举出a<b ,有a 2>b 2成立,找a<b<|a|,a=-3,-3<b<3中取数满足条件.故答案为:2(不唯一).【点睛】本题考查验证假命题问题,关键是会举反例,利用不等式找出满足条件的范围是难点,是举反例的范围.29. 3a =-, 1b【分析】举出一个反例:a =−3,b =−1,说明命题“若a 2>b 2,则a >b”是错误的即可.【详解】解:当a =−3,b =−1时,满足a 2>b 2,但是a <b ,①命题“若a 2>b 2,则a >b”是错误的.故答案为−3、−1.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个。
专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。
增减函数证明训练

增减函数证明训练
本篇文章介绍了增减函数的概念,并提供了几个与增减函数相关的证明训练题目。
什么是增减函数?
增减函数指的是在定义域内,随着自变量的增大,函数值也会增大的函数为增函数,反之则为减函数。
在数学中,增减函数被广泛应用于各种领域,如经济学、统计学、物理学等。
证明练习题目:
1. 设函数 f(x) = x^2 + 2x - 1,在区间 [-1,2] 内增减状况如何?请证明你的结论。
2. 设函数 f(x) = x^3 - 3x,在整个实数轴上增减状况如何?请证明你的结论。
3. 若函数 f(x) 在区间 [a,b] 内为减函数,证明其导数 f'(x) 在该区间内小于零。
4. 若函数 f(x) 在区间 [a,b] 内为增函数,证明其导数 f'(x) 在该区间内大于零。
以上题目旨在帮助读者加深对增减函数的理解,并通过证明训练提高读者的数学证明能力。
在解题过程中,读者需要运用函数的导数、一阶导数的符号判断等知识点。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数证明问题专题训练⑴.代数论证问题⑴.关于函数性质的论证⑵.证明不等式6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根.(Ⅰ)当x >a 时,求证:()f x <x ;(Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2);(Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x <x .(Ⅱ)不妨设x 1<x 2,由(Ⅰ)知g (x )为减函数,所以 g (x 2)<g (x 1),即f (x 2)-x 2<f (x 1)-x 1,所以 f (x 2)-f (x 1)<x 2-x 1;又因为`()f x >0,所以()f x 为增函数,所以0<f (x 2)-f (x 1)<x 2-x 1,所以|1()f x -2()f x |<|x 1-x 2|.(Ⅲ)本小题没有统一的答案,满足题设条件的函数有无穷多个.如f (x )=11sin 24x x +1.设函数)(x f 的定义域为R,对任意实数βα,有()()2()()22f f f f αβαβαβ+-+=,且1()32f π=,0)2(=πf .⑴.求证:)()()(x f x f x f --==-π⑵.若02x π≤<时,0)(>x f ,求证: )(x f 在],0[π上单调递减;2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x的根.⑴.当x >a 时,求证:()f x <x ;⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2);⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数.解:⑴.令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又g (a )=f(a )-a =0,故当x >a 时,g (x )<g (a )=0,故f (x ) -x <0,即()f x x <. ⑵.不妨设x 1<x 2,由⑴知g (x )为减函数,故g (x 2)<g (x 1),即f (x 2)-x 2<f (x 1)-x 1,故 f (x 2)-f (x 1)<x 2-x 1;又`()f x >0,故()f x 为增函数,故0<f (x 2)-f (x 1)<x 2-x 1,故|1()f x -2()f x |<|x 1-x 2|.⑶.本小题没有统一的答案,满足题设条件的函数有无穷多个.如11()sin 24f x x x =+.3.已知直线10x y --=为曲线()log a f x x b =+在点(1(1))f ,处的一条切线.⑴.求a ,b 的值; ⑵.若函数()y f x =的图象1C 与函数()ng x mx x=+(n >0)的图象2C 交于11()P x y ,,22()Q x y ,两点,其中1x <2x ,过PQ 的中点R 作x 轴的垂线分别交1C ,2C 于点M 、N ,设C 1在点M 处的切线的斜率为1k ,C 2在点N 处的切线的斜率为2k ,求证:1k <2k .解:⑴.直线10x y --=的斜率为1,且过(10),点,又1()ln f x x a '=,故11ln log 10a ab ⎧=⎪⎨⎪+=⎩,故e 0a b ==,; ⑵.PQ的中点为1212()()ln 22x x y y f x x ++=,,,故1212122(ln )x x x k x x x +='==+,12122221222()()()2x x x x x x nn nk mx m m x x ++===+=-=-,由210x x >>,故21212()2x x x x +>,则212n k m x x >-,则212122112()()()n x x x x k m x x x x -->--2121()n nmx mx x x =+-+21y y =-21ln ln x x =-21ln x x =,又221121121212(1)2()()1xx x x x x k x x x ---==++, 法一:令2(1)()ln 1t r t t t-=-+,21x t x =>1,则22214(1)()(1)(1)t r t t t t t -'=-=++,因t >1时,()r t '>0,故()r t 在[1)+∞,上单调递增,故()r t >(1)0r =,则2k >1k .法二:令()(1)ln 2(1)r t t t t =+--,21x t x =>1,1()ln 1r t t t '=+-则,因221111(ln )t t t t tt-'+=-=,故t >1时,1(ln )0t t'+>,故1ln t t+在[1)+∞,上单调递增,从而1ln 1t t+->0,即()0r t '>,于是)(t r 在[1)+∞,上单调递增,故()r t >(1)0r =即(1)ln t t +>2(1)t -,ln t >2(1)1t t -+,则2k >1k . 4.函数)(x f 的定义域为R ,并满足以下条件:①对任意R x ∈,有0)(>x f ;②对任意x 、R y ∈,有y x f xy f )]([)(=;③1()13f >则 ⑴.求)0(f 的值;⑵.求证:)(x f 在R 上是单调增函数;⑶.若0a b c >>>,且2b ac =,求证:()()2()f a f c f b +>.解法一:⑴.令2,0==y x 得,2)]0([)0(f f =,故(0)0f >,则(0)1f =; ⑵.任取1x ,),(2+∞-∞∈x ,且21x x <.设112211,33x p x p ==,则21p p <,12()()f x f x -= 12121111()()[()][()]3333p p f p f p f f -=-,因1()13f >,12p p <,故12()()f x f x <,则()f x 在R 上是单调增函数;⑶.由⑴⑵知,()(0)1f b f >=,又()1f b >,因()()[()]ab cf a f b f b b=⋅=,()()cf c f b b=⋅= [()]cb f b,故()()[()][()]a cb b f a fc f b f b +=+>,而2a c b +>==,故f b >=,故()()2()fafc fb +>;解法二:⑴.因对任意x ,y R ∈,有y x f xy f )]([)(=,故()(1)[(1)]x f x f x f =⋅=,故当0=x 时0)]1([)0(f f =,因任意x R ∈,0)(>x f ,故(0)1f =; ⑵.因1()13f >,311(1)(3)[()]133f f f =⨯=>,故()[(1)]x f x f =是R上单调增函数,即)(x f 是R 上单调增函数;⑶.c a c a f f f c f a f +>+=+)]1([2)]1([)]1([)()(,而2a c b +>==,故2()f b >=,故()()2()f a f c f b +>.5.定义在区间(0,)+∞上的函数()f x 满足:①.()f x 不恒为零;②.对任何实数x ,q 都有)()(x qf x f q =.⑴.求证:方程()0f x =有且只有一个实根;⑵.若1a b c >>>,且a ,b ,c 成等差数列,求证:2()()()f a f c f b ⋅<; ⑶.若()f x 单调递增,且0m n >>时,有|()||()|2|()|2m nf m f n f +==,求证:32m <<解:⑴.取1x =,2q =,有2(1)(2)f f =,即(1)0f =,故1为方程()0f x =的一个根,若存在另一个实根10≠x ,使得1()0f x ≠对任意的11((0,)x x ∈+∞都成立,且10(0)q x x q =≠,有10()()0f x qf x ==,因0()0f x =恒成立,1()0f x ≡,与体积矛盾,故()0f x =有且只有一个实根1x =;⑵.因1a b c >>>,不妨设1q a b =,2q c b =,则10q >,20q >,故12()()()()q q f a f c f b f b ⋅= 212()q q f b =⋅,又2a c b +=,故22()04a c acb --=-<,故2ac b <,故122q q b b +<,则10q <+ 22q <,故21221()12q q q q +≤<,故2()()()fafc f b <;⑶.因(1)0f =,则()f x 在(0,)+∞上单调递增,当(0,1)x ∈时,()0f x <;当(1,)x ∈+∞时,()0f x >,又|()||()|f m f n =,故()()f m f n =,()()f m f n =-,因0m n >>,故()f m =- ()f n ,令1q m b =,2q n b =,1b ≠且120q q ≠,则12()()()()()0f m f n q q f b f mn +=+==,故1mn =.01n m <<<,因2|()|2|()|2m n f m f +=且1m >,12m n +>=,又()f m = 2()2m nf +,故2()[()]2m n f m f +=,则2()2m n m +=,即2242m m mn n =++,故24m m -- 22n =,由01n <<得,20421m m <--<,因1m >,故32m <<6.设函数2()f x ax bx c =++,,,a b c 都是正实数,且(1)1f =.⑴.若0x >,证明:1()()1f x f x≥;⑵.若正实数1x ,2x ,3x 满足1231x x x =,证明:123()()()1f x f x f x ≥. 分析:22111()()()()f x f ax bx c ab c xx x =++++,利用基本不等式可以证明之;由1231x x x =可以得到三个数之间的关系,分为都等于1和不都相等,若不全相等不妨设11x >,21x <,再利用第一问的结论进行证明. 证明:⑴.因(1)1f =,故1a b c ++=,当0x >时,22111()()()()f x f ax bx c a b c x x x=++++=222222111()()()()1a b c ab x bc x ca x a b c x x x++++++++≥++=,当且仅当1x =时取得等号.⑵.①若1231x x x ===,则显然有123()()()1f x f x f x ≥.②若1x ,2x ,3x 不全相等,则其中必有1i x >,1j x <,,{1,2,3}()i j i j ∈≠,不妨设11x >,21x <,因1231x x x =,故由⑴可知,123()()1f x x f x ≥,因,,a b c 为正实数,故任意取0x >有()()0f x f x >,故只需证1212()()()f x f x f x x ≥即可.因22121122()()()(f x f x ax bx c ax bx =+++222222222121212121212)()()()c a x x b x x c ab x x x x bc x x ca x x +=++++++++,12(1)()(f f x x a b =++222222222221212121212121212)()()(1)(1)c ax x bx x c a x x b x x c ab x x x x bc x x ca x x ++=++++++++,故2222121212121212121212()()()(1)(1)(1)f x f x f x x abx x x x x x bc x x x x ca x x x x =+--++--++--=2212121212(1)(1)(1)(1)(1)(1)0abx x x x bc x x ca x x --+--+-->,故1212()()()f x f x f x x ≥,又3()0f x >,故123123()()()()()1f x f x f x f x x f x >≥.点评:代数证明是高考压轴题的热点,对学生要求很高.本题是函数与不等式,特别是与二次函数有关,新课程标准中对于二次函数和函数与方程要求都很高,因此与二次函数有关的题型应该是高考的热点,特别是压轴题的首选.7.设函数()f x 的定义域为(0,)+∞,当(0,)x ∈+∞时,恒有[()]2f f x x =成立,且过()f x 图象上任意两点的直线的斜率都大于1,求证: ⑴.()f x 为增函数; ⑵.()f x x >; ⑶.4()332f x x <<. 证:⑴.设120x x <<,故1212()()10f x f x k x x -=>>-,故12()()f x f x <,故()f x 为增函数;⑵.若存在0(0,)x ∈+∞,使00()f x x ≤,则①当00()0f x x =>时,则00[()]()f f x f x =,即002x x =,故00x =与00x >矛盾; ②当00()f x x <时,由⑴知,()f x 为增函数,故00[()]()f f x f x <,即002x x <,故00x <,此时与00x >矛盾,故必有()f x x >. ⑶.由⑵得,()0f x x >>,故[()]()1()f f x f x f x x->-,故[()]()()f f x f x f x x ->-,即2()x f x -> ()f x x -,故()32f x x <,同理{[()]}[()][()]()f f f x f f x f f x f x ->-,即2()22f x x x ->- ()f x ,故4()3f x x >,故4()332f x x <<. 8.设()f x 定义在区间[0,1]上,(0)(1)0f f ==,且对任意a ,b [0,1]()a b ∈≠,|()()|f a f b -< ||a b -.⑴.求证:|()|min{,1}f x x x <-;⑵.求证:对于任意,[0,1]x y ∈,1|()()|2f x f y -<.解:⑴.由已知可知,对任意的[0,1]x ∈,有|()||()(1)||1|1f x f x f x x =-<-=-,因此,对任意的[0,1]x ∈,有|()|min{,1}f x x x <-;⑵.证:对于任意,[0,1]x y ∈,有1|()()|2f x f y -<.若1||2x y -≤,则有|()()||f x f y x -<- 1|2y ≤;若1||2x y ->,假设112x <≤,102y ≤<,则|()|m i nf x <{,1}1x x x -=-,|()|f y < min{,1}y y y <-=,故|()()||()||()|f x f y f x f y -≤+ 111()2x y x y =-+=--<. 9.已知函数()f x 是在(0,)+∞上处处可导的函数,若'()()x f x f x ⋅>在0x >上恒成立.⑴.求证:函数()()f x g x x=在(0,)+∞上是增函数; ⑵.当120,0x x >>时,证明:1212()()()f x f x f x x +<+; ⑶.已知不等式ln(1)x x +<在1x >-且0x ≠时恒成立,求证:222222111ln 2ln 3ln 4234++ 2*21ln(1)()(1)2(1)(2)n n n N n n n +++>∈+++. 解:⑴.2'()()'()0f x x f x g x x -=>,故函数()()(0,)f x g x x=+∞在上是增函数; ⑵.因()()f x g x x =在(0,)+∞上是增函数,故112112()()f x f x x x x x +<+,则111212()()x f x f x x x x <⋅++,212212()()f x f x x x x x +<+,则221212()()xf x f x x x x <⋅++,两式相加后得1212()()()f x f x f x x +<+; ⑶.121112()()n n f x x x f x x x x x +++<+++,则111212()()n nx f x f x x x x x x <⋅++++++,故22()f x x <1212()n n f x x x x x x ++++++,则221212()()n nx f x f x x x x x x <⋅++++++,故1212()n n f x x x x x x +++>+++()n n f x x ,故1212()()nn n nx f x f x x x x x x <⋅++++++,相加后得:12()()()n f x f x f x +++ 12()n f x x x <+++,故1122331212ln ln ln ln ()ln(n n n x x x x x x x x x x x x x ++++<++++ )n x ++,令21(1)n x n =+有22222222211111(ln 2ln 3ln 4ln(1))(234(1)2n n -+++++<++ 22222222211111111111)ln()()ln(34(1)23(1)23(1)2132n n n +++⋅+++<+++⋅+++++⨯⨯1111)()()(1)1222(1)(2)nn n n n n n +<--=-+++++,故222222111ln 2ln 3ln 4234++++2*21ln(1)()(1)2(1)(2)n n n N n n n +>∈+++. (方法二):222ln(1)ln(1)ln 411ln 4()(1)(1)(2)(1)(2)12n n n n n n n n n ++>≥=-+++++++,故222211ln 2ln 323++ 22221111ln 4ln 4ln(1)ln 4()4(1)222(2)n n n n n +++>-=+++,又1ln 411n >>+,故221ln 22+ 222*222111ln 3ln 4ln(1)()34(1)2(1)(2)n n n N n n n ++++>∈+++. 10.已知函数bc bx x a x f -++-=1)1()(2(,,a b c N ∈)的图像按向量(1,0)e =-平移后得到的图像关于原点对称,且3)3(,2)2(<=f f . ⑴.求,,a b c 的值;⑵.设0||1,0||1x t <<<≤,求证:|)1(|||||+<-++tx f x t x t ; ⑶.设x 是正实数,求证:22)1()]1([-≥+-+n n n x f x f .解:⑴.函数)(x f 的图像按(1,0)e =-平移后得到的图像所对应的函数式为cbx ax x f ++=+1)1(2.因函数)(x f 的图像平移后得到的图像关于原点对称,故)1()1(+-=+-x f x f ,即cbx ax c x b x a ++-=+-+-1)(1)(22.因a N ∈,故012>+ax .故c bx c bx --=+-,故0c =.又2)2(=f ,故21=++bc a .故b a 21=+,故12-=b a ①.又3214)3(<+=ba f .故b a 614<+②.由①,②及,a b N ∈,得1,1==b a . ⑵.11)1()(2-+-=x x x f ,故tx tx tx f 1)1(+=+.故11|(1)|||||||f tx tx tx tx tx +=+=+≥2=,当且仅当1||=tx 时,上式取等号.但1||0,1||0≤<<<t x ,故1||≠tx ,2|)1(|>+tx f .由于||2)(2|)||(|22222x t x t x t x t S -++=-++=,当||||x t ≥时,244S t =≤;当||||x t <时,244S x =<.故|)1(|2||||+<≤-++tx f x t x t ,即|)1(|||||+<-++tx f x t x t . ⑶.1n =时,结论显然成立.当2n ≥时,1111[(1)](1)()()n n n n n n n f x f x x x C x x x-+-+=+-+=22221122421221411111n n n n n n n n n n n n n n n n n C x C x C x C x C x C C x x x x x x ----------⋅+⋅+⋅⋅⋅+⋅+⋅=++⋅⋅⋅++⋅122412122242111111[()()()[2(22n n n n n n n n n n n n n C x C x C x C C x x x x --------=++++⋅⋅⋅++≥⋅++⋅⋅⋅+1121)]22n n n n n n n C C C C --=++⋅⋅⋅+=-.11.设定义在[0,2]上的函数()f x 满足下列条件:①对于[0,2]x ∈,总有(2)()f x f x -=,且()1f x ≥,(1)3f =;②对于,[1,2]x y ∈,若3x y +≥,则()()(2)1f x f y f x y +≤+-+.证明:⑴.对于,[0,1]x y ∈,若1x y +≤,则()()()1f x y f x f y +≥+-; ⑵.12()133n n f ≤+(*n N ∈); ⑶.[1,2]x ∈时,1()136f x x ≤≤-.证明:⑴.由(2)()f x f x -=知,函数()f x 图像关于直线1x =对称,则根据②可知:对于,[0,1]x y ∈,若1x y +≤,则()()()1f x y f x f y +≥+-.设12,[0,1]x x ∈,且12x x <,则21[0,1]x x -∈.因2112111211()()[()]()()()1()f x f x f x x x f x f x f x x f x -=+--≥+--- 21()10f x x =--≥,故()f x 在[0,1]上是不减函数.⑵.因111111111()()()()13()233333333n n n n n n n nf f f f f -=++≥++-≥-,故11()33n f ≤⨯ 122211211221122112()()()113333333333333n n n n n n n n n f f f ----+≤++≤≤+++=+-=+. ⑶.对于任意(0,1]x ∈,则必存在正整数n ,使得11133n n x -≤≤.因()f x 在(0,1)上是不减函数,故111()()()33n n f f x f -≤≤,由⑴知,11121()16161333n n n f x --≤+=+≤+.由①可得(2)1f ≥,在②中,令2x y ==,得(2)1f ≤,故(2)1f =.而(2)(0)f f =,故(0)1f =,又1()(0)3n f f ≥,故1()13n f ≥,故[0,1]x ∈时,1()61f x x ≤≤+.因[1,2]x ∈时,2[0,1]x -∈,且()(2)f x f x =-,故1(2)6(2)1136f x x x ≤-≤-+=-,因此[1,2]x ∈时,1()136f x x ≤≤-.12.已知()(1)n f x x n =>,1000()()n ng x nx x x x -=-+(0x 为已知正实数). ⑴.当0x >时,求证:()()f x g x ≥;⑵.当1n >,正实数12x x ≠时,求证:1212()22n nn x x x x++>; ⑶.当0m n >>,正实数12x x ≠时,求证:111212()()22m m n nmnx x x x ++>. 证:⑴.令1000()()()()n n nu x f x g x x nx x x x -=-=---,则'111100()()n n n n u x nx nx n x x ----=-=-,①00x x <<时,因'()0u x <,故()u x 是减函数;②0x x >时,因'()0u x >,故()u x 是增函数;故0x x =时,()u x 取得最小值为0()u x ,即0()()0u x u x ≥=,故()()f x g x ≥;。