函数证明问题专题训练

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数证明问题专题训练

⑴.代数论证问题

⑴.关于函数性质的论证

⑵.证明不等式

6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根.

(Ⅰ)当x >a 时,求证:()f x <x ;

(Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2);

(Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x

(Ⅱ)不妨设x 1<x 2,由(Ⅰ)知g (x )为减函数,所以 g (x 2)<g (x 1),即f (x 2)-x 2<f (x 1)-x 1,所以 f (x 2)-f (x 1)<x 2-x 1;又因为`()f x >0,所以()f x 为增函数,所以0<f (x 2)-f (x 1)<x 2-x 1,所以|1()f x -2()f x |<|x 1-x 2|.

(Ⅲ)本小题没有统一的答案,满足题设条件的函数有无穷多个.如f (x )=11sin 2

4

x x +

1.设函数

)

(x f 的定义域为R,对任意实数βα,有

()()2(

)(

)2

2

f f f f αβ

αβ

αβ+-+=,且1()3

2

f π=,0)2

(=πf .

⑴.求证:)()()(x f x f x f --==-π

⑵.若02

x π

≤<

时,0)(>x f ,求证: )(x f 在],0[π上单调递减;

2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程

()f x =x

的根.

⑴.当x >a 时,求证:()f x <x ;

⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2);

⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为

常数.

解:⑴.令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又g (a )=f(a )-a =0,故当x >a 时,g (x )<g (a )=0,故f (x ) -x <0,即()f x x <. ⑵.不妨设x 1<x 2,由⑴知g (x )为减函数,故g (x 2)<g (x 1),即f (x 2)-x 2<f (x 1)-x 1,故 f (x 2)-f (x 1)<x 2-x 1;又`()f x >0,故()f x 为增函数,故0<f (x 2)-f (x 1)<x 2-x 1,故|1()f x -2()f x |<|x 1-x 2|.

⑶.本小题没有统一的答案,满足题设条件的函数有无穷多个.如

11

()sin 24

f x x x =

+.

3.已知直线10x y --=为曲线()log a f x x b =+在点(1(1))f ,处的一条切线.

⑴.求a ,b 的值; ⑵.若函数()y f x =

的图象1C 与函数()n

g x mx x

=+

(n >0)的图象2C 交于

11()P x y ,,22()Q x y ,两点,其中1x <2x ,过

PQ 的中点R 作x 轴的垂线分别交1C ,

2C 于点M 、N ,设C 1在点M 处的切线的斜率为1k ,C 2在点N 处的切线的斜率为2k ,求证:1k <2k .

解:⑴.直线10x y --=的斜率为1,且过(10),点,又1

()ln f x x a '=,故1

1ln log 10

a a

b ⎧=⎪⎨⎪+=⎩,故e 0a b ==,; ⑵.

PQ

的中点为

1212

(

)()ln 22x x y y f x x ++=,,,故1212

122(ln )x x x k x x x +='==

+,12

12222

1222()()()2

x x x x x x n

n n

k mx m m x x ++===+=-=-

,由210x x >>,故21212()2x x x x +>,则212

n k m x x >-

,则212122112()()()n x x x x k m x x x x -->--

2121()n n

mx mx x x =+-+21y y =-21ln ln x x =-2

1ln x x =,又

2211

211

212

12(1)

2()()1x

x x x x x k x x x ---==++

, 法一:令2(1)()ln 1t r t t t

-=-+,21x t x =>1,则2

2

2

14(1)()(1)(1)t r t t t t t -'=-=++,因t >1时,()

r t '

相关文档
最新文档