圆柱体的体积设计

合集下载

圆柱的体积(教案)

圆柱的体积(教案)

圆柱的体积教学设计:圆柱的体积这节课的教学,我是应用转化策略,教学圆柱的体积计算公式。

把未知转化成已知是解决新颖问题的常用策略,也是创新精神、实践能力的表现。

教学圆柱的体积公式,运用了转化策略,分三步进行。

一、建立“等底”“等高”概念,形成“等积”猜想。

例4教学圆柱体积的计算方法,首先出示一个长方体、一个正方体、一个圆锥,图文结合指出它们的底面积相等、高也相等。

因为圆柱的体积计算公式是转化成等底、等高的长方体后推导的,学生需要形成“等底”“等高”概念。

然后从长方体、正方体的体积都可以“底面积×高”计算,得到等底、等高的长方体与正方体的体积相等。

由此猜想,圆柱的体积也与等底、等高的长方体相等,形成了研究圆柱体积算法的思路。

二、割、拼圆柱,转化成长方体。

圆柱的体积是否与等底、等高的长方体相等,要看它能不能转化成相应的长方体。

学生有圆转化成长方形的经验,以此为基础,把圆柱的底面平均分成16份,切开后拼成了一个近似的长方体。

这里讲“近似”,是因为拼成的物体的“长”是8段弧组成的曲线。

由此想像,如果把圆柱的底面平均分成32份、64份……切开后拼成的物体的“长”越来越接近线段,拼成的物体越来越接近长方体。

在切、拼操作以及想像中,实现了圆柱转化成长方体。

三、通过推理,得到圆柱体积计算公式。

切、拼把圆柱转化成长方体,圆柱的体积公式还要通过推理得到。

教材先指导学生研究拼成的长方体与原来的圆柱的关系,看到两个物体的体积相等、底面积相等、高也相等。

再体会“底面积×高”既是计算长方体的体积,也算得了圆柱的体积。

由此得出圆柱的体积公式,并用字母表示,便于记忆和应用。

教学内容:课程标准江苏教育版《数学》六年级下册第25-26页例4、试一试、练一练。

教学目标:1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。

那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。

小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。

《圆柱的体积》教案(通用10篇)

《圆柱的体积》教案(通用10篇)

《圆柱的体积》教案《圆柱的体积》教案(通用10篇)作为一无名无私奉献的教育工作者,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。

优秀的教案都具备一些什么特点呢?下面是小编整理的《圆柱的体积》教案,欢迎大家分享。

《圆柱的体积》教案篇1教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。

教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。

2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。

二、解决实际问题1、练习三第7题。

学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。

2、练习三第5题。

(1)指导学生变换公式:因为V=Sh,所以h=VS。

也可以列方程解答。

(2)学生选择喜爱的方法解答这道题目。

3、练习三第8题。

(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。

(2)在充分理解题意后学生独立完成,集体订正。

4、练习三第9、10题(1)学生独立审题,完成9、10两题。

(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。

利用这个底面积再求出另一个圆柱的体积。

三、布置作业完成一课三练的相关练习。

《圆柱的体积》教案篇2教学内容:人教版小学数学六年级下册《圆柱的体积》P25-26。

教学目标:1.经历探究和推导圆柱的体积公式的过程。

圆柱的体积⑴数学教案

圆柱的体积⑴数学教案

圆柱的体积⑴数学教案标题:圆柱的体积数学教案一、教学目标:1. 知识与技能:- 学生能够理解和掌握圆柱体的概念。

- 学生能熟练运用公式计算圆柱体的体积。

2. 过程与方法:- 通过实际操作,引导学生探索和理解圆柱体的体积公式。

- 通过问题解决,培养学生分析问题和解决问题的能力。

3. 情感态度与价值观:- 培养学生的观察力和空间想象力。

- 增强学生对数学学习的兴趣和自信心。

二、教学重难点:重点:理解并掌握圆柱体的体积公式。

难点:运用公式解决实际问题。

三、教学过程:(一)导入新课教师展示一些生活中常见的圆柱形物体,如水杯、铅笔等,提问:“这些物体有什么共同的形状?”引导学生回答出“圆柱形”。

(二)新知讲解1. 引导学生回忆学过的平面图形面积公式,特别是圆形面积公式,并提出问题:“如果将这个圆形沿直径旋转一周,会形成什么立体图形?”引发学生思考,得出结论——圆柱体。

2. 接着,教师演示如何用一个圆形绕其直径旋转一周得到一个圆柱体,让学生直观感知圆柱体的形成过程。

3. 教师介绍圆柱体的定义:以矩形的一边为轴旋转一周所形成的立体图形叫做圆柱体。

然后请学生观察并描述圆柱体的特征。

4. 提出问题:“我们已经知道如何求圆的面积,那么如何求圆柱体的体积呢?”激发学生思考。

5. 教师解释圆柱体的体积公式V=πr²h,并进行推导。

先让学生回顾圆的面积公式S=πr²,然后指出圆柱体的底面积就是圆的面积,所以底面积为πr²;又因为圆柱体的高是h,所以圆柱体的体积V就是底面积乘以高,即V=πr²h。

(三)课堂活动1. 让学生分组,每组准备一张纸,一支铅笔,一把直尺和一个圆规。

让他们按照刚才的方法制作一个圆柱体,然后测量并计算其体积。

2. 组织学生进行讨论,分享他们的实验结果,以及在计算过程中遇到的问题和解决办法。

(四)巩固练习提供一些关于圆柱体体积的题目,让学生进行解答,以此来检查他们是否掌握了本节课的知识点。

人教版六年级下册数学《圆柱的体积》教案6篇

人教版六年级下册数学《圆柱的体积》教案6篇

人教版六年级下册数学《圆柱的体积》教案6篇人教版六年级下册数学《圆柱的体积》教案1教学目标圆柱的体积(1)圆柱的体积(教材第25页例5)。

探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

教学重难点1.掌握圆柱的体积公式,并能运用其解决简单实际问题。

2.理解圆柱体积公式的推导过程。

教学工具推导圆柱体积公式的圆柱教具一套。

教学过程【复习导入】1.口头回答。

(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

2.引入新课。

我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。

今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。

【新课讲授】1.教学圆柱体积公式的推导。

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。

②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。

近似长方体的高就是圆柱的高,没有变化。

故体积不变。

(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

《圆柱的体积》教学设计与意图

《圆柱的体积》教学设计与意图

《圆柱的体积》教学设计与意图教材简析:本课的学习是在学生已经掌握了圆柱的特征、圆面积的推导方法,以及长方体、正方体的体积公式的基础上进行的。

教材例题的安排围绕“建立猜想——验证猜想——回顾反思”展开。

教材呈现底面积和高分别相等的长方体、正方体和圆柱,引导学生通过观察和类比,提出有关圆柱体积计算方法的猜想;再启发学生把以前探索圆面积公式的经验和方法迁移到探索圆柱体积公式的过程中来,进而推导出圆柱的体积公式,验证自己的猜想。

最后引导学生回顾圆柱体积公式的探索过程,说说自己的体会,帮助学生进一步明晰圆柱体积公式的推导过程,梳理活动过程中积累的数学活动经验,感悟转化的思想方法,发展数学思维能力。

同时安排适度的练习,让学生应用公式计算圆柱的体积,解决相关的实际问题,在应用中感受数学知识和方法的学习价值。

学情简析:从知识的角度来说,学生已经掌握了体积的含义、圆柱的特征和长方体和正方体的体积计算方法;从研究方法、经验的角度来说,学生经历了圆面积的推导过程,掌握了圆面积的推导方法,在平面图形的面积计算公式(如平行四边形的面积、三角形的面积、梯形的面积、圆的面积)推导中积累了比较丰富的研究经验,对转化思想在数学问题研究中的运用有了一定的理解与感悟,这些是学生学好本部分内容的重要基础。

因此,在学习过程中,要引导学生主动联系已有的知识、经验、方法去展开圆柱体积的学习。

教学目标:1. 结合具体情境,经历观察、操作、猜想、验证、类比和归纳等数学活动,探索并掌握圆柱体积的计算方法,初步学会应用公式计算圆柱的体积,并解决相关的实际问题。

2. 在探索圆柱体积计算公式的过程中,进一步感受转化思想,积累数学活动经验,培养应用已有知识探究和解决新问题的能力;发展观察、比较、分析、概括等思维能力,增强空间观念。

3. 在参与数学活动的过程中,进一步感受数学知识和方法的学习价值,培养善于提问、善于思考的品质,在体会探索和获得新知识的成功过程中,提高学习数学的兴趣和学好数学的自信心。

《圆柱的体积》教学设计(精选9篇)

《圆柱的体积》教学设计(精选9篇)

《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

教学重难点:学生会应用圆柱体积公式解决实际问题。

探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。

要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。

⑴估测。

这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。

如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。

底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。

3.14×152×12=8478(立方厘米)⑴评价。

组织学生间进行评价。

你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

⑴反思。

引导学生将实际计算结果与自己的估测结果进行对比。

自己矫正偏差。

⑴延伸。

如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。

《圆柱的体积》教案(15篇)

《圆柱的体积》教案(15篇)

《圆柱的体积》教案(15篇)《圆柱的体积》教案1教学目标:1、使同学掌控圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让同学经受观测、操作、争论等数学活动过程,理解圆柱体积公式的推导过程,引导同学探讨问题,体验转化和极限的思想。

3、在图形的变换中,培育同学的迁移技能、规律思维技能,并进一步进展其空间观念,领悟学习数学的方法,激发同学爱好,渗透事物是普遍联系的唯物辨证思想。

教学重点:圆柱体积计算公式的推导过程并能正确应用。

教学难点:借助教具演示,弄清圆柱与长方体的关系。

教具预备:多媒体课件、长方体、圆柱形容器假设干个;同学预备推导圆柱体积计算公式用学具。

教学设想:《圆柱的体积》是同学在有了圆柱、圆和长方体的相关的基础上进行教学的。

在知识与技能上,通过对圆柱的详细讨论,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经受和体验中思索,培育同学科学的思维方法;贴近同学生活实际,创设情境,解决问题,表达数学知识从生活中来到生活去的理念,激发同学的学习爱好和对科学知识的求知欲,使同学乐于探究,擅长探究。

教学过程:一、创设情境,激疑引入水是生命之源!节省用水是我们每个公民应尽的义务。

前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

〔1〕启发思索:容器里面的水形成了什么外形?〔圆柱〕你能知道这些水的体积?〔2〕争论后汇报生1:用量筒或量杯径直量出它的体积;生2:用秤称出水的重量,然后进一步知道体积;生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具〔圆柱形容器,长方形容器,半圆形容器和其他不规章容器〕,你怎么办?生1:把水到入长方体容器中生2:我们学过了长方体的体积计算,只要量出长、宽、高就行[设计意图:通过本环节,给同学创设一个生活中的情境,提出问题,学习身边的数学,激起同学的学习爱好;依据需要渗透圆柱体〔新问题〕和长方体〔已知〕的知识联系为所学内容作了铺垫的预备]2、创设问题情境。

小学六年级数学《圆柱的体积》教案一等奖范文

小学六年级数学《圆柱的体积》教案一等奖范文

小学六年级数学《圆柱的体积》教案一等奖范文1、小学六年级数学《圆柱的体积》教案一等奖范文教学内容:北师大版数学六年级下册5——6页。

教学目标:1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学重点:目标1。

教学难点:目标2。

教学过程:活动一:复习旧知,巩固学过的公式。

1、一个直径是100毫米的圆,求周长。

2、一个半径3厘米的圆,求周长和面积。

3、一个长为3米,宽为2米的长方形,它的面积是多少?4、出示圆柱体的模型,说说它有什么特征?活动二;探究新知。

1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)要解决这个问题,就是求什么?2、圆柱的表面积包括哪几部分?3、圆柱的表面积的计算关键在哪一部分?4、探索圆柱侧面积的计算方法。

1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?3)师;圆柱的侧面积就是求长方形的面积。

用长乘宽。

4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

5)请你来总结一下圆柱侧面积的计算方法。

6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。

活动三:新知识的运用。

1、求底面半径是10厘米,高30厘米的圆柱的表面积。

2、教师板书:侧面积:2╳3.14╳10╳30=1884(平方厘米)底面积:3.14╳10╳10=314(平方厘米)表面积:1884+314╳2=2512(平方厘米)要求按步骤进行书写。

2、试一试。

做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?求至少需要多少铁皮,就是求水桶的表面积。

这道题要注意什么?无盖就只算一个底面。

这种题如果求整数,一般用进一法。

3、练一练。

书第6页第1题。

3个小题:已知底面直径或底面周长和高,求圆柱的表面积。

《圆柱的体积》教学设计12893

《圆柱的体积》教学设计12893

新授课《圆柱的体积》教学设计【教学内容】新审定人教版小学数学六年级下册第25页例5、例6及相应练习的内容。

【教材分析】圆柱是一种含有曲面的几何体,给体积的认识和计算增加了难度。

教材将本课学习安排在圆柱的认识和圆柱的表面积之后。

让学生有序地经历了探究物体与图形的形状、大小、位置关系的变换过程,掌握圆柱体积的计算方法和公式的推导过程,建立初步的空间概念,培养形象思维,还可以为学习圓锥体积打下坚实的基础,提高学生的知识迁移能力。

基于以上认识,我在设计中突出了以下几点:1.加强几何的实践操作,尽量让学生自己动手,亲身经历圆柱的体积转化过程,让学生的多种感观参与学习活动。

在理解知识的基础上,发展学生思维。

2.加强几何习题的设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,可以根据不同的条件求圆柱的体积。

尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。

3.加强空间观念的培养,提高学生形象思维及解决问题的能力。

突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。

【教学目标】1.知识目标:通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。

2.技能目标:在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。

3.情感目标:探索和解决问题,体验转化及极限的思想方法。

学会由未知向已知转化的学习方法。

【教学重、难点】教学重点:掌握和运用圆柱体积计算公式。

教学难点:掌握圆柱体积公式的推导过程。

突破重难点设想:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。

因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。

【教学准备】多媒体课件【教学过程】(3)感知:将圆柱体模具(已切好)当场演示。

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)

小学六年级数学《圆柱的体积》教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!小学六年级数学《圆柱的体积》教案(优秀9篇)作为一名教职工,就不得不需要编写教案,借助教案可以有效提升自己的教学能力。

《圆柱的体积》教案【6篇】

《圆柱的体积》教案【6篇】

《圆柱的体积》教案【6篇】《圆柱的体积》数学教案篇一第二课时教学目标1.经历同桌合作,测量、计算圆柱形物体体积的过程。

2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。

3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。

教学重点能根据学生自己测量的数据进行圆柱体积的计算。

教学难点给出圆柱底面周长如何计算圆柱的体积。

教具准备学生自备的茶叶筒或露露瓶。

教学过程一、测量茶叶筒的体积1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?生:茶叶筒的高,底面直径或半径。

师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。

学生同桌合作测量并计算。

2.交流测量数据的方法和计算的结果。

3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。

如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?生:利用周长先求出半径,再进行计算。

师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。

或用皮尺测量。

请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。

二、巩固练习1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?2.独立完成练一练的1-3题。

三、家庭作业1.练一练的第4小题。

2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?圆柱的体积第三课时容积教学目标1.结合具体事例,经历探索容积计算问题的过程。

2.掌握计算容积的方法,能解决有关容积的简单实际问题。

3.在解决容积问题的过程中,体验数学与日常生活的密切联系。

《圆柱的体积》教案5篇

《圆柱的体积》教案5篇

《圆柱的体积》教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《圆柱的体积》教案5篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

《圆柱的体积》教案八篇

《圆柱的体积》教案八篇

《圆柱的体积》教案八篇《圆柱的体积》教案篇1最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。

现把它撷取下来与各位同行共赏。

……师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?生:(绝大部分学生举起了手)底面积乘高。

师:那你们是怎样理解这个计算方法的呢?生1:我是从书上看到的。

(举起的手放下了一大半。

很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。

但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。

老师便顺水推舟,让他们来讲。

)生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。

而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。

真行!当然这仅是你的猜测,要是再能证明就好了。

生3:我可以证明。

推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。

那不就证明了圆柱体积的计算公式就是用底面积乘高吗?(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。

)师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。

)生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。

生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。

《圆柱的体积》教学设计板书设计

《圆柱的体积》教学设计板书设计

《圆柱的体积》教学设计板书设计《圆柱的体积》教学设计板书设计桥头中心学校王明台教学目标:1.知识与技能:会推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

2.方法与过程:经历猜测、验证、合作、动手操作等过程,理解圆柱体体积公式的推导过程。

3情感、态度、价值观:培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

教学重难点:圆柱体积公式推导过程与应用。

教具:圆柱的体积公式演示课件.教学过程:一、复习提问:1、我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?2、我们都学过那些立体图形的体积公式。

二、新授出示例题:1、思考:圆柱的体积和那些条件有关。

(电脑演示)2、.探究推导圆柱的体积计算公式。

小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联系?课件演示(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

小结: A、把圆柱拼成长方体后,形状变了,体积不变。

(板书:长方体的体积=圆柱的体积)B、拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

C、圆柱的体积=底面积×高字母公式是 V = S h提问:要用这个公式计算圆柱的体积必须知道什么条件?3、一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?三、练习1、填空圆柱体通过切拼转化成近似的()体。

这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。

因为长方体的体积等于(),所以,圆柱体的体积等于()用字母表示()。

2、已知一个圆柱的底面积是 10平方米,高是2米,它的体积是多少?3、已知一个圆柱的底面半径是2分米,高是5分米,它的体积是多少?4、已知一个圆柱的底面周长是6.28分米,高是5分米,它的体积是多少?四、小结(略)五、布置作业(略)板书设计:圆柱的体积长方体的体积=底面积x高圆柱的体积=底面积x高V=Sh小升初数学模拟试卷一、选择题1.被除数一定,除数和商成_____比例.2.已知一个三角形两边的长分别是3厘米和8厘米,要使这个三角形的周长最长,那么第三边的长是()厘米.(长度为整厘米数)A.5 B.9C.10 D.113.有一段绳子,截下它的23后,还剩23米,那么()A.截去的多B.剩下的多C.一样多D.无法比较4.一个人从东村步行去西村,走了全程的40%后离全程中点还有2.5千米,东西两村间的路程是()A.28千米 B.25千米 C.20千米 D.52千米5.两根同样8米长的铁丝,从第一根上截去它的38,从第二根上截去38米。

《圆柱的体积》教案范文(通用5篇)

《圆柱的体积》教案范文(通用5篇)

《圆柱的体积》教案《圆柱的体积》教案范文(通用5篇)作为一名老师,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。

那要怎么写好教案呢?以下是小编整理的《圆柱的体积》教案范文(通用5篇),希望能够帮助到大家。

《圆柱的体积》教案1教学目标:1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。

2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。

教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。

教学准点:掌握圆柱体积公式的推导过程。

教学准备:圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。

教学过程:一、情境激趣导入新课1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)二、自主探究,学习新知(一)设疑1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式(二)猜想1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?(三)验证1、为了证实刚才的猜想,我们可以通过实验来验证。

怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。

(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。

《圆柱的体积》教案

《圆柱的体积》教案

《圆柱的体积》教案五篇教学目标:1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式进行正确计算。

教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学过程:一、情景导入:1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?学生:1、比平日多了两个蛋糕。

2、两个蛋糕一个大一个小。

3、蛋糕都是圆柱形的。

2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?学生:蛋糕大,意味着圆柱的体积大。

3、教师:那你还知道什么是圆柱的体积吗?学生:圆柱的体积就是圆柱体占空间的大小。

4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

教师:板书:圆柱的体积二、课上探究1、教师:同学们回忆一下我们还学过那些立体图形?学生:还学过正方体和长方体。

教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

2、猜测圆柱的体积与什么有关师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:圆柱的体积(北师大六年级下册数学第一单元)
教学目标:探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

教学重点:掌握圆柱的体积公式,并能运用其解决简单实际问题。

教学难点:理解圆柱体积公式的推导过程。

教具准备:希沃课件
教学过程:
【复习导入】打开希沃课件出示圆的面积的转化求法。

(1)怎样求圆的面积?圆的面积公式是什么?
(2)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

【引入新课】
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。

今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。

【新课讲授】
1.教学圆柱体积公式的推导。

(1)希沃课件演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?
(4)学生根据圆的面积公式推导过程,进行猜想:
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

(6)推导圆柱的体积公式。

①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。

教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。

【相关练习】见课件。

相关文档
最新文档