用坐标方法解决立体几何问题ppt课件
空间向量及其运算的坐标表示_课件
数量积
a·
b
_____a_1_b__1+__a__2b__2_+_______ a3b3
已知a=(1,-2,1),a-b=(-1,2,-1),则b 等于( )
A.(2,-4,2)
B.(-2,4,-2)
C.(-2,0,-2)
D.(2,1,-3)
解析 依题意,得b=a-(-1,2,-1)=a+(1,-2,1)=2(1,-2,1) =(2,-4,245°), ∠yOz=90°,如下图
空间直角坐标系
空间直角坐标系
坐标表示:对于空间任意一个向量p,存在有序实数组{x,y,z} , 使得p=xi+yj+zk,则把x,y,z称作向量p在单位正交基底i,j , k下的坐标,记作p=(x,y,z),其中数x就叫做点P的横坐标,数 y就叫做点P的纵坐标,数z就叫做点P的竖坐标
在棱长为1的正方体ABCD—A1B1C1D1中,E,F分别是D1D , B中D点的,中试点建,立点适G当在的棱坐CD标上系,,且写|C出GE|=,F|,CDG|,,HH的坐 标.
解 建立如图所示的空间直角坐标系 . 点E在z轴上,它的横坐标、纵坐标均为0
, 而过EF作为FDMD⊥1的A中D点, F故N⊥其D坐C标, 由为平面几何知识 ,
空间向量运算的坐标表示
空间向量a,b,其坐标形式为a=(a1,a2,a3),b=(b1,b2,
b3). 向量运算
向量表示
坐标表示
加法 减法 数乘
a+b a-b λa
(_a_1_+__b__1,___a_2_+__b_2_,__a_3_+___ b_(_3a)_1_-_b__1,__a__2-_b__2,___a_3_-_b_3_)_ _____(λ__a_1_,__λ_a_2_,__λ_a__3)____
解说立体几何中的“坐标法”
解说立体几何中的“坐标法”江苏省姜堰中学张圣官(225500)空间直角坐标系是现行高中数学新增加的内容,在使用上就是把空间的点、向量先用坐标表示,然后利用坐标来计算有关角的大小与线段的长度,或者判断与证明线线、线面以及面面的位置关系。
利用“坐标法”解(证)立体几何题,所作的辅助线明显比纯几何推理需要作的要少,且思路简单明了,更易于程序化来解题。
用“坐标法”解题是数与形结合的典范,它特别适用于易于建立空间直角坐标系的图形(如正方体等)。
下面分别介绍在空间直角坐标系中如何确定点的坐标、常见特殊点的坐标特点及利用“坐标法”解(证)立体几何题的步骤。
一、如何确定空间点的坐标空间点的坐标是有序实数对(x,y,z),其中的三数x,y,z包含坐标的符号与坐标的绝对值。
要确定一个点的坐标,应先判断三个坐标的符号,然后再确定三个坐标的绝对值。
1.点的坐标的符号判断点在坐标平面上的射影位于坐标轴的正方向,则这点对应的坐标的符号为正,否则符号为负。
如点位于x轴正方向,则横坐标为正;点位于z轴负方向,则竖坐标为负。
2.点的坐标的绝对值确定过这个点向三个坐标平面作垂线,看垂线段平行于哪个轴,则这条线段的长度就是该点的绝对值。
如这条垂线段平行于y轴且长度为a,则点的纵坐标的绝对值是a;如这条垂线段平行于z轴且长度为a,则点的竖坐标的绝对值是a 。
二、常见特殊点的坐标特点1.坐标轴上点的坐标的特点①x轴上的点的纵坐标和竖坐标均为0,形如(a,0,0);②y轴上的点的横坐标和竖坐标均为0,形如(0,a,0);③z轴上的点的横坐标和纵坐标均为0,形如(0,0,a)。
2.坐标平面上点的坐标的特点①XOY平面上所有点的竖坐标是0,形如(a,b,0);②YOZ平面上所有点的横坐标是0,形如(0,a,b);③ZOX平面上所有点的纵坐标是0,形如(a,0,b)。
三、利用“坐标法”解(证)立体几何题的步骤第一步,建立坐标系通常取垂直且相交于同一点的三条直线作为三条坐标轴,它们的交点作为原点,并选取适当的单位长度;第二步,表示点的坐标将题中相关点(即在问题中出现的且要求的点)用坐标表示,这一步是解(证)题的关键;第三步,表示向量的坐标根据点的坐标可以求出所需要的向量的坐标,即用向量终点的坐标减去起点的坐标;第四步,求出问题的解将点或向量的坐标代入公式(如两向量的夹角公式等);第五步,作出结论根据上一步所求得的结果,作出问题的正确结论。
用坐标系解立体几何常见方法
建立空间直角坐标系,解立体几何高考题立体几何重点、热点:求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等.常用公式:1、求线段的长度:AB AB x2y2z2x2x12y2y12z2z12|PM n|2、求P点到平面的距离:PN ,(N为垂足,M为斜足,n 为平面的法向量)|n||PM n|3、求直线 l 与平面所成的角:|sin |,(PM l , M , n 为的法向量)|PM| |n||AB CD|4、求两异面直线AB 与CD的夹角:cos|AB| |CD||n1 n2 |5、求二面角的平面角:|cos | ,(n1,n2为二面角的两个面的法向量)|n1| |n2 |S射影6、求二面角的平面角:cos ,(射影面积法)S7、求法向量:①找;②求:设a,b 为平面内的任意两个向量,n ( x, y,1)为的法向量,a n 0则由方程组,可求得法向量n .b n 0高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。
而用向量坐标运算的关键是建立一个适当的空间直角坐标系。
一﹑直接建系。
当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。
例1. (2002 年全国高考题)如图,正方形ABCD﹑ABEF的边长都是1,而且平面ABCD﹑ABEF互相垂直。
点M在AC上移动,点N在BF上移动,若CM=BN(=a0 a 2 )。
(1)求MN的长;(2)当a 为何值时,MN的长最小;(3)当MN最小时,求面MNA与面MNB所成二面角α的大小。
解:(1)以B为坐标原点,分别以BA﹑BE﹑BC为x﹑y﹑z 轴建立如图所示的空即M﹑N 分别移动到AC﹑BF的中点时,MN的长最小,最小值为2 (3)取MN的中点P,连结AP﹑BP,因为AM=A,N BM=B,N 所以AP⊥MN,BP⊥MN,∠ APB即为二面角α的平面角。
高中数学空间向量与立体几何1.31.3.1空间直角坐标系课件
[跟进训练] 2.点 P(-3,2,-1)关于平面 Ozx 的对称点是________,关于 z 轴的对称点是________,关于 M(1,2,1)的对称点是________. (-3,-2,-1) (3,-2,-1) (5,2,3) [点 P(-3,2,-1)关 于平面 Ozx 的对称点是(-3,-2,-1),关于 z 轴的对称点是(3,- 2,-1).设点 P(-3,2,-1)关于 M(1,2,1)的对称点为(x,y,z).
且|EA|=12. 所以D→E=i+12j+0k,所以 E 点的坐标为1,12,0.
同理 B 点和 B1 点的坐标分别为(1,1,0)和(1,1,1), 又因为 F 是 BB1 的中点,故 F 点坐标为1,1,12. 同理可得 G 点坐标为1,12,12.
类型 2 求对称点的坐标 【例 2】 在空间直角坐标系中,点 P(-2,1,4). (1)求点 P 关于 x 轴的对称点的坐标; (2)求点 P 关于 Oxy 平面的对称点的坐标; (3)求点 P 关于点 M(2,-1,-4)的对称点的坐标.
间中点的坐标和向量的坐标.(重 数学运算的核心 知识点2
(1)如图所示,怎样才能刻画地球的卫星在空 间中的位置?
(2)我们知道,在直线上建立数轴后,就可以 用一个数来刻画点在直线上的位置;在平面内建 立平面直角坐标系之后,就可以用一对有序实数 来刻画点在平面内的位置.那么,怎样才能刻画 空间中点的位置呢?
(3)设对称点为 P3(x,y,z),则点 M 为线段 PP3 的中点.由中点 坐标公式,可得 x=2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(- 4)-4=-12,
所以 P3(6,-3,-12).
1.点 P(x,y,z)关于坐标轴,坐标平面对称的点 P′的坐标与点 P 的坐标有什么关系?
用坐标方法解决立体几何问题 ppt课件
用坐标方法解决立体几何问题
如图,一块均匀的正三角形面的钢板的质量
为 500kg ,在它的顶点处分别受力 F1, F2, F3 , 每个力与同它相邻的三角形的两边之间的
A
D
O
B
E
C
用坐标方法解决立体几何问题
用坐标方法解决立体几何问题
用坐标方法解决立体几何问题
用坐标方法解决立体几何问题
坐标分别A为 (0,0,0),B(0,1,0),C( 3, 1,0). 22zFF1
3
C
F
2
O
A
用坐标方法解决x立体几何问题
500kg
B
y
例2 如图,在四棱锥P-ABCD中,底面ABCD是正方形, 侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作 EF⊥PB交PB于点F.
(1)求证:PA//平面EDB
(2)求证:PB⊥平面EFD
P
(3)求二面角C-PB-D的大小。
F
E
D A
用坐标方法解决立体几何问题
C B
解:如图所示建立空间直角坐标系,点D为坐标原点, 设DC=1
(1)证明:连结AC,AC交BD于点G,连结EG
依题意得A(1,0,0),P(0,0,1),
Z
11
E(0, , ) 22
P
因为底面ABCD是正方形,
角都是 60 ,且 F1 F2 F3 200kg .这块钢 板在这些力的作用下将会怎样运动?这三
个力最小为多少时,才能提起这块钢板?
F3
F1
C
F2
坐标法在立体几何中的应用
坐标法在立体几何中的应用摘要:找寻或构建共点的三条两两相互垂直的直线,是建立空间直角坐标系的前提。
可以把要求的量、相关已知量从原来图形中剥离出来,构造一个恰当的几何模型。
建模思想以坐标法作为解题工具,可以较为简便地证明立体几何中的平行、垂直等位置关系,以及求解异面直线夹角、线面角、二面角、点到平面的距离等,降低立体几何对空间想象的难度,有入门快、易接受的功效。
关键词:线面角线线角量量角立体几何问题一般有综合法、空间向量法两种解法,而空间向量法作为解题工具在解题过程中思维自然、较少添加辅助线,学生易于接受。
特别是证明平行、垂直等位置关系,求异面直线夹角、线面角、二面角、点到平面的距离,有综合法无以能及的功效。
按解答形式分;空间向量法又分向量法和坐标法两种,坐标法解立体几何问题是高考重点考查内容,应用非常广泛,本文在此对它的解题结构及其应用进行剖析。
运用坐标法解立体几何,有三个环节需要突破:1 建系所谓建系,就是建立空间直角坐标系,依据空间几何图形的结构特征,找寻或构建共点的三条两两相互垂直的直线,建立空间直角坐标系,并把相关点、向量用坐标表示出来。
例1:如图1,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1.已知AB=,BB1=2,BC=2,∠BCC1=.求二面角A-EB1-A1的平面角的正切值。
解析:以B为原点,分别以BB1,BA所在直线为y轴、z轴,过B点垂直于平面AB1的直线为x轴建立空间直角坐标系。
则:B(0,0,0),A(0,0,),B1(0,2,0),C,,0,C1,,0∴BA=(0,0,),设E,ɑ,0 (-0,则B(,-b,0),容易得到·=0,·=0从而证得:PC⊥平面BDE(Ⅱ)∵=(0,0,2),=(,-b,0)设=(x,1,z)为平面PAB的一个法向量,则·=0·=0解得:=(b ,1,0),同理设=(p,q,1)为平面PBC的一个法向量,解得:=(,—,1),∵平面PAB⊥平面PBC ∴·=0解得:=(,-,1),又∵=(-,-,2),构建“点面距”模型与图2类似(略)∵sinα=∣cosθ∣= ∴α=30°∴PD与平面PBC所成角为30°坐标法在立体几体中的应用充分体现了数形结合思想、将空间元素的位置关系向数量关系转化的思想,培养了学生将形式逻辑证明向数值计算转化、以及使用向量代数方法解决立体几何问题的能力,数的表述性代替了形的直观性,可操作性强,大大降低了立体几何对空间想象的难度,方法具有普及性。
第34讲 利用坐标法解决立体几何的角度与距离问题(解析版)
第34讲 利用坐标法解决立体几何的角度与距离问题参考答案与试题解析一.选择题(共1小题)1.(2021•南岗区校级期中)如图,三棱锥A BCD -中,90DAB DAC BAC ∠=∠=∠=︒,1AB AD AC ===,M ,N 分别为CD ,BC 的中点,则异面直线AM 与DN 所成角余弦值为( )A .16B C D .56【解答】解:三棱锥A BCD -中,90DAB DAC BAC ∠=∠=∠=︒,建立空间直角坐标系, 如图所示:由于1AB AD AC ===,M ,N 分别为CD ,BC 的中点, 所以(0A ,0,0),11(0,,)22M ,(0D ,0,1),11(,22N ,0),则11(0,,)22AM =,11(,,1)22DN =-,所以异面直线AM 与DN 所成角余弦值3cos ||||||AM DN AM DN θ== 故选:B .二.解答题(共21小题)2.(2021•凉山州模拟)如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M 、N 分别为PC ,PB 的中点.(1)求证:PB DM ⊥;(2)求二面角A MD C --的正弦值.【解答】解:(1)证明:PA ⊥面ABCD ,AD ⊂面ABCD ,AD PA ∴⊥, 90BAD ∠=︒,AD AB ∴⊥, PAAB A =,PA ,AB ⊂面PAB ,AD ∴⊥面PAB ,PB ⊂面PAB ,AD PB ∴⊥,又PAB ∆中,AP AB =,N 为PB 的中点,AN PB ∴⊥, ANAD A =,AN ,AD ⊂平面AND ,PB ∴⊥面AND ,又N ,M 分别为PB ,PC 的中点, //MN BC ∴,//BC AD ,//MN AD ∴,N ∈面AND ,M ∴∈面AND ,MN ∴⊂面AND ,PB DM ∴⊥.(2)解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, 设22PA AD AB BC ====,则(0A ,0,0),(0P ,0,2),(2C ,1,0),(0D ,2,0),(1M ,12,1), 设面AMD 的法向量(m x =,y ,)z , (0AD =,0,2),(1AM =,12,1), 20102AD m y AM m x y z ⎧==⎪⎨=++=⎪⎩,取1x =,得(1m =,0,1)-, 设面CMD 的法向量(n x =,y ,)z ,(2DC =,1-,0),(1DM =,32-,1),20302DC n x y DM n x y z ⎧=-=⎪⎨=-+=⎪⎩,取1x =,得(1n =,2,2), cos ,||||32m n m n m n <>==-∴二面角A MD C --.3.(2021•荔湾区校级期末)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE ∆沿在直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C ''的中点.(1)求证://BF 平面A DE '.(2)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的大小. (3)若2BC =,求三棱锥A DEF '-的体积.【解答】解:(1)证明:取CD 中点G ,连结GF ,BG , 在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE ∆沿在直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,//GF A D ∴',//BGDE, GFBG G =,A DDE D '=,∴平面//A DE '平面BGF ,BF BGF ⊂,//BF ∴平面A DE '.(2)解:取CD 中点G ,连结EG 、AG 、DE ,A M ', 设2BC =,则四边形AEGD 是边长为2的菱形,且60DAE ∠=︒,MA ME ∴⊥,由平面A DE '⊥平面BCD ,F 为线段A C ''的中点.A M ∴'⊥平面AEGD ,以M 为原点,MA 为x 轴,ME 为y 轴,MA '为z 轴,建立空间直角坐标系,则(0M ,0,0),(0A ',0,(0D ,1-,0),(C -,1,0),(F ,12,(3FM =,12-,,平面A DE '的法向量(1m =,0,0),设直线FM 与平面A DE '所成角为θ, 则||3sin ||||FM n FM n θ==,60θ∴=︒. ∴直线FM 与平面A DE '所成角的大小为60︒.(3)解:2BC =,∴由(2)得(F 12,平面A DE '的法向量(1m =,0,0),1(2MF =-,∴点F 到平面A DE '的距离||3||MF m d m ==. 122A DES'=⨯∴三棱锥A DEF '-的体积:113A DEF F A DE V V '--'===.4.(2021•和平区校级月考)如图,四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,222PC AD DC CB ====,E 为PD 的中点.(1)证明://CE 平面PAB ;(2)求直线CE与平面PAB间的距离.【解答】(1)证明:取PA的中点M,连接BM、EM,E为PD的中点,//EM AD∴,12EM AD BC==,∴四边形BCEM为平行四边形,//CE BM∴,CE⊂/平面PAB,BM⊂平面PAB,//CE∴平面PAB.(2)解://CE平面PAB,∴点E到平面PAB的距离即为所求.222PC AD DC CB====,取AD的中点N,连接BN、PN,则四边形BCDN为矩形,1BN CD==PAD∆是以AD为斜边的等腰直角三角形,PN AD∴⊥,112PN AD==,BN AD⊥,PN BN N=,PN、BN⊂平面PNB,AD∴⊥平面PNB,//BC AD,BC∴⊥平面PNB,BC⊂平面ABCD,∴平面ABCD⊥平面PNB,以B为原点,BC、BN分别为x、y轴,在平面PNB内,作Bz⊥平面ABCD,建立如图所示的空间直角坐标系,则(0B,0,0),(1A,1-,0),(1D,1,0)BC⊥平面PNB,BC PB∴⊥,在Rt PBC∆中,PB===1BN PN==,120PNB∴∠=︒,∴点3(2P ,0,5(4E ,12, ∴3(2BP =,0,(1BA =,1-,0),5(4BE =,12, 设平面PAB 的法向量为(n x =,y ,)z ,则00n BP n BA ⎧⋅=⎪⎨⋅=⎪⎩,即3020x x y ⎧+=⎪⎨⎪-=⎩, 令1x =,则1y =,z =∴(1n =,1,,∴点E 到平面PAB的距离514||||||n BE d n +⋅==, 故直线CE 与平面PAB. 5.(2021•沙坪坝区校级月考)如图,在四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,PC 222AD DC CB ===,E 为PD 上一点. (1)若E 为PD 的中点,证明://CE 平面PAB ; (2)若直线CE 与底面ABCD ,求二面角P AB E --的正弦值.【解答】(1)证明:取线段PA 的中点M ,连结EM ,BM ,因为线段PD 的中点为E ,线段PA 的中点为M ,所以//EM AD 且12EM AD =, 又四边形ABCD 中,//BC AD ,2AD BC =,所以//EM BC ,EM BC =, 所以四边形BCEM 为平行四边形,所以//CE BM , 因为BM ⊂平面PAB ,CE⊂/平面PAB , 所以//CE 平面PAB ;(2)解:已知PAD ∆是以AD 为斜边的等腰直角三角形,2AD =, 所以PD 1PC CD ==,所以222PC PD CD =+, 由勾股定理的逆定理可得,CD PD ⊥,又CD AD ⊥,AD PD D =,AD ,PD ⊂平面PAD ,所以CD ⊥平面PAD ,因为CD ⊂平面ABCD ,所以平面ABCD ⊥平面PAD ,取AD 的中点O ,连结PO ,OB ,则PO AD ⊥,又PO ⊂平面PAD ,平面ABCD ⋂平面PAD AD =,所以PO ⊥平面ABCD ,四边形ABCD 中,//BC AD ,2AD BC =,所以四边形BCDO 是平行四边形,所以//BO CD ,BO CD =,所以BO AD ⊥,以O 为坐标原点,以OB ,OD ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系如图所示,所以(0A ,1-,0),(1B ,0,0),(1C ,1,0),(0D ,1,0),(0P ,0,1), 则(0,1,1),(1,0,0)DP CD =-=-, 设(0,,),(0,1)DE DP λλλλ==-∈, 所以(1,,)CE CD DE λλ=+=--, 平面ABCD 的法向量可取(0,0,1)n =, 因为直线CE 与底面ABCD,||||||CE n CEn ⋅=,解得13λ=, 所以11(1,,)33CE =--,则21(0,,)33E ,所以51(0,,),(1,1,0)33AE AB ==,设平面ABE 的法向量为(,,)m x y z =, 所以00m AE m AB ⎧⋅=⎪⎨⋅=⎪⎩,所以51033y z x y ⎧+=⎪⎨⎪+=⎩, 令1y =,则1x =-,5z =-,所以(1,1,5)m =--, 又(0,1,1)AP =,设平面PAB 的法向量为(,,)p a b c =, 则有00p AP p AB ⎧⋅=⎪⎨⋅=⎪⎩,所以00b c a b +=⎧⎨+=⎩,令1b =,则1c =-,1a =-,所以(1,1,1)p =--, 所以7cos ,||||9m p m p m p ⋅<>==,所以242sin ,1,m p cos m p <>=-<>=,所以二面角P AB E --.6.(2021•江苏一模)如图,在四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,AB AD ⊥,222AD AB BC ===,PC =E 为PD 的中点. (1)求直线PB 与平面PAC 所成角的正弦值;(2)设F 是BE 的中点,判断点F 是否在平面PAC 内,并请证明你的结论.【解答】解:(1)取AD 中点O ,连接OP 、OC ,PAD ∆是以AD 为斜边的等腰直角三角形,所以OP AD ⊥,1OP OA OD ===,因为//BC AD ,AB AD ⊥,222AD AB BC ===,所以四边形ABCO 为边长为1的正方形,所以OC AD ⊥,又因为PC =,所以222PC OP OC =+,所以PO OC ⊥, 所以OA 、OC 、OP 两两垂直,建立如图所示的空间直角坐标系, (1A ,0,0),(1B ,1,0),(0C ,1,0),(0P ,0,1),平面PAC 的法向量为(1n =,1,1),(1PB =,1,1)-, 所以直线PB 与平面PAC 所成角的正弦值为||13||||3PB n PB n ⋅==⋅⋅.(2)连接AF ,(1D -,0,0),1(2E -,0,1)2,1(4F ,12,1)4,3(4AF =-,12,1)4,点F到平面PAC的距离为||||3AF nn⋅==,所以点F在平面PAC内.7.(2021•房山区一模)如图,四棱锥P ABCD-中,PAD∆是以AD为斜边的等腰直角三角形,PD CD==2PC=,//12BC AD=,CD AD⊥.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)若E为PD中点,求CE与面PBC所成角的正弦值;(Ⅲ)由顶点C沿棱锥侧面经过棱PD到顶点A的最短路线与PD的交点记为F.求该最短路线的长及PFFD的值.【解答】(Ⅰ)证明:PD CD=2PC=,222CD PD PC∴+=,CD PD∴⊥,又CD AD⊥,PD AD D=,CD∴⊥平面PAD.(Ⅱ)解:取AD的中点O,连接OP,OB,PA PD=,PO AD∴⊥.CD⊥平面PAD,PO⊂平面PAD,PO CD∴⊥,又AD CD D=,PO∴⊥平面ABCD,//12BC AD =,CD AD ⊥.∴四边形BCDO 是矩形,OB OD ∴⊥.以点O 为坐标原点建立空间直角坐标系O xyz -,如图所示则C ,(0P ,0,1),(0D ,1,0),B ,(0E ,12,1)2, ∴11(,)22CE =--,(2,0,1),(0,1,0)PB BC =-=,设面PBC 的法向量(,,)n x y z =,则0n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,即00z y -==⎪⎩,令1x =可得(1n=,0.22cos ,||||5CE nCE n CE n -⋅∴<>===⋅设CE 与面PBC 所成角为θ,∴15sin |cos ,|CE n θ=<>=.(Ⅲ)解:CD ⊥平面PCD ,PD ⊂面PAD , CD PD ∴⊥,PDC ∴∆为等腰直角三角形,作出平面APD 和平面PCD 的侧面展开图,如图所示:连接AC 交PD 于F ,则AC 为最短路线,90APD PDC '∠=∠=︒,//AP DC '∴=,∴四边形ADC P '为平行四边形,F ∴与E 重合,∴最短路线长为22AF ==,此时1PF FD=.8.(2021春•湖北期末)如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形,4AB BC ==,2CD SD ==. (1)求证:SD AB ⊥;(2)求AB 与平面SBC 所成的角的正弦值.【解答】解:(1)证明:四棱锥S ABCD -中,//AB CD ,BC CD ⊥, 侧面SAB 为等边三角形,4AB BC ==,2CD SD ==.AD ∴=4SA AB ==,222SA SD AD ∴+=,SD SA ∴⊥,同理得SD SB ⊥, SASB S =,SD ∴⊥平面SAB ,AB ⊂平面SAB ,SD AB ∴⊥.(2)解:以D 为原点,在平面ABCD 内过D 作DC 的垂线为x 轴,DC 为y 轴, 过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,(4A ,2-,0),(4B ,2,0),(0C ,2,0),(1S ,0,,(4CB =,0,0),(1CS =,2-,(0AB =,4,0),设平面SBC 的一个法向量是(n x =,y ,)z ,则4020n CB x n CS x y ⎧⋅==⎪⎨⋅=-=⎪⎩,取2z =,得(0n =2),设AB 与平面SBC 所成的角为θ,则||4sin ||||7n AB n AB θ⋅===⋅.AB ∴与平面SBC .9.(2021•天山区校级期末)如图,在三棱锥P ABC -中,AB BC ⊥,12AB BC PA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC .(1)求证://OD 平面PAB ;(2)求直线OD 与平面PBC 所成角的正弦值.【解答】证明:(1)点O ,D 分别是AC ,PC 的中点, //OD PA ∴又OD ⊂/平面PAB ,PA ⊂平面PAB //OD ∴平面PAB ;(2)连接OB ,AB BC =,点O 是AC 的中点, OB AC ∴⊥又OP ⊥底面ABC .故可以O 为坐标原点,建立如图所示的空间直角坐标系 令112AB BC PA ===,AB BC ⊥,则2OA OB OC ===,2OP =则(0O ,0,0),B 0,0),(0C ,0),(0P ,0,(0D∴(0OD =,(BC =-,0),(0PC =,设(m x =,y ,)z 是平面PBC 的一个法向量 则00m BC m PC ⎧=⎪⎨=⎪⎩,即00y y ⎧+=⎪⎪-=令1z =,则(7m =,1) 直线OD 与平面PBC 所成角θ满足: ||210sin ||||m OD m OD θ== 故直线OD 与平面PBC10.(2012秋•小店区校级月考)如图,四边形ABCD 中(图1),E 是BC 的中点,2DB =,1DC =,BC ,AB AD ==1)沿直线BD 折起,使二面角A BD C --为60︒(如图2)(1)求证:AE ⊥平面BDC ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点B 到平面ACD 的距离.【解答】解:(1)如图1取BD 中点M,连接AM,ME.因AB AD==AM BD∴⊥(3)⋯(1分)因2DB=,1DC=,BC=满足:222DB DC BC+=,所以BCD∆是BC为斜边的直角三角形,BD DC⊥,因E是BC的中点,所以ME为BCD∆的中位线1//2ME CD,ME BD ∴⊥,12ME=⋯(2分)AME∴∠是二面角A BD C--的平面角,60AME∴∠=︒⋯(3分)AM BD⊥,ME BD⊥且AM、ME是平面AME内两相交于M 的直线BD∴⊥平面AEM AE⊂平面AEM,BD AE∴⊥⋯(4分)因AB AD==,2DB=,ABD∴∆为等腰直角三角形,∴112AM BD==,22212cos124AE AM ME AM ME AME=+-∠=+-⨯2221AE ME AM∴+==,AE ME∴⊥⋯(6分)BD M E∴,BD⊂面BDC,ME⊂面BDC,AE∴⊥平面BDC⋯(7分)(2)如图2,以M为原点MB为x轴,ME为y轴,建立空间直角坐标系,(8分)则由(1)及已知条件可知(1B ,0,0),1(0,,0)2E ,1(0,2A ,(1D -,0,0),(1C -,1,0), 13(1,,),(0,1,0)2AB CD =--=-,⋯(9分)设异面直线AB 与CD 所成角为θ, 则cos ||||||AB CDAB CD θ=⋯(10分)1==⋯(11分)(3)由13(1,,),(0,1,0)2AD CD =---=-,可知(3,0,2)n =-满足,0,0n AD n CD ==,n 是平面ACD 的一个法向量,⋯(12分) 记点B 到平面ACD 的距离d , 则AB 在法向量n 方向上的投影绝对值为d 则||||AB nd n =⋯(13分), 所以7d ==(14分)11.(2010•浙江)如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,243AE EB AF FD ====.沿直线EF 将AEF ∆翻折成△A EF ',使平面A EF '⊥平面BEF .(Ⅰ)求二面角A FD C '--的余弦值;(Ⅱ)点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '重合,求线段FM 的长.【解答】解:(Ⅰ)取线段EF 的中点H ,连接A H ',因为A E A F '='及H 是EF 的中点,所以A H EF '⊥,又因为平面A EF '⊥平面BEF . 如图建立空间直角坐标系A xyz -则(2A ',2,,(10C ,8,0), (4F ,0,0),(10D ,0,0).故(2FA '=-,2,,(6FD =,0,0). 设(n x =,y ,)z 为平面A FD '的一个法向量,22060x y x ⎧-++=⎪⎨=⎪⎩,取z =,则(0,n =-. 又平面BEF 的一个法向量(0,0,1)m =, 故3cos ,||||n m n m n m ⋅〈>==⋅.(Ⅱ)设FM a =,则(4M a +,0,0), 因为翻折后,C 与A 重合,所以CM A M =',故,222222(6)80(2)2a a -++=--++,得214a =, 经检验,此时点N 在线段BC 上, 所以214FM =. 方法二:(Ⅰ)解:取线段EF 的中点H ,AF 的中点G ,连接A G ',A H ',GH . 因为A E A F '='及H 是EF 的中点, 所以A H EF '⊥又因为平面A EF '⊥平面BEF , 所以A H '⊥平面BEF , 又AF ⊂平面BEF , 故A H AF '⊥,又因为G 、H 是AF 、EF 的中点, 易知//GH AB , 所以GH AF ⊥, 于是AF ⊥面A GH ',所以A GH ∠'为二面角A DH C '--的平面角,在Rt △A GH '中,A H '=,2GH =,A G '=所以cos A GH '∠=.故二面角A DF C '--. (Ⅱ)解:设FM x =, 因为翻折后,C 与A '重合, 所以CM A M =',而222228(6)CM DC DM x =+=+-,222222222(2)2A M A H MH A H MG GH x '='+='++=+++,故222222(6)80(2)2x x -++=--++ 得214x =,经检验,此时点N 在线段BC 上, 所以214FM =.12.(2021•五莲县期中)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,//BE CF ,90BCF CEF ∠=∠=︒.AD =2EF =.(1)求证://AE 平面DCF ;(2)当AB 的长为何值时,二面角A EF C --的大小为60︒.【解答】证明:(1)过E 作EG CF ⊥于G ,连接DG ,则四边形BCGE 为矩形. 又ABCD 为矩形,AD ∴平行且等于EG ,∴四边形ADGE 为平行四边形,//AE DG ∴,AE ⊂/平面DCF ,DG ⊂平面DCF ,//AE ∴平面DCF .解:(2)分别以直线BE 、BC 、BA 所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系,依题意可得:(0B ,0,0),(0C 0),(3E ,0,0),(4F 0), 设AB m =,则(0A ,0,)m .(3AE =,0,)m -,(1EF =0),平面CEF 的法向量(0m =,0,1). 设平面AEF 的法向量(n x =,y ,)z ,则30n AE x mz n EF x ⎧⋅=-=⎪⎨⋅==⎪⎩,取9z =,得(3n m =,,9)(8分) 二面角A EF C --的大小为60︒, ||cos60||||12n m n m m ⋅∴︒==⋅92m =. ∴当92AB =时,二面角A EF C --的大小为60︒.(12分)13.(2014秋•成都校级月考)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点.(Ⅰ) 求证:CM EM ⊥;(Ⅱ) 求CM 与平面CAE 所成角的大小;(Ⅲ) 求平面ABC 与平面CDE 所成锐二面角的余弦值.【解答】证明:(Ⅰ)分别以CB ,CA 所在直线为x ,y 轴,过点C 且与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系C xyz -设AE a =,则(M a ,a -,0),(0E ,2a -,)a , 所以(CM a =,a -,0),(EM a =,a ,)a -,∴()0()0CM EM a a a a a =⨯+-⨯+⨯-=,CM EM ∴⊥.解:(2)平面CAE 的法向量(1n =,0,0),(CM a =,a -,0), 设CM 与平面CAE 所成角为θ,则||sin ||||2CM n CM n aθ===,45θ=︒,∴直线CM 与平面CAE 所成的角为45︒.(3)(2D a ,0,2)a ,(2CD a =,0,2)a ,(0CE =,2a -,)a , 设平面CDE 的法向量(m x =,y ,)z ,则20220m CE ay az m CD ax az ⎧=-+=⎪⎨=+=⎪⎩,令1y =,得(2m =-,1,2),平面ABC 的法向量(0p =,0,1), 设平面ABC 与平面CDE 所成锐二面角为θ, 则||2cos ||||3m p m p θ==.∴平面ABC 与平面CDE 所成锐二面角的余弦值为23.14.(2021•天津二模)如图,DC ⊥平面ABC ,//EB DC ,24AC BC EB DC ====,90ACB ∠=︒,P 、Q 分别为AE ,AB 的中点.(1)证明://PQ 平面ACD .(2)求异面直线AB 与DE 所成角的余弦值; (3)求平面ACD 与平面ABE 所成锐二面角的大小.【解答】(1)证明:P 、Q 分别是AE 、AB 的中点, //PQ BE ∴,12PQ BE =, 又//DC BE ,12DC BE =, //PQ DC ∴,PQ ⊂/平面ACD ,DC ⊂平面ACD , //PQ ∴平面ACD ;(2)解:DC ⊥平面ABC ,90ACB ∠=︒,以点C 为坐标原点,分别以CD ,CA ,CB 的方向为x ,y ,z 轴的正方向建立空间直角坐标系.则(0C ,0,0),(0A ,4,0),(0B ,0,4),(2D ,0,0),(4E ,0,4), (0,4,4)AB =-,(2,0,4)DE =,10cos ,||||AB DE AB DE AB DE ∴<>==,∴异面直线AB 与DE ; (3)解:由(Ⅱ)可知(0,4,4)AB =-,(4,4,4)AE =-, 设平面ABE 的法向量为(,,)n x y z =.则4404440n AB y z n AE x y z ⎧=-+=⎪⎨=-+=⎪⎩,取1z =,得(0,1,1)n =. 由已知可得平面ACD 的法向量为(0CB =,0,4), 2cos ,||||n CB n CB n CB ∴<>== 故所求平面ACD 与平面ABE 所成锐二面角的大小为45︒.15.(2011•浙江)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知8BC =,4PO =,3AO =,2OD = (Ⅰ)证明:AP BC ⊥;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【解答】解:以O 为原点,以AD 方向为Y 轴正方向,以射线OP 的方向为Z 轴正方向,建立空间坐标系,则(0O ,0,0),(0A ,3-,0),(4B ,2,0),(4C -,2,0),(0P ,0,4) ()I 则(0AP =,3,4),(8BC =-,0,0)由此可得0AP BC ⋅=∴AP BC ⊥即AP BC ⊥()II 设PM PA λ=,1λ≠,则(0PM λ=,3-,4)- (4BM BP PM BP PA λ=+=+=-,2-,4)(0λ+,3-,4)- (4AC =-,5,0),(8BC =-,0,0)设平面BMC 的法向量(a a =,b ,)c 则00BM a BC a ⎧⋅=⎪⎨⋅=⎪⎩ 4(23)(44)080a b c a λλ--++-=⎧⎨-=⎩令1b =,则(0a =,1,23)44λλ+- 平面APC 的法向量(b x =,y ,)z 则00AP b AC b ⎧⋅=⎪⎨⋅=⎪⎩ 即340450y z x y +=⎧⎨-+=⎩令5x =则(5b =,4,3)- 由0a b ⋅= 得2343044λλ+-⋅=- 解得25λ=故3AM =综上所述,存在点M 符合题意,此时3AM =16.(2015秋•江西月考)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,111AA A B AC ===. (1)证明:平面ABC ⊥平面1A BC ;(2)在线段1BB 上是否存在点E ,使得二面角1E AC B --?若存在确定点E 的位置,若不存在,说明理由.【解答】证明:(Ⅰ)设BC 的中点为O ,11A B A C ==,BC = 1AO BC ∴⊥,且12A O =, 又90BAC ∠=︒,2AB AC ==,AO BC ∴⊥,且AO =,2221124AO AO AA ∴+=+=, 1AO AO ∴⊥,1AO ∴⊥面ABC ,又1A O ⊂平面1A BC ,∴平面1A BC ⊥平面ABC .解:(Ⅱ)如图,以OA ,OB ,1OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A ,(0B0),(0C,0),1(0A ,0,2), 平面1A BC 的法向量(1m =,0,0), 设11BE BB AA λλ==,(01)λ,则(BE =-,0,2)λ,点E 的坐标为(,2)λ, 设平面1EAC 的法向量为(n x =,y ,)z , 由1n CA ⊥,n CE ⊥,得2020z x z λ+=++=⎪⎩,取1z =,得22(n =-+1),10|cos ,|m n <>=,∴=解得1λ=,∴在线段1BB 上存在点E ,使得二面角1E AC B --,且点E 与点1B 重合.17.(2021春•东湖区校级期中)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(1)证明:1A D ⊥平面1A BC ;(2)求二面角11B A D B --的平面角的正切值.【解答】(1)证明:2AB AC ==,D 是11B C 的中点.111A D B C ∴⊥,11//BC B C ,1A D BC ∴⊥,1A O ⊥面ABC ,1//A D AO ,1AO AO ∴⊥,1AO BC ⊥ BCAO O =,11AO A D ⊥,1A D BC ⊥ 1A D ∴⊥平面1A BC(2)解,如图,以BC 中点O 为坐标原点,以OB 、OA 、1OA 所在直线分别为x 、y 、z 轴建系.则1BC AO =易知1(A B C ,1(0,A D B ,1(0,A D =,(BD =-设平面1A BD 的法向量为(,,)m x y z =,由,100m A D m BD ⎧=⎪⎨=⎪⎩得00⎧=⎪⎨+=⎪⎩,取1z =,得(7,0,1)m =又平面11A DB 的法向量为(0,0,1)n =,cos ,412m n ∴<>==⨯∴二面角11A BD B --18.(2021•舒城县校级开学)如图,已知多面体111ABC A B C -,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===. (1)证明:111AB AC ⊥;(2)求直线1AC 与平面1ABB 所成的角的正弦值.【解答】(1)证明:以A 为原点,AC ,1AA 所在直线分别为y ,z 轴,在平面ABC 内作Ax AC ⊥,建立如图所示的空间直角坐标系,则(0A ,0,0),1(1B 2),1(0A ,0,4),1(0C ,1),∴1(1AB =2),11(0A C =,3)-,∴11132(3)0AB A C ⋅=⨯⨯-=,即111AB AC ⊥.(2)解:由(1)可知,1(0AC =,1),(1AB =0),1(1AB =2), 设平面1ABB 的法向量为(n x =,y ,)z ,则100n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩,即020x x z ⎧=⎪⎨+=⎪⎩,令1y =,则x =0z =,∴(3n =-,1,0), 设直线1AC 与平面1ABB 所成的角为θ,则sin |cos n θ=<,111||||||||2n AC AC n AC ⋅>===⋅⨯, 故直线1AC 与平面1ABB . 19.(2021•滁州期末)如图,已知在直四棱柱(侧棱垂直底面的棱柱)1111ABCD A B C D -中,AD DC ⊥,//AB DC ,1222DC DD AD AB ====(1)求证:DB ⊥平面11B BCC .(2)求1BC 与平面1A BD 所成的角的余弦值; (3)求二面角11A DB C --的正弦值.【解答】证明:(1)以D 为原点,DA 、DC 、1DD 所在直线分别为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系,则(0D ,0,0),(1B ,0,0),1(0C ,2,2),(0C ,2,0), (1DB =,1,0),(1BC =-,1,0),1(0BB =,0,2), 1100DB BC =-++=,BD BC ∴⊥,10DB BB =,1BD BB ∴⊥, 1BB BC B =,DB ∴⊥平面11B BCC .解:(2)设(n x =,y ,)z 为平面1A BD 的一个法向量, 1(1DA =,0,2),(1DB =,1,0),则1200n DA x z n DB x y ⎧=+=⎪⎨=+=⎪⎩,取1z =,得(2n =-,2,1), 又1(1BC =-,1,2),设1BC 与平面1A BD 所面1A BD 所成角为θ, 则11||6sin ||||n BC n BC θ== 1BC ∴与平面1A BD . (3)由(2)知平面1A BD 的一个法向量为(2n =-,2,1), 设(m x =,y ,)z 为平面1C BD 的一个法向量, 1(1BC =-,1,2),(1DB =,1,0),则1200n BC x y z n DB x y ⎧=-++=⎪⎨=+=⎪⎩,取1x =-,得(1m =,1-,1), 设二面角11A DB C --的平面角为θ, 则|cos |||||||33m n m n θ===,sin θ∴==. ∴二面角11A DB C --.20.(2015秋•辽宁校级月考)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==PA ,G 为线段PC 上的点,120ABC ∠=︒(Ⅰ)证明:BD ⊥面PAC ; (Ⅱ)求PC 与面PBD 所成的角; (Ⅲ)若G 满足PC ⊥面GBD ,求PGGC的值.【解答】解:(1)设ACBD O =,2AB BC ==,AD CD =ABD CBD ∴∆≅∆,ABD CBD ∴∠=∠,ABO CBO ∴∆≅∆,BD AC ∴⊥,PA ⊥面ABCD ,PA BD ∴⊥,PAAC A =,BD ∴⊥面PAC .解:(2)以O 为坐标原点,以OC 和OD 所在直线为x 轴和y 轴,建立空间直角坐标系Oxyz ,(P 0,(0B ,1-,0),(0D ,2,0),C 0,0),设面PBD 的法向量为(,,)n x y z =,则(3,1,PB =-,(0,3,0)BD =,(23,0,PC =, n PBn BD⎧⊥⎪⎨⊥⎪⎩由,得030y y -==⎪⎩,取1x =,得(1,0,1)n =, ∴10cos ,10||||PC n PC n PC n 〈〉==,∴10sin |cos ,|PC n θ=〈〉=, 即PC 与面PBD所成角为, (3)设(G x ,y ,)z ,CG CP λ=,得(,)(x y z λ=-得0x y z ⎧=⎪=⎨⎪=⎩,即)G , ∴(3)BG =由BG PC ⊥,得25λ=,即32PG GC =.21.(2021•龙岗区校级期中)如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =.(1)证明:BC BD ⊥;(2)求二面角F CD B --的正弦值.【解答】(1)证明:如图,过点D 作DO AC ⊥,交AC 与点O ,连接OB , 由45ACD ∠=︒,DO AC ⊥,所以CD =,由平面ACFD ⊥平面ABC ,平面ACFD ⋂平面ABC AC =,DO ⊂平面ACFD , 故DO ⊥平面ABC ,又BC ⊂平面ABC , 所以DO BC ⊥,由45ACB ∠=︒,12BC CD ==,则BO BC ⊥, 又DOBO O =,DO ,BO ⊂平面BDO ,所以BC ⊥平面BDO , 又DB ⊂平面BDO , 故BC DB ⊥;(2)解:以点O 为坐标原点,建立空间直角坐标系如图所示,设2CD BC ==则(0O ,0,0),(1B ,1,0),(0C ,2,0),(0D ,0,2), 所以(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-,(0,2,0)OD =, 设平面BCD 的法向量为(,,)n x y z =,则00n BC n CD ⎧⋅=⎪⎨⋅=⎪⎩,即0220x y y z -+=⎧⎨-+=⎩, 令1x =,则1y z ==,故(1,1,1)n =,设平面FCOD 的法向量为(,,)m a b c =,则00m OC m OD ⎧⋅=⎪⎨⋅=⎪⎩,即2020c b =⎧⎨=⎩, 令1x =,则(1,0,0)m =,所以|||cos ,|||||13m n m n m n ⋅<>===⨯故二面角F CD B --=.22.(2021•新疆模拟)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)求证:DB ⊥平面ABC ; (2)求平面ABE 与平面ADC 所成二面角大小的余弦值.【解答】证明:(1)以D 为原点,DE 为x 轴,DC 为y 轴,在过D 作平面BCDE 垂线为z 轴,建立空间直角坐标系,则(0D ,0,0),(1B ,1,0),(0A ,2,(0C ,2,0),(1DB =,1,0),(0CA =,0,(1CB =,1-,0), 0DB CA =,0DB CB =,DB CA ∴⊥,DB CB ⊥,CA CB C =,DB ∴⊥平面ABC .解:(2)平面ADC 的法向量(1n =,0,0),(1E ,0,0),(1EA =-,2,(0EB =,1,0), 设平面ABE 的法向量(m x =,y ,)z ,则200m EA x y m EB y ⎧=-++=⎪⎨==⎪⎩,取1z =,得(2,0,1)m =, 设平面ABE 与平面ADC 所成二面角大小为θ,则||2cos ||||3m n m n θ===.∴平面ABE 与平面ADC .。
高中数学第三章空间向量与立体几何3.1.5空间向量运算的坐标表示课件新人教A版选修21
在直三棱柱 ABC-A1B1C1 中,AB=AC=1,AA1=2,∠B1A1C1= 90°,D 为 BB1 的中点,则异面直线 C1D 与 A1C 所成角的余弦值为( )
A.
10 5
B.2 7 5
C.
15 15
D.
10 15
第十五页,共52页。
【解析】 建系如图,则 C1(0,1,2),D(1,0,1),A1(0,0,2), C(0,1,0).
【精彩点拨】 (1)已知两点的坐标,怎样表示由这两点构成的向量的 坐标?(2)向量的加、减、数乘、数量积的坐标运算的法则是怎样的?
第十八页,共52页。
【自主解答】 由于 A(-1,2,1),B(1,3,4),C(0,-1,4),D(2, -1,-2),所以 p=A→B=(2,1,3),q=C→D=(2,0,-6).
第二十七页,共52页。
向量平行与垂直问题主要有两种题型:(1)平行与垂直的判断;(2)利用 平行与垂直求参数或解其他问题,即平行与垂直的应用.解题时要注意:(1) 适当引入参数(比如向量 a,b 平行,可设 a=λb),建立关于参数的方程;(2) 最好选择坐标形式,以达到简化运算的目的.
第二十八页,共52页。
(1)A→B=_____(_a_2_-_a_1_,__b_2-__b_1_,_c_2_-__c_1)______; (2)dAB=|A→B|=_____(__a_2-__a_1_)__2_+__(__b_2-__b_1_)__2+__(__c_2_-__c_1)__2_____.
第十四页,共52页。
阶
阶
段
段
(j
(j
iē
iē
d
d
u
u
à
à
三维空间几何坐标变换矩阵ppt课件
7.3 三维坐标变换 几何变换:在一个参考坐标系下将物体从一个 位置移动到另一个位置的变换。 坐标变换: 一个物体在不同坐标系之间的坐标 变换。如从世界坐标系到观察坐标系的变换; 观察坐标到设备坐标之间的变换。再如,对物 体造型时,我们通常在局部坐标系中构造物体, 然后重新定位到用户坐标系。
22
19
利用这一结果,则绕任意轴旋转的变换矩阵可表示为:
y
P2 •
P1 • x
z
yA
• P’2
P• ’1
x
z
其中旋转轴A=[ax,ay,az]为
传统的方法通过绕坐标轴旋转变换的乘积表示绕任意轴旋 转的变换。与之相比,这种方法更直观。
20
7.2.4 三维变换矩阵的功能分块
(1)三维线性变换部分 (2)三维平移变换部分 (3)透视变换部分 (4)整体比例因子
y y
y
z
x
z
xz
(a)
xz (b)
(d) x
(c)
12
2. 绕任意轴旋转的变换
(1)平移物体使旋转轴通过坐标原点;
y
y
P2 •
• P’2
P1 •
P• ’1
x
xz
z
(1)
(2)旋转物体使旋转轴与某个坐标轴(如z轴)重合;
(3)关于该坐标轴进行指定角度的旋转;
y
y
P• ’1
x
P2’’•
z
(2)
P• ’1 P2’’•
中的元素添入相应的位置中,即
9
(1) 绕z轴正向旋转 角,旋转后点的z坐标值不变, x、y 坐标的变化相当于在xoy平面内作正 角旋转。
(2)绕x轴正向旋转 角,旋转后点的x坐标值不变, Y、z坐标的变化相当于在yoz平面内作正 角旋转。
立体几何空间直角坐标系空间向量及其运算课件理ppt
空间向量的投影是指一个向量在另一个向量上的投影,通常用平行四边形法则来计算。而分解则是将一个复杂 向量分解为几个简单向量的组合。
空间向量在几何学中的运用
总结词
空间向量在几何学中有着广泛的应用,如 证明平行、垂直、计算角度和距离等。
VS
详细描述
通过建立空间直角坐标系,可以用空间向 量来表示和解决几何问题。例如,利用向 量证明平行或垂直,通过计算向量的模长 来计算距离,以及利用投影来计算角度等 。
实例分析
例如,在解决一些三角形问题时,可以通过 将三角形表示为向量形式,然后利用向量的
点乘和叉乘等性质进行求解。Βιβλιοθήκη 向量法在立体几何题中的应用
要点一
向量法在立体几何中的表现形式
要点二
实例分析
向量法在立体几何中通常表现为向量的加、减、数乘、 点乘和叉乘等运算,通过这些运算可以揭示出空间几何 体的内在关系。
向量的向量积不满足交 换律和结合律。
向量的向量积与向量的 模长无关,只与两个向 量的方向和夹角有关。
混合积及其应用
• 混合积定义:三个向量的混合积是一个标量,其定义为$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$。
• 混合积的性质 • 混合积的值等于三个向量所确定的平行四边形的面积乘以三个向量的模长之积。 • 混合积的方向与三个向量的顺序有关,具体来说,如果三个向量的顺序改变,则混合积的方向也会改变。 • 混合积的应用 • 在几何学中,混合积可以用于计算平行四边形的面积和体积。 • 在物理学中,混合积可以用于计算电磁场的强度和方向。
空间直角坐标系的定义
将空间中的点用三个实数坐标表示,即为空间直角坐标系。
空间向量之立体几何建系和求点坐标(共24张PPT)
xOy面内D yOz面内E zOx面内F
坐标形式 (x,y,0)
(0,y,z)
(x,0,z)
基础知识:
2、空间中在底面投影为特殊位置的点:
如果 A' x1, y1, z 在底面的投影为 A x2, y2,0 ,那么x1 x2, y1 y2
(即点与投影点的横纵坐标相同) 由这条规律出发,在写空间中的点坐标时,可看一下在底面的
建系方法2练习2 练2.如图,已知四棱锥P ABCD的底面是菱形,对角线AC, BD交于点O, OA 4,OB 3,OP 4,且OP 平面ABCD,点M为PC的三等分点(靠近P), 建立适当的直角坐标系并求各点坐标。
找“墙角”
14
建系方法2练习3
练3.如图,在等腰梯形ABCD中,AB // CD, AD DC CB 1, ABC 60,CF 平面ABCD,且CF 1,建立适当的直角坐标系 并确定各点坐标。
找“墙角”
建系方法2练习5
真题(辽宁卷)如图,AB 是圆的直径,PA 垂 直圆所在的平面,C 是圆上的点.
(1)求证:平面 PAC⊥平面 PBC; (2)若 AB=2,AC=1,PA=1,求证:二面
角 C-PB-A 的余弦值.
造“墙角”
建系方法3例题
三、利用面面垂直关系构建空间直角坐标系(转化为墙角模型) 例3.在四棱锥V-ABCD中,底面ABCD是边长为2的正方形,侧面VAD 是正三角形,平面VAD⊥底面ABCD.点P、H分别是线段VC、AD的 中点.试建立空间直角坐标系并写出P、V、A、B、C、D的坐标.
互相垂直,EF // BD, ED BD, AD 2, EF ED 1, 试建立合适的 空间直角坐标系并确定各点的坐标
高考试题中空间向量与立体几何建系问题专题探究ppt课件
A
A(0,0,2 3),B(0,0,0),C( 3,1,0),D(0,2,0)
33
M
F(2 3,0,0),M( , , 3),F(2 3,0,0) 22
B o
设 n ( x , y , z ) 是平面 MCB 一个法向量则
BA ( 0 , 0 , 2 3 ), BC ( 3 ,1 , 0 ).
一、空间直角坐标系的建立及空间 中点的坐标确定方法
•1、空间直角坐标系的建立方法:
在空间中取原点0,从原点0引三条两两垂直
的直线做为坐标轴,最后选定某个长度作为
单位长度。如右图
z
o
x
y
2、空间中点的坐标的确定方法
对于空间任意M一 ,点 求它的坐标: M分过别点做 个平面分别x垂 , y,直 z轴,平面与三个交 坐点 标轴 分别为 P,Q,R,在其相应轴上坐x标 ,y,依 z, 为 则(x, y, z)叫P的空间坐标,P(记 x, y作 , z), 三个数值P的 叫横坐标,纵坐坐 标标 ,。 竖
C1 B1
E1
D
E
A
R
F
C B
解(1): AB 4, BCCD 2, F为棱AB中点
BF BCCF, BCF为正三角形, ABCD
z
为等腰梯形,BACABC60。,取AF中
D1
点M,连DM,则DM AB,DMCD,以DM为x A1
例1、(2010 江西数理 17)如图, BCD 与A
MCD 都是边长为 2的正三角形,平
面MCD 平面 BCD , AB 平面 BCD ,
已知 AB 2 3.
M
(1)求点 A到平M 面B的 C 距离;
B
D
直角坐标系解决立体几何问题
在立体几何中引入向量之前,求角与距离是一个难点,在新课标中,从向量的角度来研究空间的点、线、面的关系,我们只要通过两个向量的数量积运算、运用向量的模、平面的法向量就可以解决常见的角与距离的问题。
而且,运用向量来解题思路简单、步骤清楚,对学生来说轻松了很多。
重点:用空间向量数量积及夹角公式求异面直线所成角。
难点:建立恰当的空间直角坐标系关键:几何问题转换为代数问题及正确写出空间向量的坐标。
Ⅰ、空间直角坐标系的建立空间向量的数量积公式(两种形式)、夹角公式和空间向量的数量积的几何性质。
(用媒体分步显示下列内容) 1. 向量的数量积公式(包括向量的夹角公式):(0≤θ≤π),1,y 1,z 12,y 2,z 2},则 ⑴θ 或1x 2+y 1y 2+z 1z 2cos θ2. 向量的数量积的几何性质:±利用空间向量知识求异面直线所成角的一般步骤: (1)根据图形建立合理的空间直角坐标系; (2)确定关键点的坐标; (3)求空间向量的夹角; (4)得出异面直线的所成角。
D 1xy o. Mxyo. M平面直角坐标系空间直角坐标系z用向量解决角的问题A、B,C、D,注意,由于两向量的夹角范围为而异面直线所成角的范围为,转化到异面直线夹角时为180例1:在长方体ABCD-A1B1C1D1中,AB=BC=4,AA1=6,求异面直线DA1与AC1的所成角;分析:在此题的解答中,设计如下问题贯穿整个过程以期共同解高。
问题1:此题在立体几何中我们应该如何解决?(异面直线平移相交,求相交直线的交角)问题2:利用空间向量求解,对几何体如何处理?(求向量DA1与AC1的数量积,当然应先建立空间直角坐标系)问题3:如何建立空间直角坐标系?并说明理由。
(以DA为X轴,以DC为Y轴,以DD1为Z轴)问题4:建立空间直角坐标系后,各相关点的坐标是多少?(请学生个别回答)例2.直棱柱ABCD-A1B1C1D1,底面是边长为4的菱形,且∠DAB=60°,AA1=6,AC与BC交于E,A1C1与B1D1交于E1,(1)求:DA1与AC1的所成角;(2)若F是AE1的中点,求:B1E与FD1的所成角;是求直线与平面所成角、求点到平面距离的必备工具.例4、.中条件,可轻易建立坐标系(如图)x图1-2图1-1 图1-3已知二面角α—l角α—l—β的大小为θ,规定02-2),也可用两个向量.)例8..α1n2nα1n2n2-1 2-21.例9. 如图,在底面是直角梯形的四棱锥S—A BCD中,AD//BC,∠A BC=900,S A⊥面A BCD,S AA B=BC=1,A求侧面SCD与面SB A所成的二面角的余弦值大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
因为底面ABCD是正方形, 所以点G是此正方形的中心, F
E
故点G的坐标为(1 , 1,0) 22
A X
D
G
B
C Y
4
如图,在四面体 A BCD 中, O, E 分别是 BD, BC 的中点, CA CB CD BD 2, AB AD 2 求证: (1) AO 平面BCD (2)求异面直线 AB与CD 所成角的余弦值 (3)求点 E 到平面 ACD 的距离。
(1)求证:PA//平面EDB
(2)求证:PB⊥平面EFD
P
(3)求二面角C-PB-D的大小。
F
E
D
C
A B
3
解:如图所示建立空间直角坐标系,点D为坐标原点, 设DC=1
(1)证明:连结AC,AC交BD于点G,连结EG
依题意得A(1, 0, 0), P(0, 0,1),
Z
11
E(0, , ) 22
A
D
O
B
E
C5
6
7
8
9
10
如图,一块均匀的正三角形面的钢板的质量
为 500kg ,在它的顶点处分别受力 F1, F2, F3 , 每个力与同它相邻的三角形的两边之间的
角都是 60 ,且 F1 F2 F3 200kg .这块钢
板在这些力的作用下将会怎样运动?这三
个力最小为多少时,才能提起这块钢板?
F3
F1
C
F2
O
A
1
500kg B
解:如图,以点A为原点,平面ABC为xAy坐标
平面,AB方向为y轴正方向,AB为y轴的单位长度建立空间直角坐标系AxyFra bibliotek,则正三角形的顶点
坐标分别为A(0,0,0), B(0,1,0),C( 3 , 1 ,0). 22
z
F
F
1
3
C
F
2
O
A
B
x
500kg
y2
例2 如图,在四棱锥P-ABCD中,底面ABCD是正方形, 侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作 EF⊥PB交PB于点F.