函数证明问题专题训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数证明问题专题训练
⑴.代数论证问题
⑴.关于函数性质的论证
⑵.证明不等式
6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根.
(Ⅰ)当x >a 时,求证:()f x <x ;
(Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2);
(Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x (Ⅱ)不妨设x 1<x 2,由(Ⅰ)知g (x )为减函数,所以 g (x 2)<g (x 1),即f (x 2)-x 2<f (x 1)-x 1,所以 f (x 2)-f (x 1)<x 2-x 1;又因为`()f x >0,所以()f x 为增函数,所以0<f (x 2)-f (x 1)<x 2-x 1,所以|1()f x -2()f x |<|x 1-x 2|. (Ⅲ)本小题没有统一的答案,满足题设条件的函数有无穷多个.如f (x )=11sin 2 4 x x + 1.设函数 ) (x f 的定义域为R,对任意实数βα,有 ()()2( )( )2 2 f f f f αβ αβ αβ+-+=,且1()3 2 f π=,0)2 (=πf . ⑴.求证:)()()(x f x f x f --==-π ⑵.若02 x π ≤< 时,0)(>x f ,求证: )(x f 在],0[π上单调递减; 2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程 ()f x =x 的根. ⑴.当x >a 时,求证:()f x <x ; ⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2); ⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为 常数. 解:⑴.令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又g (a )=f(a )-a =0,故当x >a 时,g (x )<g (a )=0,故f (x ) -x <0,即()f x x <. ⑵.不妨设x 1<x 2,由⑴知g (x )为减函数,故g (x 2)<g (x 1),即f (x 2)-x 2<f (x 1)-x 1,故 f (x 2)-f (x 1)<x 2-x 1;又`()f x >0,故()f x 为增函数,故0<f (x 2)-f (x 1)<x 2-x 1,故|1()f x -2()f x |<|x 1-x 2|. ⑶.本小题没有统一的答案,满足题设条件的函数有无穷多个.如 11 ()sin 24 f x x x = +. 3.已知直线10x y --=为曲线()log a f x x b =+在点(1(1))f ,处的一条切线. ⑴.求a ,b 的值; ⑵.若函数()y f x = 的图象1C 与函数()n g x mx x =+ (n >0)的图象2C 交于 11()P x y ,,22()Q x y ,两点,其中1x <2x ,过 PQ 的中点R 作x 轴的垂线分别交1C , 2C 于点M 、N ,设C 1在点M 处的切线的斜率为1k ,C 2在点N 处的切线的斜率为2k ,求证:1k <2k . 解:⑴.直线10x y --=的斜率为1,且过(10),点,又1 ()ln f x x a '=,故1 1ln log 10 a a b ⎧=⎪⎨⎪+=⎩,故e 0a b ==,; ⑵. PQ 的中点为 1212 ( )()ln 22x x y y f x x ++=,,,故1212 122(ln )x x x k x x x +='== +,12 12222 1222()()()2 x x x x x x n n n k mx m m x x ++===+=-=- ,由210x x >>,故21212()2x x x x +>,则212 n k m x x >- ,则212122112()()()n x x x x k m x x x x -->-- 2121()n n mx mx x x =+-+21y y =-21ln ln x x =-2 1ln x x =,又 2211 211 212 12(1) 2()()1x x x x x x k x x x ---==++ , 法一:令2(1)()ln 1t r t t t -=-+,21x t x =>1,则2 2 2 14(1)()(1)(1)t r t t t t t -'=-=++,因t >1时,() r t '